JP7317675B2 - optical device - Google Patents

optical device Download PDF

Info

Publication number
JP7317675B2
JP7317675B2 JP2019206568A JP2019206568A JP7317675B2 JP 7317675 B2 JP7317675 B2 JP 7317675B2 JP 2019206568 A JP2019206568 A JP 2019206568A JP 2019206568 A JP2019206568 A JP 2019206568A JP 7317675 B2 JP7317675 B2 JP 7317675B2
Authority
JP
Japan
Prior art keywords
liquid crystal
light
crystal element
substrate
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019206568A
Other languages
Japanese (ja)
Other versions
JP2021081481A (en
Inventor
康夫 都甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2019206568A priority Critical patent/JP7317675B2/en
Publication of JP2021081481A publication Critical patent/JP2021081481A/en
Application granted granted Critical
Publication of JP7317675B2 publication Critical patent/JP7317675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は光学装置に関し、特に視野内等に照明光を配光する光学装置に関する。 The present invention relates to an optical device, and more particularly to an optical device that distributes illumination light within a field of view.

負の誘電率異方性を有する垂直配向ネマチック液晶セルをクロスニコル偏光板間に挟むと、純粋なクロスニコル偏光板同等の高い遮光特性を実現でき、高いコントラスト比を実現できる。但し、表示面垂直方向から傾斜した方向においては、面垂直方向からの極角に依存する光学特性も寄与し、光学特性に異方性を生じる。そこで、負の一軸光学異方性を有する位相差層等の視角補償板を組み合わせることが好適となる。 When a vertically aligned nematic liquid crystal cell having negative dielectric anisotropy is sandwiched between crossed Nicols polarizers, it is possible to realize high light shielding properties equivalent to those of pure crossed Nicols polarizers, and a high contrast ratio. However, in the direction inclined from the direction perpendicular to the display surface, the optical characteristics dependent on the polar angle from the direction perpendicular to the surface also contribute, resulting in anisotropy in the optical characteristics. Therefore, it is preferable to combine a viewing angle compensator such as a retardation layer having negative uniaxial optical anisotropy.

液晶は一般的に紫外線により変質しやすく、光学特性が変化してしまうことがある。液晶セルの少なくとも入射側に、液晶セルの光学異方性を補償すると共に液晶セルに入射する紫外線を反射する機能を備えた紫外線反射機能付き位相差層を配置して、紫外線による影響を低減する構成が提案されている(例えば特許文献1)。 Liquid crystals are generally susceptible to alteration by ultraviolet rays, and their optical characteristics may change. At least on the incident side of the liquid crystal cell, an ultraviolet reflective retardation layer having a function of compensating for the optical anisotropy of the liquid crystal cell and reflecting ultraviolet rays incident on the liquid crystal cell is arranged to reduce the influence of ultraviolet rays. A configuration has been proposed (for example, Patent Document 1).

図6Aは、紫外線反射機能付き位相差層を備えた液晶表示装置の例を概略的に示す断面図である。液晶表示装置100は、液晶セル104と、入射側の偏光層102Aと、出射側の偏光層102Bと、バックライト106とを備えている。更に、液晶セル104の厚さ方向の両側に紫外線反射機能付き位相差層108が配置されている。偏光層102A、102Bは、直線偏光のみを選択的に透過させ、透過軸方向が相互に直角の関係になるクロスニコル状態で対向配置されている。偏光層102A、102Bの間に配置された液晶セル104は、画素に対応する多数のセルを含み、それぞれの制御電圧に応答する透光率を実現する。 FIG. 6A is a cross-sectional view schematically showing an example of a liquid crystal display device having a retardation layer with an ultraviolet reflective function. The liquid crystal display device 100 includes a liquid crystal cell 104 , an incident-side polarizing layer 102 A, an exit-side polarizing layer 102 B, and a backlight 106 . Furthermore, a retardation layer 108 with an ultraviolet reflective function is arranged on both sides of the liquid crystal cell 104 in the thickness direction. The polarizing layers 102A and 102B selectively transmit only linearly polarized light, and are opposed to each other in a crossed Nicols state in which the transmission axis directions are perpendicular to each other. A liquid crystal cell 104 disposed between the polarizing layers 102A, 102B includes a number of cells corresponding to pixels to achieve light transmittance in response to respective control voltages.

ここで、液晶セル104は、負の誘電率異方性を有するネマチック液晶が封止された垂直配向(VA)セルであるとする。入射側の偏光層102Aを透過し、液晶セル104に入射する直線偏光は、非駆動状態のセルを透過する場合は位相シフトされずに透過し、出射側のクロスニコル偏光層102Bで遮断され、駆動状態のセルを透過する場合は、位相シフトされ位相シフト量に応じた量の光が出射側のクロスニコル偏光層102Bを透過して出射される。液晶セル104の駆動電圧を各セルごとに適宜制御することにより、所望の配光パターンを形成することができる。 Here, the liquid crystal cell 104 is assumed to be a vertically aligned (VA) cell in which nematic liquid crystal having negative dielectric anisotropy is sealed. The linearly polarized light that is transmitted through the polarizing layer 102A on the incident side and enters the liquid crystal cell 104 is transmitted without being phase-shifted when transmitted through the non-driven cell, and is blocked by the crossed Nicols polarizing layer 102B on the exit side, When the light is transmitted through the driven cell, the light is phase-shifted and the amount of light corresponding to the amount of phase shift is transmitted through the crossed Nicol polarizing layer 102B on the output side and emitted. A desired light distribution pattern can be formed by appropriately controlling the driving voltage of the liquid crystal cell 104 for each cell.

液晶表示装置100において、液晶セル104と入射側の偏光層102Aとの間、及び液晶セル104と出射側の偏光層102Bとの間には、紫外線反射機能付き位相差層108が配置されている。位相差層108により、液晶セル104から出射、又は液晶セル104へ入射する所定の偏光状態の光のうち液晶セル104の法線から傾斜した方向に出射される光の視角依存性を補償することができる。 In the liquid crystal display device 100, a retardation layer 108 with an ultraviolet reflective function is arranged between the liquid crystal cell 104 and the polarizing layer 102A on the incident side and between the liquid crystal cell 104 and the polarizing layer 102B on the exit side. . The retardation layer 108 compensates for the viewing angle dependence of light emitted from the liquid crystal cell 104 or incident on the liquid crystal cell 104 in a predetermined polarized state in a direction inclined from the normal line of the liquid crystal cell 104. can be done.

位相差層108は、1例として、コレステリック規則性の液晶分子構造を有し、負のCプレートとして作用する。位相差層は、選択反射波長帯域の少なくとも一部が100~400nmの紫外領域に含まれ、紫外線反射機能を有し、紫外領域における最大反射率が30%以上である。 As an example, the retardation layer 108 has a liquid crystal molecular structure with cholesteric regularity and acts as a negative C plate. The retardation layer has at least part of the selective reflection wavelength band in the ultraviolet region of 100 to 400 nm, has an ultraviolet reflecting function, and has a maximum reflectance of 30% or more in the ultraviolet region.

図6Bは、他の例を概略的に示す断面図である。紫外線反射機能付き位相差層108は、コレステリック規則性の液晶分子構造を有し、負のCプレートとして作用する第1の位相差層103と、第1の位相差層103に積層された第2の位相差層105であってコレステリック規則性の液晶分子構造を有し、負のCプレートとして作用する第2の位相差層105とを含む。第1の位相差層103の液晶分子のねじれ方向と第2の位相差層105の液晶分子のねじれ方向とが逆方向であり、第1の位相差層103及び第2の位相差層105はいずれも、その選択反射波長帯域の少なくとも一部が100~400nmの紫外領域に含まれ、紫外線反射機能を有し、紫外領域における最大反射率が全体として60%以上である。 FIG. 6B is a cross-sectional view schematically showing another example. The retardation layer 108 with an ultraviolet ray reflecting function has a liquid crystal molecular structure with cholesteric regularity, a first retardation layer 103 acting as a negative C plate, and a second retardation layer 103 laminated on the first retardation layer 103. and a second retardation layer 105 having a cholesteric regular liquid crystal molecular structure and acting as a negative C plate. The twist direction of the liquid crystal molecules of the first retardation layer 103 and the twist direction of the liquid crystal molecules of the second retardation layer 105 are opposite directions, and the first retardation layer 103 and the second retardation layer 105 At least a part of the selective reflection wavelength band is included in the ultraviolet region of 100 to 400 nm, and has an ultraviolet reflecting function, and the maximum reflectance in the ultraviolet region as a whole is 60% or more.

