JP7320729B2 - load controller - Google Patents

load controller Download PDF

Info

Publication number
JP7320729B2
JP7320729B2 JP2020133302A JP2020133302A JP7320729B2 JP 7320729 B2 JP7320729 B2 JP 7320729B2 JP 2020133302 A JP2020133302 A JP 2020133302A JP 2020133302 A JP2020133302 A JP 2020133302A JP 7320729 B2 JP7320729 B2 JP 7320729B2
Authority
JP
Japan
Prior art keywords
switch
state
load
control device
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020133302A
Other languages
Japanese (ja)
Other versions
JP2022029795A (en
Inventor
賢吾 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020133302A priority Critical patent/JP7320729B2/en
Priority to PCT/JP2021/028173 priority patent/WO2022030362A1/en
Priority to TW110128620A priority patent/TWI763576B/en
Publication of JP2022029795A publication Critical patent/JP2022029795A/en
Application granted granted Critical
Publication of JP7320729B2 publication Critical patent/JP7320729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/31Phase-control circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Description

本開示は、負荷制御装置に関する。より詳細には、本開示は、負荷への電力供給を制御する負荷制御装置に関する。 The present disclosure relates to load control devices. More particularly, the present disclosure relates to load control devices that control power supply to loads.

特許文献1は、交流電源に対して負荷と直列に接続されたスイッチ部と、制御部とを備える調光装置を開示する。制御部は、スイッチ部のオン/オフを制御することによって、負荷に供給する交流電圧を位相制御する。 Patent Literature 1 discloses a light control device including a switch unit connected in series with a load to an AC power supply, and a control unit. The control section phase-controls the AC voltage supplied to the load by controlling the on/off of the switch section.

特許文献1の調光装置では、交流電圧のゼロクロスの時点でスイッチ部をオンにし、交流電圧の毎半サイクルの期間途中でスイッチ部をオフにして負荷への給電を遮断するいわゆる逆位相制御を行っている。 The light control device of Patent Document 1 performs so-called reverse phase control in which the switch unit is turned on at the point of zero crossing of the AC voltage, and the switch unit is turned off in the middle of each half cycle of the AC voltage to cut off the power supply to the load. Is going.

特開2013-149498号公報JP 2013-149498 A

上述の特許文献1において、スイッチ部をターンオフする場合に、交流電源及び負荷とスイッチ部との間を接続する電線などのインダクタンス(以下、系統のインダクタンスという)等に起因して逆起電圧が発生する可能性がある。スイッチ部のターンオフ速度を低速にするとターンオフ時に発生する逆起電圧を低減することが可能であるが、スイッチング損失が増加するという問題がある。 In Patent Document 1 described above, when the switch unit is turned off, a back electromotive voltage is generated due to the inductance of the electric wire connecting between the AC power supply and the load and the switch unit (hereinafter referred to as system inductance). there's a possibility that. If the turn-off speed of the switch section is slowed down, it is possible to reduce the back electromotive force generated at the time of turn-off, but there is a problem of increased switching loss.

本開示の目的は、ノイズの低減が可能な低損失の負荷制御装置を提供することにある。 An object of the present disclosure is to provide a low-loss load control device capable of reducing noise.

本開示の一態様の負荷制御装置は、一対の接続端子と、第1スイッチと、容量素子と、第2スイッチと、制御部と、を備える。前記一対の接続端子には、交流電源及び負荷の直列回路が接続される。前記第1スイッチは、前記一対の接続端子の間に接続され、前記交流電源から前記負荷への電力の供給を遮断するオフ状態、及び、前記交流電源から前記負荷へ電力の供給を行うオン状態のいずれかに切り替えられる。前記第2スイッチは電流経路に挿入される。前記電流経路は、前記交流電源から前記一対の接続端子のうちの少なくとも一方を介して前記容量素子に電流が流れる経路である。前記制御部は、前記交流電源の交流電圧の各半周期に、前記負荷への供給電力に応じて決定した導通期間に前記第1スイッチをオン状態に制御し、前記導通期間以外の遮断期間に前記第1スイッチをオフ状態に制御する。前記制御部は、前記交流電圧の各半周期の途中で前記第1スイッチのオン/オフが切り替わる切替タイミングにおいて前記第2スイッチをオン状態に制御する。 A load control device according to one aspect of the present disclosure includes a pair of connection terminals, a first switch, a capacitive element, a second switch, and a controller. A series circuit of an AC power supply and a load is connected to the pair of connection terminals. The first switch is connected between the pair of connection terminals, and is in an OFF state in which power supply from the AC power supply to the load is cut off, and in an ON state in which power is supplied from the AC power supply to the load. can be switched to either The second switch is inserted in the current path. The current path is a path through which current flows from the AC power source to the capacitive element via at least one of the pair of connection terminals. The control unit controls the first switch to be on during each half cycle of the alternating voltage of the alternating current power supply during a conduction period determined according to power supplied to the load, and during a disconnection period other than the conduction period. The first switch is controlled to be off. The control section controls the second switch to an ON state at a switching timing at which the ON/OFF of the first switch is switched in the middle of each half cycle of the AC voltage.

本開示によれば、ノイズの低減が可能な低損失の負荷制御装置を提供することができる。 According to the present disclosure, it is possible to provide a low-loss load control device capable of reducing noise.

図1は、実施形態1に係る負荷制御装置の概略的な回路図である。FIG. 1 is a schematic circuit diagram of a load control device according to Embodiment 1. FIG. 図2は、同上の負荷制御装置の動作を示すタイミングチャートである。FIG. 2 is a timing chart showing the operation of the load control device of the same. 図3は、実施形態1の変形例1に係る負荷制御装置の概略構成を示すブロック図である。3 is a block diagram showing a schematic configuration of a load control device according to Modification 1 of Embodiment 1. FIG. 図4は、実施形態2に係る負荷制御装置の概略的な回路図である。FIG. 4 is a schematic circuit diagram of a load control device according to Embodiment 2. FIG.

(実施形態1)
(1)概要
以下、実施形態1に係る負荷制御装置1の概要について、図1を参照して説明する。
(Embodiment 1)
(1) Overview An overview of the load control device 1 according to the first embodiment will be described below with reference to FIG.

本実施形態に係る負荷制御装置1は、図1に示すように、一対の接続端子TA1,TA2と、第1スイッチSW1と、容量素子12と、第2スイッチSW2と、制御部11と、を備える。 The load control device 1 according to the present embodiment, as shown in FIG. Prepare.

一対の接続端子TA1,TA2には、交流電源2及び負荷3の直列回路が接続される。 A series circuit of an AC power supply 2 and a load 3 is connected to a pair of connection terminals TA1 and TA2.

第1スイッチSW1は、一対の接続端子TA1,TA2の間に接続される。第1スイッチSW1は、交流電源2から負荷3への電力の供給を遮断するオフ状態、及び、交流電源2から負荷3へ電力の供給を行うオン状態のいずれかに切り替えられる。 The first switch SW1 is connected between a pair of connection terminals TA1 and TA2. The first switch SW1 is switched between an OFF state in which power supply from the AC power supply 2 to the load 3 is cut off and an ON state in which power is supplied from the AC power supply 2 to the load 3 .

第2スイッチSW2は、電流経路RT1又はRT2に挿入される。電流経路RT1又はRT2は、交流電源2から一対の接続端子TA1,TA2のうちの少なくとも一方を介して容量素子12に電流が流れる経路である。 The second switch SW2 is inserted in the current path RT1 or RT2. The current path RT1 or RT2 is a path through which current flows from the AC power supply 2 to the capacitive element 12 via at least one of the pair of connection terminals TA1 and TA2.

制御部11は、交流電源2の交流電圧Vacの各半周期に、負荷3への供給電力に応じて決定した導通期間に第1スイッチSW1をオン状態に制御し、導通期間以外の遮断期間に第1スイッチSW1をオフ状態に制御する。制御部11は、交流電圧Vacの各半周期の途中で第1スイッチSW1のオン/オフが切り替わる切替タイミングにおいて第2スイッチSW2をオン状態に制御する。 In each half cycle of the AC voltage Vac of the AC power supply 2, the control unit 11 controls the first switch SW1 to be ON during the conduction period determined according to the power supplied to the load 3, and during the interruption period other than the conduction period. The first switch SW1 is controlled to be turned off. The control unit 11 controls the second switch SW2 to the ON state at the switching timing when the ON/OFF of the first switch SW1 is switched in the middle of each half cycle of the AC voltage Vac.

ここにおいて、第1スイッチSW1は、例えば、トランジスタ又は双方向サイリスタ等の半導体スイッチにて実現される。本実施形態では、負荷制御装置1は、第1スイッチSW1を電子的に制御することにより、交流電源2と負荷3との間の導通/非導通を電子的に切り替える、いわゆる電子スイッチである。負荷制御装置1は一対の接続端子TA1,TA2を備えており、第1スイッチSW1は、一対の接続端子TA1,TA2間に電気的に接続されている。言い換えれば、負荷制御装置1の内部において、接続端子TA1と接続端子TA2とは、第1スイッチSW1を介して電気的に接続されている。一方の接続端子TA1が交流電源2に接続され、他方の接続端子TA2が負荷3に接続されることで、交流電源2と負荷3との間に第1スイッチSW1が接続されている。 Here, the first switch SW1 is realized by a semiconductor switch such as a transistor or a bidirectional thyristor, for example. In this embodiment, the load control device 1 is a so-called electronic switch that electronically switches conduction/non-conduction between the AC power supply 2 and the load 3 by electronically controlling the first switch SW1. The load control device 1 has a pair of connection terminals TA1 and TA2, and the first switch SW1 is electrically connected between the pair of connection terminals TA1 and TA2. In other words, inside the load control device 1, the connection terminal TA1 and the connection terminal TA2 are electrically connected via the first switch SW1. One connection terminal TA1 is connected to the AC power supply 2, and the other connection terminal TA2 is connected to the load 3, whereby the first switch SW1 is connected between the AC power supply 2 and the load 3.

また、第2スイッチSW2は、例えば、トランジスタ又は双方向サイリスタ等の半導体スイッチにて実現される。第2スイッチSW2は上記の電流経路RT1,RT2に挿入されている。負荷制御装置1は、第2スイッチSW2を電子的に制御することにより、電流経路RT1,RT2を介して容量素子12に電流が流れる状態と、電流経路RT1,RT2を遮断する状態とを電子的に切り替える、いわゆる電子スイッチである。第2スイッチSW2がオン状態に制御されると、電流経路RT1,RT2を介して容量素子12に電流が流れ、第2スイッチSW2がオフ状態に制御されると、容量素子12に電流を流す電流経路RT1,RT2が遮断される。 Also, the second switch SW2 is realized by a semiconductor switch such as a transistor or a bidirectional thyristor, for example. The second switch SW2 is inserted in the current paths RT1 and RT2. By electronically controlling the second switch SW2, the load control device 1 electronically changes the state in which the current flows through the capacitive element 12 via the current paths RT1 and RT2 and the state in which the current paths RT1 and RT2 are cut off. It is a so-called electronic switch that switches to When the second switch SW2 is controlled to be in the ON state, current flows through the capacitive element 12 via the current paths RT1 and RT2, and when the second switch SW2 is controlled to be in the OFF state, current flows through the capacitive element 12. Routes RT1 and RT2 are cut off.

容量素子12は、充放電が可能な素子であって、本実施形態では例えばコンデンサである。なお、容量素子12はコンデンサに限定されず、電気二重層コンデンサでもよいし、二次電池などでもよい。 The capacitive element 12 is a chargeable/dischargeable element, and is, for example, a capacitor in this embodiment. Note that the capacitive element 12 is not limited to a capacitor, and may be an electric double layer capacitor, a secondary battery, or the like.

