JP7321121B2 - Anode electrode catalyst and co-catalyst for photoanode electrode - Google Patents

Anode electrode catalyst and co-catalyst for photoanode electrode Download PDF

Info

Publication number
JP7321121B2
JP7321121B2 JP2020060205A JP2020060205A JP7321121B2 JP 7321121 B2 JP7321121 B2 JP 7321121B2 JP 2020060205 A JP2020060205 A JP 2020060205A JP 2020060205 A JP2020060205 A JP 2020060205A JP 7321121 B2 JP7321121 B2 JP 7321121B2
Authority
JP
Japan
Prior art keywords
electrode
photocatalyst
catalyst
water
photoanode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020060205A
Other languages
Japanese (ja)
Other versions
JP2021154260A (en
Inventor
和弘 佐山
雄悟 三石
仁 草間
一成 堂免
太郎 山田
豊 佐々木
伸子 仮屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
National Institute of Advanced Industrial Science and Technology AIST
University of Tokyo NUC
Japan Technological Research Association of Artificial Photosynthetic Chemical Process
Original Assignee
Mitsubishi Chemical Corp
National Institute of Advanced Industrial Science and Technology AIST
University of Tokyo NUC
Japan Technological Research Association of Artificial Photosynthetic Chemical Process
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, National Institute of Advanced Industrial Science and Technology AIST, University of Tokyo NUC, Japan Technological Research Association of Artificial Photosynthetic Chemical Process filed Critical Mitsubishi Chemical Corp
Priority to JP2020060205A priority Critical patent/JP7321121B2/en
Publication of JP2021154260A publication Critical patent/JP2021154260A/en
Application granted granted Critical
Publication of JP7321121B2 publication Critical patent/JP7321121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、水を分解して酸素を発生させる装置に備えられるアノード電極用触媒、及び光アノード電極用助触媒に関する。 TECHNICAL FIELD The present invention relates to an anode electrode catalyst and a photoanode electrode co-catalyst provided in a device that decomposes water to generate oxygen.

エネルギー資源の大半を占める化石燃料は有限であることから、光エネルギーを利用して、水を水素と酸素に分解することでエネルギー源とする研究が進められている。その際には光触媒が用いられることが通常である。
現在研究が進められている光触媒は、酸化物、酸窒化物、窒化物といった光半導体の表面に助触媒が担持され、助触媒を担持させることで光触媒の活性を向上させることができる。
Since fossil fuels, which account for the majority of energy resources, are limited, research is underway to use light energy to decompose water into hydrogen and oxygen as an energy source. In that case, a photocatalyst is usually used.
Photocatalysts, which are currently being researched, have co-catalysts supported on the surface of photosemiconductors such as oxides, oxynitrides, and nitrides.

水分解に用いられる光触媒用の助触媒としては、一般的に酸素発生用助触媒と水素発生用助触媒に大別される。
酸素発生用助触媒としては、Ni、Fe、Co等の金属が用いられてきたが、近年、より一層の光分解能力を求めて研究が進み、助触媒としても、CoとNiの酸化物、FeとNiの酸化物、等が開発された。そして非特許文献1には、Fe、Co、Niの複合酸化物が優れた助触媒となることが開示されている。
The cocatalysts for photocatalysts used for water splitting are generally divided into cocatalysts for oxygen generation and cocatalysts for hydrogen generation.
Metals such as Ni, Fe, and Co have been used as cocatalysts for oxygen generation, but in recent years, research has progressed in pursuit of further photodecomposition ability, and cocatalysts such as oxides of Co and Ni, oxides of Fe and Ni, etc. have been developed. Non-Patent Document 1 discloses that a composite oxide of Fe, Co, and Ni is an excellent co-catalyst.

Y.Naruta, J. Phys. Chem. C, 2017, 121, 20093Y. Naruta, J. Phys. Chem. C, 2017, 121, 20093

本発明は、光触媒用の、新たな酸素生成用助触媒を提供することを課題とする。 An object of the present invention is to provide a novel co-catalyst for oxygen generation for photocatalysts.

本発明者らは、光触媒用の、新たな酸素生成用助触媒を提供すべく鋭意検討を重ねた結果、非特許文献1に開示された3元系の助触媒に、更にK(カリウム)及び/又はMn(マンガン)を添加することで、光触媒の性能が向上することを見出し、本発明を完成させた。
また、本発明者らは更に検討を進め、非特許文献1に開示された3元系の助触媒に、更にK(カリウム)及び/又はMn(マンガン)を添加した助触媒は、水の電気分解用のアノードと共に用いた場合には、それ自体が触媒として機能することも見出した。
本発明は以下の要旨を含む。
The present inventors have made intensive studies to provide a new cocatalyst for oxygen generation for photocatalysts. The inventors have found that the addition of Mn (manganese) improves the performance of the photocatalyst, and completed the present invention.
In addition, the present inventors have further studied, and found that a co-catalyst obtained by adding K (potassium) and/or Mn (manganese) to the ternary co-catalyst disclosed in Non-Patent Document 1 is an electrolysis of water. It has also been found to act as a catalyst by itself when used with a cracking anode.
The present invention includes the following gists.

(1)Fe、Ni、Co、M及び酸素、を含むアノード電極用触媒。
但し前記MはK及びMnから選択される。
(2)前記Fe、Ni及びCoの合計重量に対する前記Mの重量比が、0.001以上3以下である、(1)に記載のアノード電極用触媒。
(3)(1)又は(2)に記載のアノード電極用触媒と光触媒と、を含む光電極。
(4)Fe、Ni、Co、M及び酸素、を含む光アノード電極用助触媒。
但し前記MはK及びMnから選択される。
(5)前記Fe、Ni及びCoの合計重量に対する前記Mの重量比が、0.001以上3以下である、(4)に記載の光アノード電極用助触媒。
(6)Fe、Ni、Co、M及び酸素、を含む非水溶性錯体を基体上に塗布する塗布ステ
ップ、及び基体上に塗布した非水溶性錯体を加水分解する加水分解ステップ、を含む、アノード電極用触媒又は光アノード電極用助触媒の製造方法。
但し前記MはK及びMnから選択される。
(7)前記加水分解ステップにおける平均温度は200℃以下である、(6)に記載のアノード電極用触媒又は光アノード電極用助触媒の製造方法。
(1) Anode electrode catalyst containing Fe, Ni, Co, M and oxygen.
However, said M is selected from K and Mn.
(2) The anode electrode catalyst according to (1), wherein the weight ratio of M to the total weight of Fe, Ni and Co is 0.001 or more and 3 or less.
(3) A photoelectrode comprising the anode electrode catalyst according to (1) or (2) and a photocatalyst.
(4) A photoanode promoter containing Fe, Ni, Co, M and oxygen.
However, said M is selected from K and Mn.
(5) The promoter for a photoanode electrode according to (4), wherein the weight ratio of M to the total weight of Fe, Ni and Co is 0.001 or more and 3 or less.
(6) an anode comprising a coating step of coating a water-insoluble complex containing Fe, Ni, Co, M and oxygen onto a substrate, and a hydrolysis step of hydrolyzing the water-insoluble complex coated onto the substrate; A method for producing an electrode catalyst or a co-catalyst for a photoanode electrode.
However, said M is selected from K and Mn.
(7) The method for producing an anode electrode catalyst or photoanode electrode co-catalyst according to (6), wherein the average temperature in the hydrolysis step is 200° C. or less.

本発明によれば、光触媒用の、新たな酸素生成用助触媒を提供することができる。当該助触媒は、水の電気分解用のアノードと共に用いた場合には、それ自体が触媒として機能する。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a novel co-catalyst for oxygen generation for a photocatalyst. The promoter functions itself as a catalyst when used with an anode for electrolysis of water.