第1の位相差層103、第2の位相差層105は、プレーナー配向されたコレステリック規則性の液晶分子構造を有し、負のCプレートとして作用する。また、第1の位相差層103、第2の位相差層105は、選択反射光の選択反射波長帯域の少なくとも一部が100~400nmの紫外領域に含まれ、この紫外領域における最大反射率が30%以上である。 The first retardation layer 103 and the second retardation layer 105 have a planar aligned cholesteric regular liquid crystal molecular structure and act as a negative C plate. In the first retardation layer 103 and the second retardation layer 105, at least part of the selective reflection wavelength band of the selectively reflected light is included in the ultraviolet region of 100 to 400 nm, and the maximum reflectance in this ultraviolet region is 30% or more.

第1の位相差層103の液晶分子のねじれ方向と第2の位相差層105の液晶分子のねじれ方向とは逆方向である。第1の位相差層103及び第2の位相差層105の選択反射波長帯域を略同一にすれば、選択反射波長帯域における最大反射率が全体として2倍になり、その結果、紫外領域における最大反射率も全体として2倍となる。 The twist direction of the liquid crystal molecules of the first retardation layer 103 and the twist direction of the liquid crystal molecules of the second retardation layer 105 are opposite directions. If the selective reflection wavelength band of the first retardation layer 103 and the second retardation layer 105 are substantially the same, the maximum reflectance in the selective reflection wavelength band is doubled as a whole, resulting in the maximum reflectance in the ultraviolet region. The reflectance is also doubled as a whole.

紫外線反射機能付き位相差層108においては、コレステリック規則性の液晶分子構造のヘリカル軸に沿って入射した選択反射波長帯域内の光のうち、右旋又は左旋の円偏光成分の一方が第1の位相差層103により反射され、他方が第2の位相差層105により反射される。一方の円偏光成分のみを反射する一層の位相差層を備えた紫外線反射機能付き位相差層に比べ、液晶セルへ入射する紫外線をより効果的に低減させることができる。 In the retardation layer 108 with an ultraviolet ray reflecting function, one of the right-handed and left-handed circularly polarized components of the light within the selective reflection wavelength band incident along the helical axis of the cholesteric regular liquid crystal molecular structure is the first It is reflected by the retardation layer 103 and the other is reflected by the second retardation layer 105 . Ultraviolet rays incident on the liquid crystal cell can be reduced more effectively than an ultraviolet reflective retardation layer having a single retardation layer that reflects only one circularly polarized light component.

図6Aに示す液晶表示装置100は、液晶セル104へ入射される紫外線を低減させる紫外線反射機能付き位相差層108を備えているので、液晶セル104の内部に封止された液晶が変質しにくく、耐久性に優れ、且つ、信頼性が高い液晶表示装置が得られる。 Since the liquid crystal display device 100 shown in FIG. 6A includes the retardation layer 108 with an ultraviolet reflective function that reduces ultraviolet rays incident on the liquid crystal cell 104, the liquid crystal sealed inside the liquid crystal cell 104 is less likely to deteriorate. , a highly durable and highly reliable liquid crystal display device can be obtained.

図7は、前照灯システムの概略構成を示すブロック図である。前照灯システム200は、左右それぞれの車両用前照灯110、配光制御ユニット112、前方監視ユニット114等を備えている。車両用前照灯110は、光源と、配光パターン形成手段と、投影レンズと、それらを収容する灯体とを有する。 FIG. 7 is a block diagram showing a schematic configuration of the headlamp system. The headlight system 200 includes left and right vehicle headlights 110, a light distribution control unit 112, a forward monitoring unit 114, and the like. The vehicle headlamp 110 has a light source, a light distribution pattern forming means, a projection lens, and a lamp housing them.

車載カメラ128、レーダ121、車速センサ122等の各種センサが接続されている前方監視ユニット114は、センサから取得した撮像データを画像処理し、前方車両(対向車や先行車)やその他の路上光輝物体、区画線(レーンマーク)を検出し、それらの属性や位置等配光制御に必要なデータを算出する。算出されたデータは車内LAN等を介して配光制御ユニット112や各種車載機器に発信される。 A forward monitoring unit 114 to which various sensors such as an in-vehicle camera 128, a radar 121, and a vehicle speed sensor 122 are connected performs image processing on image data acquired from the sensors, and detects vehicles in front (oncoming vehicles and preceding vehicles) and other lights on the road. Objects and lane markings are detected, and data necessary for light distribution control such as their attributes and positions are calculated. The calculated data is transmitted to the light distribution control unit 112 and various on-vehicle devices via an in-vehicle LAN or the like.

車速センサ122、舵角センサ124、GPSナビゲーション126、ハイビーム/ロービームスイッチ118等が接続されている配光制御ユニット112は、前方監視ユニット114から送出されてくる路上光輝物体の属性(対向車、先行車、反射器、道路照明)、その位置(前方、側方)と車速等に基づいて、その走行場面に対応した配光パターンを決定する。例えば、ハイビーム走行時に対向車を検出した時は、対向車に目を眩ませるグレアを与えないように、対向車を含む領域の照明輝度を低下させるアダプティブ‐ドライビング‐ビーム(ADB)方式で防眩性を向上する。 A light distribution control unit 112 to which a vehicle speed sensor 122, a steering angle sensor 124, a GPS navigation system 126, a high beam/low beam switch 118, etc. are connected, controls the attributes of road bright objects sent from the front monitoring unit 114 (oncoming vehicle, preceding vehicle, etc.). A light distribution pattern corresponding to the driving scene is determined based on the vehicle, reflector, road lighting), its position (front, side), vehicle speed, and the like. For example, when an oncoming vehicle is detected while driving with high beams, the adaptive-driving-beam (ADB) system reduces the lighting brightness of the area containing the oncoming vehicle so as not to give the oncoming vehicle dazzling glare. improve sexuality.

配光制御ユニット112は、配光パターンの制御内容(点消灯等)を決定する。ドライバ120は、配光制御ユニット112からの情報を、駆動装置や配光制御素子の動作に対応した命令に変換すると共にそれらを制御する。 The light distribution control unit 112 determines the content of light distribution pattern control (turning on/off, etc.). The driver 120 converts the information from the light distribution control unit 112 into commands corresponding to the operations of the driving device and the light distribution control element, and controls them.

図8に示す前照灯は、たとえば白色光を出射する光源131、光源131を出射した光の光路上に配置され、輝度分布等を制御する調光機能を有する調光部132、調光部132を出射した光を投影するレンズ(投射光学系)133、及び、光源131の発光と調光部132における調光を制御する制御装置134を含む。光源131は、たとえば複数の発光領域を含み、蛍光層を備えて白色光を照射するLED素子を用いて構成される。 The headlight shown in FIG. 8 includes, for example, a light source 131 that emits white light, a light control unit 132 that is arranged on the optical path of the light emitted from the light source 131, and has a light control function that controls the luminance distribution and the like. It includes a lens (projection optical system) 133 that projects light emitted from the light source 132 , and a control device 134 that controls the light emission of the light source 131 and the light control of the light control unit 132 . The light source 131 includes, for example, a plurality of light emitting regions, and is configured using an LED element that includes a fluorescent layer and emits white light.

調光部132は、たとえば液晶素子(液晶セル)132a、及び、液晶素子132aの前方、後方に、クロスニコルに配置された偏光板132b、132cを含む。液晶素子132aは、レンズ133の焦点近傍に配置される。液晶素子132aは複数の領域を備え、制御装置134は、液晶素子132aの各領域内で液晶分子配列状態を独立に変化させることができ、各領域ごとに透過率、たとえば透光/遮光を制御する。調光部132を出射した光は、レンズ133によって車両前方に投影される。なお、更に、光を液晶素子132aの所定部分に集光する光学部材(リフレクタ(反射板)、レンズ等)を備えることもできる。 The light control unit 132 includes, for example, a liquid crystal element (liquid crystal cell) 132a, and polarizing plates 132b and 132c arranged in crossed Nicols in front of and behind the liquid crystal element 132a. The liquid crystal element 132 a is arranged near the focal point of the lens 133 . The liquid crystal element 132a has a plurality of regions, and the control device 134 can independently change the alignment state of the liquid crystal molecules in each region of the liquid crystal element 132a, and controls the transmittance, for example, the transmittance/light shielding of each region. do. The light emitted from the dimming unit 132 is projected forward of the vehicle by the lens 133 . Furthermore, an optical member (reflector (reflection plate), lens, etc.) for concentrating light on a predetermined portion of the liquid crystal element 132a can be provided.

LED素子は、出射光が広角に広がる発光素子である。前照灯においては、リフレクタやレンズを用いて光学系を構成し、光ビームが狭角で液晶素子132aに集光されるように工夫しても、液晶素子132aには±30°以上の角度で光が入射することが一般的である。 An LED element is a light-emitting element that emits light over a wide angle. In the headlamp, even if the optical system is constructed using a reflector and a lens and devised so that the light beam is focused on the liquid crystal element 132a at a narrow angle, the liquid crystal element 132a has an angle of ±30° or more. It is common for light to enter at .