制御部は、交流電圧Vacの各半周期に、負荷3への供給電力に応じて決定した導通期間に第1スイッチSW1をオン状態に制御するので、導通期間に応じた供給電力を負荷3に供給することができる。ここで、交流電圧Vacの各半周期の途中の切替タイミングに、第1スイッチSW1のオン/オフが切り替わると、第1スイッチSW1が接続されている回路(交流電源2及び負荷3と負荷制御装置1とを接続する電路等)のインダクタンス(以下、系統のインダクタンスという)等に起因して逆起電圧が発生する可能性がある。本実施形態の負荷制御装置1では、上記の切替タイミングに第2スイッチSW2をオン状態にすることによって、第1スイッチSW1のオン/オフの切り替わりによって発生する逆起電圧を容量素子12で吸収することができ、負荷制御装置1が発生するノイズを低減できる。したがって、本実施形態の負荷制御装置1では、ノイズを低減するために、第1スイッチSW1のターンオフ速度又はターンオン速度を低速にする必要がなく、第1スイッチSW1での損失を低減し、第1スイッチSW1の発熱を抑制することができる。また、第2スイッチSW2がオフになると、交流電源2から容量素子12に電流が流れる電流経路RT1,RT2が遮断されるので、負荷3に不要な電流が流れるのを抑制することができる。 In each half cycle of the AC voltage Vac, the control unit turns on the first switch SW1 during the conduction period determined according to the power supplied to the load 3. Therefore, the power supplied to the load 3 according to the conduction period. can supply. Here, when the ON/OFF of the first switch SW1 is switched at the switching timing in the middle of each half cycle of the AC voltage Vac, the circuit to which the first switch SW1 is connected (the AC power supply 2, the load 3, and the load control device 1) (hereinafter referred to as system inductance) or the like, a back electromotive force may be generated. In the load control device 1 of the present embodiment, by turning on the second switch SW2 at the above switching timing, the capacitive element 12 absorbs the back electromotive voltage generated by the ON/OFF switching of the first switch SW1. Therefore, the noise generated by the load control device 1 can be reduced. Therefore, in the load control device 1 of the present embodiment, it is not necessary to reduce the turn-off speed or turn-on speed of the first switch SW1 in order to reduce noise. Heat generation of the switch SW1 can be suppressed. Further, when the second switch SW2 is turned off, the current paths RT1 and RT2 through which current flows from the AC power supply 2 to the capacitive element 12 are cut off, so that unnecessary current flow to the load 3 can be suppressed.

(2)詳細
(2.1)前提
本実施形態では、負荷制御装置1は、建物の取付対象物に固定される。本開示でいう「取付対象物」は、負荷制御装置1が固定される物体であって、例えば、建物の壁、天井若しくは床等の造営物、又は机、棚、若しくはカウンタ台等の什器(建具を含む)等を含む。負荷制御装置1が設置される建物は、例えば、戸建住宅若しくは集合住宅等の住宅施設、又は事務所、店舗、学校、工場、病院若しくは介護施設等の非住宅施設である。
(2) Details (2.1) Premise In the present embodiment, the load control device 1 is fixed to a building object. The “attachment object” referred to in the present disclosure is an object to which the load control device 1 is fixed, and is, for example, a building wall, ceiling, floor, or other structure, or a desk, shelf, counter stand, or other furniture ( (including fittings), etc. The building in which the load control device 1 is installed is, for example, a residential facility such as a detached house or collective housing, or a non-residential facility such as an office, store, school, factory, hospital, or nursing care facility.

本実施形態では一例として、負荷制御装置1は、住宅の壁からなる取付対象物に取り付けられる、埋込型の配線器具であると仮定する。また、交流電源2は、例えば、単相100〔V〕、60〔Hz〕の商用の交流電源(系統電源)であると仮定する。さらに、負荷3は、例えば調光可能な照明負荷を含む。本実施形態では、負荷3は、LED(Light Emitting Diode)からなる光源と、光源を点灯させる点灯回路と、を備える照明装置(照明器具)であると仮定する。この負荷3では、交流電源2からの電力供給時に光源が点灯し、交流電源2から供給される供給電力の大きさに応じて光出力が変化する。 In this embodiment, as an example, it is assumed that the load control device 1 is an embedded wiring device that is attached to an attachment object such as a wall of a house. Also, it is assumed that the AC power supply 2 is, for example, a single-phase 100 [V], 60 [Hz] commercial AC power supply (system power supply). Furthermore, the load 3 comprises for example a dimmable lighting load. In this embodiment, it is assumed that the load 3 is a lighting device (luminaire) including a light source composed of an LED (Light Emitting Diode) and a lighting circuit for lighting the light source. In this load 3 , the light source lights up when power is supplied from the AC power supply 2 , and the light output changes according to the magnitude of the power supplied from the AC power supply 2 .

また、負荷制御装置1は、電線を接続するための接続端子TA1,TA2を備えており、例えば、壁(取付対象物)内に引き回された電線が接続端子TA1,TA2に接続されることで、電線を介して交流電源2及び負荷3に電気的に接続される。電線は、交流電源2(系統電源等)に対しては、直接的に接続されてもよいし、分電盤等を介して間接的に接続されてもよい。 The load control device 1 also includes connection terminals TA1 and TA2 for connecting electric wires. , and is electrically connected to the AC power supply 2 and the load 3 via electric wires. The electric wire may be directly connected to the AC power supply 2 (system power supply or the like) or may be indirectly connected via a distribution board or the like.

また、本開示でいう接続端子TA1,TA2等の「端子」は、電線等を接続するための部品でなくてもよく、例えば、電子部品のリード、又は回路基板に含まれる導体の一部等であってもよい。 In addition, the “terminals” such as the connection terminals TA1 and TA2 in the present disclosure may not be parts for connecting electric wires or the like. may be

また、本開示において、2値の比較において、「以上」としているところは、2値が等しい場合、及び2値の一方が他方を超えている場合との両方を含む。ただし、これに限らず、ここでいう「以上」は、2値の一方が他方を超えている場合のみを含む「より大きい」と同義であってもよい。つまり、2値が等しい場合を含むか否かは、基準値等の設定次第で任意に変更できるので、「以上」か「より大きい」かに技術上の差異はない。同様に、「未満」においても「以下」と同義であってもよい。 In addition, in the present disclosure, “greater than or equal to” in comparison of two values includes both the case where the two values are equal and the case where one of the two values exceeds the other. However, the term "greater than or equal to" as used herein may be synonymous with "greater than" which includes only the case where one of the two values exceeds the other. That is, whether the two values are equal can be arbitrarily changed depending on the setting of the reference value, etc., so there is no technical difference between "greater than" and "greater than". Similarly, "less than" may be synonymous with "less than".

(2.2)負荷制御装置の全体構成
以下に、本実施形態に係る負荷制御装置1の全体構成について、図1を参照して説明する。
(2.2) Overall Configuration of Load Control Device Hereinafter, the overall configuration of the load control device 1 according to the present embodiment will be described with reference to FIG.

本実施形態の負荷制御装置1は、図1に示すように、上記した一対の接続端子TA1,TA2と、第1スイッチSW1と、容量素子12と、第2スイッチSW2と、制御部11と、を備える。また、本実施形態の負荷制御装置1は、ゼロクロス(図中「ZC」と表記)検出部15,16と、第1駆動回路17と、第2駆動回路18と、電源部19と、操作受付部20と、を更に備えている。これらの負荷制御装置1の構成部品は、1つの筐体に収納されている。 As shown in FIG. 1, the load control device 1 of the present embodiment includes the above-described pair of connection terminals TA1 and TA2, a first switch SW1, a capacitive element 12, a second switch SW2, a control section 11, Prepare. The load control device 1 of the present embodiment also includes zero-cross (denoted as "ZC" in the figure) detection units 15 and 16, a first drive circuit 17, a second drive circuit 18, a power supply unit 19, and an operation reception unit. a portion 20; These components of the load control device 1 are housed in one housing.

一対の接続端子TA1,TA2の各々は、電線が電気的かつ機械的に接続される部品である。一対の接続端子TA1,TA2の各々は、一例として、端子孔から電線を差し込むことによって電線が接続される、電線差込式のいわゆる速結端子である。 Each of the pair of connection terminals TA1 and TA2 is a component to which an electric wire is electrically and mechanically connected. Each of the pair of connection terminals TA1 and TA2 is, for example, a so-called quick connection terminal of an electric wire insertion type to which an electric wire is connected by inserting the electric wire from a terminal hole.

第1スイッチSW1は、交流電源2と負荷3との間に挿入され、交流電源2と負荷3との間の導通状態と遮断状態とを切り替える。本開示でいう「挿入」とは、電気的に接続される二者間への挿入を意味し、第1スイッチSW1は、交流電源2と負荷3とで構成される回路において交流電源2と負荷3との間に電気的に接続されることになる。言い換えれば、負荷3は、交流電源2に対し、第1スイッチSW1を介して電気的に接続される。 The first switch SW1 is inserted between the AC power supply 2 and the load 3, and switches between a conduction state and a cutoff state between the AC power supply 2 and the load 3. “Insertion” as used in the present disclosure means insertion between two electrically connected devices, and the first switch SW1 is connected to the AC power source 2 and the load 3 in a circuit configured by the AC power source 2 and the load 3. 3 will be electrically connected. In other words, the load 3 is electrically connected to the AC power supply 2 via the first switch SW1.

本実施形態では一例として、第1スイッチSW1は、一対の接続端子TA1,TA2間において、電気的に直列に接続された2つのMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)Q11,Q12を有している。これら2つのMOSFETQ11,Q12の各々は、エンハンスメント形のnチャネルMOSFETである。2つのMOSFETQ11,Q12は、ソース端子同士が互いに接続される、つまり、いわゆる逆直列に接続されることにより、双方向の電流について、導通/遮断を切り替える。 As an example in this embodiment, the first switch SW1 has two MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors) Q11 and Q12 electrically connected in series between a pair of connection terminals TA1 and TA2. ing. Each of these two MOSFETs Q11 and Q12 is an enhancement type n-channel MOSFET. The two MOSFETs Q11 and Q12 have their source terminals connected to each other, that is, are connected in anti-series connection, thereby switching conduction/interruption of bidirectional currents.

各MOSFETQ11,Q12のゲート端子は、第1駆動回路17に電気的に接続されている。第1駆動回路17は、制御部11からの制御信号が入力されることにより、各MOSFETQ11,Q12を駆動する。 Gate terminals of the respective MOSFETs Q11 and Q12 are electrically connected to the first drive circuit 17 . The first drive circuit 17 drives each of the MOSFETs Q11 and Q12 by receiving a control signal from the control section 11 .

また、上述したように、第1スイッチSW1は、その動作状態として、オン状態とオフ状態とを含んでいる。このうちのオン状態とは、交流電圧Vacの各半周期において、制御部11が決定した導通期間に導通している状態、すなわち間欠的に導通している状態を含む。つまり、本実施形態において、第1スイッチSW1のオン状態とは、交流電源2から負荷3への電力の供給が行われる状態であり、第1スイッチSW1のオフ状態とは、交流電源2から負荷3への電力の供給が遮断される状態である。 Further, as described above, the first switch SW1 includes an ON state and an OFF state as its operating state. Among these, the ON state includes a state of continuity during the conduction period determined by the control unit 11 in each half cycle of the AC voltage Vac, that is, a state of intermittent continuity. That is, in the present embodiment, the ON state of the first switch SW1 is a state in which power is supplied from the AC power supply 2 to the load 3, and the OFF state of the first switch SW1 is a state in which power is supplied from the AC power supply 2 to the load. In this state, the power supply to 3 is cut off.

ここでは、第1スイッチSW1が非導通の状態(オフ状態)で、第1スイッチSW1の両端間には交流電源2から交流電圧Vacが印加されることと仮定する。つまり、第1スイッチSW1がオフ状態であれば、第1スイッチSW1の両端間に印加される電圧(以下、「スイッチ間電圧」ともいう)は、交流電源2からの交流電圧Vacと略等しくなる。また、以下では、接続端子TA1が高電位となるスイッチ間電圧の極性を「正極性」、接続端子TA2が高電位となるスイッチ間電圧の極性を「負極性」という。 Here, it is assumed that the first switch SW1 is in a non-conducting state (off state) and that an AC voltage Vac is applied from the AC power supply 2 across the first switch SW1. In other words, when the first switch SW1 is in the OFF state, the voltage applied across the first switch SW1 (hereinafter, also referred to as "inter-switch voltage") is substantially equal to the AC voltage Vac from the AC power supply 2. . Also, hereinafter, the polarity of the voltage across the switch that causes the connection terminal TA1 to have a high potential is referred to as "positive polarity", and the polarity of the voltage across the switch that causes the connection terminal TA2 to have a high potential is referred to as "negative polarity".

ゼロクロス検出部15,16は、スイッチ間電圧の大きさを検出することで、スイッチ間電圧のゼロクロス点を検出するように構成されている。 The zero-cross detection units 15 and 16 are configured to detect the zero-cross point of the inter-switch voltage by detecting the magnitude of the inter-switch voltage.