以下、本発明につき詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はこれらの内容に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 The present invention will be described in detail below, but the description of the constituent elements described below is an example (representative example) of embodiments of the present invention, and the present invention is not limited to these contents, and the Various modifications can be made within the scope of the gist.

本発明に係る一実施形態は、光触媒を含むアノード電極用助触媒である。光アノード電極用助触媒とも称する。光アノード電極用助触媒は通常、光触媒に担持されることで、光触媒の酸素生成機能を飛躍的に向上することとなる。
本実施形態において光アノード電極用助触媒は、Fe、Ni、Co、M及び酸素、を含み、前記MはK及びMnから選択される。これら以外の成分を含んでいてもよく、含んでいなくてもよい。
本実施形態の助触媒は、通常これらの金属を含む複合体である。ここで複合体とは、これらの金属との間で、例えば物理的又は化学的に何らかの結合が生じ、一体化しているものをいう。そのため、単なるこれらの金属の混合物は、ここでいう複合体には含まない。複合体とするためには、これらの金属を単に混合するのみではなく、熱処理、機械的処理、化学的処理等を施すことが必要となる。
One embodiment of the present invention is an anode electrode promoter comprising a photocatalyst. It is also called a co-catalyst for a photoanode electrode. The cocatalyst for the photoanode electrode is usually carried on the photocatalyst, thereby dramatically improving the oxygen generating function of the photocatalyst.
In this embodiment, the photoanode promoter comprises Fe, Ni, Co, M and oxygen, wherein M is selected from K and Mn. Components other than these may or may not be included.
The co-catalyst of this embodiment is usually a composite containing these metals. Here, the term "composite" refers to a material that is integrated with these metals through physical or chemical bonding, for example. Therefore, simple mixtures of these metals are not included in the composites referred to herein. In order to form a composite, it is necessary not only to simply mix these metals, but also to apply heat treatment, mechanical treatment, chemical treatment, or the like.

光アノード電極用助触媒は、Fe、Ni及びCoの合計重量に対する前記Mの重量比が、0.001以上3以下であることが好ましく、0.01以上1以下であることがより好ましい。特に、MがKの場合には、0.01以上0.4以下であることが好ましく、MがMnの場合には、0.01以上0.1以下であることが好ましい。上記範囲を充足することで、安定的に高い性能が得られる。光アノード電極用助触媒中のこれらの成分の重量はXRF、ICP法等を用いて測定することができる。
また、光アノード電極用助触媒中のFe、Ni、Coの重量比は特に限定されないが、Feに対し、Ni、Coがそれぞれ0.5以上2以下であってよく、0.8以上1.2以下であってよく、0.9以上1.1以下であってよい。
In the photoanode cocatalyst, the weight ratio of M to the total weight of Fe, Ni and Co is preferably 0.001 or more and 3 or less, more preferably 0.01 or more and 1 or less. In particular, when M is K, it is preferably 0.01 or more and 0.4 or less, and when M is Mn, it is preferably 0.01 or more and 0.1 or less. By satisfying the above range, high performance can be stably obtained. The weight of these components in the cocatalyst for photoanode electrode can be measured using XRF, ICP method, or the like.
The weight ratio of Fe, Ni, and Co in the co-catalyst for photoanode electrode is not particularly limited. It may be 2 or less, and may be 0.9 or more and 1.1 or less.

本実施形態において、光アノード電極用助触媒はどのような形状であってもよく特に限定されないが、箔状であってよく、板状であってよく、粒子状であってよく、微粒子であってよい。微粒子である場合その粒子径は、光触媒への担持の容易性から通常1nm以上、好ましくは1.2nm以上、より好ましくは1.5nm以上である。また、通常25nm以下、好ましくは20nm以下である。
尚、本明細書において「粒子径」とは、定方向接線径(フェレ径)の平均値(平均粒子径)を意味し、XRD、TEM、SEM法等の公知の手段によって測定することができる。
In the present embodiment, the co-catalyst for the photoanode electrode may have any shape and is not particularly limited. you can In the case of fine particles, the particle diameter is usually 1 nm or more, preferably 1.2 nm or more, and more preferably 1.5 nm or more, from the viewpoint of ease of support on the photocatalyst. Moreover, it is usually 25 nm or less, preferably 20 nm or less.
As used herein, the term "particle size" means the average value (average particle size) of unidirectional tangent diameters (Ferret diameter), and can be measured by known means such as XRD, TEM, and SEM methods. .

光アノード電極用助触媒の製造方法としては、一般にはドライプロセスとウェットプロセスがある。ドライプロセスの例としてはスパッタ法、真空蒸着法、CVD法等がある。ウェットプロセスとしては助触媒の前駆体を光触媒に含浸担持した後焼成する含浸法、助
触媒の前駆体を含む溶液に光触媒を浸漬し、これをマイクロウェーブ加熱して担持させるマイクロウェーブ法、助触媒の前駆体を含む溶液に光触媒を浸漬し、これに光を照射して助触媒を析出させる光電着法、助触媒の前駆体を含む溶液に光触媒を浸漬し、これに酸化剤若しくは還元剤を添加して助触媒を析出させるケミカルデポジション法、助触媒の前駆体を含む溶液に電極上に積層した光触媒を浸漬し、これに電位をかけて助触媒を析出させる電析法が例として挙げられる。通常、生産性を考慮すると、助触媒はウェットプロセスで調製されることが好ましい。また、前述の含浸法に類似するが、より均一な組成の粒子を得る観点から、金属の非水溶性錯体の溶液を光触媒に含浸し、これを加水分解して金属酸化物又は金属水酸化物を析出させる手法(以後、「加水分解法」と記載)が好ましい。
Dry processes and wet processes are generally used as methods for producing the cocatalyst for the photoanode electrode. Examples of dry processes include a sputtering method, a vacuum deposition method, a CVD method, and the like. Wet processes include an impregnation method in which the photocatalyst is impregnated with the precursor of the cocatalyst and then baked, a microwave method in which the photocatalyst is immersed in a solution containing the cocatalyst precursor, and heated by microwaves to support it, and a cocatalyst. A photoelectrodeposition method in which a photocatalyst is immersed in a solution containing a precursor of and irradiated with light to deposit a cocatalyst, a photocatalyst is immersed in a solution containing a cocatalyst precursor, and an oxidizing or reducing agent is added to it. Examples include a chemical deposition method in which a cocatalyst is deposited by addition, and an electrodeposition method in which a photocatalyst layered on an electrode is immersed in a solution containing a cocatalyst precursor and an electric potential is applied to the photocatalyst to deposit the cocatalyst. be done. In general, it is preferred that the co-catalyst is prepared by a wet process for productivity considerations. In addition, although similar to the impregnation method described above, from the viewpoint of obtaining particles with a more uniform composition, a photocatalyst is impregnated with a solution of a water-insoluble metal complex, which is then hydrolyzed to form a metal oxide or metal hydroxide. (hereinafter referred to as "hydrolysis method") is preferred.

