JP7322618B2 - Wireless power supply system - Google Patents

Wireless power supply system Download PDF

Info

Publication number
JP7322618B2
JP7322618B2 JP2019167183A JP2019167183A JP7322618B2 JP 7322618 B2 JP7322618 B2 JP 7322618B2 JP 2019167183 A JP2019167183 A JP 2019167183A JP 2019167183 A JP2019167183 A JP 2019167183A JP 7322618 B2 JP7322618 B2 JP 7322618B2
Authority
JP
Japan
Prior art keywords
power
power transmission
side device
electrode
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019167183A
Other languages
Japanese (ja)
Other versions
JP2021045013A (en
Inventor
正芳 杉野
中 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019167183A priority Critical patent/JP7322618B2/en
Publication of JP2021045013A publication Critical patent/JP2021045013A/en
Application granted granted Critical
Publication of JP7322618B2 publication Critical patent/JP7322618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、無線給電システムに関する。 The present invention relates to a wireless power feeding system.

従来、非接触で電力を供給する無線給電装置が公知である(特許文献1参照)。このような無線給電装置として、例えば電界結合を用いるものがある。電界結合の場合、送電側の送電電極部から受電側の受電電極部への電力の伝送に高周波が用いられる。そのため、電界結合の場合、送電側と受電側との間で高い精度のインピーダンスの整合が要求される。そこで、送電側および受電側は、それぞれインピーダンスの整合を図るための整合回路を有している。 Conventionally, a wireless power supply device that supplies electric power in a contactless manner is known (see Patent Document 1). As such a wireless power feeding device, for example, there is a device using electric field coupling. In the case of electric field coupling, a high frequency is used to transmit power from a power transmission electrode on the power transmission side to a power reception electrode on the power reception side. Therefore, in the case of electric field coupling, highly accurate impedance matching is required between the power transmitting side and the power receiving side. Therefore, the power transmission side and the power reception side each have a matching circuit for impedance matching.

無線給電を用いる対象となる機器は、例えば3軸ローダ、多軸ロボット、AGV(Automated Guided Vehicle)などが考えられている。これらは、移動の少ない送電側装置と、この送電側装置に対して相対的に移動する受電側装置とで構成されている。そして、インピーダンスの整合を図るための整合回路は、送電側装置および受電側装置にそれぞれ設けられている。この整合回路は、コイル素子およびコンデンサ素子といった能動素子で構成されている。そのため、受電側装置の高度化にともなう消費電力の増大に対応するために、送電側装置から受電側装置へ供給する電力を増大すると、整合回路を構成する素子も大型化する。特にコイル素子の場合、電力の増大にともなって電流が大きくなると、磁気飽和を招くことから、必然的に体格が増大する。 Devices that use wireless power supply include, for example, three-axis loaders, multi-axis robots, and AGVs (Automated Guided Vehicles). These are composed of a power transmitting side device that moves less and a power receiving side device that moves relative to the power transmitting side device. A matching circuit for impedance matching is provided in each of the power transmitting device and the power receiving device. This matching circuit is composed of active elements such as a coil element and a capacitor element. Therefore, if the power supplied from the power transmission side device to the power reception side device is increased in order to cope with the increase in power consumption associated with the sophistication of the power reception side device, the size of the elements forming the matching circuit also increases. In particular, in the case of a coil element, if the electric current increases as the power increases, magnetic saturation will occur, and the physical size will inevitably increase.

しかしながら、移動側となる受電側装置は、機器の能力や搭載性の観点から搭載する回路の小型化および軽量化が要求される。つまり、無線給電システムでは、供給電力の増大と、受電側装置の回路の小型化および軽量化とを両立することが要求される。 However, from the standpoint of device performance and mountability, the power receiving device on the mobile side is required to have a smaller and lighter weight circuit. In other words, the wireless power supply system is required to achieve both an increase in power supply and a reduction in the size and weight of the circuit of the power receiving device.

特開2018-78773号公報JP 2018-78773 A

そこで、伝送する電力が増大しても、受電側装置の小型化および軽量化が図られる無線給電システムを提供することを目的とする。 Accordingly, it is an object of the present invention to provide a wireless power supply system that allows a power receiving device to be made smaller and lighter even if the amount of power to be transmitted increases.