ゼロクロス検出部15は、接続端子TA1に電気的に接続されている。ゼロクロス検出部15は、接続端子TA1-グランド(基準電位点)間電圧の絶対値と基準値(例えば、10〔V〕)とを比較することにより、スイッチ間電圧が負極性から正極性に切り替わる際のゼロクロス点を検出する。つまり、ゼロクロス検出部15は、正極性のスイッチ間電圧が基準値未満の状態から基準値以上の状態に移行したことを検出すると、ゼロクロス点と判断する。 The zero-cross detector 15 is electrically connected to the connection terminal TA1. The zero-cross detection unit 15 compares the absolute value of the voltage between the connection terminal TA1 and the ground (reference potential point) with a reference value (for example, 10 [V]), thereby switching the voltage between switches from negative polarity to positive polarity. Detects the zero-crossing point at the time. In other words, the zero-crossing detection unit 15 determines that the zero-crossing point has occurred when detecting that the positive inter-switch voltage has changed from being less than the reference value to being equal to or higher than the reference value.

ゼロクロス検出部16は、接続端子TA2に電気的に接続されている。ゼロクロス検出部16は、端子TA2-グランド(基準電位点)間電圧の絶対値と基準値(例えば、10〔V〕)とを比較することにより、スイッチ間電圧が正極性から負極性に切り替わる際のゼロクロス点を検出する。つまり、ゼロクロス検出部16は、負極性のスイッチ間電圧が基準値未満の状態から基準値以上の状態に移行したことを検出すると、ゼロクロス点と判断する。 The zero-cross detector 16 is electrically connected to the connection terminal TA2. The zero-cross detection unit 16 compares the absolute value of the voltage between the terminal TA2 and the ground (reference potential point) with a reference value (for example, 10 [V]), thereby detecting when the voltage between switches switches from positive polarity to negative polarity. to detect the zero-crossing point of That is, the zero-cross detection unit 16 determines that the zero-cross point has occurred when detecting that the negative switch voltage has changed from being less than the reference value to being equal to or greater than the reference value.

したがって、ゼロクロス検出部15,16で検出されるゼロクロス点の検出タイミングは、厳密な意味でのゼロクロス点(0〔V〕)から少し時間が遅れることになる。 Therefore, the detection timing of the zero cross point detected by the zero cross detectors 15 and 16 is slightly delayed from the zero cross point (0 [V]) in the strict sense.

電源部19は、第1スイッチSW1の両端に印加される電圧から、制御部11等の回路の動作用の電力を生成する。電源部19は、ダイオードD1を介して接続端子TA1に電気的に接続され、ダイオードD2を介して接続端子TA2に電気的に接続される。ここで、ダイオードD1,D2と、MOSFETQ11,Q12のボディダイオードD11,D12とで整流回路DB1が構成されており、交流電源2からの交流電圧Vacを整流回路DB1で全波整流した後の直流電圧が電源部19に入力される。電源部19は、シリーズレギュレータ、降圧チョッパ回路、昇降圧チョッパ回路、又は昇圧チョッパ回路等の電圧変換回路を含み、整流回路DB1からの出力電圧を平滑化することで、定電圧の直流電圧を制御部11等の回路に供給する。 The power supply unit 19 generates power for operating circuits such as the control unit 11 from the voltage applied across the first switch SW1. The power supply unit 19 is electrically connected to the connection terminal TA1 through the diode D1, and electrically connected to the connection terminal TA2 through the diode D2. Here, the diodes D1 and D2 and the body diodes D11 and D12 of the MOSFETs Q11 and Q12 constitute a rectifier circuit DB1. is input to the power supply unit 19 . The power supply unit 19 includes a voltage conversion circuit such as a series regulator, a step-down chopper circuit, a step-up/step-down chopper circuit, or a step-up chopper circuit, and controls a constant DC voltage by smoothing the output voltage from the rectifier circuit DB1. It is supplied to circuits such as the part 11 and the like.

また、本実施形態では、接続端子TA1と接続端子TA2との間に、容量素子12と、第2スイッチSW2とが直列に接続されている。換言すれば、第1スイッチSW1と並列に、第2スイッチSW2及び容量素子12の直列回路が接続されている。 Further, in this embodiment, the capacitive element 12 and the second switch SW2 are connected in series between the connection terminal TA1 and the connection terminal TA2. In other words, a series circuit of the second switch SW2 and the capacitive element 12 is connected in parallel with the first switch SW1.

容量素子12は、接続端子TA1と第2スイッチSW2との間に接続されている。本実施形態では、容量素子12は例えば1つのコンデンサであるが、直列又は並列に接続された複数のコンデンサでもよい。 The capacitive element 12 is connected between the connection terminal TA1 and the second switch SW2. In this embodiment, the capacitive element 12 is, for example, one capacitor, but may be multiple capacitors connected in series or in parallel.

本実施形態では一例として、第2スイッチSW2は、容量素子12と接続端子TA2との間において、電気的に直列に接続された2つのMOSFETQ21,Q22を有している。これら2つのMOSFETQ21,Q22の各々は、エンハンスメント形のnチャネルMOSFETである。2つのMOSFETQ21,Q22は、ソース端子同士が互いに接続される、つまり、いわゆる逆直列に接続されることにより、双方向の電流について、導通/遮断を切り替える。 In this embodiment, as an example, the second switch SW2 has two MOSFETs Q21 and Q22 electrically connected in series between the capacitive element 12 and the connection terminal TA2. Each of these two MOSFETs Q21 and Q22 is an enhancement type n-channel MOSFET. The two MOSFETs Q21 and Q22 are connected at their source terminals to each other, that is, are connected in anti-series, thereby switching conduction/interruption of bidirectional currents.

各MOSFETQ21,Q22のゲート端子は、第2駆動回路18に電気的に接続されている。第2駆動回路18は、制御部11からの制御信号が入力されることにより、各MOSFETQ21,Q22を駆動する。 Gate terminals of the MOSFETs Q21 and Q22 are electrically connected to the second drive circuit 18. FIG. The second drive circuit 18 drives each of the MOSFETs Q21 and Q22 by receiving a control signal from the control section 11 .

操作受付部20は、例えば、表示機能及びタッチセンサ機能を有するタッチパネルである。この種のタッチパネルは、ユーザインタフェースとして機能する。タッチパネルは、例えば、負荷制御装置1の動作状況等の情報を表示することで人に提示したり、負荷制御装置1の動作を変更するための人のタッチ操作を受けて操作信号を制御部11に出力したりすることが可能である。本実施形態では、操作受付部20は、例えば、負荷3の点灯及び消灯を切り替える操作、又は、負荷3の調光レベルを切り替える操作を受けて、操作信号を制御部11に出力する。制御部11は、操作受付部20から入力される操作信号に基づき、第1スイッチSW1を制御する。なお、操作受付部20は、タッチパネルを有するものに限定されず、人の操作を受け付けるためのメカニカルなスイッチ、又は、スイッチ付ボリューム等を備えるものでもよい。 The operation reception unit 20 is, for example, a touch panel having a display function and a touch sensor function. This type of touch panel functions as a user interface. For example, the touch panel presents information such as the operation status of the load control device 1 to a person by displaying it, or receives a touch operation from a person to change the operation of the load control device 1 and outputs an operation signal to the control unit 11 . It is possible to output to In the present embodiment, the operation reception unit 20 outputs an operation signal to the control unit 11 in response to, for example, an operation of switching on/off of the load 3 or an operation of switching the dimming level of the load 3 . The control unit 11 controls the first switch SW<b>1 based on the operation signal input from the operation reception unit 20 . Note that the operation reception unit 20 is not limited to having a touch panel, and may be equipped with a mechanical switch, a volume with a switch, or the like for receiving a human operation.

また、操作受付部20は、人の操作に応じて負荷3の制御命令を含む無線信号を送信する発信器から、制御命令を受け付け、この制御命令を操作信号として制御部11に出力するものでもよい。この種の無線通信は、例えば、920MHz帯の特定小電力無線局(免許を要しない無線局)、Wi-Fi(登録商標)、又はBluetooth(登録商標)等の通信規格に準拠した無線通信等である。無線通信部を有する操作受付部20が、送信器と無線通信を行うことで、送信機から無線通信を受信することができ、制御部11は、送信機からの無線信号に基づいて第1スイッチSW1を制御することが可能になる。 Further, the operation receiving unit 20 may receive a control command from a transmitter that transmits a radio signal including a control command for the load 3 in response to a human operation, and output the control command to the control unit 11 as an operation signal. good. This type of wireless communication is, for example, a 920 MHz band specified low-power radio station (radio station that does not require a license), Wi-Fi (registered trademark), or wireless communication that conforms to communication standards such as Bluetooth (registered trademark). is. The operation reception unit 20 having a wireless communication unit performs wireless communication with the transmitter, so that wireless communication can be received from the transmitter. SW1 can be controlled.

制御部11は、例えば、1以上のプロセッサ及び1以上のメモリを有するマイクロコントローラを主構成として備えている。マイクロコントローラは、1以上のメモリに記録されているプログラムを1以上のプロセッサで実行することにより、制御部11としての機能を実現する。プログラムは、予めメモリに記録されていてもよいし、メモリカードのような非一時的記録媒体に記録されて提供されたり、電気通信回線を通して提供されたりしてもよい。言い換えれば、上記プログラムは、1以上のプロセッサを、制御部11として機能させるためのプログラムである。 The control unit 11 includes, for example, a microcontroller having one or more processors and one or more memories as a main component. The microcontroller realizes the function of the control unit 11 by executing programs recorded in one or more memories with one or more processors. The program may be recorded in memory in advance, recorded in a non-temporary recording medium such as a memory card and provided, or provided through an electric communication line. In other words, the program is a program for causing one or more processors to function as the control unit 11 .

制御部11は、少なくとも第1スイッチSW1及び第2スイッチSW2をオン/オフ制御する。具体的には、制御部11は、図2に示すように、ゼロクロス検出部15,16から、それぞれ検出結果を表す検出信号ZC1,ZC2を取得する。また、制御部11は、操作受付部20が人の操作に応じて出力する操作信号を取得する。また、制御部11は、第1スイッチSW1を制御するための制御信号を第1駆動回路17に出力し、第2スイッチSW2を制御するための制御信号を第2駆動回路18に出力する。さらに、制御部11は、位相制御又はPWM(Pulse Width Modulation)制御によって、単位時間当たりに交流電源2から負荷3へ供給される供給電力(すなわち電力量)を調節するように、第1スイッチSW1を制御(以下、「負荷制御」ともいう)してもよい。本実施形態では、制御部11が、交流電圧Vacの半周期の始点から導通期間が経過するまで第1スイッチSW1をオン状態に制御し、導通期間の経過後に第1スイッチSW1をオフ状態に制御する位相制御(いわゆる逆位相制御)を行う。第1スイッチSW1は、交流電圧Vacの半周期の始点でオフ状態からオン状態に切り替わるので、オン状態への切替時に発生するノイズを低減できる。なお、第1スイッチSW1は、交流電圧Vacの半周期の始点でオフ状態からオン状態に切り替わるのであるが、交流電圧Vacのゼロクロス点でオフ状態からオン状態に切り替わるものに限定されず、ゼロクロスを検出した時点でオフ状態からオン状態に切り替わるものでもよい。 The control unit 11 controls on/off of at least the first switch SW1 and the second switch SW2. Specifically, as shown in FIG. 2, the control unit 11 acquires detection signals ZC1 and ZC2 representing detection results from the zero-cross detection units 15 and 16, respectively. Further, the control unit 11 acquires an operation signal output by the operation reception unit 20 in response to a human operation. The control unit 11 also outputs a control signal for controlling the first switch SW1 to the first drive circuit 17 and outputs a control signal for controlling the second switch SW2 to the second drive circuit 18 . Furthermore, the control unit 11 controls the first switch SW1 so as to adjust the supply power (that is, the amount of power) supplied from the AC power supply 2 to the load 3 per unit time by phase control or PWM (Pulse Width Modulation) control. may be controlled (hereinafter also referred to as “load control”). In the present embodiment, the control unit 11 controls the first switch SW1 to the ON state from the start point of the half cycle of the AC voltage Vac until the conduction period elapses, and controls the first switch SW1 to the OFF state after the conduction period elapses. phase control (so-called anti-phase control) is performed. Since the first switch SW1 switches from the OFF state to the ON state at the start point of the half cycle of the AC voltage Vac, it is possible to reduce noise generated when switching to the ON state. The first switch SW1 switches from the OFF state to the ON state at the start point of the half cycle of the AC voltage Vac, but is not limited to switching from the OFF state to the ON state at the zero cross point of the AC voltage Vac. It may be switched from the OFF state to the ON state at the time of detection.