これらの加水分解法のうち、具体的には、Fe、Ni、Co及びM、を含む非水溶性錯体を基体上に塗布する塗布ステップ、及び基体上に塗布した非水溶性錯体を加水分解する加水分解ステップ、を含む方法が好ましい。
Fe、Ni、Co及びMは、それぞれの成分を含む化合物を溶媒と混合し、必要に応じて撹拌することで、非水溶性錯体を含む塗布液を調製する。
非水溶性錯体は、加水分解中にその塩が水に溶解しない錯体であり、加水分解中の錯体の塩の水に対する溶解度が1%以下であり、0.5%以下であってよく、0.1%以下であってよい。
非水溶性錯体を添加する溶媒は特に限定されないが、有機溶媒であることが好ましく、トルエン又はN-ヘキサンであることがより好ましく、N-ヘキサンであることが更に好ましい。
Among these hydrolysis methods, specifically, a coating step of coating a substrate with a water-insoluble complex containing Fe, Ni, Co and M, and a step of hydrolyzing the water-insoluble complex coated on the substrate A hydrolysis step is preferred.
Compounds containing Fe, Ni, Co, and M are mixed with a solvent and, if necessary, stirred to prepare a coating solution containing water-insoluble complexes.
A water-insoluble complex is a complex whose salt does not dissolve in water during hydrolysis, and the solubility of the salt of the complex in water during hydrolysis is 1% or less, and may be 0.5% or less, and 0 .1% or less.
Although the solvent for adding the water-insoluble complex is not particularly limited, it is preferably an organic solvent, more preferably toluene or N-hexane, and even more preferably N-hexane.

非水溶性錯体は、非水溶性の錯体であれば特に限定されず、典型的には非水溶性の金属錯体であり、有機酸の金属塩であることが好ましい。非水溶性錯体を構成する有機酸としてはカルボン酸が挙げられ、2-エチルヘキサン酸が好ましい。非水溶性錯体を構成する金属としてはFe、Ni、Co、Mn、Kが好ましい。
塗布液中の非水溶性錯体の濃度は特に限定されないが、塗布液としての作業性の観点から100重量ppm以上2000重量ppm以下であることが好ましい。
基体への塗布液の塗布方法は特に限定されず、ドロップキャスト、スプレー塗布、静電塗布、スピンコートのような方法を用いることができる。基体は、非水溶性錯体を保持できればよく、通常は助触媒を担持する光触媒である。
The water-insoluble complex is not particularly limited as long as it is a water-insoluble complex, and is typically a water-insoluble metal complex, preferably a metal salt of an organic acid. Examples of the organic acid forming the water-insoluble complex include carboxylic acids, preferably 2-ethylhexanoic acid. Fe, Ni, Co, Mn and K are preferable as metals constituting the water-insoluble complex.
Although the concentration of the water-insoluble complex in the coating liquid is not particularly limited, it is preferably 100 ppm by weight or more and 2000 ppm by weight or less from the viewpoint of workability as the coating liquid.
The method of applying the coating liquid to the substrate is not particularly limited, and methods such as drop casting, spray coating, electrostatic coating, and spin coating can be used. The substrate is sufficient as long as it can hold the water-insoluble complex, and is usually a photocatalyst carrying a co-catalyst.

非水溶性錯体の加水分解は、塗布液を塗布した基体を加熱することで行うことができる。加水分解時の平均温度は200℃以下で加熱して行うことが好ましい。非水溶性錯体がアモルファスである場合、200℃以下とすることで非水溶性錯体の結晶構造の変化を押さえることができる。下限は特に限定されないが、通常100℃以上であり、150℃以上であることが好ましい。加熱時間は通常10分以上、好ましくは20分以上であり、また通常1時間以下、好ましくは0.5時間以下である。
なお、加水分解時の平均温度とは、加水分解のための総加熱時間における平均温度である。
Hydrolysis of the water-insoluble complex can be performed by heating the substrate coated with the coating liquid. It is preferable to carry out the hydrolysis by heating at an average temperature of 200° C. or less. When the water-insoluble complex is amorphous, changing the crystal structure of the water-insoluble complex can be suppressed by setting the temperature to 200° C. or lower. Although the lower limit is not particularly limited, it is usually 100° C. or higher, preferably 150° C. or higher. The heating time is usually 10 minutes or more, preferably 20 minutes or more, and usually 1 hour or less, preferably 0.5 hours or less.
The average temperature during hydrolysis is the average temperature during the total heating time for hydrolysis.

本実施形態の、光触媒を含むアノード電極用助触媒は、酸素生成用の助触媒として使用され、光触媒に担持されることで、光アノード電極の酸素生成機能を飛躍的に向上させる。
光触媒として用いられる材料は、Ti、V、Nb及びTaからなる群から選ばれる1種以上の元素を含み、これらの元素のいずれかを含んだ酸化物、酸窒化物、窒化物、(オキシ)カルコゲナイド等が挙げられる。具体的には、TiO、CaTiO、SrTiO、SrTi、SrTi、KLaTi10、RbLaTi10、CsLaTi10、CsLaTiNbO10,LaTiO、LaTi、LaTi、LaTi:Ba、KaLaZr0.3Ti
0.7、LaCaTi、KTiNbO、NaTi13、BaTi、GdTi、YTi、(NaTi、KTi、KTi、CsTi、H-CsTi(H-CsはCsがHでイオン交換されていることを示す。以下同様)、CsTi11、CsTi13、H-CsTiNbO、H-CsTiNbO、SiO-pillared KTi、SiO-pillared KTi2.7Mn0.3、BaTiO、BaTi、AgLi1/3Ti2/3等のチタン含有酸化物;
LaTiON等のチタン含有酸窒化物;及び
LaTiCuS、LaTiAgS、SmTi等のチタン含有(オキシ)カルコゲナイド;等のチタン含有化合物:
BiVO、AgVO等のバナジウム含有酸化物;等のバナジウム含有化合物:
Nb17、RbNb17、CaNb、SrNb、BaNb15、NaCaNb10、ZnNb、CsNb11、LaNbO、H-KLaNb、H-RbLaNb、H-CsLaNb、H-KCaNb10、SiO-pillared KCaNb10(Chem.Mater.1996,8,2534.)、H-RbCaNb10、H-CsCaNb10、H-KSrNb10、H-KCaNaNb13)、PbBiNb等のニオブ含有酸化物;及び
CaNbON、BaNbON、SrNbON、LaNbON等のニオブ含有酸窒化物;等のニオブ含有化合物:
Ta、KPrTa15、KTaSi13、KTa12、LiTaO、NaTaO、KTaO、AgTaO、KTaO:Zr、NaTaO:La、NaTaO:Sr、NaTa、KTa(pyrochlore)、CaTa、SrTa、BaTa、NiTa、RbTa17、HLa2/3Ta、KSr1.5Ta10、LiCaTa10、KBaTa10、SrTa15、BaTa15、H1.8Sr0.81Bi0.19Ta、Mg-Ta oxide(Chem.Mater.2004 16, 4304-4310)、LaTaO、LaTaO等のタンタル含有酸化物;
Ta等のタンタル含有窒化物;及び
CaTaON、SrTaON、BaTaON、LaTaON、YTa、TaON等のタンタル含有酸窒化物;等のタンタル含有化合物:等が用いられる。
The photocatalyst-containing anode electrode co-catalyst of the present embodiment is used as an oxygen-producing co-catalyst, and is carried on the photocatalyst to dramatically improve the oxygen producing function of the photoanode electrode.
The material used as a photocatalyst contains one or more elements selected from the group consisting of Ti, V, Nb and Ta, and oxides, oxynitrides, nitrides, (oxy) containing any of these elements A chalcogenide etc. are mentioned. Specifically , TiO2 , CaTiO3 , SrTiO3 , Sr3Ti2O7 , Sr4Ti3O7 , K2La2Ti3O10 , Rb2La2Ti3O10 , Cs2La2 _ _ Ti3O10 , CsLaTi2NbO10 , La2TiO5 , La2Ti3O9 , La2Ti2O7 , La2Ti2O7 : Ba , KaLaZr0.3Ti _
0.7O4 , La4CaTi5O7 , KTiNbO5 , Na2Ti6O13 , BaTi4O9 , Gd2Ti2O7 , Y2Ti2O7 , ( Na2Ti3O7 , _ _ _ K 2 Ti 2 O 5 , K 2 Ti 4 O 9 , Cs 2 Ti 2 O 5 , H + -Cs 2 Ti 2 O 5 (H + -Cs indicates that Cs is ion-exchanged with H + ) . hereinafter the same), Cs 2 Ti 5 O 11 , Cs 2 Ti 6 O 13 , H + -CsTiNbO 5 , H + -CsTi 2 NbO 7 , SiO 2 -pillared K 2 Ti 4 O 9 , SiO 2 -pillared K 2 Ti 2.7 Titanium -containing oxides such as Mn0.3O7 , BaTiO3 , BaTi4O9 , AgLi1 / 3Ti2 / 3O2 ;
titanium containing oxynitrides such as LaTiO2N ; and titanium containing ( oxy )chalcogenides such as La5Ti2CuS5O7 , La5Ti2AgS5O7 , Sm2Ti2O5S2 ; Containing compounds:
Vanadium-containing compounds such as vanadium-containing oxides such as BiVO 4 and Ag 3 VO 4 ;
K4Nb6O17 , Rb4Nb6O17 , Ca2Nb2O7 , Sr2Nb2O7 , Ba5Nb4O15 , NaCa2Nb3O10 , ZnNb2O6 , Cs2Nb _ _ _ _ _ _ 4O11 , La3NbO7 , H + -KLaNb2O7 , H + -RbLaNb2O7 , H + -CsLaNb2O7 , H+ -KCa2Nb3O10 , SiO2 - pillared KCa2Nb 3O10 ( Chem . Mater . 1996, 8, 2534. ), H + -RbCa2Nb3O10 , H + -CsCa2Nb3O10, H + -KSr2Nb3O10 , H + -KCa niobium - containing oxides such as PbBi2Nb2O9 ; and niobium-containing oxynitrides such as CaNbO2N , BaNbO2N , SrNbO2N , LaNbON2 ;
Ta2O5 , K2PrTa5O15 , K3Ta3Si2O13 , K3Ta3B2O12 , LiTaO3 , NaTaO3 , KTaO3 , AgTaO3 , KTaO3 : Zr, NaTaO3 : La , NaTaO3 :Sr , Na2Ta2O6 , K2Ta2O6 ( pyrochlore ) , CaTa2O6 , SrTa2O6 , BaTa2O6 , NiTa2O6 , Rb4Ta6O17 , H2La2 / 3Ta2O7 , K2Sr1.5Ta3O10 , LiCa2Ta3O10 , KBa2Ta3O10 , Sr5Ta4O15 , Ba5Ta4O15 _ _ _ _ _ _ , H 1.8 Sr 0.81 Bi 0.19 Ta 2 O 7 , Mg Ta oxide (Chem .
tantalum-containing nitrides such as Ta3N5 ; and tantalum - containing oxynitrides such as CaTaO2N , SrTaO2N , BaTaO2N , LaTaO2N , Y2Ta2O5N2 , TaON; compound: etc. are used.

