JP7323141B1 - 線量予測システム、線量予測方法及び線量予測プログラム - Google Patents

線量予測システム、線量予測方法及び線量予測プログラム Download PDF

Info

Publication number
JP7323141B1
JP7323141B1 JP2022017695A JP2022017695A JP7323141B1 JP 7323141 B1 JP7323141 B1 JP 7323141B1 JP 2022017695 A JP2022017695 A JP 2022017695A JP 2022017695 A JP2022017695 A JP 2022017695A JP 7323141 B1 JP7323141 B1 JP 7323141B1
Authority
JP
Japan
Prior art keywords
irradiation
dose
radioactivity distribution
control unit
particle beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022017695A
Other languages
English (en)
Other versions
JP2023115469A (ja
Inventor
禎治 西尾
裕也 根本
弘充 友澤
秀正 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Mizuho Research and Technologies Ltd
Original Assignee
Osaka University NUC
Mizuho Research and Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Mizuho Research and Technologies Ltd filed Critical Osaka University NUC
Priority to JP2022017695A priority Critical patent/JP7323141B1/ja
Application granted granted Critical
Publication of JP7323141B1 publication Critical patent/JP7323141B1/ja
Publication of JP2023115469A publication Critical patent/JP2023115469A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

Figure 0007323141000001
【課題】粒子線の照射量を的確に評価して、粒子線の照射による治療を支援するための線量予測システム、線量予測方法及び線量予測プログラムを提供する。
【解決手段】支援装置20は、粒子線を照射する照射装置31と、粒子線の照射領域を計測する検出装置32と、照射装置31による照射線量を予測する制御部21と、を備える。制御部21が、粒子線照射の照射領域の一部において、基準原子を含む基準領域を特定し、照射装置31による粒子線照射により、基準領域の基準原子によって生じる基準領域放射能分布、及び体内の前記基準原子によって生じる体内基準放射能分布を、検出装置32を用いて計測し、基準領域における基準原子の原子密度及び基準領域放射能分布に応じて、体内基準放射能分布に対応する照射線量を算出する。
【選択図】図1