また、制御部11は、交流電圧Vacの各半周期の途中で第1スイッチSW1のオン/オフが切り替わる切替タイミングに、第2スイッチSWをオン状態に制御する。第2スイッチSW2がオン状態になると、交流電源2から容量素子12に電流が流れる電流経路RT1又はRT2が形成される。切替タイミングでは、一対の接続端子TA1,TA2の間で第1スイッチSW1と並列に容量素子12が接続された状態となるので、第1スイッチSW1のオフ時に発生する逆起電圧を容量素子12で吸収することができ、交流電圧Vacに重畳するノイズを低減することができる。 Further, the control unit 11 controls the second switch SW to the ON state at the switching timing when the ON/OFF of the first switch SW1 is switched in the middle of each half cycle of the AC voltage Vac. When the second switch SW2 is turned on, a current path RT1 or RT2 through which current flows from the AC power supply 2 to the capacitive element 12 is formed. At the switching timing, the capacitive element 12 is connected in parallel with the first switch SW1 between the pair of connection terminals TA1 and TA2. can be absorbed, and noise superimposed on the AC voltage Vac can be reduced.

(2.3)負荷制御装置の動作
次に、本実施形態に係る負荷制御装置1の動作について、図1及び図2を参照して説明する。
(2.3) Operation of Load Control Device Next, operation of the load control device 1 according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG.

(2.3.1)起動動作
まず、本実施形態の負荷制御装置1の通電開始時の起動動作について説明する。
(2.3.1) Start-up operation First, the start-up operation of the load control device 1 of the present embodiment at the start of energization will be described.

負荷制御装置1は、起動直後、つまり電源供給が開始した直後においては、第1スイッチSW1及び第2スイッチSW2がオフ状態となり、交流電圧Vacを整流回路DB1で全波整流した後の直流電圧が電源部19に供給される。電源部19は、整流回路DB1から入力される直流電圧を、所定電圧値の直流電圧に変換して制御部11に供給し、制御部11が動作を開始する。 Immediately after the load control device 1 is started, that is, immediately after power supply is started, the first switch SW1 and the second switch SW2 are turned off, and the DC voltage obtained by full-wave rectifying the AC voltage Vac in the rectifier circuit DB1 is It is supplied to the power supply section 19 . The power supply unit 19 converts the DC voltage input from the rectifier circuit DB1 into a DC voltage having a predetermined voltage value and supplies the DC voltage to the control unit 11, and the control unit 11 starts operating.

制御部11は、操作受付部20から入力される操作信号に応じて第1スイッチSW1のオン/オフを制御する。操作受付部20から負荷3を消灯させる信号が入力されている場合、制御部11は、第1駆動回路17を制御して第1スイッチSW1(つまりMOSFETQ11,Q12)をオフ状態に制御し、交流電源2から負荷3への電力供給を遮断する。また、制御部11は、第1スイッチSW1をオフ状態に制御する場合、第2駆動回路18を制御して第2スイッチSW2(つまりMOSFETQ21,Q22)をオフ状態に制御する。 The control unit 11 controls on/off of the first switch SW1 according to an operation signal input from the operation reception unit 20. FIG. When a signal for turning off the load 3 is input from the operation receiving unit 20, the control unit 11 controls the first drive circuit 17 to turn off the first switch SW1 (that is, the MOSFETs Q11 and Q12), and the alternating current The power supply from the power source 2 to the load 3 is cut off. Further, when controlling the first switch SW1 to the OFF state, the control section 11 controls the second drive circuit 18 to control the second switch SW2 (that is, the MOSFETs Q21 and Q22) to the OFF state.

(2.3.2)調光動作
次に、本実施形態の負荷制御装置1の調光動作について、図2を参照して説明する。図2には、交流電圧Vac、負荷3に印加される負荷電圧V1、ゼロクロス検出部15,16の検出信号ZC1,ZC2、MOSFETQ11,Q12のゲート端子に入力される制御信号Sa1,Sa2、MOSFETQ21,Q22のゲート端子に入力される制御信号Sb1,Sb2、を示している。ここで、検出信号ZC1はゼロクロス検出部15による検出信号であり、検出信号ZC2はゼロクロス検出部16による検出信号である。なお、ここでは、検出信号ZC1,ZC2が「H」レベルから「L」レベルに変化することをもって、検出信号ZC1,ZC2が発生したこととする。つまり、検出信号ZC1,ZC2は、ゼロクロス点の検出時に「H」レベルから「L」レベルに変化する信号である。
(2.3.2) Dimming Operation Next, the dimming operation of the load control device 1 of this embodiment will be described with reference to FIG. FIG. 2 shows AC voltage Vac, load voltage V1 applied to load 3, detection signals ZC1 and ZC2 of zero-cross detection units 15 and 16, control signals Sa1 and Sa2 input to gate terminals of MOSFETQ11 and Q12, MOSFETQ21, Control signals Sb1 and Sb2 input to the gate terminal of Q22 are shown. Here, the detection signal ZC1 is a detection signal by the zero-cross detection section 15, and the detection signal ZC2 is a detection signal by the zero-cross detection section 16. FIG. Here, it is assumed that detection signals ZC1 and ZC2 are generated when detection signals ZC1 and ZC2 change from "H" level to "L" level. That is, the detection signals ZC1 and ZC2 are signals that change from "H" level to "L" level when the zero cross point is detected.

まず、交流電圧Vacが正極性の半周期における負荷制御装置1の動作について説明する。負荷制御装置1は、位相制御の基準となる交流電圧Vacのゼロクロス点をゼロクロス検出部15で検出する。交流電圧Vacが負極性の半周期から正極性の半周期に移行する際には、交流電圧Vacが正極性の規定値「Vzc」に達すると、ゼロクロス検出部15が検出信号ZC1を出力する。本実施形態では、検出信号ZC1の発生時点を第1時点t1とし、半周期の始点(ゼロクロス点)t0から第1時点t1までの期間を、第一の期間T1とする。 First, the operation of the load control device 1 in the positive half cycle of the AC voltage Vac will be described. Load control device 1 detects a zero-crossing point of AC voltage Vac, which is a reference for phase control, by zero-crossing detector 15 . When the AC voltage Vac shifts from a negative half cycle to a positive half cycle, when the AC voltage Vac reaches a positive specified value "Vzc", the zero-cross detector 15 outputs the detection signal ZC1. In the present embodiment, the time point at which the detection signal ZC1 is generated is defined as a first time point t1, and the period from the starting point (zero crossing point) t0 of the half cycle to the first time point t1 is defined as a first period T1.

ここで、半周期の始点t0から第1時点t1までの第一の期間T1では、制御部11は第1駆動回路17に第1スイッチSW1をオン状態にする制御信号を出力する。第1駆動回路17は、この制御信号に応じて制御信号Sa1,Sa2として「OFF」信号を出力する。これにより、第一の期間T1では、2個のMOSFETQ11,Q12がいずれもオフ状態になり、第1スイッチSW1がオフ状態となる。また、第1時点t1において、制御部11は第1駆動回路17に制御信号を出力し、第1駆動回路17から制御信号Sa1,Sa2として「ON」信号を出力させる。これにより、第1時点t1において第1スイッチSW1がオフ状態からオン状態に切り替えられ、交流電源2から負荷3に電力が供給される。 Here, in the first period T1 from the start point t0 of the half cycle to the first time point t1, the control section 11 outputs to the first drive circuit 17 a control signal for turning on the first switch SW1. The first drive circuit 17 outputs an "OFF" signal as the control signals Sa1 and Sa2 in response to this control signal. As a result, both the two MOSFETs Q11 and Q12 are turned off during the first period T1, and the first switch SW1 is turned off. Also, at the first time point t1, the control section 11 outputs a control signal to the first drive circuit 17 to cause the first drive circuit 17 to output an "ON" signal as the control signals Sa1 and Sa2. As a result, the first switch SW1 is switched from the OFF state to the ON state at the first time point t1, and power is supplied from the AC power supply 2 to the load 3 .

制御部11は、第1時点t1から導通期間(第二の期間)T2が経過した第3時点t3において、第1駆動回路17にMOSFETQ11をオフ状態にする制御信号を出力する。第1駆動回路17は、この制御信号に応じて制御信号Sa2として「ON」信号を出力させたまま、制御信号Sa1として「OFF」信号を出力させる。制御部11は、操作受付部20から入力される調光レベル(つまり、負荷3への供給電力)に応じて、導通期間T2の長さを決定する。これにより、第1時点t1から第3時点t3までの導通期間T2において、第1スイッチSW1がオン状態を継続し、交流電源2から負荷3に電力が供給される。そして、第3時点t3において第1スイッチSW1がオン状態からオフ状態に切り替えられ、交流電源2から負荷3への電力の供給が遮断される。 The control unit 11 outputs a control signal to turn off the MOSFET Q11 to the first drive circuit 17 at a third time point t3 when the conduction period (second period) T2 has passed from the first time point t1. In response to this control signal, the first drive circuit 17 outputs an "OFF" signal as the control signal Sa1 while keeping the "ON" signal output as the control signal Sa2. The control unit 11 determines the length of the conduction period T2 according to the dimming level input from the operation accepting unit 20 (that is, power supplied to the load 3). As a result, the first switch SW1 continues to be in the ON state, and power is supplied from the AC power supply 2 to the load 3 during the conduction period T2 from the first time t1 to the third time t3. Then, at the third time point t3, the first switch SW1 is switched from the ON state to the OFF state, and power supply from the AC power supply 2 to the load 3 is cut off.

ここで、第3時点t3よりも前の第2時点t2において、制御部11は、第2駆動回路18に第2スイッチSW2をオン状態にする制御信号を出力する。第2駆動回路18は、この制御信号に応じて制御信号Sb1,Sb2として「ON」信号を出力する。これにより、2個のMOSFETQ21,Q22がいずれもオンになり、第2スイッチSW2がオン状態になる。つまり、制御部11は、第1スイッチSW1をオン状態からオフ状態に切り替える切替タイミング(第3時点t3)では、第2スイッチSW2をオン状態に制御しており、第2スイッチSW2がオン状態となっている状態で、第1スイッチSW1がオン状態からオフ状態に切り替えられる。したがって、切替タイミング(第3時点t3)において系統のインダクタンスに起因して発生する逆起電圧を容量素子12で吸収することができる。また、逆起電圧を容量素子12で吸収することで、第1スイッチSW1の高速スイッチングが可能になり、第1スイッチSW1でのスイッチング損失を低減できる。 Here, at a second time point t2 before the third time point t3, the control section 11 outputs a control signal to the second drive circuit 18 to turn on the second switch SW2. The second drive circuit 18 outputs "ON" signals as the control signals Sb1 and Sb2 in response to this control signal. As a result, the two MOSFETs Q21 and Q22 are both turned on, and the second switch SW2 is turned on. That is, the control unit 11 controls the second switch SW2 to be in the ON state at the switching timing (the third time point t3) at which the first switch SW1 is switched from the ON state to the OFF state. In this state, the first switch SW1 is switched from the ON state to the OFF state. Therefore, the capacitive element 12 can absorb the back electromotive voltage generated due to the inductance of the system at the switching timing (the third time point t3). Also, by absorbing the back electromotive voltage with the capacitive element 12, high-speed switching of the first switch SW1 becomes possible, and switching loss in the first switch SW1 can be reduced.

制御部11は、第3時点t3において第1スイッチSW1のMOSFETQ11をオフにすると、第3時点t3から所定のサージ吸収期間が経過した第4時点t4において、MOSFETQ22のみをオンにする制御信号を第2駆動回路18に出力する。第2駆動回路18は、この制御信号に応じて制御信号Sb2として「ON」信号を出力したまま、制御信号Sb1として「OFF」信号を出力する。これにより、第3時点t3から交流電圧Vacの正極性の半周期が終わるまで、MOSFETQ21はオフ状態に制御され、第2スイッチSW2がオフになる。つまり、制御部11は、切替タイミング(第3時点t3)から所定時間(サージ吸収期間)が経過すると、第2スイッチSW2をオン状態からオフ状態に切り替える。サージ吸収期間は、切替タイミング(第3時点t3)において系統のインダクタンス等に起因して逆起電圧が発生すると想定される期間よりも長い期間に設定されているのが好ましい。したがって、サージ吸収期間の経過後は、交流電源2から容量素子12に電流が流れる電流経路RT1を遮断することで、第1スイッチSW1のオフ時に容量素子12を介して負荷3に流れる電流を抑制でき、負荷3の調光特性を改善できる。また、第4時点t4において、MOSFETQ22がオン状態に維持されたまま、MOSFETQ21がオフ状態に制御されると、容量素子12に蓄えられた電荷は、MOSFETQ21のボディダイオードD21とMOSFETQ22とを介して交流電源2に放電される。 When the MOSFET Q11 of the first switch SW1 is turned off at the third time t3, the control unit 11 outputs a control signal to turn on only the MOSFET Q22 at the fourth time t4 after a predetermined surge absorption period has elapsed from the third time t3. 2 output to the drive circuit 18; The second drive circuit 18 outputs an "OFF" signal as the control signal Sb1 while outputting the "ON" signal as the control signal Sb2 according to this control signal. As a result, the MOSFET Q21 is controlled to be in the off state and the second switch SW2 is turned off from the third time point t3 until the positive half cycle of the AC voltage Vac ends. That is, the control unit 11 switches the second switch SW2 from the ON state to the OFF state after a predetermined time (surge absorption period) has passed from the switching timing (the third time point t3). The surge absorption period is preferably set to a period longer than the period during which counter electromotive force is assumed to occur due to system inductance or the like at the switching timing (third point in time t3). Therefore, after the surge absorption period has elapsed, the current path RT1 through which the current flows from the AC power supply 2 to the capacitive element 12 is cut off, thereby suppressing the current flowing to the load 3 via the capacitive element 12 when the first switch SW1 is turned off. and the dimming characteristics of the load 3 can be improved. Further, at the fourth time point t4, when the MOSFET Q21 is controlled to be turned off while the MOSFET Q22 is maintained in the on state, the charge accumulated in the capacitive element 12 is transferred to an alternating current through the body diode D21 of the MOSFET Q21 and the MOSFET Q22. Discharged to power supply 2 .