一実施形態による無線給電システムでは、共振回路部を備えている。共振回路部は、送電側装置に設けられ、送電電極部と受電電極部との間の電気的な容量、および一対の送電電極部の相互間に発生する電気的な容量を打ち消す共振回路である。すなわち、共振回路部を設けることにより、非接触の電力の伝送時に発生する送電電極部と受電電極部との間に形成される電気的な容量は、この共振回路部によって打ち消される。これにより、送電電極部と受電電極部との間は、見かけ上、電気的な容量が発生しない等価的な伝送経路とみなすことができる。このように送電電極部と受電電極部との間を等価的な伝送経路とみなすことにより、整合回路は送電側装置の高周波生成部から受電側装置の負荷までの間の任意の位置に配置可能となる。すなわち、受電側整合回路部は、受電側装置に限らず送電側装置に配置することができる。一実施形態では、上述のように共振回路部を設けることによって送電電極部と受電電極部との間を等価的な伝送経路とみなしている。これにより、受電側整合回路部は、送電側装置に設けている。そのため、送電側から受電側へ伝送する電力の増大にともなって整合回路の重量や体格の大型化を招く場合でも、受電側装置に受電側整合回路部を設ける必要がない。したがって、伝送する電力が増大しても、受電側装置の小型化および軽量化を図ることができる。 A wireless power supply system according to one embodiment includes a resonance circuit unit. The resonance circuit section is provided in the power transmission side device, and is a resonance circuit that cancels out the electrical capacitance between the power transmission electrode section and the power reception electrode section and the electrical capacitance generated between the pair of power transmission electrode sections. . That is, by providing the resonance circuit, the electric capacitance formed between the power transmission electrode and the power reception electrode generated during non-contact power transmission is canceled by the resonance circuit. As a result, the power transmitting electrode portion and the power receiving electrode portion can be regarded as an equivalent transmission path in which no electrical capacitance appears. By regarding the transmission path between the power transmitting electrode and the power receiving electrode as an equivalent transmission path, the matching circuit can be placed anywhere between the high frequency generator of the power transmitting device and the load of the power receiving device. becomes. That is, the power receiving side matching circuit unit can be arranged not only in the power receiving side device but also in the power transmission side device. In one embodiment, by providing the resonance circuit section as described above, the transmission path between the power transmission electrode section and the power reception electrode section is regarded as an equivalent transmission path. Accordingly, the power receiving side matching circuit section is provided in the power transmitting side device. Therefore, even if the weight and size of the matching circuit increase due to an increase in power transmitted from the power transmission side to the power reception side, there is no need to provide the power reception side matching circuit section in the power reception side device. Therefore, even if the power to be transmitted increases, the size and weight of the power receiving device can be reduced.

一実施形態による無線給電システムの電気的な構成を示す概略図Schematic diagram showing an electrical configuration of a wireless power supply system according to an embodiment 一実施形態による無線給電システムの要部を拡大し、電気的な構成を説明するための概略図Schematic diagram for explaining the electrical configuration by enlarging the main part of the wireless power supply system according to one embodiment. 一実施形態による無線給電システムにおいて、送電側装置と受電側装置との間を電気的に等価な伝送経路とみなした状態を示す概略図Schematic diagram showing a state in which an electrically equivalent transmission path is assumed between a power transmitting device and a power receiving device in a wireless power feeding system according to an embodiment.

以下、無線給電システムの一実施形態を図面に基づいて説明する。
図1は、一実施形態による無線給電システム10を示している。無線給電システム10は、送電側装置11および受電側装置12を備えている。送電側装置11は、高周波生成部21および送電電極部22を有している。高周波生成部21は、例えばインバータなどを有しており、電源23から供給される電力を用いてMHz帯の高周波を生成する。高周波生成部21で生成した高周波は、送電電極部22へ供給される。送電電極部22は、例えば金属板などで構成され、高周波生成部21で生成した高周波を出力する。例えばAGVの周回経路の途中に無線給電システム10による充電設備を設ける場合、設備の周回経路の途中に設けられた特定の給電エリアが送電側装置11である。一方、この周回経路を周回するAGVの車両は、送電側装置11から電力の供給を受ける受電側装置12である。
An embodiment of a wireless power feeding system will be described below with reference to the drawings.
FIG. 1 shows a wireless power supply system 10 according to one embodiment. The wireless power supply system 10 includes a power transmission side device 11 and a power reception side device 12 . The power transmission side device 11 has a high frequency generation section 21 and a power transmission electrode section 22 . The high-frequency generator 21 has, for example, an inverter, and generates high-frequency waves in the MHz band using power supplied from the power supply 23 . The high frequency generated by the high frequency generating section 21 is supplied to the power transmission electrode section 22 . The power transmission electrode unit 22 is made of, for example, a metal plate, and outputs the high frequency generated by the high frequency generation unit 21 . For example, when a charging facility by the wireless power supply system 10 is provided in the middle of the circuit route of the AGV, the power transmission side device 11 is a specific power supply area provided in the middle of the circuit route of the equipment. On the other hand, the AGV vehicle that circulates on this circuit route is the power receiving side device 12 that receives power supply from the power transmission side device 11 .