Description

本開示は、粒子線を用いた治療を支援するための線量予測システム、線量予測方法及び線量予測プログラムに関する。
放射線を用いて治療を行なう場合、患者の被曝量を低減するために、的確な位置に適切な放射線量で照射する必要がある。このため、透視画像撮影装置によって患者に埋め込まれたマーカの現在位置を算出することにより、放射線治療中に透視するための撮影用放射線による患者の被曝量を低減する放射線治療制御装置が検討されている(例えば、特許文献1参照)。この文献に記載された技術では、一組の透視画像撮影装置から3つ以上のマーカの透視画像を取得することにより、各マーカ間の各々の距離を取得する。そして、各マーカの現在位置を算出した後で、治療用放射線を照射するか否かを判別する。
また、高いエネルギで高速の粒子線を用いて、治療を行なう場合もある。粒子線の一つである陽子線は、入射陽子が体内で停止する寸前の場所で大きなエネルギを損失する。そして、その場所に「ブラッグピーク」と呼ばれる高線量領域を形成する。このため、正常な領域のダメージを減らすことにより、体内の患部に強い放射線を集中的に照射することができる。このような粒子線(陽子線)の照射において、入射陽子核と患者体内にある標的原子核で起こる原子核破砕反応を利用して、陽子線照射領域を可視化する。これにより、その可視化情報から腫瘍に対する照射線量を誘導する技術も検討されている(例えば、非特許文献1参照)。この文献に記載された技術では、陽子線治療において標的原子核破砕反応によって患者体内の照射領域に生成されるポジトロン放出核を検出する陽電子断層装置(PET装置)である「Beam ON-LINE Positron Emission Tomography system」を用いる。このPET装置を、陽子線回転ガントリー照射室内に設置することで、陽子線照射領域を可視化する。
また、近年、フラッシュ照射法も検討されている(例えば、非特許文献2参照)。この文献に記載されたフラッシュ照射法では、通常の治療線量率(0.03Gy/s程度)よりも高い線量率(>40Gy/s)で放射線を照射する。この場合、従来通りの治療効果を維持しながら、正常組織への副作用を低減することができる。そして、陽子線を使用したフラッシュ照射法で、がん治療の実施に関する検討も開始されている。
特開2013-192702号公報
西尾禎治,"原子核破砕反応を利用した照射領域可視化による高精度陽子線治療",[online],2011年,一般財団法人 高度情報科学技術研究機構,RISTニュース,No.50,p.24-35,[令和3年12月24日検索],インターネット<URL:http://www.rist.or.jp/rnews/50/50s4.pdf> 廣山陽太他,"60MeV陽子線FLASH照射の培養細胞における細胞致死効果及び微小核形成率の測定",[online],2021年7月7日,公益社団法人 日本アイソトープ協会,第58回アイソトープ・放射線研究発表会,[令和3年12月24日検索],インターネット<https://www.jstage.jst.go.jp/article/happyokai/1/0/1_134/_pdf/-char/ja>
しかしながら、照射線量を的確に計測できなければ、高精度な照射条件の調整が困難である。特に、フラッシュ照射法では、瞬時に大量の粒子線を照射するため、照射線量の計測が困難である。
上記課題を解決する線量予測システムは、粒子線を照射する照射装置と、前記粒子線の照射領域を計測する検出装置と、前記照射装置による照射線量を予測する制御部と、を備える。そして、前記制御部が、粒子線照射の照射領域の一部において、基準原子を含む基準領域を特定し、前記照射装置による粒子線照射により、前記基準領域の前記基準原子によって生じる基準領域放射能分布、及び体内の前記基準原子によって生じる体内基準放射能分布を、前記検出装置を用いて計測し、前記基準領域における前記基準原子の原子密度及び前記基準領域放射能分布に応じて、前記体内基準放射能分布に対応する照射線量を算出する。
本発明は、粒子線の照射量を的確に評価して、粒子線の照射による治療を支援することができる。
第1実施形態の線量予測システムの説明図である。 第1実施形態のハードウェア構成の説明図である。 第1実施形態の処理手順の説明図である。 第1実施形態の処理手順の説明図である。 第1実施形態の粒子線の照射位置の説明図である。 第1実施形態のフラッシュ照射による放射能分布の時間依存性の説明図である。 第1実施形態のミリ秒オーダー半減期の放射能分布の説明図である。 第1実施形態の分オーダー半減期の放射能分布の説明図である。 第2実施形態の処理手順の説明図である。 第2実施形態の処理手順の説明図である。 第2実施形態のフラッシュ照射による放射能分布の時間依存性の説明図である。 第3実施形態の処理手順の説明図である。
〔第1実施形態〕
以下、図1~図8に従って、線量予測システム、線量予測方法及び線量予測プログラムを具体化した一実施形態を説明する。本実施形態では、粒子線としての陽子を、フラッシュ照射法により、患者の患部に照射して、患部の治療を行なう場合を説明する。この場合、陽子線の照射量を算出するための変換係数を算出する先行照射処理と、先行照射処理により算出された変換係数を用いた後続照射処理とを行なう。
ここでは、ネットワークを介して接続された治療計画装置10、支援装置20、治療装置30を用いる。
(ハードウェア構成例)
図2は、治療計画装置10、支援装置20、治療装置30等として機能する情報処理装置H10のハードウェア構成例である。
情報処理装置H10は、通信装置H11、入力装置H12、表示装置H13、記憶装置H14、プロセッサH15を有する。なお、このハードウェア構成は一例であり、他のハードウェアを有していてもよい。
通信装置H11は、他の装置との間で通信経路を確立して、データの送受信を実行するインタフェースであり、例えばネットワークインタフェースや無線インタフェース等である。
入力装置H12は、ユーザ等からの入力を受け付ける装置であり、例えばマウスやキーボード等である。表示装置H13は、各種情報を表示するディスプレイやタッチパネル等である。