その後、制御部11は、第3時点t3から所定の放電期間T10が経過した第5時点t5において、MOSFETQ22をオフ状態にする制御信号を第2駆動回路18に出力する。第2駆動回路18は、この制御信号に応じて制御信号Sb1,Sb2として「OFF」信号を出力し、MOSFETQ21,Q22を共にオフ状態とすることで、容量素子12からの放電経路を遮断する。ここにおいて、放電期間T10は、容量素子12に蓄えられた電荷の放電に要する時間よりも長い期間に設定されているのが好ましい。 After that, the control section 11 outputs a control signal to turn off the MOSFET Q22 to the second drive circuit 18 at a fifth time t5 when a predetermined discharge period T10 has passed from the third time t3. The second drive circuit 18 outputs an "OFF" signal as the control signals Sb1 and Sb2 in response to this control signal, and cuts off the discharge path from the capacitive element 12 by turning off both the MOSFETs Q21 and Q22. Here, it is preferable that the discharge period T10 is set to a period longer than the time required for discharging the charge stored in the capacitive element 12 .

さらに、制御部11は、交流電圧Vacの正極性の半周期の終点(ゼロクロス点)t7よりも一定時間(例えば300〔μs〕)だけ手前の第6時点t6になると、MOSFETQ12をオフにする制御信号を第1駆動回路17に出力する。第1駆動回路17は、この制御信号に応じて制御信号Sa1,Sa2として「OFF」信号を出力する。ここで、第3時点t3から第6時点t6までの期間を第三の期間T3といい、第6時点t6から正極性の半周期の終点(ゼロクロス点)t7までの期間を第四の期間T4という。第四の期間T4には、2個のMOSFETQ11,Q12がいずれもオフになり、第1スイッチSW1がオフ状態となる。 Furthermore, the control unit 11 turns off the MOSFET Q12 at a sixth time point t6, which is a fixed time (for example, 300 [μs]) before the end point (zero crossing point) t7 of the half cycle of the positive polarity of the AC voltage Vac. A signal is output to the first drive circuit 17 . The first drive circuit 17 outputs an "OFF" signal as the control signals Sa1 and Sa2 in response to this control signal. Here, the period from the third time point t3 to the sixth time point t6 is called the third period T3, and the period from the sixth time point t6 to the end point (zero crossing point) t7 of the half cycle of the positive polarity is called the fourth period T4. It says. During the fourth period T4, both of the two MOSFETs Q11 and Q12 are turned off, and the first switch SW1 is turned off.

また、交流電圧Vacが負極性の半周期における負荷制御装置1の動作は、正極性の半周期と基本的に同様の動作となる。 Further, the operation of the load control device 1 in the half cycle of the negative polarity of the AC voltage Vac is basically the same as that in the half cycle of the positive polarity.

負極性の半周期において、交流電圧Vacが負極性の規定値「-Vzc」に達すると、ゼロクロス検出部16が検出信号ZC2を出力する。本実施形態では、負極性の半周期の始点t0(t7)から検出信号ZC2の発生時点である第1時点t1までの期間を第一の期間T1とする。また、第3時点t3は、第1時点t1から調光レベルに応じた長さの導通期間が経過した時点であり、第6時点t6は、負極性の半周期の終点t7(t0)よりも一定時間(例えば300〔μs〕)だけ手前の時間である。負極性の半周期においても、第1スイッチSW1がオン状態からオフ状態に切り替わる切替タイミング(第3時点t3)よりも前の第2時点t2において第2スイッチSW2がオン状態になり、交流電源2から容量素子12に電流が流れる電流経路RT2が形成される。したがって、切替タイミング(第3時点t3)において系統のインダクタンス等に起因して発生する逆起電圧を容量素子12で吸収できる。また、第2スイッチSW2は、交流電圧Vacの負極性の半周期の始点から第2時点t2までの期間、及び、第4時点t4から負極性の半周期の終点t7までの期間にはオフ状態になり、交流電源2から容量素子12への電流経路が遮断されている。したがって、負極性の半周期において第2スイッチSW2が継続してオン状態となっている場合に比べて、第1スイッチSW1のオフ時に容量素子12を介して負荷3に流れる電流を抑制でき、負荷3の調光性能の悪化を抑制できる。 When the AC voltage Vac reaches the negative specified value “−Vzc” in the negative half cycle, the zero-cross detector 16 outputs the detection signal ZC2. In the present embodiment, the period from the start point t0 (t7) of the negative half cycle to the first time point t1 at which the detection signal ZC2 is generated is defined as the first period T1. A third time point t3 is a time point after a conduction period of a length corresponding to the dimming level has passed from the first time point t1, and a sixth time point t6 is a time point before the end point t7 (t0) of the negative polarity half cycle. It is the time just before the fixed time (for example, 300 [μs]). Also in the negative polarity half cycle, the second switch SW2 is turned on at the second time point t2 before the switching timing (third time point t3) at which the first switch SW1 is switched from the on state to the off state, and the AC power supply 2 is turned on. A current path RT2 through which a current flows from is formed to the capacitive element 12 . Therefore, the capacitive element 12 can absorb the back electromotive force generated due to the inductance of the system at the switching timing (the third time point t3). In addition, the second switch SW2 is turned off during the period from the start point of the negative half cycle of the AC voltage Vac to the second time point t2 and from the fourth time point t4 to the end point t7 of the negative half cycle. , and the current path from the AC power supply 2 to the capacitive element 12 is cut off. Therefore, the current flowing through the load 3 via the capacitive element 12 can be suppressed when the first switch SW1 is off, compared to the case where the second switch SW2 is continuously on in the half cycle of the negative polarity. 3 can suppress the deterioration of the dimming performance.

本実施形態の負荷制御装置1は、以上説明した正極性の半周期の動作と負極性の半周期の動作とを交流電圧Vacの半周期ごとに交互に繰り返すことで、負荷3の調光を行う。なお、正極性の規定値「Vzc」及び負極性の規定値「-Vzc」が固定値であれば、半周期の始点t0から第1時点(検出信号ZC1又はZC2の発生時点)t1までの時間は、略固定長の時間になる。 The load control device 1 of the present embodiment alternately repeats the positive half-cycle operation and the negative half-cycle operation described above every half cycle of the AC voltage Vac, thereby dimming the load 3. conduct. If the positive specified value "Vzc" and the negative specified value "-Vzc" are fixed values, the time from the start point t0 of the half cycle to the first point in time (point of generation of the detection signal ZC1 or ZC2) t1 is a time of approximately fixed length.

そのため、半周期の始点t0から切替タイミング(第3時点t3)までの時間、つまり第一の期間T1と第二の期間T2とを合計した時間である「可変時間」は、調光レベルに応じて長さが変化することになる。言い換えれば、可変時間は可変長の時間であって、交流電圧Vacに対する切替タイミング(第3時点t3)の位相は調光レベルに応じて変化する。すなわち、負荷3の光出力を小さくする場合には可変時間は短く、負荷3の光出力を大きくする場合には可変時間は長く規定される。そのため、負荷制御装置1は、操作受付部20が受け付ける調光レベルに応じて、負荷3の光出力の大きさを変えることが可能である。 Therefore, the time from the start point t0 of the half cycle to the switching timing (third time point t3), that is, the "variable time" which is the total time of the first period T1 and the second period T2 depends on the dimming level. length will change accordingly. In other words, the variable time is a variable length of time, and the phase of the switching timing (third time point t3) with respect to the AC voltage Vac changes according to the dimming level. That is, when the light output of the load 3 is decreased, the variable time is set short, and when the light output of the load 3 is increased, the variable time is set long. Therefore, the load control device 1 can change the magnitude of the light output of the load 3 according to the dimming level accepted by the operation accepting unit 20 .

(3)変形例
実施形態1は、本開示の様々な実施形態の一つに過ぎない。実施形態1は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。例えば、図1に示した具体的な回路は、本開示の負荷制御装置1の一例に過ぎず、設計等に応じて種々の変更が可能である。本開示において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。また、実施形態1に係る負荷制御装置1の制御部11と同等の機能は、制御方法、(コンピュータ)プログラム、又はプログラムを記録した非一時的記録媒体等で具現化されてもよい。
(3) Modifications Embodiment 1 is merely one of various embodiments of the present disclosure. Embodiment 1 can be modified in various ways according to design and the like, as long as the object of the present disclosure can be achieved. For example, the specific circuit shown in FIG. 1 is merely an example of the load control device 1 of the present disclosure, and various modifications are possible according to the design and the like. Each drawing described in this disclosure is a schematic drawing, and the ratio of the size and thickness of each component in each drawing does not necessarily reflect the actual dimensional ratio. A function equivalent to that of the control unit 11 of the load control device 1 according to the first embodiment may be embodied by a control method, a (computer) program, or a non-temporary recording medium recording the program.

以下、実施形態1の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。 Modifications of the first embodiment are listed below. Modifications described below can be applied in combination as appropriate.

(3.1)変形例1
実施形態1の変形例1に係る負荷制御装置1の概略的な回路図を図3に示す。変形例1の負荷制御装置1は、MOSFETQ21,Q22の接続点P2を電源部19の基準電位に接続し、容量素子12が、第1容量素子121と、第2容量素子122とを含む点で上記の実施形態1と相違する。第1容量素子121は、接続端子TA1とMOSFETQ21との間に接続され、第2容量素子122は接続端子TA2とMOSFETQ22との間に接続されている。変形例1では、MOSFETQ11,Q12の接続点P1と、MOSFETQ21,Q22の接続点P2とが電気的に接続されている。以下、実施形態1と同様の構成については、共通の符号を付して適宜説明を省略する。
(3.1) Modification 1
FIG. 3 shows a schematic circuit diagram of a load control device 1 according to Modification 1 of Embodiment 1. As shown in FIG. The load control device 1 of Modification 1 connects the connection point P2 of the MOSFETs Q21 and Q22 to the reference potential of the power supply section 19, and the capacitive element 12 includes the first capacitive element 121 and the second capacitive element 122. It differs from the first embodiment described above. The first capacitive element 121 is connected between the connection terminal TA1 and the MOSFET Q21, and the second capacitive element 122 is connected between the connection terminal TA2 and the MOSFET Q22. In Modification 1, the connection point P1 between the MOSFETs Q11 and Q12 and the connection point P2 between the MOSFETs Q21 and Q22 are electrically connected. In the following, configurations similar to those of the first embodiment are denoted by common reference numerals, and descriptions thereof are omitted as appropriate.

制御部11は、第1スイッチSW1を逆位相制御しており、交流電圧Vacの各半周期において第1スイッチSW1がオン状態からオフ状態に切り替わる切替タイミングでは、第2スイッチSW2をオン状態に制御している。これにより、切替タイミングにおいて系統のインダクタンス等に起因して発生する逆起電圧を第1容量素子121及び第2容量素子122で吸収することができる。また、切替タイミングから所定時間が経過すると、制御部11は、MOSFETQ21,Q22を共にオフ状態に制御しており、第1容量素子121又は第2容量素子122に蓄積された電荷は、MOSFETQ21,Q22のボディダイオードD21,D22を通り、電源部19の基準電位を介して放電される。 The control unit 11 controls the first switch SW1 in reverse phase, and controls the second switch SW2 to the ON state at the switching timing when the first switch SW1 switches from the ON state to the OFF state in each half cycle of the AC voltage Vac. are doing. This allows the first capacitive element 121 and the second capacitive element 122 to absorb the back electromotive voltage generated due to the system inductance or the like at the switching timing. Further, when a predetermined time elapses from the switching timing, the control unit 11 controls both the MOSFETs Q21 and Q22 to be in the OFF state, and the charge accumulated in the first capacitive element 121 or the second capacitive element 122 is transferred to the MOSFETs Q21 and Q22. is discharged through the body diodes D21 and D22 of the power supply section 19 via the reference potential of the power supply section 19.