液晶素子は、通常、直線偏光を入力光とする。光源から得られる非偏光を偏光板に入射し、出射光の偏光を液晶素子に入射する。偏光板で透過を拒否された光成分を廃棄すれば、光源から得られる光の通常50%以上が廃棄されてしまう。光利用効率を高くするために、偏光ビームスプリッタ(PBS)で入射光を第1、第2の偏光成分に分離し、一方の偏光成分(例えば第2の偏光成分)はλ/2板を介して、偏光軸を回転すると、偏光軸を揃えた第1、第2の偏光成分を形成することができる(例えば特許文献2)。 A liquid crystal element normally receives linearly polarized light as input light. Unpolarized light obtained from the light source is incident on the polarizing plate, and polarized emitted light is incident on the liquid crystal element. If the light component whose transmission is rejected by the polarizing plate is discarded, normally 50% or more of the light obtained from the light source is discarded. In order to increase the efficiency of light utilization, a polarizing beam splitter (PBS) splits incident light into first and second polarized components, and one polarized component (for example, the second polarized component) passes through a λ/2 plate. By rotating the polarization axis, first and second polarization components having the same polarization axis can be formed (for example, Patent Document 2).

図9は、車両用灯具を示す概略的断面図である。光源131はLED等の発光源で形成され、発光した光はコリメートレンズ141で平行光束化され、ワイヤーグリッド偏光板143を照射する。ワイヤーグリッド偏光板143で反射された光束は液晶素子132に向い、ワイヤーグリッド偏光板143を透過した光束はリフレクタ146で反射され、液晶素子132に向う。これらの両光束は、液晶素子132内で変調を受け、偏光板148によって変調の内容が顕在化され、配光パターンとなって投影レンズ133から投影される。 FIG. 9 is a schematic cross-sectional view showing a vehicle lamp. The light source 131 is formed of a light emitting source such as an LED, and the emitted light is collimated by a collimating lens 141 and illuminates a wire grid polarizing plate 143 . The luminous flux reflected by the wire grid polarizing plate 143 is directed toward the liquid crystal element 132 , and the luminous flux transmitted through the wire grid polarizing plate 143 is reflected by the reflector 146 and directed toward the liquid crystal element 132 . Both of these luminous fluxes are modulated within the liquid crystal element 132 , the content of the modulation is actualized by the polarizing plate 148 , and projected from the projection lens 133 as a light distribution pattern.

ワイヤーグリッド偏光板143の透過光または反射光(いずれか一方)の光軸上に(1/2)λ位相差板144を配置して、偏光軸を90度回転させ、透過光の偏光軸と反射光の偏光軸の向きを揃える。 A (1/2)λ retardation plate 144 is placed on the optical axis of the transmitted light or the reflected light (either one) of the wire grid polarizer 143, and the polarization axis is rotated by 90 degrees so that the polarization axis of the transmitted light Align the direction of the polarization axis of the reflected light.

図においては、ワイヤーグリッド偏光板143の出力面に(1/2)λ位相差板144を貼り付け、透過光の偏光軸を90°回転させている。リフレクタ146で反射する光の偏光軸が90度回転し、ワイヤーグリッド偏光板143から反射する偏光と同じ偏光方向となる。従って、両偏光が液晶素子132内で受ける変調も同等になり、相乗的な出射光を得られる。液晶素子132から光量が増加した変調光が得られ、投影レンズ133の出力光も増加する。 In the figure, a (1/2)λ retardation plate 144 is affixed to the output surface of a wire grid polarizer 143 to rotate the polarization axis of transmitted light by 90°. The polarization axis of the light reflected by the reflector 146 is rotated by 90 degrees and has the same polarization direction as the polarized light reflected by the wire grid polarizing plate 143 . Therefore, both polarizations are modulated in the same way in the liquid crystal element 132, and synergistic emitted light can be obtained. Modulated light with an increased light amount is obtained from the liquid crystal element 132, and the output light from the projection lens 133 also increases.

ワイヤーグリッド偏光板143で反射された偏光L1も、ワイヤーグリッド偏光板143を透過した偏光L2も光源131を発してから液晶素子132に入射するまでに、1回、同一向き(右向き)の反射を受けている。このため、光学的特性を揃えられるメリットが得られる。反射は左向きとしてもよい。(1/2)λ位相差板144はワイヤーグリッド偏光板143の出力面と液晶素子132の入力面との間に配置されればよい。例えば、破線で示すようにリフレクタ146と液晶素子132の入力面の間に配置してもよい。 Both the polarized light L1 reflected by the wire grid polarizing plate 143 and the polarized light L2 transmitted through the wire grid polarizing plate 143 are reflected in the same direction (rightward) once from the light source 131 to the liquid crystal element 132. is recieving. Therefore, there is an advantage that the optical characteristics can be made uniform. Reflection may be directed to the left. The (1/2)λ retardation plate 144 may be arranged between the output surface of the wire grid polarizing plate 143 and the input surface of the liquid crystal element 132 . For example, it may be placed between the reflector 146 and the input surface of the liquid crystal element 132 as indicated by the dashed line.

特開2004-126576号公報JP 2004-126576 A 特開2019-050134号公報JP 2019-050134 A

本発明の実施例は、コントラスト比が高く、光利用率が高い光学装置を提供することを目的とする。 Embodiments of the present invention aim to provide an optical device with high contrast ratio and high light utilization efficiency.

本発明の実施例によれば、
複数の電極対を含む一対の基板と、前記一対の基板間に挟持され、前記電極対間に駆動電圧が印加されていない状態で基板表面に対してほぼ垂直に配向され、負の誘電率異方性を有する第1液晶層と、を含む液晶素子と、
前記液晶素子の前後に配置された偏光手段と、
前記複数の電極対に供給する駆動電圧を形成する駆動回路と、
前記液晶素子と重ねて配置された第1、第2のネガティブCプレート液晶セルであって、第1、第2のネガティブCプレート液晶セルの各々は、対向基板と、前記対向基板間に挟持された第2又は第3の液晶層とを含み、前記第2、第3の液晶層の各々の液晶分子の配向方向は基板面内方向でねじれ、ほぼ一定の面内方向屈折率と、前記面内方向屈折率より低い厚さ方向屈折率と、を有し、前記第2、第3の液晶層の各々は波長0.78μm以上の赤外領域に属する選択反射光波長を有し、前記第2、第3の液晶層は、異なる面内ねじれ方向を有する、第1、第2のネガティブCプレート液晶セルと、
含み、
前記液晶素子の一対の基板、および前記第1、第2のネガティブCプレート液晶セルの各対向基板の液晶層側に向いた面は配向処理されており、
前記第2、第3の液晶層は、基板面平行面内でプレーナー配向し、基板面法線方向に沿ってねじれている光学装置
が提供される。
According to an embodiment of the invention,
and a pair of substrates including a plurality of electrode pairs, sandwiched between the pair of substrates, oriented substantially perpendicular to the substrate surface in a state in which no driving voltage is applied between the electrode pairs, and having a negative dielectric constant difference. a liquid crystal element including a first liquid crystal layer having tropism;
polarizing means arranged before and after the liquid crystal element;
a drive circuit that forms a drive voltage to be supplied to the plurality of electrode pairs;
First and second negative C-plate liquid crystal cells arranged to overlap with the liquid crystal element, wherein each of the first and second negative C-plate liquid crystal cells is sandwiched between a counter substrate and the counter substrate. and a second or third liquid crystal layer, wherein the alignment direction of liquid crystal molecules in each of the second and third liquid crystal layers is twisted in the in-plane direction of the substrate, and the refractive index in the in-plane direction is substantially constant. a refractive index in the thickness direction lower than the inward refractive index, each of the second and third liquid crystal layers has a selectively reflected light wavelength belonging to an infrared region with a wavelength of 0.78 μm or more; 2. the third liquid crystal layer comprises first and second negative C-plate liquid crystal cells having different in-plane twist directions;
including
the surfaces of the pair of substrates of the liquid crystal element and the opposed substrates of the first and second negative C-plate liquid crystal cells facing toward the liquid crystal layer are subjected to alignment treatment;
The optical device is provided in which the second and third liquid crystal layers are planarly oriented in a plane parallel to the substrate surface and twisted along the direction normal to the substrate surface.