太陽光を利用した光水分解反応をより効率的に生じさせる観点からは、上記各種光触媒材料のうち、可視光応答型の材料を用いることが好ましい。具体的には、TaON、LaTiON、BaTaON、SrNbONm、Ta等の金属(酸)窒化物が好ましい。上記の各種光触媒は、固相法、溶液法等の公知の合成方法によって容易に合成可能である。 From the viewpoint of more efficiently causing a photo-water splitting reaction using sunlight, it is preferable to use a visible-light-responsive material among the various photocatalyst materials described above. Specifically, metal (oxy)nitrides such as TaON, LaTiO 2 N, BaTaO 2 N, SrNbO 2 Nm and Ta 3 N 5 are preferred. The various photocatalysts described above can be easily synthesized by known synthetic methods such as a solid-phase method and a solution method.

光触媒の形態(形状)については、上記説明した助触媒を担持して光触媒として機能し得るような形態であれば特に限定されるものではない。特に、水分解反応用光アノード電極とする場合は、典型的にはアノード電極上に膜状や箔状で存在すればよく、アノード電極の形状に応じて適宜その形状を設定できる。 The form (shape) of the photocatalyst is not particularly limited as long as it supports the co-catalyst described above and can function as a photocatalyst. In particular, when it is used as a photoanode electrode for a water-splitting reaction, it typically needs to be present in the form of a film or foil on the anode electrode, and the shape can be appropriately set according to the shape of the anode electrode.

光触媒は、上記説明した助触媒に加えて、別の助触媒を共担持させてもよい。例えば、周期表第6族~第10族から選ばれる1つ以上の元素を含む化合物を助触媒として共担持させることができる。具体的には、酸素生成用助触媒として、Cr、Sb、Nb、Th、Mn、Fe、Co、Ni、Ru、Rh、Irの金属、これらの酸化物又は複合酸化物(ただし、Co及びMnを含む酸化物を除く)が挙げられる。 The photocatalyst may be co-supported with another co-catalyst in addition to the co-catalyst described above. For example, a compound containing one or more elements selected from Groups 6 to 10 of the periodic table can be co-supported as a co-catalyst. Specifically, as the cocatalyst for oxygen generation, metals such as Cr, Sb, Nb, Th, Mn, Fe, Co, Ni, Ru, Rh, Ir, oxides or composite oxides thereof (co and Mn excluding oxides containing).

光触媒への助触媒の担持量については、光触媒活性を向上可能な量であれば特に限定されるものではない。例えば、光触媒100質量部に対し、助触媒を0.008質量部以上20.0質量部以下担持することが好ましい。 The amount of co-catalyst supported on the photocatalyst is not particularly limited as long as it is an amount capable of improving the photocatalytic activity. For example, it is preferable to support 0.008 parts by mass or more and 20.0 parts by mass or less of the co-catalyst with respect to 100 parts by mass of the photocatalyst.

光アノード電極は、典型的には集電極、光触媒層及び助触媒を含み、通常集電極上に光触媒が層状に堆積され、該光触媒には本実施形態の助触媒が担持される。光励起によって生じた電子は集電極へ流れ、一方正孔(ホール)は助触媒へ異動して水を酸化し、酸素を発生させる。
集電極としては、通常導電性の高い金属若しくは透明電極が用いられるが、導電性を有する限り特に限定されない。例えばTa,Ti、Cu、Fe、Ni,Al等が用いられ、集電極が板状の場合には、その厚さが0.1mm以上10mm以下であってよく、0.2mm以上3mm以下であることが好ましい。透明電極としてはFTO、ITOなどが好ましい。
光触媒層としては、上記光触媒材料を用いることができる。板状の集電極上に堆積する場合には、その厚さが50nm以上20μm以下であってよく、500nm以上3μm以下であることが好ましい。
助触媒は、光触媒層に担持されていればよく、光触媒層上に膜状に堆積していてもよく、アイランド状に堆積してもよい。厚さも特に限定されないが、0.1nm以上100nm以下であってよい。
A photoanode electrode typically includes a collecting electrode, a photocatalyst layer and a co-catalyst, and a photocatalyst is usually deposited in layers on the collecting electrode, and the co-catalyst of the present embodiment is supported on the photocatalyst. Electrons generated by photoexcitation flow to the collecting electrode, while holes migrate to the promoter to oxidize water and generate oxygen.
As the collecting electrode, a highly conductive metal or a transparent electrode is usually used, but there is no particular limitation as long as it has conductivity. For example, Ta, Ti, Cu, Fe, Ni, Al, etc. are used, and when the collecting electrode is plate-shaped, its thickness may be 0.1 mm or more and 10 mm or less, and is 0.2 mm or more and 3 mm or less. is preferred. FTO, ITO and the like are preferable as the transparent electrode.
As the photocatalyst layer, the above photocatalyst materials can be used. When deposited on a plate-like collecting electrode, the thickness may be 50 nm or more and 20 μm or less, preferably 500 nm or more and 3 μm or less.
The co-catalyst may be deposited on the photocatalyst layer as long as it is supported on the photocatalyst layer, and may be deposited in the form of a film or islands on the photocatalyst layer. The thickness is also not particularly limited, but may be 0.1 nm or more and 100 nm or less.