なお、変形例1では、第1容量素子121及び第2容量素子122がコンデンサで構成されているが、電気二重層コンデンサ、又は二次電池などでもよい。また、第1容量素子121及び第2容量素子122の各々は1つのコンデンサで構成されるものに限定されず、直列又は並列に接続された複数のコンデンサで構成されてもよい。 Although the first capacitive element 121 and the second capacitive element 122 are composed of capacitors in Modification 1, they may be electric double layer capacitors, secondary batteries, or the like. Moreover, each of the first capacitive element 121 and the second capacitive element 122 is not limited to being configured with one capacitor, and may be configured with a plurality of capacitors connected in series or in parallel.

(3.2)その他の変形例
本開示における負荷制御装置1は、制御部11等にコンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本開示における負荷制御装置1としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。ここでいうIC又はLSI等の集積回路は、集積の度合いによって呼び方が異なっており、システムLSI、VLSI(Very Large Scale Integration)、又はULSI(Ultra Large Scale Integration)と呼ばれる集積回路を含む。さらに、LSIの製造後にプログラムされる、FPGA(Field-Programmable Gate Array)、又はLSI内部の接合関係の再構成若しくはLSI内部の回路区画の再構成が可能な論理デバイスについても、プロセッサとして採用することができる。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。ここでいうコンピュータシステムは、1以上のプロセッサ及び1以上のメモリを有するマイクロコントローラを含む。したがって、マイクロコントローラについても、半導体集積回路又は大規模集積回路を含む1ないし複数の電子回路で構成される。
(3.2) Other Modifications The load control device 1 according to the present disclosure includes a computer system in the controller 11 and the like. A computer system is mainly composed of a processor and a memory as hardware. The function of the load control device 1 in the present disclosure is realized by the processor executing a program recorded in the memory of the computer system. The program may be recorded in advance in the memory of the computer system, may be provided through an electric communication line, or may be recorded in a non-temporary recording medium such as a computer system-readable memory card, optical disk, or hard disk drive. may be provided. A processor in a computer system consists of one or more electronic circuits, including semiconductor integrated circuits (ICs) or large scale integrated circuits (LSIs). The integrated circuit such as IC or LSI referred to here is called differently depending on the degree of integration, and includes integrated circuits called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration). In addition, a field-programmable gate array (FPGA) that is programmed after the LSI is manufactured, or a logic device capable of reconfiguring the bonding relationship inside the LSI or reconfiguring the circuit partitions inside the LSI may also be adopted as the processor. can be done. A plurality of electronic circuits may be integrated into one chip, or may be distributed over a plurality of chips. A plurality of chips may be integrated in one device, or may be distributed in a plurality of devices. A computer system, as used herein, includes a microcontroller having one or more processors and one or more memories. Accordingly, the microcontroller also consists of one or more electronic circuits including semiconductor integrated circuits or large scale integrated circuits.

また、負荷制御装置1の少なくとも一部の機能が、1つの筐体内に集約されていることは負荷制御装置1に必須の構成ではなく、負荷制御装置1の構成要素は、複数の筐体に分散して設けられていてもよい。例えば、操作受付部20が備えるタッチパネルは、制御部11とは別の筐体に設けられていてもよい。また、制御部11等の少なくとも一部の機能は、例えば、サーバ又はクラウド(クラウドコンピューティング)等によって実現されてもよい。 In addition, it is not an essential configuration of the load control device 1 that at least part of the functions of the load control device 1 are integrated in one housing. It may be distributed and provided. For example, the touch panel included in the operation reception unit 20 may be provided in a housing different from that of the control unit 11 . Also, at least part of the functions of the control unit 11 and the like may be implemented by, for example, a server or a cloud (cloud computing).

実施形態1では、制御部11は、切替タイミング(第3時点t3)よりも前に第2スイッチSW2をオフ状態からオン状態に制御しているが、上記の切替タイミングで、第2スイッチSW2をオフ状態からオン状態に制御してもよい。つまり、制御部11は、第1スイッチSW1をオフ状態からオン状態に制御するのと同じタイミングで、第2スイッチSW2をオフ状態からオン状態に制御してもよく、第1スイッチSW1のオフ時に発生する逆起電圧を容量素子12で抑制することができる。 In the first embodiment, the control unit 11 controls the second switch SW2 from the OFF state to the ON state before the switching timing (the third time point t3). You may control from an OFF state to an ON state. In other words, the control unit 11 may control the second switch SW2 from the OFF state to the ON state at the same timing as controlling the first switch SW1 from the OFF state to the ON state. The generated back electromotive force can be suppressed by the capacitive element 12 .

実施形態1では、制御部11は、第1スイッチSW1を逆位相制御しているが、第1スイッチSW1を正位相制御してもよい。つまり、制御部11は、交流電圧Vacの半周期の始点から遮断期間が経過するまで第1スイッチSW1をオフ状態に制御し、遮断期間の経過後に第1スイッチSW1をオン状態に制御してもよい。正位相制御においても、制御部11が、第1スイッチSW1の切替タイミングに第2スイッチSW2をオン状態に制御しているので、切替タイミングで発生する逆起電圧を低減できる。 In the first embodiment, the control unit 11 controls the first switch SW1 in reverse phase, but the first switch SW1 may be controlled in positive phase. In other words, the control unit 11 controls the first switch SW1 to be in the off state from the start point of the half cycle of the AC voltage Vac until the cutoff period elapses, and then controls the first switch SW1 to the on state after the elapse of the cutoff period. good. In the positive phase control as well, the control unit 11 controls the second switch SW2 to be turned on at the switching timing of the first switch SW1, so that the back electromotive force generated at the switching timing can be reduced.

また、実施形態1では、交流電源2は、単相100〔V〕、60〔Hz〕の商用電源であるが、単相100〔V〕、50〔Hz〕の商用電源であってもよい。また、交流電源2の電圧値は、100〔V〕に限らない。 In the first embodiment, the AC power supply 2 is a single-phase 100 [V], 60 [Hz] commercial power supply, but it may be a single-phase 100 [V], 50 [Hz] commercial power supply. Also, the voltage value of the AC power supply 2 is not limited to 100 [V].

また、実施形態1では、負荷制御装置1は片切スイッチであるが、他の構成であってもよい。例えば、負荷制御装置1は、3本の配線を接続可能な、いわゆる三路スイッチであってもよい。また、負荷制御装置1は、4本の配線を接続可能な、いわゆる四路スイッチであってもよい。負荷制御装置1が三路スイッチを構成する場合、2つの負荷制御装置1を組み合わせることにより、負荷3への通電状態を、例えば、建物における階段の上階部分と下階部分との2箇所で切り替えることが可能である。また、実施形態1では、負荷制御装置1は、L相及びN相の2本の電線が接続される2線式のスイッチであるが、負荷制御装置1は、L相と、負荷と、電源及び負荷に共通のN相との3本の電線が接続される3線式のスイッチであってもよい。 Further, although the load control device 1 is a one-way switch in the first embodiment, it may have another configuration. For example, the load control device 1 may be a so-called three-way switch to which three wires can be connected. Also, the load control device 1 may be a so-called four-way switch to which four wirings can be connected. When the load control device 1 constitutes a three-way switch, by combining two load control devices 1, the energization state of the load 3 can be controlled at two points, for example, the upper floor and the lower floor of the stairs in the building. It is possible to switch. Further, in the first embodiment, the load control device 1 is a two-wire switch to which two wires of L phase and N phase are connected. It may be a three-wire switch to which three electric wires are connected, one with N phases common to the load and the other with the load.

実施形態1では、ゼロクロス検出部15は、接続端子TA1-グランド間電圧が基準値以上になることをもって、スイッチ間電圧が負極性から正極性へ切り替わる際のゼロクロスを検出する構成であるが、逆であってもよい。つまり、ゼロクロス検出部15は、接続端子TA1-グランド間電圧が基準値未満になることをもって、スイッチ間電圧が正極性から負極性へ切り替わる際のゼロクロスを検出する構成であってもよい。同様に、ゼロクロス検出部16は、端子TA2-グランド間電圧が基準値以上になることをもって、スイッチ間電圧が正極性から負極性へ切り替わる際のゼロクロスを検出する構成であるが、逆であってもよい。つまり、ゼロクロス検出部16は、端子TA2-グランド間電圧が基準値未満になることをもって、スイッチ間電圧が負極性から正極性へ切り替わる際のゼロクロスを検出する構成であってもよい。 In the first embodiment, the zero-cross detection unit 15 is configured to detect a zero-cross when the voltage between the switches switches from negative polarity to positive polarity when the voltage between the connection terminal TA1 and the ground becomes equal to or higher than the reference value. may be That is, the zero-cross detection unit 15 may be configured to detect a zero-cross when the voltage between the switches switches from positive polarity to negative polarity when the voltage between the connection terminal TA1 and the ground becomes less than the reference value. Similarly, the zero-cross detection unit 16 is configured to detect a zero-cross when the voltage between the switches switches from the positive polarity to the negative polarity when the voltage between the terminal TA2 and the ground becomes equal to or higher than the reference value. good too. That is, the zero-cross detection unit 16 may be configured to detect a zero-cross when the voltage between the switches switches from negative polarity to positive polarity when the voltage between the terminal TA2 and the ground becomes less than the reference value.

また、負荷3は、LEDからなる光源を備える照明装置に限らず、LED以外の光源を備える照明装置であってもよい。さらに、負荷3は、照明装置に限らず、例えば、換気扇、表示装置、電動シャッタ、空調機器又は防犯機器等の機器(装置、システム及び設備を含む)であってもよい。また、負荷3は、1台の機器に限らず、電気的に直列又は並列に接続された複数台の機器であってもよい。 Moreover, the load 3 is not limited to a lighting device having a light source composed of LEDs, and may be a lighting device having a light source other than LEDs. Furthermore, the load 3 is not limited to a lighting device, and may be, for example, a ventilation fan, a display device, an electric shutter, an air conditioner, or a security device (including devices, systems, and equipment). Moreover, the load 3 is not limited to one device, and may be a plurality of devices electrically connected in series or in parallel.

また、負荷制御装置1は、子機を接続するための操作端子を更に備えていてもよい。子機は、例えば、押釦スイッチ等の接点部を備えており、接点部のオン/オフが負荷制御装置1にて検知される。この場合、負荷制御装置1は、子機の動作(接点部のオン/オフ)に応じて、第1スイッチSW1の動作状態を切り替えるように第1スイッチSW1を制御する。すなわち、子機において、例えば、押釦スイッチが押されて接点部がオンする度に、第1スイッチSW1のオン状態と、オフ状態とが切り替わるように、負荷制御装置1が動作する。要するに、負荷制御装置1では、第1スイッチSW1の制御は、操作受付部20の出力に応じて行われるのみならず、子機の動作に応じて行われてもよい。したがって、負荷制御装置1と子機とが、例えば、建物における階段の上階部分と下階部分との2箇所に分かれて設置されることにより、負荷3への通電状態を、2箇所で切り替えることが可能である。 Moreover, the load control device 1 may further include an operation terminal for connecting a child device. For example, the slave unit has a contact portion such as a push button switch, and the load control device 1 detects ON/OFF of the contact portion. In this case, the load control device 1 controls the first switch SW1 so as to switch the operating state of the first switch SW1 according to the operation of the child device (on/off of the contact portion). That is, in the slave unit, for example, the load control device 1 operates so that the first switch SW1 is switched between the on state and the off state each time the push button switch is pressed and the contact portion is turned on. In short, in the load control device 1, the control of the first switch SW1 may be performed not only according to the output of the operation reception unit 20, but also according to the operation of the child device. Therefore, by installing the load control device 1 and the slave unit at two locations, for example, the upper floor and the lower floor of the stairs in the building, the energization state of the load 3 can be switched at the two locations. Is possible.