送電電極部22は、送電側装置11に設けられている。送電電極部22は、高周波生成部21で生成した高周波を出力する。具体的には、送電電極部22は、一対の送電端子部24および送電端子部25を有しており、高周波生成部21で生成した高周波を発信する。 The power transmission electrode section 22 is provided in the power transmission side device 11 . The power transmission electrode section 22 outputs the high frequency generated by the high frequency generation section 21 . Specifically, the power transmission electrode section 22 has a pair of power transmission terminal section 24 and power transmission terminal section 25 and transmits the high frequency generated by the high frequency generation section 21 .

無線給電システム10は、受電電極部26を備えている。受電電極部26は、受電側装置12に設けられている。受電電極部26は、送電電極部22から出力された高周波の電力を電界結合によって非接触で受け取る。具体的には、受電電極部26は、一対の送電端子部24および送電端子部25に対向する一対の受電端子部27および受電端子部28を有している。これにより、送電電極部22によって出力された高周波の電力は、電界結合によって非接触で受電電極部26へ伝送される。 The wireless power feeding system 10 includes a power receiving electrode section 26 . The power receiving electrode section 26 is provided in the power receiving side device 12 . The power receiving electrode section 26 receives the high-frequency power output from the power transmitting electrode section 22 in a non-contact manner by electric field coupling. Specifically, the power receiving electrode portion 26 has a pair of power receiving terminal portions 27 and 28 facing the pair of power transmitting terminal portions 24 and 25 . As a result, the high-frequency power output from the power transmission electrode section 22 is transmitted to the power reception electrode section 26 in a non-contact manner by electric field coupling.

無線給電システム10は、上記に加え、送電側整合回路部31、受電側整合回路部32、共振回路部33および整流回路部34を備えている。送電側整合回路部31は、送電側装置11に設けられている。送電側整合回路部31は、高周波生成部21で生成した高周波の電力について、送電側装置11と受電側装置12との間でインピーダンス整合を図る。具体的には、送電側整合回路部31は、整合コイル41、整合コイル42および整合コンデンサ43を有している。送電側整合回路部31は、これら整合コイル41、整合コイル42および整合コンデンサ43によって、送電側装置11におけるインピーダンスを調整する。 The wireless power supply system 10 includes a power transmission side matching circuit section 31, a power reception side matching circuit section 32, a resonance circuit section 33, and a rectification circuit section 34 in addition to the above. The power transmission side matching circuit section 31 is provided in the power transmission side device 11 . The power transmission side matching circuit section 31 achieves impedance matching between the power transmission side device 11 and the power reception side device 12 for the high frequency power generated by the high frequency generation section 21 . Specifically, the power transmission side matching circuit section 31 has a matching coil 41 , a matching coil 42 and a matching capacitor 43 . The power transmission side matching circuit section 31 adjusts the impedance in the power transmission side device 11 with the matching coil 41 , the matching coil 42 and the matching capacitor 43 .

本実施形態の場合、受電側整合回路部32は、送電側装置11に設けられている。受電側整合回路部32は、送電電極部22と受電電極部26とを通して送電側装置11から受電側装置12へ伝送された高周波の電力について、送電側装置11と整流回路部34との間でインピーダンス整合を図る。具体的には、受電側整合回路部32は、整合コイル51、整合コイル52および整合コンデンサ53を有している。受電側整合回路部32は、これら整合コイル51、整合コイル52および整合コンデンサ53によって、整流回路部34におけるインピーダンスを調整する。 In the case of this embodiment, the power receiving side matching circuit section 32 is provided in the power transmission side device 11 . The power receiving side matching circuit section 32 controls high-frequency power transmitted from the power transmitting side device 11 to the power receiving side device 12 through the power transmitting electrode section 22 and the power receiving electrode section 26 between the power transmitting side device 11 and the rectifying circuit section 34. Try to match the impedance. Specifically, the power receiving side matching circuit section 32 has a matching coil 51 , a matching coil 52 and a matching capacitor 53 . The power receiving side matching circuit section 32 adjusts the impedance in the rectifying circuit section 34 with the matching coil 51 , the matching coil 52 and the matching capacitor 53 .