光アノード電極の対電極となるカソード電極材料としては特に限定されず、例えば水素発生用電極である場合には、Pt、Au、Pd、Cなどがあげられ、Ptを用いることが好ましい。カソード電極に用いられる光触媒としては、CuO、CuO、CuBi、CIGS系、WS、p-Siなどが好ましく例示できる。 The cathode electrode material that serves as the counter electrode of the photoanode electrode is not particularly limited. For example, in the case of an electrode for hydrogen generation, Pt, Au, Pd, C and the like can be mentioned, and Pt is preferably used. As the photocatalyst used for the cathode electrode, CuO, Cu 2 O, CuBi 2 O 4 , CIGS, WS 2 , p-Si, etc. can be preferably exemplified.

本発明の別の実施形態は、Fe、Ni、Co、M及び酸素、を含むアノード電極用触媒である。上記MはK及びMnから選択される。本実施形態のアノード電極用触媒は、水の電気分解を行う際のアノード電極に担持されることで、水の電気分解反応を加速させる触媒として機能する。上記説明した光アノード電極用助触媒は、水の電気分解の際のアノード電極用触媒としても、使用することができる。 Another embodiment of the invention is an anode electrode catalyst comprising Fe, Ni, Co, M and oxygen. M is selected from K and Mn. The anode electrode catalyst of the present embodiment functions as a catalyst that accelerates the electrolysis reaction of water by being supported on the anode electrode when water is electrolyzed. The photoanode cocatalyst described above can also be used as an anode electrode catalyst for water electrolysis.

本実施形態に係る水の電気分解の際に用いるアノード電極用触媒は、更に光触媒とともに用いられることで、光により酸素生成が可能な光電極として用いられ得る。光触媒としては、上記説明した光半導体に用いられる化合物を用いることができ、窒化物や酸窒化物であることが好ましい。 The anode electrode catalyst used in water electrolysis according to the present embodiment can be used as a photoelectrode capable of generating oxygen by light by being used together with a photocatalyst. As the photocatalyst, the compounds used in the optical semiconductors described above can be used, and nitrides and oxynitrides are preferable.

光触媒を実際に水の分解に使用する場合における光触媒の形態については特に限定されるものではない。例えば、水中に光触媒粒子を分散させる形態、光触媒粒子を固めて成形体として当該成形体を水中に設置する形態、基材上に光触媒層を設けて積層体とし当該積層体を水中に設置する形態、集電体上に光触媒を固定化して水電解用電極(光触媒電極)とし対極とともに水中に設置する形態等が挙げられる。特に、光水分解反応を大規模にて行う場合、バイアスを付与して水分解反応を促進できる観点から、水電解用電極とするとよい。上記の成形体とする形態、及び、積層体とする形態においては、当該成形体又は当該積層体はシート状(光触媒シート)であってもよい。 When the photocatalyst is actually used to decompose water, the form of the photocatalyst is not particularly limited. For example, a form in which photocatalyst particles are dispersed in water, a form in which photocatalyst particles are solidified to form a molded body and the molded body is placed in water, a form in which a photocatalyst layer is provided on a substrate to form a laminate and the laminate is placed in water , a form in which a photocatalyst is immobilized on a current collector to form an electrode for water electrolysis (photocatalyst electrode), and the electrode is placed in water together with a counter electrode. In particular, when the photo-water splitting reaction is performed on a large scale, it is preferable to use the electrode for water electrolysis from the viewpoint of promoting the water splitting reaction by applying a bias. In the form of the molded article and the form of the laminate, the molded article or the laminate may be in the form of a sheet (photocatalyst sheet).

光アノード電極は公知の方法により作製可能である。例えば、所謂粒子転写法(Chem. Sci., 2013,4, 1120-1124)によって容易に作製可能である。即ち、ガラス等の第1の基材上に光触媒粒子を載せて、光触媒層と第1の基材層との積層体を得る。得られた積層体の光触媒層表面に蒸着等によって導電層(集電体)を設ける。ここで、光触媒層の導電層側表層にある光触媒粒子が導電層に固定化される。その後、導電層表面に第2の基材を接
着し、第1の基材層から導電層及び光触媒層を剥がす。光触媒粒子の一部は導電層の表面に固定化されているので、導電層とともに剥がされ、結果として、光触媒層と導電層と第2の基材層とを有する水電解用電極を得ることができる。
A photoanode electrode can be produced by a known method. For example, it can be easily produced by a so-called particle transfer method (Chem. Sci., 2013, 4, 1120-1124). That is, photocatalyst particles are placed on a first base material such as glass to obtain a laminate of a photocatalyst layer and a first base material layer. A conductive layer (current collector) is provided on the surface of the photocatalyst layer of the obtained laminate by vapor deposition or the like. Here, the photocatalyst particles on the conductive layer side surface layer of the photocatalyst layer are immobilized on the conductive layer. After that, a second base material is adhered to the surface of the conductive layer, and the conductive layer and the photocatalyst layer are peeled off from the first base material layer. Since some of the photocatalyst particles are fixed on the surface of the conductive layer, they are peeled off together with the conductive layer, and as a result, an electrode for water electrolysis having a photocatalyst layer, a conductive layer, and a second substrate layer can be obtained. can.

或いは、光触媒粒子が分散されたスラリーを集電体の表面に塗布して乾燥させることで、水電解用電極を得てもよいし、光触媒粒子と集電体とを加圧成形等して一体化することで水電解用電極を得てもよい。また、光触媒粒子が分散されたスラリー中に集電体を浸漬し、電圧を印可して光触媒粒子を電気泳動により集電体上に集積してもよい。
助触媒の担持は、光触媒粒子を集電体上に固定する前に行ってもよいし固定した後であってもよい。例えば、上記した粒子転写法において、助触媒担持前の光触媒を用いて、同様の方法で積層体を得て、その後、光触媒層の表面に助触媒としての複合体を担持させることで、光アノード電極を得てもよい。
Alternatively, a slurry in which photocatalyst particles are dispersed may be applied to the surface of a current collector and dried to obtain an electrode for water electrolysis, or the photocatalyst particles and the current collector may be integrally formed by pressure molding or the like. You may obtain the electrode for water electrolysis by converting. Alternatively, a current collector may be immersed in a slurry in which photocatalyst particles are dispersed, and a voltage may be applied to collect the photocatalyst particles on the current collector by electrophoresis.
The co-catalyst may be supported before or after fixing the photocatalyst particles on the current collector. For example, in the above-described particle transfer method, a photocatalyst before supporting a cocatalyst is used to obtain a laminate in the same manner, and then a composite as a cocatalyst is supported on the surface of the photocatalyst layer to obtain a photoanode. Electrodes may be obtained.