記憶装置H14は、治療計画装置10、支援装置20、治療装置30の各種機能を実行するためのデータや各種プログラムを格納する記憶装置である。記憶装置H14の一例としては、ROM、RAM、ハードディスク等がある。
プロセッサH15は、記憶装置H14に記憶されるプログラムやデータを用いて、治療計画装置10、支援装置20、治療装置30における各処理(例えば、後述する制御部21における処理)を制御する。プロセッサH15の一例としては、例えばCPUやMPU等がある。このプロセッサH15は、ROM等に記憶されるプログラムをRAMに展開して、各種処理に対応する各種プロセスを実行する。例えば、プロセッサH15は、治療計画装置10、支援装置20、治療装置30のアプリケーションプログラムが起動された場合、後述する各処理を実行するプロセスを動作させる。
プロセッサH15は、自身が実行するすべての処理についてソフトウェア処理を行なうものに限られない。例えば、プロセッサH15は、自身が実行する処理の少なくとも一部についてハードウェア処理を行なう専用のハードウェア回路(例えば、特定用途向け集積回路:ASIC)を備えてもよい。すなわち、プロセッサH15は、以下で構成し得る。
〔1〕コンピュータプログラムに従って動作する1つ以上のプロセッサ
〔2〕各種処理のうち少なくとも一部の処理を実行する1つ以上の専用のハードウェア回路
〔3〕それらの組み合わせ、を含む回路
プロセッサは、CPU並びに、RAM及びROM等のメモリを含み、メモリは、処理をCPUに実行させるように構成されたプログラムコード又は指令を格納している。メモリすなわちコンピュータ可読媒体は、汎用又は専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。
(各情報処理装置の機能)
次に、治療計画装置10、支援装置20、治療装置30の機能を説明する。
治療計画装置10は、患部に対して放射線の入射方法を検討し、適切な線量が処方できているかを確認するためのシミュレータである。この治療計画装置10は、CT撮影装置から、所定の画像間隔で断層撮影したCT画像(DICOMデータ)を取得する。そして、治療計画装置10は、公知の方法を用いて、DICOMデータにおいて輪郭抽出を行ない、CT輪郭情報を生成する。このCT輪郭情報は、DICOM ROI(Region Of Interest)データにより構成されており、所定間隔で撮影したCT画像(断層画像)において特定した所定部位(体表面、骨、患部及びリスク臓器等)の輪郭を構成する点(座標)の集合体からなるデータである。この治療計画装置10においては、患部の体表面形状、患部の形状、位置、リスク臓器との位置関係によって、治療ビームの線質、入射方向、照射範囲、処方線量・照射回数等を決定する。
支援装置20は、粒子線(陽子線)治療を支援するためのコンピュータシステムである。この支援装置20は、制御部21、治療情報記憶部22、変換係数記憶部23を備えている。
制御部21は、後述する処理(照射指示段階、取得段階、変換段階等を含む処理)を行なう。このための線量予測プログラムを実行することにより、制御部21は、照射指示部211、取得部212、変換部213等として機能する。
照射指示部211は、治療装置30に対して、陽子線の照射を指示する処理を実行する。
取得部212は、放射線量等の各種情報を取得する処理を実行する。
変換部213は、変換係数の算出処理や、変換係数を用いた照射線量の算出処理を実行する。
治療情報記憶部22には、患者の治療のための陽子線照射についての治療管理情報が記録される。この治療管理情報は、治療計画装置10から治療計画情報を取得した場合に記録される。この治療管理情報は、患者コード、治療予定日に関連付けて、CT輪郭情報、照射条件情報を含む。
患者コードは、各患者を特定するための識別子である。
治療予定日は、この患者に対して、治療計画における陽子線照射による治療の予定日(年月日)である。
CT輪郭情報には、この患者の患部のCT画像において、所定部位(体表面、骨、患部及びリスク臓器等)の輪郭の位置情報が含まれる。
照射条件情報は、この患者に対して、治療予定日に照射する陽子線を照射する条件である。照射条件情報には、陽子線の照射位置、照射方向、照射エネルギ、照射線量、ビーム照射法等に関する情報が含まれる。本実施形態では、ビーム照射法として、「フラッシュ照射」を用いる。
変換係数記憶部23には、照射線量を算出するための変換係数情報が記録される。この変換係数情報は、先行照射処理を行なった場合に記録される。この変換係数情報は、患者コード及び変換係数に関する情報を含む。
患者コードは、各患者を特定するための識別子である。
変換係数は、患者の体部位における放射能(activity)分布から、フラッシュ照射法による照射線量を予測するための情報である。
治療装置30は、放射線を患部に照射することにより、がん等の患部の治療を行なう装置である。この治療装置30には、患者P1が仰臥や背臥するための治療台が設けられている。そして、治療装置30は、照射装置31、検出装置32を備える。
照射装置31は、治療台の患者P1に対して、フラッシュ照射法により粒子線を照射する装置(ガントリー)である。
検出装置32は、陽子線治療において標的原子核破砕反応によって患者体内の照射領域に生成されるポジトロン放出核を検出する陽電子断層装置(PET装置)である。このポジトロン放出核の放出位置により、照射深さ位置(照射領域)を特定することができる。検出装置32は、照射装置31から照射される陽子線の照射方向の側面から、ポジトロン放出核を検出する計測面321,322を備える。
(照射支援処理)
図3、図4を用いて、照射支援処理を説明する。この照射支援処理は、先行照射処理と後続照射処理とからなる。
(先行照射処理)
まず、図3を用いて、先行照射処理を説明する。この先行照射処理におけるフラッシュ照射では、基準領域を備えた防護シェルを用いる。
図5に示すように、粒子線治療を行なう場合、治療位置a0以外の領域への照射を抑制するために、体表面に防護シェルsh1を貼付する。本実施形態では、治療位置a0の近傍で、防護シェルsh1の一部の領域に基準領域a1が設けられている。基準領域a1は、所定密度の基準原子(本実施形態ではCa原子)を含有して構成される。この基準原子の原子密度により、粒子線の吸収線量が決まる。