また、負荷制御装置1は、操作受付部20に加えて又は代えて、センサ回路又はタイマ回路等を備えていてもよい。センサ回路は、一例として、人が存在するか否かを検知する人感センサ及び/又は明るさセンサ等を備える。負荷制御装置1は、これらのセンサ回路又はタイマ回路等の出力に基づいて第1スイッチSW1の制御を行うことが可能である。 Moreover, the load control device 1 may include a sensor circuit, a timer circuit, or the like in addition to or instead of the operation reception unit 20 . The sensor circuit includes, for example, a human sensor and/or a brightness sensor that detect whether or not a person is present. The load control device 1 can control the first switch SW1 based on the outputs of these sensor circuits, timer circuits, or the like.

また、上記実施形態では、第1スイッチSW1は、2つのMOSFETQ11,Q12を有しているが、MOSFETに限らず、その他の半導体スイッチであってもよい。例えば、第1スイッチSW1は、3端子の双方向サイリスタ(トライアック)にて実現されてもよいし、GaN(窒化ガリウム)等のワイドバンドギャップの半導体材料を用いたダブルゲート(デュアルゲート)構造の半導体素子を用いて実現されてもよい。 Further, in the above embodiment, the first switch SW1 has two MOSFETs Q11 and Q12, but it is not limited to MOSFETs and may be other semiconductor switches. For example, the first switch SW1 may be realized by a three-terminal bidirectional thyristor (triac), or may be a double gate (dual gate) structure using a wide bandgap semiconductor material such as GaN (gallium nitride). It may be implemented using a semiconductor device.

(実施形態2)
本実施形態に係る負荷制御装置1Aでは、図4に示すように、整流回路DB1の出力端子間に、第2スイッチSW21及び容量素子12の直列回路が接続されている点で実施形態1に係る負荷制御装置1と相違する。つまり、実施形態2の負荷制御装置1Aは、一対の接続端子TA1,TA2を介して入力される交流電圧Vacを整流する整流回路DB1を備えている。そして、整流回路DB1の出力端子間に、第2スイッチSW21及び容量素子12の直列回路が接続されている。以下、実施形態1と同様の構成については、共通の符号を付して適宜説明を省略する。
(Embodiment 2)
In the load control device 1A according to the present embodiment, as shown in FIG. 4, the series circuit of the second switch SW21 and the capacitive element 12 is connected between the output terminals of the rectifier circuit DB1. It differs from the load control device 1 . That is, the load control device 1A of the second embodiment includes a rectifier circuit DB1 that rectifies the AC voltage Vac input via the pair of connection terminals TA1 and TA2. A series circuit of the second switch SW21 and the capacitive element 12 is connected between the output terminals of the rectifier circuit DB1. In the following, configurations similar to those of the first embodiment are denoted by common reference numerals, and descriptions thereof are omitted as appropriate.

実施形態2の負荷制御装置1Aでは、第2スイッチSW21は、接続端子TA1にダイオードD1を介して電気的に接続され、接続端子TA2にダイオードD2を介して電気的に接続されている。つまり、第2スイッチSW21は、交流電源2から接続端子TA1又はTA2を介して容量素子12に電流が流れる電流経路RT3に挿入されている。第2スイッチSW21がオン状態に制御されると、交流電源2から容量素子12に電流が流れる状態となり、第2スイッチSW21がオフ状態に制御されると、交流電源2から容量素子12に流れる電流が遮断される。 In the load control device 1A of Embodiment 2, the second switch SW21 is electrically connected to the connection terminal TA1 via the diode D1 and electrically connected to the connection terminal TA2 via the diode D2. That is, the second switch SW21 is inserted in the current path RT3 through which current flows from the AC power supply 2 to the capacitive element 12 via the connection terminal TA1 or TA2. When the second switch SW21 is controlled to be on, current flows from the AC power supply 2 to the capacitive element 12, and when the second switch SW21 is controlled to be off, current flows from the AC power supply 2 to the capacitive element 12. is blocked.

また、実施形態2の負荷制御装置1Aは、容量素子12と並列に接続された、抵抗器R1(インピーダンス要素)と第3スイッチSW3との直列回路を更に備えている。そして、制御部11が、第2スイッチSW21をオフ状態に制御する期間に第3スイッチSW3をオン状態に制御する。なお、制御部11は、第2スイッチSW21をオン状態に制御する期間では、第3スイッチSW3をオフ状態に制御する。 The load control device 1A of the second embodiment further includes a series circuit of a resistor R1 (impedance element) and a third switch SW3, which are connected in parallel with the capacitive element 12. FIG. Then, the control unit 11 controls the third switch SW3 to the ON state during the period in which the second switch SW21 is controlled to the OFF state. Note that the control unit 11 controls the third switch SW3 to be off during the period in which the second switch SW21 is controlled to be on.

本実施形態では、第3スイッチSW3は、例えばMOSFETであるが、トランジスタ又はサイリスタなどの半導体スイッチにて実現されてもよいし、メカニカルリレーの接点等で実現されてもよい。また、本実施形態ではインピーダンス要素が抵抗器R1で実現されているが、インピーダンス要素は制御部11に限定されず適宜変更が可能である。また、容量素子12に蓄えられた電荷をシリーズレギュレータなどの電源回路に供給し、制御部11等の回路に供給する電力に利用してもよい。 In this embodiment, the third switch SW3 is, for example, a MOSFET, but it may be implemented by a semiconductor switch such as a transistor or a thyristor, or may be implemented by contacts of a mechanical relay. Further, although the impedance element is implemented by the resistor R1 in this embodiment, the impedance element is not limited to the control unit 11 and can be changed as appropriate. Alternatively, the charge stored in the capacitive element 12 may be supplied to a power supply circuit such as a series regulator and used as power supplied to circuits such as the control unit 11 .

実施形態2の負荷制御装置1Aでは、例えば、第1スイッチSW1を逆位相制御しており、第1スイッチSW1をオン状態からオフ状態に切り変える切替タイミングでは第2スイッチSW21をオン状態に制御している。これにより、切替タイミングで系統のインダクタンス等に起因して発生する逆起電圧を容量素子12で吸収することができ、負荷制御装置1Aで発生するノイズを低減できる。制御部11は、切替タイミングから所定時間が経過すると第2スイッチSW2をオン状態からオフ状態に切り替える。そして、制御部11は、第2スイッチSW2がオフ状態に制御すると、第3スイッチSW3をオン状態に制御するので、容量素子12に蓄えられた電荷を、抵抗器R1を介して放電させることができる。 In the load control device 1A of the second embodiment, for example, the first switch SW1 is controlled in reverse phase, and the second switch SW21 is controlled to be in the ON state at the switching timing of switching the first switch SW1 from the ON state to the OFF state. ing. As a result, the capacitive element 12 can absorb the back electromotive voltage generated due to the inductance of the system at the switching timing, and the noise generated in the load control device 1A can be reduced. The control unit 11 switches the second switch SW2 from the ON state to the OFF state after a predetermined time has elapsed from the switching timing. When the second switch SW2 is turned off, the control unit 11 turns on the third switch SW3, so that the charge stored in the capacitive element 12 can be discharged through the resistor R1. can.

(まとめ)
以上説明したように、第1の態様の負荷制御装置(1)は、一対の接続端子(TA1,TA2)と、第1スイッチ(SW1)と、容量素子(12)と、第2スイッチ(SW2,SW21)と、制御部(11)と、を備える。一対の接続端子(TA1,TA2)には、交流電源(2)及び負荷(3)の直列回路が接続される。第1スイッチ(SW1)は、一対の接続端子(TA1,TA2)の間に接続され、交流電源(2)から負荷(3)への電力の供給を遮断するオフ状態、及び、交流電源(2)から負荷(3)へ電力の供給を行うオン状態のいずれかに切り替えられる。第2スイッチ(SW2,SW21)は電流経路(RT1~RT3)に挿入される。電流経路(RT1~RT3)は、交流電源(2)から一対の接続端子(TA1,TA2)のうちの少なくとも一方を介して容量素子(12)に電流が流れる経路である。制御部(11)は、交流電源(2)の交流電圧(Vac)の各半周期に、負荷(3)への供給電力に応じて決定した導通期間に第1スイッチ(SW1)をオン状態に制御し、導通期間以外の遮断期間に第1スイッチ(SW1)をオフ状態に制御する。制御部(11)は、交流電圧(Vac)の各半周期の途中で第1スイッチ(SW1)のオン/オフが切り替わる切替タイミングにおいて第2スイッチ(SW2,SW21)をオン状態に制御する。
(summary)
As described above, the load control device (1) of the first aspect includes a pair of connection terminals (TA1, TA2), a first switch (SW1), a capacitive element (12), a second switch (SW2 , SW21) and a control unit (11). A series circuit of an AC power supply (2) and a load (3) is connected to a pair of connection terminals (TA1, TA2). The first switch (SW1) is connected between a pair of connection terminals (TA1, TA2), and is in an OFF state to cut off the supply of power from the AC power supply (2) to the load (3). ) to the on state providing power to the load (3). The second switches (SW2, SW21) are inserted in the current paths (RT1-RT3). The current path (RT1 to RT3) is a path through which current flows from the AC power supply (2) to the capacitive element (12) via at least one of the pair of connection terminals (TA1, TA2). The control unit (11) turns on the first switch (SW1) during each half cycle of the alternating voltage (Vac) of the alternating current power supply (2) during the conduction period determined according to the power supplied to the load (3). The first switch (SW1) is controlled to be in the off state during the interruption period other than the conduction period. A control unit (11) controls the second switches (SW2, SW21) to the ON state at the switching timing at which the ON/OFF of the first switch (SW1) is switched in the middle of each half cycle of the AC voltage (Vac).

この態様によれば、ノイズの低減が可能な低損失の負荷制御装置(1)を提供することができる。 According to this aspect, it is possible to provide a low-loss load control device (1) capable of reducing noise.

第2の態様の負荷制御装置(1)では、第1の態様において、第1スイッチ(SW1)と並列に、第2スイッチ(SW2)及び容量素子(12)の直列回路が接続される。 In the load control device (1) of the second aspect, in the first aspect, a series circuit of the second switch (SW2) and the capacitive element (12) is connected in parallel with the first switch (SW1).

この態様によれば、ノイズの低減が可能な低損失の負荷制御装置(1)を提供することができる。 According to this aspect, it is possible to provide a low-loss load control device (1) capable of reducing noise.

第3の態様の負荷制御装置(1)は、第1の態様において、一対の接続端子(TA1,TA2)を介して入力される交流電圧(Vac)を整流する整流回路(DB1)を更に備える。整流回路(DB1)の出力端子間に、第2スイッチ(SW21)及び容量素子(12)の直列回路が接続される。 The load control device (1) of the third aspect further comprises a rectifying circuit (DB1) for rectifying the AC voltage (Vac) input via the pair of connection terminals (TA1, TA2) in the first aspect. . A series circuit of a second switch (SW21) and a capacitive element (12) is connected between the output terminals of the rectifier circuit (DB1).

この態様によれば、ノイズの低減が可能な低損失の負荷制御装置(1)を提供することができる。 According to this aspect, it is possible to provide a low-loss load control device (1) capable of reducing noise.

第4の態様の負荷制御装置(1)は、第3の態様において、容量素子(12)と並列に接続された、インピーダンス要素(R1)と第3スイッチ(SW3)との直列回路を更に備える。制御部(11)が、第2スイッチ(SW21)をオフ状態に制御する期間に第3スイッチ(SW3)をオン状態に制御する。 In the third aspect, the load control device (1) of the fourth aspect further comprises a series circuit of an impedance element (R1) and a third switch (SW3) connected in parallel with the capacitive element (12). . A control unit (11) controls the third switch (SW3) to the ON state during the period in which the second switch (SW21) is controlled to the OFF state.

この態様によれば、ノイズの低減が可能な低損失の負荷制御装置(1)を提供することができる。 According to this aspect, it is possible to provide a low-loss load control device (1) capable of reducing noise.

第5の態様の負荷制御装置(1)では、第1~4のいずれかの態様において、制御部(11)は、交流電圧(Vac)の半周期の始点から導通期間が経過するまで第1スイッチ(SW1)をオン状態に制御し、導通期間の経過後に第1スイッチ(SW1)をオフ状態に制御する。 In the load control device (1) of the fifth aspect, in any one of the first to fourth aspects, the controller (11) controls the first The switch (SW1) is controlled to be in ON state, and the first switch (SW1) is controlled to be in OFF state after the lapse of the conduction period.

この態様によれば、ノイズの低減が可能な低損失の負荷制御装置(1)を提供することができる。 According to this aspect, it is possible to provide a low-loss load control device (1) capable of reducing noise.