上述したように、光触媒を水電解用電極に適用する場合、電極性能を向上させる観点から、光触媒において、光触媒100質量部に対して複合体が0.008質量部以上20質量部以下担持されていることが好ましい。或いは、同様の観点から、光触媒の表面の20%以上が当該複合体に覆われてなることが好ましい。光触媒表面における複合体の被覆率は、光触媒粒子を一方向から見た場合における光半導体が占める部分と複合体が占める部分とを、SEM-EDS等によって特定することで算出することができる。例えば、SEM写真図における光半導体部分の面積と複合体部分の面積とを特定し、(複合体部分の面積)/{(光半導体部分の面積)+(複合体部分の面積)}により被覆率を算出することができる。 As described above, when the photocatalyst is applied to the electrode for water electrolysis, from the viewpoint of improving the electrode performance, the photocatalyst supports 0.008 parts by mass or more and 20 parts by mass or less of the composite with respect to 100 parts by mass of the photocatalyst. preferably. Alternatively, from the same point of view, it is preferable that 20% or more of the surface of the photocatalyst is covered with the composite. The coverage of the composite on the photocatalyst surface can be calculated by specifying the portion occupied by the optical semiconductor and the portion occupied by the composite when the photocatalyst particle is viewed from one direction by SEM-EDS or the like. For example, the area of the optical semiconductor portion and the area of the composite portion are specified in the SEM photograph, and the coverage rate is calculated by (area of the composite portion) / {(area of the optical semiconductor portion) + (area of the composite portion)}. can be calculated.

本実施形態においては、上記した光触媒、或いは、上記した水電解用電極を、水又は電解質水溶液に浸漬し、当該光触媒又は水電解用電極に光を照射して光水分解を行うことで、水素及び/又は酸素を製造することができる。
例えば、上述のように導電体で構成される集電体上に光触媒を固定化して水電解用電極を得る一方、対極として水素生成触媒を担持した導電体を使用し、液体状又は気体状の水を供給しながら光を照射し、水分解反応を進行させる。必要に応じて外部電力により電極間に電位差を設けることで、水分解反応を促進することができる。或いは、対極として水素生成触媒を担持した光触媒を使用してもよい。この場合、光触媒としては水素生成反応を触媒する公知の光触媒を用いることができる。
In the present embodiment, the above-described photocatalyst or the above-described electrode for water electrolysis is immersed in water or an aqueous electrolyte solution, and the photocatalyst or electrode for water electrolysis is irradiated with light to perform photowater decomposition, thereby hydrogen and/or oxygen can be produced.
For example, as described above, a photocatalyst is immobilized on a current collector composed of a conductor to obtain an electrode for water electrolysis, while a conductor supporting a hydrogen generation catalyst is used as a counter electrode, and a liquid or gaseous conductor is used. Light is irradiated while water is being supplied to advance the water-splitting reaction. The water-splitting reaction can be promoted by providing a potential difference between the electrodes by external power as needed. Alternatively, a photocatalyst supporting a hydrogen-producing catalyst may be used as the counter electrode. In this case, as the photocatalyst, a known photocatalyst that catalyzes the hydrogen production reaction can be used.

一方、絶縁基材上に光触媒粒子を固定化した固定化物に、又は、光触媒粒子を加圧成形等した成形体に、水を供給しながら光を照射して水分解反応を進行させてもよい。或いは、光触媒粒子を水又は電解質水溶液に分散させて、ここに光を照射して水分解反応を進行させてもよい。この場合、必要に応じて攪拌することで、反応を促進することができる。 On the other hand, an immobilized product in which photocatalyst particles are immobilized on an insulating base material, or a molded body in which photocatalyst particles are pressure-molded, may be irradiated with light while supplying water to allow the water-splitting reaction to proceed. . Alternatively, the photocatalyst particles may be dispersed in water or an aqueous electrolyte solution, and then irradiated with light to promote the water-splitting reaction. In this case, the reaction can be promoted by stirring as necessary.

以下に、実施例により本発明を更に詳細に説明するが、本発明の範囲が実施例のみに限定されないことはいうまでもない。 EXAMPLES The present invention will be described in more detail below with reference to examples, but it goes without saying that the scope of the present invention is not limited only to the examples.

(実施例1~5、比較例1)
下記式(1)で表されるトリス(2-エチルヘキサン酸)鉄(III)・ミネラルスピリット溶液(Fe:6%)(富士フイルム和光純薬)、下記式(2)で表される2-エチルヘキサン酸ニッケル(II)トルエン溶液(Ni:6%)(富士フイルム和光純薬)、下記式(3)で表される2-エチルヘキサン酸コバルト(II)・ミネラルスピリット溶液(Co:12%)(富士フイルム和光純薬)、下記式(4)で表される2-エチルヘキサン酸カリウム溶液(K:75%)(富士フイルム和光純薬)、下記式(5)で表される2-エチルヘキサン酸マンガン(II)・ミネラルスピリット溶液(Mn:8%)(富士
フイルム和光純薬)を個別にヘキサン(富士フイルム和光純薬)と混合し、各元素濃度が1.2重量%である5つの原料溶液を調製した。
(Examples 1 to 5, Comparative Example 1)
Tris(2-ethylhexanoic acid) iron (III) mineral spirit solution (Fe: 6%) (Fujifilm Wako Pure Chemical Industries, Ltd.) represented by the following formula (1), 2- represented by the following formula (2) Nickel (II) ethylhexanoate toluene solution (Ni: 6%) (Fujifilm Wako Pure Chemical Industries, Ltd.), 2-ethylhexanoate cobalt (II) represented by the following formula (3): mineral spirit solution (Co: 12% ) (Fujifilm Wako Pure Chemical Industries), 2-ethylhexanoate potassium solution (K: 75%) represented by the following formula (4) (Fujifilm Wako Pure Chemical Industries), 2- represented by the following formula (5) Manganese (II) ethylhexanoate/mineral spirit solution (Mn: 8%) (Fuji Film Wako Pure Chemical) was individually mixed with hexane (Fuji Film Wako Pure Chemical), and the concentration of each element was 1.2% by weight. Five stock solutions were prepared.

Figure 0007321121000001
Figure 0007321121000001

原料溶液を混合しヘキサンにて希釈して元素の組成を表1のように変えたアノード電極用触媒前駆体溶液30μLを、洗浄乾燥した1.2cm×2cm角のフッ素ドープ酸化スズ(FTO)導電性ガラス基板(日本板硝子)にマイクロピペットを用いて滴下した。自然乾燥後、140℃の乾燥機内に0.5時間保持し熱処理を行った。これらを実施例1~5及び、比較例1のアノード電極とした。 30 μL of the anode electrode catalyst precursor solution prepared by mixing the raw material solution and diluting it with hexane to change the elemental composition as shown in Table 1 was washed and dried into a 1.2 cm×2 cm square fluorine-doped tin oxide (FTO) conductive film. It was dropped onto a flexible glass substrate (Nippon Sheet Glass) using a micropipette. After natural drying, heat treatment was performed by holding in a dryer at 140° C. for 0.5 hours. These were used as the anode electrodes of Examples 1 to 5 and Comparative Example 1.