まず、支援装置20の制御部21は、第1粒子線照射として、フラッシュ照射処理を実行する(ステップS11)。具体的には、制御部21の照射指示部211は、治療計画装置10から、治療予定日(当日)に、陽子線照射による治療を行なう患者の患者コードの治療計画情報を取得し、治療情報記憶部22に記録する。そして、取得部212は、CT輪郭情報において、照射条件(陽子線の照射位置、照射方向、照射エネルギ)を用いて、陽子線の照射範囲を特定する。
次に、照射指示部211は、治療装置30に対して、陽子線のフラッシュ照射指示を送信する。このフラッシュ照射指示には、陽子線の照射エネルギ及びフラッシュ照射線量(予定値)に関する情報を含める。この場合、照射エネルギとしては、治療計画における、照射位置での照射エネルギを設定する。また、照射線量(予定値)としては、治療計画の処方線量内であって、検出装置32でポジトロン放出核を検知可能な最小線量を用いる。そして、治療装置30の照射装置31は、指示されたフラッシュ照射位置毎に、照射エネルギ及びフラッシュ照射線量により、陽子線の照射を行なう。
次に、支援装置20の制御部21は、基準領域及び体内の放射能分布の計測処理を実行する(ステップS12)。具体的には、制御部21の取得部212は、治療装置30の検出装置32から、フラッシュ照射によるポジトロン放出核を検出し、基準領域の基準領域放射能分布及び体内の放射能分布(体内領域放射能分布)の時間依存性を計測する。
図6に示すように、原子の半減期の相違によって、ポジトロン放出核の放出時期が異なる。半減期が基準時間(例えば、1秒)より短い「ミリ秒オーダー」の時間帯t1では、下記のポジトロン放出が生じる。
12C(p,n)12N
40Ca(p,X)39Ca,38Ca,…
半減期が長い「分或いは数十秒オーダー」の時間帯t2では、下記のポジトロン放出が生じる。なお、時間帯t2は、時間帯t1と識別できる時間帯であればよい。
12C(p,X)11C,10C,…
16O(p,X)15O,14O,…
40Ca(p,X)38K,30P,…
図5に示す計測面321,322により、時間帯t1,t2において、基準領域及び体内の放射能分布を検出する。
図7、図8に示すように、計測時間によって、放射能分布が異なる。図7は時間帯t1の放射能分布、図8は時間帯t2の放射能分布である。両者は、「+」近傍の放射能分布が異なっている。
次に、支援装置20の制御部21は、体内の放射能分布において、体内基準原子からの放射能分布の取得処理を実行する(ステップS13)。具体的には、制御部21の変換部213は、取得部212が取得した時間帯t1(基準時間)の放射能分布において、体内基準原子(Ca原子)を含む骨からの体内基準放射能分布を特定する。
次に、支援装置20の制御部21は、基準領域の放射能分布により、照射線量の算出処理を実行する(ステップS14)。具体的には、制御部21の変換部213は、取得部212が取得した時間帯t1の放射能分布において、基準領域からの放射能分布(基準領域放射能分布)を特定する。次に、変換部213は、治療情報記憶部22に記録された治療計画を用いて、基準領域の位置におけるフラッシュ照射の照射予定線量を特定する。そして、変換部213は、基準領域のCa密度による吸収線量を用いて、基準領域の照射線量(実線量)を算出する。
次に、支援装置20の制御部21は、照射線量の出力処理を実行する(ステップS15)。具体的には、制御部21の変換部213は、算出した照射線量を治療装置30に出力する。更に、変換部213は、算出した照射線量分布と治療計画の照射線量や深さ位置とを比較する。治療計画と不一致と判定した場合、変換部213は、照射線量や深さ位置のずれについて、治療装置30に対して、アラームを出力する。
次に、支援装置20の制御部21は、変換係数の算出処理を実行する(ステップS16)。具体的には、制御部21の変換部213は、治療計画を用いて、骨位置におけるフラッシュ照射の照射予定線量を特定する。次に、変換部213は、基準領域の照射予定線量と、骨位置の照射予定線量との分布割合を算出する。次に、変換部213は、基準領域における実線量に分布割合を乗算し、骨位置の実線量を算出する。次に、変換部213は、骨位置の体内基準放射能分布から、骨位置の照射線量に変換する変換係数を算出する。そして、変換部213は、算出した変換係数を、患者コードに関連付けて変換係数記憶部23に記録する。
(後続照射処理)
次に、図4を用いて、後続照射処理を説明する。この後続照射処理においては、基準領域a1がない防護シェルsh1を用いる。
まず、支援装置20の制御部21は、第2粒子線照射として、ステップS11と同様に、フラッシュ照射処理を実行する(ステップS21)。
次に、支援装置20の制御部21は、体内の放射能分布の計測処理を実行する(ステップS22)。具体的には、制御部21の取得部212は、治療装置30の検出装置32から、フラッシュ照射によるポジトロン放出核を検出し、放射能分布の時間依存性を計測する。
次に、支援装置20の制御部21は、ステップS13と同様に、体内の放射能分布において、体内基準原子からの放射能分布の取得処理を実行する(ステップS23)。ここでは、時間帯t1における体内の放射能分布のみを取得する。
次に、支援装置20の制御部21は、変換係数を用いて照射線量の算出処理を実行する(ステップS24)。具体的には、制御部21の変換部213は、患者コードに関連付けられた変換係数を変換係数記憶部23から取得する。そして、変換部213は、骨位置の体内基準放射能分布に、変換係数を適用して、照射線量を算出する。
次に、支援装置20の制御部21は、照射線量の出力処理を実行する(ステップS25)。具体的には、制御部21の変換部213は、算出した照射線量を治療装置30に出力する。更に、ステップS15と同様に、変換部213は、照射線量や深さ位置のずれについて、治療装置30に対して、アラームを出力する。
本実施形態によれば、以下のような効果を得ることができる。
(1-1)本実施形態では、支援装置20の制御部21は、フラッシュ照射処理を実行する(ステップS11)。これにより、粒子線照射において、治療効果を維持しながら、正常組織への副作用を低減した治療を行なうことができる。