図1Aおよび1Bは、出発モデルとして採用した投影光学系、および実験結果に基づき改良した投影光学系を概略的に示す断面図である。1A and 1B are cross-sectional views schematically showing a projection optical system adopted as a starting model and an improved projection optical system based on experimental results. 、および,and 図2Aは投影光学系の配光パターン形成部に関する、当初サンプルの構成を示す概略断面図、図2Bは改良サンプルの構成を概略的に示す断面図、図2C1,2C2はワイヤーグリッド型偏光器の機能を概略的に示す断面図、図2Dは(λ/2)板の構成を概略的に示す平面図、図2Eは偏光子対のパターンを概略的に示す断面図、図2Fは液晶素子の構成を概略的に示す断面図、図2Gは光学補償の機能を概略的に示すダイアグラム、図2Hは視角補償板の構成を概略的に示す断面図である。FIG. 2A is a schematic cross-sectional view showing the configuration of the original sample, relating to the light distribution pattern forming portion of the projection optical system, FIG. 2B is a cross-sectional view schematically showing the configuration of the improved sample, and FIGS. 2D is a plan view schematically showing the configuration of the (λ/2) plate, FIG. 2E is a cross-sectional view schematically showing the pattern of the polarizer pair, and FIG. 2F is the liquid crystal element. 2G is a diagram schematically showing the function of optical compensation; FIG. 2H is a cross-sectional view schematically showing the structure of a viewing angle compensator; FIG. 図3Aは図2Aに示す当初サンプルの極角に対する透過率の変化を示すグラフ、図3Bは図2Bに示す改良サンプルの極角に対する透過率の変化を示すグラフ、図3Cは改良サンプルのセル厚に対するコントラスト比の変化を示すグラフである。3A is a graph showing the change in transmittance with respect to polar angle for the original sample shown in FIG. 2A, FIG. 3B is a graph showing change in transmittance against polar angle for the improved sample shown in FIG. 2B, and FIG. 3C is the cell thickness of the improved sample. 4 is a graph showing changes in contrast ratio with respect to . 図4Aは液晶素子の配向処理方向と視角補償板の配向処理方向を変化させたサンプルの構成を示す概略断面図、図4Bは当該サンプルの測定結果を示すグラフである。FIG. 4A is a schematic cross-sectional view showing the structure of a sample in which the orientation processing direction of the liquid crystal element and the orientation processing direction of the viewing angle compensating plate are changed, and FIG. 4B is a graph showing the measurement results of the sample. 図5Aは2枚の視角補償板の配向処理方向を変化させたサンプルの構成を示す概略断面図、図5Bは当該サンプルの測定結果を示すグラフである。FIG. 5A is a schematic cross-sectional view showing the configuration of a sample in which two viewing angle compensating plates are changed in alignment processing direction, and FIG. 5B is a graph showing the measurement results of the sample. 図6Aは視角補償板を構成する位相差板を備えた液晶表示装置の構成を概略的に示す断面図、図6Bは、負のCプレートとして作用し、ねじれ方向の異なる2枚の位相差層が複合構造を構成する場合の構成を概略的に示す断面図である。FIG. 6A is a cross-sectional view schematically showing the configuration of a liquid crystal display device including a retardation plate that constitutes a viewing angle compensator, and FIG. 6B shows two retardation layers that act as negative C plates and have different twist directions. FIG. 4 is a cross-sectional view schematically showing a configuration in the case of constituting a composite structure; 図7は、前照灯システムの概略構成を示すブロック図である。FIG. 7 is a block diagram showing a schematic configuration of the headlamp system. 図8は、前照灯システムの1例を示す概略斜視図である。FIG. 8 is a schematic perspective view showing one example of a headlamp system. 図9は、分割した偏光をリサイクルする車輌用灯具の構成を概略的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing the configuration of a vehicle lamp that recycles divided polarized light.

10 光源、 12 凹面リフレクタ、
14 偏光ビームスプリッタ(PBS), 16 リフレクタ、
18 (λ/2)板、 21 入射側偏光板、 22 出射側偏光板、
23 液晶素子、 28光学補償板、 30 投影光学系
10 light source, 12 concave reflector,
14 polarizing beam splitter (PBS), 16 reflector,
18 (λ/2) plate, 21 incident-side polarizing plate, 22 exit-side polarizing plate,
23 liquid crystal element, 28 optical compensator, 30 projection optical system

図6A,6Bに示すような、投影光学系を構成すると、光源106から発した光は、偏光板102Aを通して偏光にすることにより、50%以上の光量をカットしてしまう。光利用効率を高くするために、図9に示すような、カットしてしまう光の偏光方向を変えて再利用できるような光学系を採用することが望まれる。 When the projection optical system is configured as shown in FIGS. 6A and 6B, the light emitted from the light source 106 is polarized by passing through the polarizing plate 102A, thereby cutting 50% or more of the light amount. In order to increase the efficiency of light utilization, it is desirable to adopt an optical system that can reuse the cut light by changing the polarization direction thereof, as shown in FIG.

図1Aは、出発モデルの投影光学系を概略的に示す断面図である。光源10は発光ダイオード(LED)で構成する。蛍光体を用いた白色LEDを用いる。1チップでもよいが、光量を大きくするために、例えば複数行、複数列にLEDチップを並べた構成としてもよい。実験に用いたサンプルでは、水平方向に4個のLEDを並べた列を垂直方向に2列配置した。 FIG. 1A is a cross-sectional view schematically showing the projection optical system of the starting model. The light source 10 is composed of a light emitting diode (LED). A white LED using phosphor is used. A single chip may be used, but in order to increase the amount of light, for example, a configuration in which LED chips are arranged in a plurality of rows and a plurality of columns may be used. In the sample used in the experiment, two rows of four LEDs arranged in the horizontal direction were arranged in the vertical direction.

LED光源10から発射する光束は、かなり広角に分布するので、凹面リフレクタ12で光束を集束して偏光ビームスプリッタ(PBS)14に入射させる。なお鏡面の凹面リフレクタを示したが、レンズを用いることもできる。偏光ビームスプリッタ14は、金属のワイヤーグリッドを用いたワイヤーグリッド偏光器やブリュースター偏光角を利用した光学多層膜で構成でき、反射光と透過光がそれぞれ偏光で構成され、それらの偏光軸は直交する方向となる。 Since the luminous flux emitted from the LED light source 10 is distributed over a fairly wide angle, the luminous flux is focused by the concave reflector 12 and made incident on the polarizing beam splitter (PBS) 14 . Although a specular concave reflector is shown, a lens can also be used. The polarizing beam splitter 14 can be composed of a wire grid polarizer using a metal wire grid or an optical multilayer film using Brewster's polarization angle. direction.

図2C1,2C2は、ワイヤーグリッド偏光器14の機能を概略的に示す断面図である。ガラス基板Gの上に複数ストライプ状の金属ワイヤーグリッドWGが形成されている。ワイヤーグリッドWGの幅は、電子雲を閉じ込める程度に狭く、ワイヤーグリッドWGの長さは電子雲の移動が可能な長さを有する。図2C1に示すように、ワイヤーグリッドWGと直交する方向の電気ベクトルE1を持つ偏光は、電子を移動させることができず、吸収されずに、ワイヤーグリッドWGを透過する。図2C2に示すように、ワイヤーグリッドWGと平行な電気ベクトルE2成分を持つ偏光は、電子雲の移動を励起して吸収されるか、または反射される。 2C1 and 2C2 are cross-sectional views schematically showing the function of the wire grid polarizer 14. FIG. A plurality of striped metal wire grids WG are formed on a glass substrate G. As shown in FIG. The width of the wire grid WG is narrow enough to confine the electron cloud, and the length of the wire grid WG is long enough to allow movement of the electron cloud. As shown in FIG. 2C1, polarized light with an electric vector E1 perpendicular to the wire grid WG cannot move electrons and is transmitted through the wire grid WG without being absorbed. As shown in FIG. 2C2, polarized light with an electric vector E2 component parallel to the wire grid WG excites movement of the electron cloud and is absorbed or reflected.

図1Aにおいて、偏光ビームスプリッタ14からの反射偏光L1は液晶素子23に向けて集光伝播される。偏光ビームスプリッタ14を透過した偏光L2は反射した偏光L1と異なる(直交する)偏光軸を有し、異なる方向に進行する。透過偏光L2を液晶素子23上に集光伝播させるように焦点距離も調節する凸面リフレクタ16で透過偏光L2を反射させる。直交する偏光軸を有する偏光L1とL2とを同時に制御できるようにするため、一方の偏光軸を回転させて偏光軸を揃える。図の構成では、偏光L2の光路中に(λ/2)板18を配置して、偏光L1,L2の偏光軸を揃えている。 In FIG. 1A, the reflected polarized light L1 from the polarizing beam splitter 14 is condensed and propagated toward the liquid crystal element 23 . The polarized light L2 transmitted through the polarizing beam splitter 14 has a different (orthogonal) polarization axis than the reflected polarized light L1 and travels in a different direction. The transmitted polarized light L2 is reflected by the convex reflector 16 which also adjusts the focal length so that the transmitted polarized light L2 is condensed and propagated onto the liquid crystal element 23 . In order to be able to simultaneously control the polarized light L1 and L2 having orthogonal polarization axes, one of the polarization axes is rotated to align the polarization axes. In the illustrated configuration, a (λ/2) plate 18 is placed in the optical path of the polarized light L2 to align the polarization axes of the polarized lights L1 and L2.