共振回路部33は、送電側装置11において高周波生成部21と送電電極部22との間に設けられている。共振回路部33は、送電電極部22と受電電極部26との間における電気的な容量Ct、および一対の送電電極部22の相互間における電気的な容量Ciを打ち消す回路素子を有している。これにより、共振回路部33は、後述するように送電電極部22と受電電極部26との間に形成される電気的な容量Ctおよび容量Ciを打ち消して、これらの間において電気的に等価な伝送経路とする。 The resonance circuit section 33 is provided between the high frequency generation section 21 and the power transmission electrode section 22 in the power transmission side device 11 . The resonance circuit section 33 has a circuit element that cancels out the electrical capacitance Ct between the power transmitting electrode section 22 and the power receiving electrode section 26 and the electrical capacitance Ci between the pair of power transmitting electrode sections 22 . . As a result, the resonance circuit section 33 cancels out the electrical capacitance Ct and the capacitance Ci formed between the power transmission electrode section 22 and the power reception electrode section 26 as described later, and the electric capacity is electrically equivalent therebetween. be the transmission path.

整流回路部34は、受電側装置12に設けられ、受電電極部26で送電電極部22から受け取った高周波を整流する。受電側装置12は、伝送された電力を消費する負荷61を有している。負荷61は、例えばAGVや3軸ローダを駆動するモータなどである。負荷61は、送電側装置11から供給された電力によって駆動される。 The rectifier circuit section 34 is provided in the power receiving side device 12 and rectifies the high frequency received from the power transmitting electrode section 22 by the power receiving electrode section 26 . The power receiving device 12 has a load 61 that consumes the transmitted power. The load 61 is, for example, a motor that drives an AGV or a three-axis loader. The load 61 is driven by power supplied from the power transmission device 11 .

次に、共振回路部33について詳細に説明する。
送電電極部22と受電電極部26とは、電界結合を用いて非接触で電力を伝送する。そのため、送電電極部22と受電電極部26との間には空気が介在しており、図2に示すように送電電極部22と受電電極部26との間には電気的な容量が容量Ctのコンデンサ71、72が形成される。すなわち、送電端子部24と受電端子部27との間には容量Ctのコンデンサ71、送電端子部25と受電端子部28との間には容量Ctのコンデンサ72がそれぞれ形成される。また、送電電極部22は、一対の送電端子部24および送電端子部25を有している。そのため、これら一対の送電端子部24と送電端子部25との間には、電気的な容量Ciのコンデンサ73が形成される。さらに、受電電極部26は、一対の受電端子部27および受電端子部28を有している。そのため、これら一対の受電端子部27と受電端子部28との間には、電気的な容量Coのコンデンサ74が形成される。但し、受電端子部27および受電端子部28は、例えばAGVや多軸ロボットなどに無線給電システム10を適用する場合、送電端子部24および送電端子部25に比較して全長が短くなる。つまり、送電側装置11が特定の給電エリアに対応する比較的全長の大きな送電電極部22を有しているのに対し、移動する受電側装置12はこの給電エリアに設定された限定的な一部において電力の供給を受ける。そのため、受電側装置12の受電端子部27および受電端子部28の全長は、送電端子部24および送電端子部25に比較して十分に短くなる。また、受電電極部26の受電端子部27および受電端子部28の素材や配置を工夫することにより、容量Coは例えば10pF以下まで低減される。その結果、これら受電端子部27と受電端子部28との間に形成されるコンデンサ74の電気的な容量Coは、ほぼ無視できる程度に小さくなる。
Next, the resonant circuit section 33 will be described in detail.
The power transmitting electrode portion 22 and the power receiving electrode portion 26 transmit power in a non-contact manner using electric field coupling. Therefore, air is interposed between the power transmitting electrode portion 22 and the power receiving electrode portion 26, and as shown in FIG. of capacitors 71 and 72 are formed. That is, a capacitor 71 having a capacity of Ct is formed between the power transmitting terminal portion 24 and the power receiving terminal portion 27, and a capacitor 72 having a capacity of Ct is formed between the power transmitting terminal portion 25 and the power receiving terminal portion 28, respectively. The power transmission electrode portion 22 also has a pair of power transmission terminal portions 24 and 25 . Therefore, a capacitor 73 having an electrical capacity Ci is formed between the pair of power transmission terminal portions 24 and 25 . Further, the power receiving electrode portion 26 has a pair of power receiving terminal portions 27 and 28 . Therefore, a capacitor 74 having an electrical capacity Co is formed between the pair of power receiving terminal portions 27 and 28 . However, the power receiving terminal portion 27 and the power receiving terminal portion 28 have a shorter overall length than the power transmitting terminal portion 24 and the power transmitting terminal portion 25 when the wireless power supply system 10 is applied to an AGV, a multi-axis robot, or the like. In other words, while the power transmission side device 11 has a relatively long power transmission electrode portion 22 corresponding to a specific power supply area, the mobile power reception side device 12 has a limited position set in this power supply area. Power is supplied in the part. Therefore, the total lengths of the power receiving terminal portion 27 and the power receiving terminal portion 28 of the power receiving side device 12 are sufficiently shorter than those of the power transmitting terminal portion 24 and the power transmitting terminal portion 25 . Further, by devising the material and arrangement of the power receiving terminal portion 27 and the power receiving terminal portion 28 of the power receiving electrode portion 26, the capacitance Co can be reduced to, for example, 10 pF or less. As a result, the electrical capacitance Co of the capacitor 74 formed between the power receiving terminal portion 27 and the power receiving terminal portion 28 becomes almost negligible.