(1-2)本実施形態では、支援装置20の制御部21は、基準領域及び体内の放射能分布の計測処理を実行する(ステップS12)。ここで、検出装置32は、陽子線治療において標的原子核破砕反応によって患者体内の照射領域に生成されるポジトロン放出核を検出する陽電子断層装置(PET装置)を用いる。これにより、ミリ秒オーダーからの幅広い時間範囲で、高速に放射能分布を、2次元的に計測することができる。従って、瞬時に照射が終了するフラッシュ照射において、放射能分布を計測することができる。この計測結果により、フラッシュ照射における照射線量を調整して、的確な治療を行なうことができる。
(1-3)本実施形態では、支援装置20の制御部21は、体内の放射能分布において、体内基準原子からの放射能分布の取得処理を実行する(ステップS13)。これにより、体内に存在する骨のCa原子からのポジトロン放出核を計測することができる。
(1-4)本実施形態では、支援装置20の制御部21は、基準領域の放射能分布により、照射線量の算出処理を実行する(ステップS14)。これにより、基準原子の密度が特定できる基準領域において、ポジトロン放出核を計測することで、実際の照射線量を算出することができる。
(1-5)本実施形態では、支援装置20の制御部21は、変換係数の算出処理を実行する(ステップS16)。これにより、体内における基準原子の密度を把握できない場合にも、基準領域の放射能分布を用いて照射線量を予測するための変換係数を算出することができる。
(1-6)本実施形態では、支援装置20の制御部21は、変換係数を用いて照射線量の算出処理を実行する(ステップS24)。これにより、基準領域が存在しない場合にも、体内での放射能分布を用いて、照射線量を予測することができる。
〔第2実施形態〕
次に、図9~図11に従って、線量予測システム、線量予測方法及び線量予測プログラムを具体化した第2実施形態を説明する。第1実施形態では、基準原子(Ca原子)を用いて、照射線量を算出する。第2実施形態では、複数の原子(基準原子、参照原子)を併用して、照射線量の検証を行なうように変更する。以下の実施形態においては、上記第1実施形態と同様の部分については、同一の符号を付し、その詳細な説明を省略する。
例えば、図11に示すように、時間帯t1におけるCa原子(基準原子)からの放射能分布と、時間帯t2におけるC原子,O原子(参照原子)からの放射能分布とを用いる。
このため、本実施形態の変換係数記憶部23には、第1変換係数及び第2変換係数を記憶する。
(先行照射処理)
図9を用いて、先行照射処理を説明する。この場合にも、基準原子(Ca原子)を含む基準領域が配置された防護シェルを用いる。
まず、支援装置20の制御部21は、ステップS11と同様に、フラッシュ照射処理を実行する(ステップS31)。
次に、支援装置20の制御部21は、ステップS12と同様に、基準領域及び体内の放射能分布の計測処理を実行する(ステップS32)。
次に、支援装置20の制御部21は、体内の放射能分布において、体内基準原子からの放射能分布の取得処理を実行する(ステップS33)。具体的には、制御部21の変換部213は、取得部212が取得した時間帯t1の放射能分布において、体内基準原子(Ca原子)を含む骨からの放射能分布(第1基準体内放射能分布)を特定する。
次に、支援装置20の制御部21は、体内参照原子からの放射能分布の取得処理を実行する(ステップS34)。具体的には、制御部21の変換部213は、取得部212が取得した時間帯t2の放射能分布において、体内参照原子(C,O)を含む臓器からの放射能分布(第1参照体内放射能分布)を特定する。
次に、支援装置20の制御部21は、ステップS14と同様に、基準領域の放射能分布により照射線量の算出処理を実行する(ステップS35)。
次に、支援装置20の制御部21は、ステップS15と同様に、照射線量の出力処理を実行する(ステップS36)。
次に、支援装置20の制御部21は、第1変換係数の算出処理を実行する(ステップS37)。具体的には、制御部21の変換部213は、ステップS16と同様に、治療計画を用いて、骨位置におけるフラッシュ照射の照射予定線量を特定する。次に、変換部213は、基準領域の照射予定線量と、骨位置の照射予定線量との分布割合を算出する。次に、変換部213は、基準領域における実線量に分布割合を乗算し、骨位置の実線量を算出する。次に、変換部213は、骨位置の第1基準体内放射能分布から、骨位置の照射線量に変換する第1変換係数を算出する。そして、変換部213は、算出した第1変換係数を、患者コードに関連付けて変換係数記憶部23に記録する。
次に、支援装置20の制御部21は、第2変換係数の算出処理を実行する(ステップS38)。具体的には、制御部21の変換部213は、治療計画を用いて、体内参照原子(C,O)を含む臓器位置におけるフラッシュ照射の照射予定線量を特定する。次に、変換部213は、基準領域の照射予定線量と、臓器位置の照射予定線量との分布割合を算出する。次に、変換部213は、基準領域における実線量に分布割合を乗算し、臓器位置の実線量を算出する。次に、変換部213は、臓器位置の第1参照体内放射能分布から、臓器位置の照射線量に変換する第2変換係数を算出する。そして、変換部213は、算出した第2変換係数を、患者コードに関連付けて変換係数記憶部23に記録する。
(後続照射処理)
次に、図10を用いて、後続照射処理を説明する。この後続照射処理においては、基準領域a1がない防護シェルsh1を用いる。
まず、支援装置20の制御部21は、ステップS21と同様に、フラッシュ照射処理を実行する(ステップS41)。
次に、支援装置20の制御部21は、ステップS22と同様に、体内の放射能分布の計測処理を実行する(ステップS42)。
次に、支援装置20の制御部21は、ステップS33と同様に、体内基準原子からの放射能分布の取得処理を実行する(ステップS43)。ここでは、骨からの放射能分布(第2基準体内放射能分布)を特定する。