図2Dに示すように、(λ/2)板18は面内x方向の屈折率nxと面内y方向の屈折率nyとが異なり、全厚さを透過するとx方向の偏光とy方向の偏光間に、(λ/2)(±kλ、kは整数)の位相差を生じる。 As shown in FIG. 2D, the (λ/2) plate 18 has a different refractive index nx in the in-plane x direction and a different refractive index ny in the in-plane y direction. A phase difference of (λ/2) (±kλ, k is an integer) is produced between polarized light.

偏光軸を揃えた偏光L1,L2を入射側偏光板21を介して、液晶素子23上に集光させる。なお、偏光L1,L2は既に偏光となっているが、共通に入射側偏光板21を透過させることにより偏光軸の揃った偏光が液晶素子23を照射することを保証する。 Polarized lights L1 and L2 with aligned polarization axes are condensed on the liquid crystal element 23 via the incident side polarizing plate 21 . Although the polarized light beams L1 and L2 are already polarized light beams, it is ensured that the liquid crystal element 23 is irradiated with polarized light beams having aligned polarization axes by passing through the incident side polarizing plate 21 in common.

図2Eに示すように、入射側偏光板21と出射側偏光板22とはクロスニコル偏光板を構成する。図1Aにおいて、クロスニコル偏光板21,22に挟まれた液晶素子23は、駆動回路29から供給される駆動電圧によって各画素が制御される。 As shown in FIG. 2E, the entrance-side polarizer 21 and the exit-side polarizer 22 form a crossed Nicols polarizer. In FIG. 1A, each pixel of the liquid crystal element 23 sandwiched between the crossed Nicol polarizers 21 and 22 is controlled by a drive voltage supplied from a drive circuit 29 .

図2Fに示すように、液晶素子23は、画素ごとに制御できるセグメント電極Sを形成したセグメント基板G2と、複数の画素に共通のコモン電極Cを備えたコモン基板G1が、液晶層LCを挟む構成を有する。電極を形成した基板表面には垂直配向膜AVが形成されている。対向するセグメント電極Sとコモン電極Cとの間に液晶層が充填される。対向するセグメント電極Sとコモン電極Cとの間に駆動電圧を印加しない状態では、液晶分子は基板表面にほぼ垂直な配向を示す。対向するセグメント電極Sとコモン電極Cとの間に駆動電圧を印加すると、負の誘電率異方性Δεを有する液晶分子は、印加電圧に応じて基板法線方向から傾く。 As shown in FIG. 2F, the liquid crystal element 23 has a liquid crystal layer LC sandwiched between a segment substrate G2 having a segment electrode S that can be controlled for each pixel and a common substrate G1 having a common electrode C common to a plurality of pixels. have a configuration. A vertical alignment film AV is formed on the surface of the substrate on which the electrodes are formed. A liquid crystal layer is filled between the segment electrode S and the common electrode C facing each other. When no drive voltage is applied between the segment electrode S and the common electrode C facing each other, the liquid crystal molecules are oriented substantially perpendicular to the substrate surface. When a drive voltage is applied between the opposing segment electrode S and common electrode C, the liquid crystal molecules having negative dielectric anisotropy Δε are tilted from the substrate normal direction according to the applied voltage.

出射側偏光板22を透過した光は、投影光学系30によって投影される。車輌用前照灯の場合、車両前方の運転者視野内に所望の配向パターンが形成される。図7に示したような、前方監視ユニット114からの情報を受ける配光制御ユニット112がADB方式の制御を行う場合、図1Aの駆動回路29に制御される液晶素子23がADB方式の照明を行い、配光パターンに含まれる対向車は、選択的遮光によりグレアを防止されて、安全に防眩運転することができる。 The light transmitted through the output-side polarizing plate 22 is projected by the projection optical system 30 . In the case of vehicle headlamps, a desired orientation pattern is formed in the driver's field of vision in front of the vehicle. When the light distribution control unit 112 receiving information from the forward monitoring unit 114 performs ADB control as shown in FIG. 7, the liquid crystal element 23 controlled by the drive circuit 29 in FIG. The oncoming vehicle included in the light distribution pattern is protected from glare by selective light shielding, enabling safe anti-glare driving.

図2Aは、図1Aに示す光学装置の一部を取り出して作成した、実験用サンプルの構成を概略的に示す断面図である。駆動回路29は各画素にオン化する電圧を供給でき、各画素領域内の液晶分子の配向を制御できる。駆動電圧によって制御された画素の状態が液晶素子23を挟むクロスニコル偏光板21,22によって顕在化される。 FIG. 2A is a cross-sectional view schematically showing the configuration of an experimental sample, which was created by extracting a part of the optical device shown in FIG. 1A. The drive circuit 29 can supply a voltage to turn on each pixel and control the orientation of the liquid crystal molecules in each pixel region. The states of the pixels controlled by the drive voltage are made visible by the crossed Nicol polarizers 21 and 22 sandwiching the liquid crystal element 23 .

液晶素子23は、カイラル材を適量添加した液晶材料を対向基板間の液晶用空間内に真空注入で充填した。なお、参考のためカイラル材を添加しない液晶素子も作製した。 In the liquid crystal element 23, a liquid crystal material to which an appropriate amount of chiral material was added was filled in the liquid crystal space between the opposing substrates by vacuum injection. For reference, a liquid crystal element was also produced without adding a chiral material.

図3Aは、図2Aに示す構成を有する試作例の光学装置において測定した透過率の視角依存性を示すグラフである。横軸が基板法線からの極角を単位(度、°)で示し、縦軸が透過率を単位(%)で示す。偏光板の偏光軸からずれる角度を方位角とし、方位角30度、45度、60度、90度、120度、135度、150度の方向で夫々極角を変化させた時の透過率を測定した。極角0度近傍においては、透過率は非常に低く、ほぼクロスニコル偏光板の遮光性能に近い性能を示していると考えられる。しかし、極角を深くしていくと、漏れ光が次第に増加することが明らかである。例えば、方位角45°では極角を深くしていくと、約27度付近で透過率は1%を越える。高いコントラスト比は得られない。なお、ほぼ横軸上のxのプロットは、クロスニコルのみの特性である。 FIG. 3A is a graph showing the viewing angle dependence of the transmittance measured in the prototype optical device having the configuration shown in FIG. 2A. The horizontal axis indicates the polar angle from the normal to the substrate in units (degrees, degrees), and the vertical axis indicates the transmittance in units (%). The angle of deviation from the polarization axis of the polarizing plate is defined as the azimuth angle, and the transmittance when the polar angle is changed in the directions of azimuth angles of 30 degrees, 45 degrees, 60 degrees, 90 degrees, 120 degrees, 135 degrees, and 150 degrees. It was measured. In the vicinity of the polar angle of 0 degree, the transmittance is very low, and it is considered that the light shielding performance is almost similar to that of the crossed Nicols polarizing plate. However, it is clear that as the polar angle increases, the leakage light gradually increases. For example, when the azimuth angle is 45°, the transmittance exceeds 1% at about 27° as the polar angle is increased. A high contrast ratio cannot be obtained. Note that the plot of x on the horizontal axis is the characteristic of only crossed nicols.

特性を改善するには光学補償する必要があると考えられる。垂直配向液晶セルの補償には、ネガティブCプレートが適している。市販のものもあるが、入手できる特性が限られており、また耐熱性が低い。 It is considered that optical compensation is necessary to improve the characteristics. A negative C-plate is suitable for compensating vertically aligned liquid crystal cells. Some are commercially available, but the properties available are limited and the heat resistance is poor.

図2Gは、光学補償の原理を概略的に示すダイアグラムである。最大屈折率Nz1を有する長軸が基板垂直方向に配向し、直交する均等屈折率Nx1,Ny1が基板面内方向に配向する液晶素子23は、Nz1>(Nx1,Ny1)の光学異方性を有する。この光学異方性を補償するため、基板垂直方向の屈折率Nz2が基板面内方向の均等屈折率Nx2,Ny2より小さい、Nz2<(Nx2,Ny2)の光学異方性を有する視角補償板24を組み合わせ、更に全体として、(Nz1,Nz2)=(Nx1,Nx2)=(Ny1,Ny2)が成立するようにすることを想定した。 FIG. 2G is a diagram that schematically illustrates the principle of optical compensation. The liquid crystal element 23, in which the major axis having the maximum refractive index Nz1 is oriented in the direction perpendicular to the substrate and the uniform refractive indices Nx1 and Ny1 orthogonal to each other are oriented in the in-plane direction of the substrate, has an optical anisotropy of Nz1>(Nx1, Ny1). have. In order to compensate for this optical anisotropy, a viewing angle compensator 24 having an optical anisotropy of Nz2<(Nx2, Ny2) where the refractive index Nz2 in the direction perpendicular to the substrate is smaller than the uniform refractive indices Nx2, Ny2 in the in-plane direction of the substrate. are combined, and as a whole, (Nz1, Nz2)=(Nx1, Nx2)=(Ny1, Ny2) is assumed to hold.