共振回路部33は、上記のように送電側装置11と受電側装置12との間に形成される電気的な容量である容量Ctおよび容量Ciを打ち消す回路素子を有している。具体的には、共振回路部33は、コイル素子81、コイル素子82、およびコイル素子83を有している。コイル素子81およびコイル素子82は、それぞれ容量Ctのコンデンサ71およびコンデンサ72に対応する。また、コイル素子83は、容量Ciのコンデンサ73に対応する。コイル素子81およびコイル素子82のインダクタンスLtは、コンデンサ71およびコンデンサ72の容量Ctに応じて設定されている。また、コイル素子83のインダクタンスLiは、コンデンサ73の容量Ciに応じて設定されている。これらにより、コイル素子81およびコイル素子82は、容量Ctのコンデンサ71およびコンデンサ72とLC回路を形成し、コンデンサ71およびコンデンサ72と共振する共振回路を形成する。また、コイル素子83は、容量Ciのコンデンサ73とLC回路を形成し、コンデンサ73と共振する共振回路を形成する。コイル素子81およびコイル素子82は第一コイルであり、コイル素子83は第二コイルである。 The resonance circuit section 33 has a circuit element that cancels out the capacitance Ct and the capacitance Ci that are electrical capacitances formed between the power transmission device 11 and the power reception device 12 as described above. Specifically, the resonant circuit section 33 has a coil element 81 , a coil element 82 , and a coil element 83 . Coil element 81 and coil element 82 correspond to capacitor 71 and capacitor 72 of capacitance Ct, respectively. Also, the coil element 83 corresponds to the capacitor 73 having the capacitance Ci. Inductance Lt of coil element 81 and coil element 82 is set according to capacitance Ct of capacitor 71 and capacitor 72 . Also, the inductance Li of the coil element 83 is set according to the capacitance Ci of the capacitor 73 . As a result, coil element 81 and coil element 82 form an LC circuit together with capacitor 71 and capacitor 72 having capacitance Ct, and form a resonance circuit that resonates with capacitor 71 and capacitor 72 . In addition, the coil element 83 forms an LC circuit together with the capacitor 73 having the capacitance Ci to form a resonance circuit that resonates with the capacitor 73 . Coil element 81 and coil element 82 are first coils, and coil element 83 is a second coil.

共振回路におけるコイル素子のインダクタンスLと、コンデンサの容量Cとの関係は、下記の式(1)に基づいて決定される。
L=1/(4πC) 式(1)
ここで、fは、動作周波数であり、高周波生成部21で生成される高周波の周波数に相当する。式(1)を用いることにより、コイル素子81およびコイル素子82のインダクタンスLtは、コンデンサ71およびコンデンサ72の容量Ctから算出される。同様に、コイル素子83のインダクタンスLiは、コンデンサ73の容量Ciから算出される。
The relationship between the inductance L of the coil element and the capacitance C of the capacitor in the resonance circuit is determined based on the following equation (1).
L=1/(4π 2 f 2 C) Equation (1)
Here, f is the operating frequency and corresponds to the frequency of the high frequency generated by the high frequency generator 21 . Inductance Lt of coil element 81 and coil element 82 is calculated from capacitance Ct of capacitor 71 and capacitor 72 by using equation (1). Similarly, the inductance Li of the coil element 83 is calculated from the capacitance Ci of the capacitor 73 .