HPO及びKOH(富士フイルム和光純薬)をイオン交換水に溶解し、pHメーター(東亜ディーケーケー、GST-2729C)を用いてpH13に調整した0.5MのKHPO電解質水溶液100mLを調製した。作製したアノード電極を電解質溶液中に入れ、Ag/AgCl参照極(ビー・エー・エス、RE-1B)、及びPt線対極を用いた三電極方式にて電気化学測定を行った。ポテンショスタット/ガルバノスタット装置(イーシーフロンティア、ECstat-301)を用い、-0.2~+1V(vs.Ag/AgCl)の範囲を速度50mV/sにて掃引し、ダーク電流を評価した。ポテンシャルの可逆水素電極(RHE)への補正は次式で行った:
ポテンシャル(vs.RHE)=ポテンシャル(vs.Ag/AgCl)+0.195V+0.059pH
表1に1.8V-RHEでの電流密度の測定結果を示した。
K 2 HPO 4 and KOH (Fujifilm Wako Pure Chemical Industries, Ltd.) were dissolved in ion-exchanged water, and 100 mL of a 0.5 M K 2 HPO 4 electrolyte aqueous solution adjusted to pH 13 using a pH meter (Toa DKK, GST-2729C) was added. prepared. The prepared anode electrode was placed in an electrolyte solution, and electrochemical measurement was performed by a three-electrode method using an Ag/AgCl reference electrode (BAS, RE-1B) and a Pt wire counter electrode. Using a potentiostat/galvanostat device (EC-Frontier, ECstat-301), the range of -0.2 to +1 V (vs. Ag/AgCl) was swept at a rate of 50 mV/s to evaluate the dark current. Correction of the potential to the reversible hydrogen electrode (RHE) was performed by the following equation:
Potential (vs. RHE) = Potential (vs. Ag/AgCl) + 0.195 V + 0.059 pH
Table 1 shows the measurement results of the current density at 1.8V-RHE.

Figure 0007321121000002
Figure 0007321121000002

表1から明らかなように、Fe、Ni及びCoと、第4の成分としてK又はMnとを選択した場合は、比較例に比べ顕著に大きな電流密度の値を示した。 As is clear from Table 1, when Fe, Ni and Co and K or Mn were selected as the fourth component, significantly higher current densities were obtained than in the comparative examples.

(実施例6~9、比較例2)
Taメタル基板上に成膜したTa光電極を、既報(Angewandte Chemie International Edition、第56巻、17号、4739~4743頁、2017年)に記載の方法に準じて作製した。
実施例1~5で用いた1.2重量%濃度の5つの原料溶液を混合し、ヘキサンにて希釈して元素の組成を表2のように変えた助触媒前駆体溶液を準備し、15μLを、1×1cm角のTa光電極へ滴下した。自然乾燥後、140℃の乾燥機内に0.5時間保持し熱処理を行った。これらを実施例6~9、及び比較例2の光アノード電極とした。
(Examples 6 to 9, Comparative Example 2)
A Ta 3 N 5 photoelectrode deposited on a Ta metal substrate was produced according to the method described in a previous report (Angewandte Chemie International Edition, Vol. 56, No. 17, pp. 4739-4743, 2017).
Five 1.2% by weight concentration raw material solutions used in Examples 1 to 5 were mixed and diluted with hexane to prepare 15 μL of a cocatalyst precursor solution in which the elemental composition was changed as shown in Table 2. was dropped onto a 1×1 cm 2 square Ta 3 N 5 photoelectrode. After natural drying, heat treatment was performed by holding in a dryer at 140° C. for 0.5 hours. These were used as the photoanode electrodes of Examples 6 to 9 and Comparative Example 2.

インジウム(ニラコ)を用いて機器配線用ジュンフロン電線(潤工社、AF04A050)と接続し、アラルダイト(ニチバン、AR-R30)で接続部及び裏面を被覆した。画像解析により算出した助触媒担持Ta光電極の露出面積は0.4~0.6cmであった。 Junflon wire for equipment wiring (Junkosha, AF04A050) was connected using indium (Nilaco), and the connecting portion and back surface were covered with Araldite (Nichiban, AR-R30). The exposed area of the cocatalyst-supporting Ta 3 N 5 photoelectrode calculated by image analysis was 0.4 to 0.6 cm 2 .

HPO及びKOH(富士フイルム和光純薬)をイオン交換水に溶解し、pHメーター(東亜ディーケーケー、GST-2729C)を用いてpH13に調整した0.5MのKHPO電解質水溶液150mLを調製した。作製した助触媒担持Ta光電極を電解質水溶液中に入れ、Ag/AgCl参照極(ビー・エー・エス、RE-1B)、及びPt線対極を用いた三電極方式にて光電気化学測定を行った。電気化学アナライザー(ビー・エー・エス、ALSモデル627E)を用い、-0.9~+0.35V(vs.Ag/AgCl)の範囲を速度10mV/sにて掃引し、アノード電流を評価した。ポテンシャルの可逆水素電極(RHE)への補正は次式で行った:
ポテンシャル(vs.RHE)=ポテンシャル(vs.Ag/AgCl)+0.195V+0.059pH
ラジオメーターを用いてAM1.5に調整されたソーラーシミュレータ(三永電機製作所、XES-40S3)を光源とし、3s毎の光オンオフ切り替えにより光応答電流を評価した。表2に1.29V-RHEでの電流密度の測定結果を示した。
K 2 HPO 4 and KOH (Fujifilm Wako Pure Chemical Industries, Ltd.) were dissolved in ion-exchanged water, and 150 mL of a 0.5 M K 2 HPO 4 electrolyte aqueous solution adjusted to pH 13 using a pH meter (Toa DKK, GST-2729C) was added. prepared. The prepared cocatalyst-supporting Ta 3 N 5 photoelectrode was placed in an aqueous electrolyte solution, and photoelectrochemistry was performed by a three-electrode method using an Ag/AgCl reference electrode (BAS, RE-1B) and a Pt wire counter electrode. I made a measurement. Using an electrochemical analyzer (BAS, ALS model 627E), the range of −0.9 to +0.35 V (vs. Ag/AgCl) was swept at a rate of 10 mV/s to evaluate the anodic current. Correction of the potential to the reversible hydrogen electrode (RHE) was performed by the following equation:
Potential (vs. RHE) = Potential (vs. Ag/AgCl) + 0.195 V + 0.059 pH
A solar simulator (XES-40S3, manufactured by Sannaga Denki Seisakusho) adjusted to AM1.5 using a radiometer was used as a light source, and the photoresponse current was evaluated by switching the light on and off every 3 seconds. Table 2 shows the current density measurement results at 1.29 V-RHE.

Figure 0007321121000003
Figure 0007321121000003

表2から明らかなように、Fe、Ni、Coと、第4の成分としてK及びMnとを選択した場合、比較例に比べ顕著に大きな電流密度の値を示し、本実施形態の光アノード用助触媒によって、Ta光電極の性能が向上したことがわかる。 As is clear from Table 2, when Fe, Ni, Co and K and Mn are selected as the fourth component, the current density value is significantly higher than that of the comparative example, and the photoanode of the present embodiment It can be seen that the promoter improved the performance of the Ta 3 N 5 photoelectrode.