本発明者は、液晶を用いて、擬似ネガティブCプレートを作成することとした。単一の液晶分子は、長軸方向に高い屈折率を有し、長軸と直交する面内方向の屈折率は低く、等方的である場合が多い。ネマチック液晶分子にカイラル材を混合し、基板表面を1方向に配向処理し、基板面に接する位置では1方向に配列させ、厚さ方向に向かうにつれて方位角方向に回転させ、複数回の回転により面内方向の屈折率がほぼ一定になるようにする。1回転に相当する厚さ方向ピッチが選択反射の波長を決める。このようなプレーナー配向のネマチック液晶分子をショートピッチで方位角方向に回転させることにより(擬似)ネガティブCプレートを作成する。 The present inventor decided to create a pseudo-negative C-plate using liquid crystal. A single liquid crystal molecule has a high refractive index in the long axis direction and a low refractive index in the in-plane direction perpendicular to the long axis, and is often isotropic. A chiral agent is mixed with nematic liquid crystal molecules, the substrate surface is oriented in one direction, aligned in one direction at the position in contact with the substrate surface, rotated in the azimuth direction as it goes in the thickness direction, and rotated several times. Make the refractive index in the in-plane direction substantially constant. The thickness direction pitch corresponding to one rotation determines the wavelength of selective reflection. A (pseudo-)negative C-plate is produced by rotating such planar-aligned nematic liquid crystal molecules in the azimuthal direction with a short pitch.

ショートピッチのネガティブCプレートは、ピッチに対応する選択反射を示す。車輌用前照灯の照明としては、可視領域(波長380~780nm)の光が選択反射されると運転者の視認を妨げる原因となるので、選択反射は可視領域外に設定する。可視領域外として紫外と赤外の選択肢があろう。 A short-pitch negative C-plate exhibits a selective reflection that corresponds to the pitch. As illumination for vehicle headlamps, selective reflection of light in the visible region (wavelength 380 to 780 nm) hinders the driver's visibility, so selective reflection is set outside the visible region. Outside the visible range would be the ultraviolet and infrared options.

ピッチを紫外領域にし、可視光域の選択反射を抑制しようとすると、カイラル材添加量が30%を越え、液晶相を示す温度範囲が極端に狭くなることが判った。製造コストも高くなる。 It has been found that if the pitch is in the ultraviolet region and selective reflection in the visible light region is suppressed, the amount of chiral agent added exceeds 30%, and the temperature range in which the liquid crystal phase is exhibited becomes extremely narrow. Manufacturing costs are also higher.

そこで、ピッチを波長780nm以上の赤外領域に対応させて可視光域の選択反射を避けることを検討した。カイラル材の添加量は減少でき、液晶相を保つ温度範囲も広くでき、低温の屋外での使用も可能になる。 Therefore, the present inventors have considered avoiding the selective reflection of the visible light region by adjusting the pitch to correspond to the infrared region having a wavelength of 780 nm or longer. The amount of chiral agent added can be reduced, the temperature range in which the liquid crystal phase can be maintained can be widened, and use outdoors at low temperatures is also possible.

図2Hは、このように考察した視角補償板26の構成を概略的に示す断面図である。2枚のガラス基板Gを平行に配置し、対向面上に水平配向膜AHを形成し、対向面間に液晶層LCを充填する。 FIG. 2H is a cross-sectional view schematically showing the configuration of the viewing angle compensator 26 considered in this way. Two glass substrates G are arranged in parallel, a horizontal alignment film AH is formed on the opposing surfaces, and a liquid crystal layer LC is filled between the opposing surfaces.

2枚のガラス基板Gの水平配向膜AHに施された配向処理(ラビング処理)は、2枚のガラス基板Gを重ね合わせたときに、液晶分子のプレティルト角が平行(アンチパラレル)になるように設定した。視角補償板26の法線方向から見て、一方のガラス基板のラビング方向は他方のガラス基板に対して逆方向である。配向状態をアンチパラレルとすることで、視角補償板内26内の液晶分子のチルト角が互いに略等しく、比較的安定な配向状態を得ることができるため好ましい。 The alignment treatment (rubbing treatment) applied to the horizontal alignment films AH of the two glass substrates G is such that the pretilt angles of the liquid crystal molecules are parallel (anti-parallel) when the two glass substrates G are overlapped. set to When viewed from the normal direction of the viewing angle compensating plate 26, the rubbing direction of one glass substrate is opposite to that of the other glass substrate. The anti-parallel alignment state is preferable because the tilt angles of the liquid crystal molecules in the viewing angle compensator 26 are substantially equal to each other and a relatively stable alignment state can be obtained.

図1A,2Aにおいて、破線で示すように図2Hに示す視角補償板26を液晶素子23と組み合わせた試験的光学装置を想定した。図2Aに示す試験的構成を作成してその特性を測定した。視角補償板26においては、選択反射波長が約1μmとなるように、液晶材料とカイラル材等をブレンドした。 1A and 2A, an experimental optical device is assumed in which the viewing angle compensator 26 shown in FIG. 2H is combined with the liquid crystal element 23 as indicated by the dashed line. A test configuration shown in FIG. 2A was constructed and its properties were measured. In the viewing angle compensator 26, a liquid crystal material and a chiral material are blended so that the selective reflection wavelength is about 1 μm.

ところが、可視光より長いピッチの液晶セルは、透過する光の偏光軸を少し回転させる現象が見られた。出射する偏光の偏光軸は、入射する偏光の偏光軸に対して10度程度回転してしまう。クロスニコル偏光板で透過率を極めて小さい値にしようとしても、漏れ光が生じることになってしまう。 However, in the liquid crystal cell with a pitch longer than that of visible light, a phenomenon was observed in which the polarization axis of transmitted light was slightly rotated. The polarization axis of outgoing polarized light is rotated about 10 degrees with respect to the polarization axis of incident polarized light. Even if the transmittance of the crossed Nicols polarizing plate is set to an extremely small value, light leakage will occur.

そこで、左捻じれの液晶セルと右捻じれの液晶セルとを積層した複合型視角補償セルを液晶素子と組み合わせ、偏光軸の回転を相殺させることを検討することとした。 Therefore, a combination of a composite viewing angle compensating cell in which a left-twisted liquid crystal cell and a right-twisted liquid crystal cell are laminated is combined with a liquid crystal element, and it is investigated to cancel out the rotation of the polarization axis.

図2Bに示すように、左捻じれの液晶セル27と右捻じれの液晶セル28とを積層した複合型視角補償セル26を形成して、液晶素子23に積層し、改良型のサンプルを作製した。視角補償セル以外の点に関しては、図2Bのサンプルの構成は図2Aのサンプルの構成と同等である。 As shown in FIG. 2B, a composite viewing angle compensation cell 26 is formed by stacking a left-twisted liquid crystal cell 27 and a right-twisted liquid crystal cell 28, and stacked on the liquid crystal element 23 to fabricate an improved sample. bottom. Other than the viewing angle compensation cell, the configuration of the sample in FIG. 2B is equivalent to the configuration of the sample in FIG. 2A.

図1Bは、図1Aの構成における単層の視角補償セル26を、図2Bに示す2層の積層型視角補償セルに置き換えた光学装置を示す概略断面図である。 FIG. 1B is a schematic cross-sectional view showing an optical device in which the single-layer viewing angle compensation cell 26 in the configuration of FIG. 1A is replaced with a two-layer stacked viewing angle compensation cell shown in FIG. 2B.

複合型視角補償セル26の各セルのセル厚を、2.5μm、3.0μm、3.25μm、3.5μm、3.7μmに設定した各1対のネガティブCプレート液晶セルを作成した。 A pair of negative C-plate liquid crystal cells were prepared by setting the cell thickness of each cell of the composite viewing angle compensation cell 26 to 2.5 μm, 3.0 μm, 3.25 μm, 3.5 μm and 3.7 μm.