このように、高周波生成部21と送電電極部22との間に共振回路部33を配置することにより、図3に示すように送電側装置11と受電側装置12との間は、見かけ上、電気的に等価な伝送経路Ceとなる。すなわち、送電側装置11と受電側装置12との間には図1に示すように非接触で電力を伝送する送電電極部22および受電電極部26が存在するものの、この送電電極部22と受電電極部26との間は共振回路部33によって図3に示すように電気的に等価な伝送経路Ceとみなすことができる。 By arranging the resonance circuit unit 33 between the high-frequency generation unit 21 and the power transmission electrode unit 22 in this way, as shown in FIG. It becomes an electrically equivalent transmission path Ce. That is, as shown in FIG. 1, between the power transmission side device 11 and the power reception side device 12, there are a power transmission electrode portion 22 and a power reception electrode portion 26 that transmit power in a contactless manner. It can be regarded as an electrically equivalent transmission path Ce as shown in FIG.

上述のように送電側装置11と受電側装置12との間を電気的な等価な伝送経路Ceとみなすことにより、受電側整合回路部32は送電側整合回路部31から負荷61までの間のいずれの位置に設けることができる。そこで、本実施形態では、受電側整合回路部32は受電側装置12に設けている。具体的には、受電側整合回路部32は、送電側整合回路部31の出力側、つまり送電側整合回路部31と送電電極部22との間に設けている。すなわち、受電側整合回路部32は、設備に固定されている送電側装置11に設けられる。これにより、負荷61における消費電力の増大にともない、受電側整合回路部32を構成する電気的な素子が大型化しても、受電側整合回路部32を設備に設けることができ、受電側装置12の重量や体格は大型化を招かない。 By regarding the transmission path Ce between the power transmission side device 11 and the power reception side device 12 as an electrically equivalent transmission path Ce as described above, the power reception side matching circuit section 32 is arranged between the power transmission side matching circuit section 31 and the load 61. It can be provided in any position. Therefore, in the present embodiment, the power receiving side matching circuit section 32 is provided in the power receiving side device 12 . Specifically, the power receiving side matching circuit section 32 is provided on the output side of the power transmission side matching circuit section 31 , that is, between the power transmission side matching circuit section 31 and the power transmission electrode section 22 . That is, the power receiving side matching circuit section 32 is provided in the power transmission side device 11 fixed to the facility. As a result, even if the electrical elements constituting the power receiving side matching circuit section 32 increase in size as the power consumption of the load 61 increases, the power receiving side matching circuit section 32 can be provided in the equipment, and the power receiving side device 12 The weight and physique of the robot do not lead to an increase in size.