Claims (7)

Fe、Ni、Co、M及び酸素、を含むアノード電極用触媒。
但し前記MはK及びMnから選択される。
An anode electrode catalyst comprising Fe, Ni, Co, M and oxygen.
However, said M is selected from K and Mn.
前記Fe、Ni及びCoの合計重量に対する前記Mの重量比が、0.001以上3以下である、請求項1に記載のアノード電極用触媒。 2. The anode electrode catalyst according to claim 1, wherein the weight ratio of said M to said total weight of said Fe, Ni and Co is 0.001 or more and 3 or less. 請求項1又は2に記載のアノード電極用触媒と光触媒と、を含む光電極。 A photoelectrode comprising the anode electrode catalyst according to claim 1 or 2 and a photocatalyst. Fe、Ni、Co、M及び酸素、を含む光アノード電極用助触媒。
但し前記MはK及びMnから選択される。
A promoter for a photoanode electrode comprising Fe, Ni, Co, M and oxygen.
However, said M is selected from K and Mn.
前記Fe、Ni及びCoの合計重量に対する前記Mの重量比が、0.001以上3以下である、請求項4に記載の光アノード電極用助触媒。 5. The cocatalyst for a photoanode electrode according to claim 4, wherein the weight ratio of said M to said total weight of said Fe, Ni and Co is 0.001 or more and 3 or less. Fe、Ni、Co、及びM、を含む非水溶性錯体を基体上に塗布する塗布ステップ、及び基体上に塗布した非水溶性錯体を加水分解する加水分解ステップ、を含む、アノード電極用触媒又は光アノード電極用助触媒の製造方法。
但し前記MはK及びMnから選択される。
A catalyst for an anode electrode, comprising a coating step of coating a water-insoluble complex containing Fe, Ni, Co, and M on a substrate, and a hydrolysis step of hydrolyzing the water-insoluble complex coated on the substrate, or A method for producing a cocatalyst for a photoanode electrode.
However, said M is selected from K and Mn.
前記加水分解ステップにおける平均温度は200℃以下である、請求項6に記載のアノード電極用触媒又は光アノード電極用助触媒の製造方法。 7. The method for producing an anode electrode catalyst or photoanode electrode co-catalyst according to claim 6, wherein the average temperature in the hydrolysis step is 200[deg.] C. or less.
JP2020060205A 2020-03-30 2020-03-30 Anode electrode catalyst and co-catalyst for photoanode electrode Active JP7321121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020060205A JP7321121B2 (en) 2020-03-30 2020-03-30 Anode electrode catalyst and co-catalyst for photoanode electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020060205A JP7321121B2 (en) 2020-03-30 2020-03-30 Anode electrode catalyst and co-catalyst for photoanode electrode

Publications (2)

Publication Number Publication Date
JP2021154260A JP2021154260A (en) 2021-10-07
JP7321121B2 true JP7321121B2 (en) 2023-08-04

Family

ID=77916443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020060205A Active JP7321121B2 (en) 2020-03-30 2020-03-30 Anode electrode catalyst and co-catalyst for photoanode electrode

Country Status (1)

Country Link
JP (1) JP7321121B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015112509A (en) 2013-12-09 2015-06-22 国立大学法人 東京大学 Photocatalyst, electrode for water-splitting reaction, and production method of hydrogen and/or oxygen
JP2018058065A (en) 2016-10-05 2018-04-12 国立大学法人京都大学 Promoter for oxygen generating photocatalyst, and oxygen generating photocatalyst that supports the promoter, and complex and method for producing the complex
WO2018110543A1 (en) 2016-12-12 2018-06-21 富士フイルム株式会社 Photocatalyst electrode for oxygen generation, and method and module for manufacturing photocatalyst electrode for oxygen generation
WO2019031592A1 (en) 2017-08-09 2019-02-14 三菱ケミカル株式会社 Transparent electrode for oxygen production, method for producing same, tandem water decomposition reaction electrode provided with same, and oxygen production device using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015112509A (en) 2013-12-09 2015-06-22 国立大学法人 東京大学 Photocatalyst, electrode for water-splitting reaction, and production method of hydrogen and/or oxygen
JP2018058065A (en) 2016-10-05 2018-04-12 国立大学法人京都大学 Promoter for oxygen generating photocatalyst, and oxygen generating photocatalyst that supports the promoter, and complex and method for producing the complex
WO2018110543A1 (en) 2016-12-12 2018-06-21 富士フイルム株式会社 Photocatalyst electrode for oxygen generation, and method and module for manufacturing photocatalyst electrode for oxygen generation
WO2019031592A1 (en) 2017-08-09 2019-02-14 三菱ケミカル株式会社 Transparent electrode for oxygen production, method for producing same, tandem water decomposition reaction electrode provided with same, and oxygen production device using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HALEEM, Ashraf Abdel et al.,Enhanced Performance of Pristine Ta3N5 Photoanodes for Solar Water Splitting by Modification with Fe-Ni-Co Mixed-Oxide Catalysts,J. Phys. Chem. C,米国,American Chemical Society,2017年08月29日,Vol. 121,pp. 20093-20100,DOI: 10.1021/acs.jpcc.7b04403
ZHANG, Zailei et al.,Ni0.33Mn0.33Co0.33Fe2O4 nanoparticles anchored on oxidized carbon nanotubes as advanced anode materials in Li-ion batteries,RSC Adv.,英国,The Royal Society of Chemistry,2014年07月23日,Vol. 4,pp. 33769-33775,DOI: 10.2039/C4RA04483E

Also Published As

Publication number Publication date
JP2021154260A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
Weng et al. Metal–organic framework-derived CoWP@ C composite nanowire electrocatalyst for efficient water splitting
Cao et al. Dominating role of aligned MoS2/Ni3S2 nanoarrays supported on three-dimensional Ni foam with hydrophilic interface for highly enhanced hydrogen evolution reaction
Nasir et al. New insights into Se/BiVO4 heterostructure for photoelectrochemical water splitting: a combined experimental and DFT study
Saadi et al. Operando synthesis of macroporous molybdenum diselenide films for electrocatalysis of the hydrogen-evolution reaction
Smith et al. Facile photochemical preparation of amorphous iridium oxide films for water oxidation catalysis
Park et al. Progress in bismuth vanadate photoanodes for use in solar water oxidation
Burbure et al. Photochemical reactivity of titania films on BaTiO3 substrates: origin of spatial selectivity
Lan et al. SnO2-modified two-dimensional CuO for enhanced electrochemical reduction of CO2 to C2H4
EP3427826B1 (en) Catalyst and use of same
JP6515186B2 (en) Photocatalytic electrode and module for oxygen generation
JP5641499B2 (en) Photocatalytic photocatalytic electrode
JP6371648B2 (en) Photocatalytic electrode for water splitting
WO2005090236A1 (en) Nanotube-shaped titania and method for producing same
El Rouby et al. Novel nano-architectured water splitting photoanodes based on TiO2-nanorod mats surface sensitized by ZIF-67 coatings
Yang et al. Enhanced photoelectrochemical water oxidation on WO3 nanoflake films by coupling with amorphous TiO2
JP7028393B2 (en) An co-catalyst for an oxygen-generating photocatalyst, an oxygen-generating photocatalyst carrying the co-catalyst, and a complex and a method for producing the complex.
JP2007070675A (en) Semiconductor electrode and energy conversion system using the same
Vo et al. Multifunctional ternary hydrotalcite-like nanosheet arrays as an efficient co-catalyst for vastly improved water splitting performance on bismuth vanadate photoanode
Gong et al. Self-activation of a polyoxometalate-derived composite electrocatalyst for the oxygen evolution reaction
Wang et al. Advances and challenges in developing cocatalysts for photocatalytic conversion of carbon dioxide to fuels
Yang et al. Boosted water oxidation activity and kinetics on BiVO4 photoanodes with multihigh-index crystal facets
Park et al. Photoelectrochemical H 2 evolution on WO 3/BiVO 4 enabled by single-crystalline TiO 2 overlayer modulations
Wang et al. Regulating the type of cobalt porphyrins for synergistic promotion of photoelectrochemical water splitting of BiVO4
Wang et al. Photoassisted electrodeposition of cobalt-phosphate cocatalyst on BiFeO3 thin film photoanode for highly efficient photoelectrochemical performances of water oxidation
JP6270884B2 (en) Method for producing electrode for photohydrolysis reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230725

R150 Certificate of patent or registration of utility model

Ref document number: 7321121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150