次に、支援装置20の制御部21は、第1変換係数を用いて、第1照射線量の算出処理を実行する(ステップS44)。具体的には、制御部21の変換部213は、患者コードに関連付けられた第1変換係数を変換係数記憶部23から取得する。そして、変換部213は、第2基準体内放射能分布に対して、第1変換係数を用いて、照射線量を算出する。
次に、支援装置20の制御部21は、ステップS34と同様に、体内参照原子からの放射能分布の取得処理を実行する(ステップS45)。ここでは、臓器からの放射能分布(第2参照体内放射能分布)を特定する。
次に、支援装置20の制御部21は、第2変換係数を用いて、第2照射線量の算出処理を実行する(ステップS46)。具体的には、制御部21の変換部213は、患者コードに関連付けられた第2変換係数を変換係数記憶部23から取得する。そして、変換部213は、体内参照原子(C,O)を含む臓器からの第2参照体内放射能分布に対して、第2変換係数を用いて、第2照射線量を算出する。
次に、支援装置20の制御部21は、照射線量の確認処理を実行する(ステップS47)。具体的には、制御部21の変換部213は、第1照射線量と第2照射線量との差異(比較結果)を算出する。そして、差異が誤差範囲内に収まっていることを確認する。更に、変換部213は、算出した照射線量分布と治療計画の照射線量や深さ位置とを比較する。
次に、支援装置20の制御部21は、照射線量の出力処理を実行する(ステップS48)。具体的には、制御部21の変換部213は、算出した照射線量分布と治療計画の照射線量や深さ位置とを比較する。更に、治療計画と不一致と判定した場合、変換部213は、照射線量や深さ位置のずれについて、治療装置30に対して、アラームを出力する。第1照射線量と第2照射線量との差異が誤差範囲を超えている場合や、治療計画と不一致と判定した場合、変換部213は、照射線量や深さ位置のずれについての評価結果に応じて、治療装置30に対して、アラームを出力する。
本実施形態によれば、(1-1)~(1-6)効果に加えて、以下のような効果を得ることができる。
(2-1)本実施形態では、支援装置20の制御部21は、体内参照原子からの第2放射能分布の取得処理(ステップS34)、第2変換係数の算出処理を実行する(ステップS38)。これにより、複数の原子(基準原子、参照原子)について、放射能分布から照射線量を予測するための変換係数を算出することができる。
(2-2)本実施形態では、支援装置20の制御部21は、体内基準原子からの放射能分布の取得処理(ステップS43)~照射線量の確認処理(ステップS47)を実行する。これにより、複数の原子(基準原子、参照原子)からの放射能分布を用いて、算出した照射線量を検証することができる。
〔第3実施形態〕
次に、図12に従って、線量予測システム、線量予測方法及び線量予測プログラムを具体化した第3実施形態を説明する。第1実施形態では、基準領域を用いて、照射線量を算出する。第3実施形態は、患者の骨を基準領域として用いるように変更した構成であり、上記第1実施形態と同様の部分については、同一の符号を付し、その詳細な説明を省略する。この場合、患者の骨のCa密度を用いて照射線量を算出する。
(照射処理)
図12を用いて、照射処理を説明する。ここでは、患者の治療部位近傍に存在する基準原子の密度を用いる。患者の治療部位近傍に存在する骨について、骨密度から算出したCa密度を用いる。
まず、支援装置20の制御部21は、患者の体内の基準原子の密度の特定処理を実行する(ステップS51)。具体的には、制御部21の取得部212は、患者の治療部位近傍に存在する骨のCa密度を取得する。そして、取得部212は、患者コードに関連付けて、基準原子(Ca原子)の密度を、変換係数記憶部23に記録する。
次に、支援装置20の制御部21は、ステップS21と同様に、フラッシュ照射処理を実行する(ステップS52)。
次に、支援装置20の制御部21は、ステップS22と同様に、体内の放射能分布の計測処理を実行する(ステップS53)。
次に、支援装置20の制御部21は、ステップS23と同様に、体内基準原子からの放射能分布の取得処理を実行する(ステップS54)。
次に、支援装置20の制御部21は、基準原子の密度を用いて照射線量の算出処理を実行する(ステップS55)。具体的には、制御部21の変換部213は、患者コードに関連付けられた骨のCa密度を変換係数記憶部23から取得する。そして、変換部213は、Ca密度を用いて、骨の放射能分布(体内基準放射能分布)に対応した照射線量を算出する。
次に、支援装置20の制御部21は、ステップS25と同様に、照射線量の出力処理を実行する(ステップS56)。
本実施形態によれば、(1-1)~(1-3)の効果に加えて、以下のような効果を得ることができる。
(3-1)本実施形態では、支援装置20の制御部21は、患者の体内の基準原子の密度の特定処理(ステップS51)、基準原子の密度を用いて照射線量の算出処理(ステップS55)を実行する。これにより、体内に存在する基準原子を含む部位(例えば、骨)を基準領域として利用して、照射線量を算出することができる。
本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・上記各実施形態では、粒子線として陽子線を用いる。ここで、粒子線は陽子線に限定されるものではなく、例えば、炭素線等を用いることも可能である。
・上記各実施形態では、フラッシュ照射における照射線量を算出するが、粒子線の照射方法はフラッシュ照射に限定されるものではない。
・上記各実施形態では、基準原子としてCa原子を用いる。体内に存在する原子であれば、Caに限定されるものではない。
・上記各実施形態では、防護シェルsh1の一部の領域に基準領域a1が設けられている。基準領域は、ポジトロン放出を検出可能な基準原子を含む領域であれば、防護シェルsh1の一部に限定されるものではない。
・上記各実施形態では、検出装置32として、患者体内の照射領域に生成されるポジトロン放出核を検出する陽電子断層装置を用いる。照射領域を検出できれば、ポジトロン放出核の検出に限定されるものではない。
a0…治療位置、a1…基準領域、10…治療計画装置、20…支援装置、21…制御部、211…照射指示部、212…取得部、213…変換部、22…治療情報記憶部、23…変換係数記憶部、30…治療装置、31…照射装置、32…検出装置。