以上説明したように、一実施形態による無線給電システム10は、共振回路部33を備えている。共振回路部33は、送電側装置11に設けられ、送電電極部22と受電電極部26との間の電気的な容量Ct、および一対の送電電極部22の相互間に発生する電気的な容量Ciを打ち消す。すなわち、共振回路部33を設けることにより、非接触の電力の伝送時に発生する送電電極部22と受電電極部26との間に形成される電気的な容量Ct、および送電端子部24と送電端子部25との間の容量Ciは、この共振回路部33によって打ち消される。これにより、送電電極部22と受電電極部26との間は、見かけ上、電気的な容量が発生しない等価的な伝送経路Ceとみなすことができる。このように送電電極部22と受電電極部26との間を等価的な伝送経路Ceとみなすことにより、受電側整合回路部32は高周波生成部21から負荷61までの任意の位置に配置可能となる。すなわち、受電側整合回路部32は、受電側装置12に限らず送電側装置11に配置することができる。一実施形態では、上述のように共振回路部33を設けることによって送電電極部22と受電電極部26との間を等価的な伝送経路Ceとみなしている。これにより、受電側整合回路部32は、その配置位置が限定されない。そのため、送電側から受電側へ伝送する電力の増大にともなって重量や体格の大型化を招く場合でも、受電側装置12に受電側整合回路部32を設ける必要がない。したがって、伝送する電力が増大しても、受電側装置12の小型化および軽量化を図ることができる。 As described above, the wireless power supply system 10 according to one embodiment includes the resonance circuit section 33 . The resonance circuit section 33 is provided in the power transmission side device 11 and includes an electrical capacitance Ct between the power transmission electrode section 22 and the power reception electrode section 26 and an electrical capacitance generated between the pair of power transmission electrode sections 22 . Cancel Ci. That is, by providing the resonance circuit portion 33, the electric capacitance Ct generated between the power transmission electrode portion 22 and the power reception electrode portion 26 generated during non-contact power transmission, and the power transmission terminal portion 24 and the power transmission terminal A capacitance Ci between the portion 25 and the portion 25 is canceled by the resonance circuit portion 33 . As a result, the power transmitting electrode portion 22 and the power receiving electrode portion 26 can be regarded as an equivalent transmission path Ce in which no electrical capacitance appears. By regarding the transmission path Ce between the power transmitting electrode unit 22 and the power receiving electrode unit 26 as an equivalent transmission path Ce, the power receiving side matching circuit unit 32 can be arranged at an arbitrary position from the high frequency generation unit 21 to the load 61. Become. That is, the power receiving side matching circuit section 32 can be arranged not only in the power receiving side device 12 but also in the power transmission side device 11 . In one embodiment, by providing the resonance circuit section 33 as described above, an equivalent transmission path Ce is assumed between the power transmission electrode section 22 and the power reception electrode section 26 . Accordingly, the arrangement position of the power receiving side matching circuit section 32 is not limited. Therefore, even if an increase in the power transmitted from the power transmission side to the power reception side causes an increase in weight and size, there is no need to provide the power reception side matching circuit section 32 in the power reception side device 12 . Therefore, even if the power to be transmitted increases, the size and weight of the power receiving device 12 can be reduced.

以上説明した本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
The present invention described above is not limited to the above-described embodiments, and can be applied to various embodiments without departing from the gist of the present invention.
Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to such examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.

図面中、11は送電側装置、12は受電側装置、21は高周波生成部、22は送電電極部、26は受電電極部、31は送電側整合回路部、32は受電側整合回路部、33は共振回路部、81、82はコイル素子(第一コイル)、83はコイル素子1を示す。 In the drawings, 11 is a power transmission side device, 12 is a power reception side device, 21 is a high frequency generator, 22 is a power transmission electrode portion, 26 is a power reception electrode portion, 31 is a power transmission side matching circuit portion, 32 is a power reception side matching circuit portion, and 33 81 and 82 coil elements (first coils); 83 coil element 1;

Claims (2)