図3Bは、セル厚3.25μmの1対のネガティブCプレート液晶セルを用いたサンプルで測定した、透過率と極角の関係を示すグラフである。なおリターデーションRthは約520nmである。光学装置の光学補償として左捻じれの液晶セル27と右捻じれの液晶セル28とを積層した複合型視角補償セル26を視角補償に用いた場合、明らかに斜め方向の光抜けが抑えられている。図2Bのサンプルの透過率は、図3Bに示す測定データの極角±30度の範囲では、0.2%以下に抑制されている。図3Bに示すデータの各方位角の測定透過率の積分値は4.2%であった。比較の為、単純なクロスニコル偏光板について同じ測定を行った場合の積分値は4.5%であった。本サンプルにおいて、ほぼ限界まで視角補償できていると考えられる。 FIG. 3B is a graph of transmittance versus polar angle measured for a sample using a pair of negative C-plate liquid crystal cells with a cell thickness of 3.25 μm. The retardation Rth is approximately 520 nm. When a composite viewing angle compensation cell 26 in which a left-twisted liquid crystal cell 27 and a right-twisted liquid crystal cell 28 are laminated is used for optical compensation of an optical device, light leakage in oblique directions is clearly suppressed. there is The transmittance of the sample in FIG. 2B is suppressed to 0.2% or less in the polar angle range of ±30 degrees of the measurement data shown in FIG. 3B. The integral of the measured transmittance for each azimuth angle for the data shown in FIG. 3B was 4.2%. For comparison, the integrated value was 4.5% when the same measurement was performed on a simple crossed Nicols polarizer. In this sample, it is considered that the visual angle compensation is achieved almost to the limit.

図3Cは、液晶素子の駆動電圧オフの状態で測定した、透過率の視角依存性の測定結果から想定されるコントラスト比の視角補償セルの液晶セル厚依存性を示すグラフである。横軸が液晶セル厚を単位(μm)で示し、縦軸が見積もられたコントラスト比を示す。サンプルのセル厚2.5μm、3.0μm、3.25μm、3.5μm、3.7μmの範囲においては、ほぼ170以上のコントラスト比が得られており、3.25μmのセル厚で200を越える最大のコントラスト比が得られている。光学補償なしの比較技術と較べた時、著しく高いコントラスト比が得られると判断できる。 FIG. 3C is a graph showing the liquid crystal cell thickness dependence of the contrast ratio of the viewing angle compensation cell, which is assumed from the measurement result of the viewing angle dependence of the transmittance measured in the state where the driving voltage of the liquid crystal element is off. The horizontal axis indicates the liquid crystal cell thickness in units (μm), and the vertical axis indicates the estimated contrast ratio. In the range of sample cell thicknesses of 2.5 μm, 3.0 μm, 3.25 μm, 3.5 μm, and 3.7 μm, a contrast ratio of approximately 170 or more was obtained, and the contrast ratio exceeded 200 at a cell thickness of 3.25 μm. A maximum contrast ratio is obtained. It can be judged that a significantly higher contrast ratio is obtained when compared with the comparative technique without optical compensation.

次に、垂直配向液晶素子23の配向処理方向と視角補償セルの配向処理方向の関係を調べた。視角補償セルは右捻じれセルと左捻じれセルの2つを含むので、2つの視角補償セルの配向処理の方向が同じ場合と反対の場合とを想定した。 Next, the relationship between the alignment treatment direction of the vertically aligned liquid crystal element 23 and the alignment treatment direction of the viewing angle compensation cell was investigated. Since the viewing angle compensation cell includes two of a right-twisted cell and a left-twisted cell, it was assumed that the two viewing angle compensation cells had the same direction and the opposite direction.

図4Aは、2つの視角補償セル27,28の配向処理の方向が同じで、液晶素子の配向処理の方向との間の角度を変化させる状態を概略的に示す断面図である。図4Bは、測定結果に基づく、液晶素子の配向方向に対して視角補償セルの配向方向のなす相対角度の変化によるオフ状態透過率(平均値)の変化を示すグラフである。相対角度を、45度間隔で変化させた。横軸が相対角度を単位(度)で示し、縦軸が駆動電圧オフ時の透過率を単位(%)で示す。全8サンプルの内、90度間隔の相対角度0度、90度、180度、270度のサンプルの透過率が相対的に低く、特に相対角度90度のサンプルの透過率が低い。相対角度は、90度±20度の範囲が好ましいであろう。なお、比較例として、光学補償セルなしのサンプルも作製、測定した。光学補償セルなしの比較例に対して、全サンプルの特性が優れていることが明らかである。 FIG. 4A is a cross-sectional view schematically showing a state in which two viewing angle compensating cells 27 and 28 are aligned in the same direction and the angle between them and the direction of alignment of the liquid crystal element is changed. FIG. 4B is a graph showing the change in off-state transmittance (average value) with change in the relative angle between the alignment direction of the viewing angle compensation cell and the alignment direction of the liquid crystal element, based on the measurement results. The relative angles were varied at 45 degree intervals. The horizontal axis indicates the relative angle in units (degrees), and the vertical axis indicates the transmittance when the drive voltage is turned off in units (%). Among the total eight samples, the samples with relative angles of 0 degrees, 90 degrees, 180 degrees, and 270 degrees at intervals of 90 degrees have relatively low transmittance, and the sample with a relative angle of 90 degrees has particularly low transmittance. The relative angles would preferably be in the range of 90 degrees ±20 degrees. As a comparative example, a sample without the optical compensation cell was also produced and measured. It is clear that the properties of all samples are superior to the comparative example without the optical compensation cell.

次に2つの視角補償セルの配向処理方向を同じにしたサンプルと反対にしたサンプルとを作成、測定した。液晶素子の配向処理方向と視角補償セルの配向処理方向との相対角度は、45度、135度、225度、315度に設定した。 Next, a sample in which two viewing angle compensating cells are aligned in the same direction and a sample in which the alignment processing direction is reversed are prepared and measured. The relative angles between the orientation treatment direction of the liquid crystal element and the orientation treatment direction of the viewing angle compensation cell were set to 45 degrees, 135 degrees, 225 degrees and 315 degrees.

図5Aに示すように、液晶素子23の配向処理の方向(水平方向)に対し、視角補償セル27,28の配向処理方向の方向を変化させ、かつ2つの視角補償セル27,28の配向処理の方向が同じ場合と反対の場合とを作成した。 As shown in FIG. 5A, the orientation treatment direction of the viewing angle compensation cells 27 and 28 is changed with respect to the orientation treatment direction (horizontal direction) of the liquid crystal element 23, and the orientation treatment of the two viewing angle compensation cells 27 and 28 is performed. The case of the same direction and the opposite case were created.

図5Bは、測定結果を示すグラフである。横軸が液晶素子の配向処理方向に対する視角補償セルの配向処理方向の相対角度を単位(度)で示し、縦軸が駆動電圧オフ時の透過率を単位(%)で示す。2つの視角補償セルの配向処理の方向が逆で、かつ視角補償セルの配向処理方向の液晶セルの配向処理方向に対する相対角度が45度、135度、225度の場合の透過率が低く、特に相対角度が135度の場合が低い。2つの視角補償セルの配向処理の方向が逆で、かつ視角補償セルの配向処理方向の液晶セルの配向処理方向に対する相対角度が135度±20度の範囲が透過率を低くする(コントラスト比を高くする)ために好ましいであろう。 FIG. 5B is a graph showing measurement results. The horizontal axis indicates the relative angle of the orientation treatment direction of the viewing angle compensation cell with respect to the orientation treatment direction of the liquid crystal element in units (degrees), and the vertical axis indicates the transmittance when the driving voltage is turned off in units (%). The transmittance is low when the orientation treatment directions of the two viewing angle compensation cells are opposite and the relative angles of the orientation treatment direction of the viewing angle compensation cell to the orientation treatment direction of the liquid crystal cell are 45 degrees, 135 degrees, and 225 degrees. It is low when the relative angle is 135 degrees. The two viewing angle compensation cells are aligned in opposite directions, and the relative angle of the alignment treatment direction of the viewing angle compensation cell to the alignment treatment direction of the liquid crystal cell is in the range of 135 degrees ± 20 degrees. high).

測定サンプルで好ましいと判断できた条件を、図1Bに示す構成に適用することにより、好ましい光学装置が得られるであろう。 Applying the conditions found to be favorable in the measurement sample to the configuration shown in FIG. 1B will result in a favorable optical device.

以上、実施例に沿って本発明を説明したが、本発明はこれに限られるものではない。上記した材料、数値などは単なる例示であって制限的なものではない。その他、種々の改良、置換、組み合わせ等が可能なことは当業者に自明であろう。 Although the present invention has been described along with the embodiments, the present invention is not limited to these. The above materials, numerical values, etc. are merely examples and are not restrictive. In addition, it will be obvious to those skilled in the art that various improvements, substitutions, combinations, and the like are possible.