Claims (10)

  1. 粒子線を照射する照射装置と、
    前記粒子線の照射領域を計測する検出装置と、
    前記照射装置による照射線量を予測する制御部と、を備えた線量予測システムであって、
    前記制御部が、
    粒子線照射の照射領域の一部において、基準原子を含む基準領域を特定し、
    前記照射装置による粒子線照射により、前記基準領域の前記基準原子によって生じる基準領域放射能分布、及び体内の前記基準原子によって生じる体内基準放射能分布を、前記検出装置を用いて計測し、
    前記基準領域における前記基準原子の数密度及び前記基準領域放射能分布に応じて、前記体内基準放射能分布に対応する照射線量を算出することを特徴とする線量予測システム。
  2. 前記粒子線照射の照射領域に配置された前記基準原子を含む領域を、前記基準領域として特定することを特徴とする請求項1に記載の線量予測システム。
  3. 前記制御部が、前記基準領域放射能分布及び前記体内基準放射能分布を、半減期に応じた時間帯で特定することを特徴とする請求項1又は2に記載の線量予測システム。
  4. 前記制御部が、
    前記体内において、半減期が基準時間より短い前記基準原子の放射能分布を、前記検出装置を用いて取得し、
    前記照射装置による粒子線のフラッシュ照射において、前記基準時間内で、前記体内基準放射能分布を計測し、
    前記体内基準放射能分布に応じて照射線量を算出することを特徴とする請求項1~3のいずれか一項に記載の線量予測システム。
  5. 前記基準原子はCa原子であることを特徴とする請求項1~4のいずれか一項に記載の線量予測システム。
  6. 前記制御部が、
    前記照射装置による第1粒子線照射により、前記基準領域放射能分布及び第1基準体内放射能分布を、前記検出装置を用いて計測し、
    前記基準領域放射能分布により算出した照射線量を、前記第1基準体内放射能分布から予測するための第1変換係数を算出し、
    前記照射装置における新たな第2粒子線照射による第2基準体内放射能分布を、前記検出装置を用いて計測し、
    前記第1変換係数を用いて、前記第2基準体内放射能分布から照射線量を算出することを特徴とする請求項1~5のいずれか一項に記載の線量予測システム。
  7. 前記制御部が、
    前記照射装置による粒子線照射において、更に、前記基準原子とは異なる参照原子によって生じる第1参照体内放射能分布を、前記検出装置を用いて計測し、
    前記第1参照体内放射能分布に基づいて照射線量を算出する第2変換係数を算出し、
    前記第2粒子線照射において、前記第2基準体内放射能分布及び前記参照原子によって生じる第2参照体内放射能分布を、前記検出装置を用いて取得し、
    前記第2基準体内放射能分布及び前記第1変換係数を用いて算出した照射線量と、前記第2参照体内放射能分布及び前記第2変換係数を用いて算出した照射線量とを比較することを特徴とする請求項6に記載の線量予測システム。
  8. 前記制御部が、前記第1参照体内放射能分布及び前記第2参照体内放射能分布を、半減期に応じた時間帯で特定することを特徴とする請求項7に記載の線量予測システム。
  9. 粒子線を照射する照射装置と、
    前記粒子線の照射領域を計測する検出装置と、
    前記照射装置による照射線量を予測する制御部と、を備えた線量予測システムにより、線量予測を行なう方法であって、
    前記制御部が、
    粒子線照射の照射領域の一部において、基準原子を含む基準領域を特定し、
    前記検出装置を用いて、前記照射装置による粒子線照射により、前記基準領域の前記基準原子によって生じる基準領域放射能分布、及び体内の前記基準原子によって生じる体内基準放射能分布を取得し、
    前記基準領域における前記基準原子の数密度及び前記基準領域放射能分布に応じて、前記体内基準放射能分布に対応する照射線量を算出することを特徴とする線量予測方法。
  10. 粒子線を照射する照射装置と、
    前記粒子線の照射領域を計測する検出装置と、
    前記照射装置による照射線量を予測する制御部と、を備えた線量予測システムを用いて、線量予測を行なうプログラムであって、
    前記制御部を、
    粒子線照射の照射領域の一部において、基準原子を含む基準領域を特定し、
    前記照射装置による粒子線照射により、前記基準領域の前記基準原子によって生じる基準領域放射能分布、及び体内の前記基準原子によって生じる体内基準放射能分布を、前記検出装置を用いて計測し、
    前記基準領域における前記基準原子の数密度及び前記基準領域放射能分布に応じて、前記体内基準放射能分布に対応する照射線量を算出する手段として機能させることを特徴とする線量予測プログラム。
JP2022017695A 2022-02-08 2022-02-08 線量予測システム、線量予測方法及び線量予測プログラム Active JP7323141B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022017695A JP7323141B1 (ja) 2022-02-08 2022-02-08 線量予測システム、線量予測方法及び線量予測プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022017695A JP7323141B1 (ja) 2022-02-08 2022-02-08 線量予測システム、線量予測方法及び線量予測プログラム