第6の態様の負荷制御装置(1)では、第5の態様において、制御部(11)は、第1スイッチ(SW1)をオン状態からオフ状態に切り替える切替タイミングでは、第2スイッチ(SW2,SW21)をオン状態に制御している。 In the load control device (1) of the sixth aspect, in the fifth aspect, the controller (11) controls the second switch (SW2, SW21) is controlled to be on.

この態様によれば、ノイズの低減が可能な低損失の負荷制御装置(1)を提供することができる。 According to this aspect, it is possible to provide a low-loss load control device (1) capable of reducing noise.

第7の態様の負荷制御装置(1)では、第5の態様において、制御部(11)は、第1スイッチ(SW1)をオン状態からオフ状態に切り替える切替タイミングで、第2スイッチ(SW2,SW21)をオフ状態からオン状態に制御する。 In the load control device (1) of the seventh aspect, in the fifth aspect, the control section (11) switches the second switch (SW2, SW21) is controlled from an off state to an on state.

この態様によれば、ノイズの低減が可能な低損失の負荷制御装置(1)を提供することができる。 According to this aspect, it is possible to provide a low-loss load control device (1) capable of reducing noise.

第8の態様の負荷制御装置(1)では、第5~7のいずれかの態様において、制御部(11)は、第1スイッチ(SW1)をオン状態からオフ状態に切り替える切替タイミングから所定時間が経過すると、第2スイッチ(SW2,SW21)をオン状態からオフ状態に切り替える。 In the load control device (1) of the eighth aspect, in any one of the fifth to seventh aspects, the control unit (11) switches the first switch (SW1) from the ON state to the OFF state for a predetermined time from the switching timing. , the second switches (SW2, SW21) are switched from the ON state to the OFF state.

この態様によれば、ノイズの低減が可能な低損失の負荷制御装置(1)を提供することができる。 According to this aspect, it is possible to provide a low-loss load control device (1) capable of reducing noise.

第9の態様の負荷制御装置(1)では、第1~4のいずれかの態様において、制御部(11)は、交流電圧(Vac)の半周期の始点から遮断期間が経過するまで第1スイッチ(SW1)をオフ状態に制御し、遮断期間の経過後に第1スイッチ(SW1)をオン状態に制御する。 In the load control device (1) of the ninth aspect, in any one of the first to fourth aspects, the controller (11) controls the first The switch (SW1) is controlled to be in the OFF state, and the first switch (SW1) is controlled to be in the ON state after the cutoff period has elapsed.

この態様によれば、ノイズの低減が可能な低損失の負荷制御装置(1)を提供することができる。 According to this aspect, it is possible to provide a low-loss load control device (1) capable of reducing noise.

第10の態様の負荷制御装置(1)では、第1~9のいずれかの態様において、負荷(3)は、調光可能な照明負荷を含む。 In the load control device (1) of the tenth aspect, in any one of the first to ninth aspects, the load (3) comprises a dimmable lighting load.

この態様によれば、ノイズの低減が可能な低損失の負荷制御装置(1)を提供することができる。 According to this aspect, it is possible to provide a low-loss load control device (1) capable of reducing noise.

上記態様に限らず、実施形態1又は2に係る負荷制御装置(1)の種々の構成(変形例を含む)は、負荷制御装置(1)の制御方法、(コンピュータ)プログラム、又はプログラムを記録した非一時的記録媒体等で具現化可能である。 Various configurations (including modifications) of the load control device (1) according to Embodiment 1 or 2 are not limited to the above aspect, and may include a control method, a (computer) program, or a program recording of the load control device (1). It can be embodied by a non-temporary recording medium or the like.

第2~第10の態様に係る構成については、負荷制御装置(1)に必須の構成ではなく、適宜省略可能である。 The configurations according to the second to tenth aspects are not essential to the load control device (1), and can be omitted as appropriate.

1 負荷制御装置
2 交流電源
3 負荷
12 容量素子
DB1 整流回路
R1 インピーダンス要素
RT1~RT3 電流経路
SW1 第1スイッチ
SW2,SW21 第2スイッチ
SW3 第3スイッチ
TA1,TA2 接続端子
Vac 交流電圧
1 load controller 2 AC power supply 3 load 12 capacitive element DB1 rectifier circuit R1 impedance element RT1 to RT3 current path SW1 1st switch SW2, SW21 2nd switch SW3 3rd switch TA1, TA2 connection terminal Vac AC voltage

Claims (10)

交流電源及び負荷の直列回路が接続される一対の接続端子と、
前記一対の接続端子の間に接続され、前記交流電源から前記負荷への電力の供給を遮断するオフ状態、及び、前記交流電源から前記負荷へ電力の供給を行うオン状態のいずれかに切り替えられる第1スイッチと、
容量素子と、
前記交流電源から前記一対の接続端子のうちの少なくとも一方を介して前記容量素子に電流が流れる電流経路に挿入された第2スイッチと、
制御部と、を備え、
前記制御部は、前記交流電源の交流電圧の各半周期に、前記負荷への供給電力に応じて決定した導通期間に前記第1スイッチをオン状態に制御し、前記導通期間以外の遮断期間に前記第1スイッチをオフ状態に制御し、
前記制御部は、前記交流電圧の各半周期の途中で前記第1スイッチのオン/オフが切り替わる切替タイミングにおいて前記第2スイッチをオン状態に制御する、
負荷制御装置。
a pair of connection terminals to which a series circuit of an AC power source and a load are connected;
It is connected between the pair of connection terminals and is switched between an OFF state in which power supply from the AC power supply to the load is cut off and an ON state in which power is supplied from the AC power supply to the load. a first switch;
a capacitive element;
a second switch inserted in a current path through which a current flows from the AC power source to the capacitive element via at least one of the pair of connection terminals;
a control unit;
The control unit controls the first switch to be on during each half cycle of the alternating voltage of the alternating current power supply during a conduction period determined according to power supplied to the load, and during a disconnection period other than the conduction period. controlling the first switch to be off;
The control unit controls the second switch to an ON state at a switching timing at which the ON/OFF of the first switch is switched in the middle of each half cycle of the AC voltage.
load controller.
前記第1スイッチと並列に、前記第2スイッチ及び前記容量素子の直列回路が接続される、
請求項1に記載の負荷制御装置。
A series circuit of the second switch and the capacitive element is connected in parallel with the first switch,
The load control device according to claim 1.
前記一対の接続端子を介して入力される前記交流電圧を整流する整流回路を更に備え、
前記整流回路の出力端子間に、前記第2スイッチ及び前記容量素子の直列回路が接続される、
請求項1に記載の負荷制御装置。
further comprising a rectifying circuit for rectifying the AC voltage input via the pair of connection terminals;
A series circuit of the second switch and the capacitive element is connected between the output terminals of the rectifier circuit,
The load control device according to claim 1.
前記容量素子と並列に接続された、インピーダンス要素と第3スイッチとの直列回路を更に備え、
前記制御部が、前記第2スイッチをオフ状態に制御する期間に前記第3スイッチをオン状態に制御する、
請求項3に記載の負荷制御装置。
further comprising a series circuit of an impedance element and a third switch, connected in parallel with the capacitive element;
The control unit controls the third switch to be on during a period in which the second switch is controlled to be off.
The load control device according to claim 3.
前記制御部は、前記交流電圧の半周期の始点から前記導通期間が経過するまで前記第1スイッチをオン状態に制御し、前記導通期間の経過後に前記第1スイッチをオフ状態に制御する、
請求項1~4のいずれかに記載の負荷制御装置。
The control unit controls the first switch to an ON state from the start point of the half cycle of the AC voltage until the conduction period elapses, and controls the first switch to an OFF state after the conduction period elapses.
A load control device according to any one of claims 1 to 4.
前記制御部は、前記第1スイッチをオン状態からオフ状態に切り替える切替タイミングでは、前記第2スイッチをオン状態に制御している、
請求項5に記載の負荷制御装置。
The control unit controls the second switch to be in an ON state at a switching timing for switching the first switch from an ON state to an OFF state,
The load control device according to claim 5.
前記制御部は、前記第1スイッチをオン状態からオフ状態に切り替える切替タイミングで、前記第2スイッチをオフ状態からオン状態に制御する、
請求項5に記載の負荷制御装置。
The control unit controls the second switch from an off state to an on state at a switching timing of switching the first switch from an on state to an off state.
The load control device according to claim 5.
前記制御部は、前記第1スイッチをオン状態からオフ状態に切り替える切替タイミングから所定時間が経過すると、前記第2スイッチをオン状態からオフ状態に切り替える、
請求項5~7のいずれか1項に記載の負荷制御装置。
The control unit switches the second switch from the ON state to the OFF state when a predetermined time has elapsed from the switching timing of switching the first switch from the ON state to the OFF state.
The load control device according to any one of claims 5-7.
前記制御部は、前記交流電圧の半周期の始点から前記遮断期間が経過するまで前記第1スイッチをオフ状態に制御し、前記遮断期間の経過後に前記第1スイッチをオン状態に制御する、
請求項1~4のいずれかに記載の負荷制御装置。
The control unit controls the first switch to be off until the cutoff period elapses from the start point of the half cycle of the alternating voltage, and controls the first switch to be on after the cutoff period has elapsed.
A load control device according to any one of claims 1 to 4.
前記負荷は、調光可能な照明負荷を含む、
請求項1~9のいずれか1項に記載の負荷制御装置。
wherein the load comprises a dimmable lighting load;
A load control device according to any one of claims 1 to 9.
JP2020133302A 2020-08-05 2020-08-05 load controller Active JP7320729B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020133302A JP7320729B2 (en) 2020-08-05 2020-08-05 load controller
PCT/JP2021/028173 WO2022030362A1 (en) 2020-08-05 2021-07-29 Load control device
TW110128620A TWI763576B (en) 2020-08-05 2021-08-04 Load control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020133302A JP7320729B2 (en) 2020-08-05 2020-08-05 load controller

Publications (2)

Publication Number Publication Date
JP2022029795A JP2022029795A (en) 2022-02-18
JP7320729B2 true JP7320729B2 (en) 2023-08-04

Family

ID=80118673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020133302A Active JP7320729B2 (en) 2020-08-05 2020-08-05 load controller

Country Status (3)

Country Link
JP (1) JP7320729B2 (en)
TW (1) TWI763576B (en)
WO (1) WO2022030362A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016958A (en) 2015-07-03 2017-01-19 パナソニックIpマネジメント株式会社 Dimmer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2502461B1 (en) * 2009-11-20 2019-05-01 Lutron Electronics Company, Inc. Controllable-load circuit for use with a load control device
US9160224B2 (en) * 2009-11-25 2015-10-13 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
CN108141946B (en) * 2015-09-04 2020-04-07 路创技术有限责任公司 Load control device for high efficiency loads
JP6830205B2 (en) * 2016-12-27 2021-02-17 パナソニックIpマネジメント株式会社 Load control device
MX2021006231A (en) * 2018-11-30 2021-12-10 Lutron Tech Co Llc Load control device configured to operate in two-wire and three-wire modes.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016958A (en) 2015-07-03 2017-01-19 パナソニックIpマネジメント株式会社 Dimmer

Also Published As

Publication number Publication date
TWI763576B (en) 2022-05-01
TW202207593A (en) 2022-02-16
WO2022030362A1 (en) 2022-02-10
JP2022029795A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
JP5645109B2 (en) Two-wire load control device
WO2011024048A1 (en) Load control device
TWI654904B (en) Load control device
TWI639357B (en) Dimming device
TWI658749B (en) Load control device
JP7033744B2 (en) Lighting control system, lighting system, lighting system, and program
JP7320729B2 (en) load controller
TWI627831B (en) Electronic switch device and electronic switch system
JP6751908B2 (en) Electronic switch device and electronic switch system
JP5240774B2 (en) Load control device
JP6618014B2 (en) Light control device and lighting control system
JP7308409B2 (en) load controller
JP2022029794A (en) Load control device
JP7026320B2 (en) Electronic switch device
JP7370013B2 (en) load control system
JP2020017497A (en) Load control system and program
JP7390589B2 (en) Switching control device and switching control system
JP5915230B2 (en) LED lighting system
JP7300636B2 (en) LOAD CONTROL CIRCUIT, LOAD CONTROL METHOD, AND PROGRAM
WO2020022249A1 (en) Load control system
JP2023160179A (en) electronic switch
JP2024007906A (en) Wiring fixture and load control system provided therewith
JPH06222846A (en) Low-noise phase controller
JP2020086319A (en) Light-transmissive member control method, control system, and phase control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230707

R151 Written notification of patent or utility model registration

Ref document number: 7320729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151