Claims (5)

複数の電極対を含む一対の基板と、前記一対の基板間に挟持され、前記電極対間に駆動電圧が印加されていない状態で基板表面に対してほぼ垂直に配向され、負の誘電率異方性を有する第1液晶層と、を含む液晶素子と、
前記液晶素子の前後に配置された偏光手段と、
前記複数の電極対に供給する駆動電圧を形成する駆動回路と、
前記液晶素子と重ねて配置された第1、第2のネガティブCプレート液晶セルであって、第1、第2のネガティブCプレート液晶セルの各々は、対向基板と、前記対向基板間に挟持された第2又は第3の液晶層とを含み、前記第2、第3の液晶層の各々の液晶分子の配向方向は基板面内方向でねじれ、ほぼ一定の面内方向屈折率と、前記面内方向屈折率より低い厚さ方向屈折率と、を有し、前記第2、第3の液晶層の各々は波長0.78μm以上の赤外領域に属する選択反射光波長を有し、前記第2、第3の液晶層は、異なる面内ねじれ方向を有する、第1、第2のネガティブCプレート液晶セルと、
含み、
前記液晶素子の一対の基板、および前記第1、第2のネガティブCプレート液晶セルの各対向基板の液晶層側に向いた面は配向処理されており、
前記第2、第3の液晶層は、基板面平行面内でプレーナー配向し、基板面法線方向に沿ってねじれている光学装置。
and a pair of substrates including a plurality of electrode pairs, sandwiched between the pair of substrates, oriented substantially perpendicular to the substrate surface in a state in which no driving voltage is applied between the electrode pairs, and having a negative dielectric constant difference. a liquid crystal element including a first liquid crystal layer having tropism;
polarizing means arranged before and after the liquid crystal element;
a drive circuit that forms a drive voltage to be supplied to the plurality of electrode pairs;
First and second negative C-plate liquid crystal cells arranged to overlap with the liquid crystal element, wherein each of the first and second negative C-plate liquid crystal cells is sandwiched between a counter substrate and the counter substrate. and a second or third liquid crystal layer, wherein the alignment direction of the liquid crystal molecules in each of the second and third liquid crystal layers is twisted in the in-plane direction of the substrate, and the refractive index in the in-plane direction is substantially constant. a refractive index in the thickness direction lower than the inward refractive index, each of the second and third liquid crystal layers has a selectively reflected light wavelength belonging to an infrared region with a wavelength of 0.78 μm or more; 2. first and second negative C-plate liquid crystal cells, wherein the third liquid crystal layer has different in-plane twist directions;
including
the surfaces of the pair of substrates of the liquid crystal element and the opposed substrates of the first and second negative C-plate liquid crystal cells facing toward the liquid crystal layer are subjected to alignment treatment;
The optical device , wherein the second and third liquid crystal layers are planar-aligned in a plane parallel to the substrate surface and twisted along a direction normal to the substrate surface.
前記第1、第2のネガティブCプレート液晶セルを構成する基板の液晶層側に向いた面の配向処理は、前記第2、第3の液晶層の液晶分子のプレティルト角がアンチパラレルになるように設定されている請求項に記載の光学装置。 The orientation treatment of the surfaces of the substrates constituting the first and second negative C-plate liquid crystal cells facing the liquid crystal layer is performed so that the pretilt angles of the liquid crystal molecules of the second and third liquid crystal layers are antiparallel. 2. The optical device according to claim 1 , wherein . 前記液晶素子の一方の基板が複数の画素に共通のコモン電極を備えたコモン基板であり、他方の基板が画素ごとに制御できるセグメント電極を形成したセグメント基板である、請求項1又は2に記載の光学装置。 3. The liquid crystal element according to claim 1 , wherein one substrate of said liquid crystal element is a common substrate having a common electrode common to a plurality of pixels , and the other substrate is a segment substrate having segment electrodes that can be controlled for each pixel. optical device. 光源と、投影手段と、前記光源と前記投影手段の間の光路上に配置された前記請求項1~のいずれかに記載の光学装置とを備え、
前記光源からの光は前記液晶素子の前に配置された偏光手段の一方側から入射するように配置され、
前記投影手段は、前記液晶素子の後に配置された前記偏光手段の他方側から出射する光を所定方向に投影するように配置されている車両用灯具。
A light source, a projection means, and the optical device according to any one of claims 1 to 3 arranged on an optical path between the light source and the projection means,
The light from the light source is arranged so as to enter from one side of the polarizing means arranged in front of the liquid crystal element,
The vehicle lamp is arranged so that the projecting means projects the light emitted from the other side of the polarizing means arranged behind the liquid crystal element in a predetermined direction.
さらに、前記所定方向の状況を監視する監視ユニットと、前記監視ユニットからの信号に基づき、前記駆動回路を制御する制御ユニットと、を備え、ADB機能を実現できる請求項に記載の車両用灯具。 5. The vehicular lamp according to claim 4 , further comprising: a monitoring unit for monitoring the situation in the predetermined direction; and a control unit for controlling the drive circuit based on a signal from the monitoring unit, and capable of realizing an ADB function. .
JP2019206568A 2019-11-14 2019-11-14 optical device Active JP7317675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019206568A JP7317675B2 (en) 2019-11-14 2019-11-14 optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019206568A JP7317675B2 (en) 2019-11-14 2019-11-14 optical device

Publications (2)

Publication Number Publication Date
JP2021081481A JP2021081481A (en) 2021-05-27
JP7317675B2 true JP7317675B2 (en) 2023-07-31

Family

ID=75964894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019206568A Active JP7317675B2 (en) 2019-11-14 2019-11-14 optical device

Country Status (1)

Country Link
JP (1) JP7317675B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149682A (en) 2001-11-16 2003-05-21 Fuji Xerox Co Ltd Liquid crystal display element
JP2007171383A (en) 2005-12-20 2007-07-05 Nippon Zeon Co Ltd Liquid crystal display device
KR100789864B1 (en) 2006-11-02 2007-12-28 삼성정밀화학 주식회사 Cholesteric liquid crystal polymer, near infrared ray blocking film and filter comprising the same, and display device having the film or the filter
WO2018139081A1 (en) 2017-01-27 2018-08-02 マクセル株式会社 Headlight device
WO2019102922A1 (en) 2017-11-22 2019-05-31 Dic株式会社 Polymerizable liquid crystal composition, polymer of same, optically anisotropic body, and display element
JP2019128449A (en) 2018-01-24 2019-08-01 スタンレー電気株式会社 Liquid crystal element and illumination device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114980A (en) * 1997-06-19 1999-01-22 Stanley Electric Co Ltd Liquid crystal display element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149682A (en) 2001-11-16 2003-05-21 Fuji Xerox Co Ltd Liquid crystal display element
JP2007171383A (en) 2005-12-20 2007-07-05 Nippon Zeon Co Ltd Liquid crystal display device
KR100789864B1 (en) 2006-11-02 2007-12-28 삼성정밀화학 주식회사 Cholesteric liquid crystal polymer, near infrared ray blocking film and filter comprising the same, and display device having the film or the filter
WO2018139081A1 (en) 2017-01-27 2018-08-02 マクセル株式会社 Headlight device
WO2019102922A1 (en) 2017-11-22 2019-05-31 Dic株式会社 Polymerizable liquid crystal composition, polymer of same, optically anisotropic body, and display element
JP2019128449A (en) 2018-01-24 2019-08-01 スタンレー電気株式会社 Liquid crystal element and illumination device

Also Published As

Publication number Publication date
JP2021081481A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
CN113167953B (en) Directional display device
US20160077402A1 (en) Liquid crystal lens, lamp device, lighting device and liquid crystal lens device
JP7160536B2 (en) lighting equipment
US20090190048A1 (en) Stereoscopic display device using electrically-driven liquid crystal lens
JP4955967B2 (en) Head-up display system
JPH1026765A (en) Liquid crystal display element, projection type liquid crystal display device, and substrate therefor
CN109491100A (en) Vehicle head lamp
JP4600238B2 (en) Image display device
US20200217472A1 (en) Lamp unit, vehicular lamp system
CN114761843A (en) Lens assembly with circular reflective polarizer
US10551018B2 (en) Vehicular lamp, vehicular lamp system
JP2020017367A (en) Lamp unit and vehicular lamp system
JP7317675B2 (en) optical device
WO2022244736A1 (en) Illumination device and vehicle lamp system
KR101915923B1 (en) Liquid crystal display device and head-up display device
JP4377498B2 (en) Bidirectional dichroic circularly polarizing plate and reflective / transmissive liquid crystal display device
JP5626617B2 (en) In-vehicle LCD
JP2021096996A (en) Vehicular lighting system
JP2022183786A (en) Liquid crystal element and lighting device
EP3503691B1 (en) Lighting device
WO2023120128A1 (en) Lighting device, and vehicle lamp fitting system
WO2022085445A1 (en) Vehicular lamp and optical element
JP2006350323A (en) Liquid crystal display device and manufacturing method of liquid crystal display device
CN117192831A (en) Optical element and display device
CN1777837A (en) Liquid crystal display with offset viewing cone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230719

R150 Certificate of patent or registration of utility model

Ref document number: 7317675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150