Publications (2)

Publication Number Publication Date
JP7323141B1 true JP7323141B1 (ja) 2023-08-08
JP2023115469A JP2023115469A (ja) 2023-08-21

Family

ID=87519438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022017695A Active JP7323141B1 (ja) 2022-02-08 2022-02-08 線量予測システム、線量予測方法及び線量予測プログラム

Country Status (1)

Country Link
JP (1) JP7323141B1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172427A (ja) 2009-01-28 2010-08-12 Japan Health Science Foundation 陽子線治療におけるポジトロン放出核種のアクティビティ分布のシミュレーション方法
JP2019030648A (ja) 2017-08-09 2019-02-28 学校法人東京女子医科大学 線量分布予測システム、線量分布予測方法及び線量分布予測プログラム
JP2020127722A (ja) 2019-02-07 2020-08-27 キヤノンメディカルシステムズ株式会社 放射線治療支援装置、放射線治療システム及び放射線治療支援方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172427A (ja) 2009-01-28 2010-08-12 Japan Health Science Foundation 陽子線治療におけるポジトロン放出核種のアクティビティ分布のシミュレーション方法
JP2019030648A (ja) 2017-08-09 2019-02-28 学校法人東京女子医科大学 線量分布予測システム、線量分布予測方法及び線量分布予測プログラム
JP2020127722A (ja) 2019-02-07 2020-08-27 キヤノンメディカルシステムズ株式会社 放射線治療支援装置、放射線治療システム及び放射線治療支援方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
西尾 禎治,"標的原子核破砕反応による生成ポジトロン放出核分布画像誘導陽子線治療",BIO Clinica,株式会社 北隆館,2015年02月10日,Vol.30 No.2,p124-129
西尾 禎治,外1名,"体内中での標的原子核破砕反応による生成ポジトロン放出核分布画像を利用した新しい陽子線治療法の研究",日本分子イメージング学会機関誌,日本イメージング学会,2018年05月10日,Vol.11 No.2,p3-8

Also Published As

Publication number Publication date
JP2023115469A (ja) 2023-08-21

Similar Documents

Publication Publication Date Title
US11607130B2 (en) Systems and methods for real-time target validation for image-guided radiation therapy
US20220054863A1 (en) Portal dosimetry systems, devices, and methods
Zhu et al. Proton therapy verification with PET imaging
JP5086523B2 (ja) 体内での(vivo)線量計測を実施する方法
US8958528B2 (en) Real-time dose reconstruction using dynamic simulation and image guided adaptive radiotherapy
US20070297566A1 (en) Radiotherapy device control apparatus and radiation irradiation method
Alaei et al. Commissioning kilovoltage cone‐beam CT beams in a radiation therapy treatment planning system
JP7323141B1 (ja) 線量予測システム、線量予測方法及び線量予測プログラム
CN106794360B (zh) 放射治疗装置及用于放射治疗装置的质量控制方法
JP7315935B1 (ja) 予測支援システム、予測支援方法及び予測支援プログラム
JP7236115B2 (ja) 治療支援システム、治療支援方法及び治療支援プログラム
JP7345768B1 (ja) 予測支援システム、予測支援方法及び予測支援プログラム
Yoo et al. Energy effect on the gamma analysis in the proton therapy end-to-end test with EBT film
Riboldi et al. Challenges and opportunities in image guided particle therapy
Samsun et al. THE APPLICATION OF SHIFT METHOD USING MOVING LASER ON CANCER CASES IN HEAD AREA USING 3DCRT AND VMAT TECHNOLOGY
Parodi submitter: Imaging in Radiotherapy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230719

R150 Certificate of patent or registration of utility model

Ref document number: 7323141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150