送電側装置(11)と、前記送電側装置(11)に対して移動可能に設けられ前記送電側装置(11)から電界結合によって非接触で電力の供給を受ける受電側装置(12)と、を備える無線給電システムにおいて、
前記送電側装置(11)に設けられ、高周波の電力を生成する高周波生成部(21)と、
前記送電側装置(11)に設けられ、前記高周波生成部(21)で生成された高周波を出力する一対の送電電極部(22)と、
前記受電側装置(12)において前記送電電極部(22)に対向して一対設けられ、前記送電電極部(22)から出力された高周波の電力を電界結合によって非接触で受け取る受電電極部(26)と、
前記送電側装置(11)に設けられ、前記高周波生成部(21)で生成した高周波の電力について、前記送電側装置(11)と前記受電側装置(12)との間でインピーダンス整合を図るための送電側整合回路部(31)と、
前記送電側装置(11)に設けられ、前記送電電極部(22)および前記受電電極部(26)を通して前記送電側装置(11)から前記受電側装置(12)へ伝送された高周波の電力について、前記送電側装置(11)と前記受電側装置(12)との間の電気的な整合を図るための受電側整合回路部(32)と、
前記送電側装置(11)において前記高周波生成部(21)と前記送電電極部(22)との間に設けられ、前記送電電極部(22)と前記受電電極部(26)との間の電気的な容量、および一対の前記送電電極部(22)の相互間における容量を打ち消し、前記送電電極部(22)と前記受電電極部(26)との間を、電気的に等価な伝送経路とする共振回路部(33)と、
を備える無線給電システム。
a power transmission side device (11); a power reception side device (12) which is movably provided with respect to the power transmission side device (11) and which receives electric power from the power transmission side device (11) in a contactless manner by electric field coupling; In a wireless power supply system comprising
a high-frequency generation unit (21) provided in the power transmission side device (11) for generating high-frequency power;
a pair of power transmission electrode units (22) provided in the power transmission side device (11) for outputting the high frequency generated by the high frequency generation unit (21);
A pair of power receiving electrode units provided opposite to the power transmitting electrode unit (22) in the power receiving side device (12) and receiving the high-frequency power output from the power transmitting electrode unit (22) in a non-contact manner by electric field coupling. (26) and
In order to achieve impedance matching between the power transmission side device (11) and the power receiving side device (12) for the high frequency power generated by the high frequency generator (21) provided in the power transmission side device (11) a power transmission side matching circuit unit (31) of
High-frequency power provided in the power transmission side device (11) and transmitted from the power transmission side device (11) to the power reception side device (12) through the power transmission electrode section (22) and the power reception electrode section (26) a power receiving side matching circuit section (32) for achieving electrical matching between the power transmitting side device (11) and the power receiving side device (12);
provided between the high-frequency generator (21) and the power transmission electrode section (22) in the power transmission side device (11), and electricity between the power transmission electrode section (22) and the power reception electrode section (26); and the capacitance between the pair of power transmission electrode portions (22) are canceled, and the power transmission electrode portion (22) and the power reception electrode portion (26) are electrically equivalent to each other. a resonance circuit unit (33) that
A wireless power supply system.
前記共振回路部(33)は、前記送電電極部(22)と前記受電電極部(26)との間の電気的な容量と共振するLC回路を形成する第一コイル(81、82)、および前記送電電極部(22)の相互間の電気的な容量と共振するLC回路を形成する第二コイル(83)を有する請求項1記載の無線給電システム。 The resonance circuit section (33) includes first coils (81, 82) forming an LC circuit that resonates with the electrical capacitance between the power transmission electrode section (22) and the power reception electrode section (26), and 2. The wireless power feeding system according to claim 1, further comprising a second coil (83) forming an LC circuit that resonates with the mutual electrical capacitance of the power transmitting electrode portions (22).
JP2019167183A 2019-09-13 2019-09-13 Wireless power supply system Active JP7322618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019167183A JP7322618B2 (en) 2019-09-13 2019-09-13 Wireless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019167183A JP7322618B2 (en) 2019-09-13 2019-09-13 Wireless power supply system

Publications (2)

Publication Number Publication Date
JP2021045013A JP2021045013A (en) 2021-03-18
JP7322618B2 true JP7322618B2 (en) 2023-08-08

Family

ID=74862691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019167183A Active JP7322618B2 (en) 2019-09-13 2019-09-13 Wireless power supply system

Country Status (1)

Country Link
JP (1) JP7322618B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197928A (en) 2013-03-29 2014-10-16 株式会社エクォス・リサーチ Power transmission system
CN107852029A (en) 2015-05-04 2018-03-27 科罗拉多州立大学董事会公司实体 wireless power transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197928A (en) 2013-03-29 2014-10-16 株式会社エクォス・リサーチ Power transmission system
CN107852029A (en) 2015-05-04 2018-03-27 科罗拉多州立大学董事会公司实体 wireless power transmission

Also Published As

Publication number Publication date
JP2021045013A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
US9866058B2 (en) Power feeding device, power receiving device, and wireless power transmission device
JP5622518B2 (en) Electric machine and battery system with battery pack
KR101438298B1 (en) Noncontact power feeding apparatus and noncontact power feeding method
JP6142413B2 (en) Antenna coil unit
JP6028000B2 (en) Power transmission system
US20160355094A1 (en) Power receiving system
KR20150015491A (en) Vehicle
US20150061402A1 (en) Power reception device, power transmission device and power transfer system
US11798737B2 (en) Charging pad and a method for charging one or more receiver devices
JP2013208012A (en) Antenna coil unit and magnetic field resonance power supply system
JP2015015852A (en) Coil antenna
JP2013207727A (en) Antenna coil
JP2016539610A (en) Wireless power transmitter
US20170305281A1 (en) Power reception device, and contactless power transmission device provided with same
JP2012029418A (en) Power transmission system
JP7322618B2 (en) Wireless power supply system
JP2012034524A (en) Wireless power transmission apparatus
JP6040397B2 (en) Power transmission system
JP7237302B2 (en) Wireless power supply device and factory equipment using the same
JP6085811B2 (en) Power transmission system
JP6085813B2 (en) Power transmission system
JP2014197932A (en) Power transmission system
JP2015195676A (en) power transmission system
JP6085817B2 (en) Power transmission system
JP6085812B2 (en) Power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R151 Written notification of patent or utility model registration

Ref document number: 7322618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151