JP7315810B2 - Method for synthesizing 4,4'-bi-1,3-dioxolane-2,2'-dione - Google Patents

Method for synthesizing 4,4'-bi-1,3-dioxolane-2,2'-dione Download PDF

Info

Publication number
JP7315810B2
JP7315810B2 JP2021513778A JP2021513778A JP7315810B2 JP 7315810 B2 JP7315810 B2 JP 7315810B2 JP 2021513778 A JP2021513778 A JP 2021513778A JP 2021513778 A JP2021513778 A JP 2021513778A JP 7315810 B2 JP7315810 B2 JP 7315810B2
Authority
JP
Japan
Prior art keywords
dioxolane
dione
synthesizing
temperature
erythritol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021513778A
Other languages
Japanese (ja)
Other versions
JP2022530931A (en
Inventor
▲閻▼彩▲橋▼
葛建民
王▲軍▼
▲はお▼俊
▲張▼民
武利斌
侯▲栄▼雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Shengtai Material Co Ltd
Original Assignee
Hebei Shengtai Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Shengtai Material Co Ltd filed Critical Hebei Shengtai Material Co Ltd
Publication of JP2022530931A publication Critical patent/JP2022530931A/en
Application granted granted Critical
Publication of JP7315810B2 publication Critical patent/JP7315810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)

Description

本発明は電池用電解液添加剤の技術分野に属し、4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを電池用電解液添加剤として用いることに関し、詳しくは、4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの合成方法に関する。 The present invention belongs to the technical field of battery electrolyte additives, and relates to the use of 4,4′-bi-1,3-dioxolane-2,2′-dione as a battery electrolyte additive. ,4'-bi-1,3-dioxolane-2,2'-diones.

リチウムイオン電池の性能が改善されており、その適用範囲が広くなっていくが、その安全性問題及びサイクル性能はある程度リチウムイオン電池の発展を制約している。特に現在盛んになっている電気自動車用動力リチウムイオン電池は、安全性能、急速充電性能、バッテリー寿命が全て各研究機関によって検討されている焦点問題であり、これらの問題を解決するキーポイントは電池そのものを出発点とすることにある。リチウムイオン電池の安全性及びサイクル安定性に影響する要素が多く、主として内因と外因の2つに分けられる。内因は主として、正負極アクティブ材料の安定性、電解液自体の特性及び電極材料との適合性、セパレータ材料の安定性等に関わり、外因は主として電池の不正確な使用及び使用過程で現れた濫用現象等である。研究から分かるように、電解液添加剤の導入は非常に効果的な方法であり、電解液自体の特性を改善できるだけでなく、電解液と電極材料との適合性を向上することもでき、それに、僅かな量を添加すれば明らかな効果がある。電極材料を改質することでリチウムイオン電池のサイクル安定性をさらに向上することができる。 Although the performance of lithium-ion batteries is improving and its application range is expanding, its safety issues and cycle performance restrict the development of lithium-ion batteries to some extent. In particular, lithium-ion batteries for electric vehicles, which are currently popular, are focused on safety performance, quick charging performance, and battery life. This is the starting point. There are many factors that affect the safety and cycle stability of lithium-ion batteries, which are mainly divided into two factors: internal factors and external factors. The internal factors are mainly related to the stability of the positive and negative active materials, the properties of the electrolyte itself and compatibility with the electrode materials, the stability of the separator materials, etc. The external factors are mainly the improper use of the battery and the abuse that appears in the process of use. phenomenon. Research shows that the introduction of electrolyte additives is a very effective method, which can not only improve the properties of the electrolyte itself, but also improve the compatibility between the electrolyte and electrode materials, and , the addition of a small amount has a clear effect. By modifying the electrode material, the cycle stability of the lithium ion battery can be further improved.

近年、新規な多機能リチウムイオン電池用電解液添加剤が多数現れている。研究が行われた結果、CAS番号が24690-44-6である4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンは、電解液添加剤としてリチウムイオン電池の正・負極材料の構造の安定性及び熱安定性を効果的に改善できることが判明した。また、4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンは高電圧、極高温・低温条件で全て優れたサイクル及び安全性能を表現し、リチウムイオン電池性能の向上に大きな促進効果を有する。しかし、従来の4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの合成プロセスは成熟しておらず、合成過程で通常、原材料が高価であり、プロセスが複雑であり、製品の収率及び純度が低い等の問題があり、かつ現在4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの合成プロセスにおいて、一般的に高温で反応を行うべきであると考えられている。例えば、60~130℃等で、12時間以上反応する場合、収率は88~90%程度に達することができるが、反応温度が高く、反応が安定せず、反応時間が長すぎて生産効率に影響する。このため、4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの合成方法の研究は極めて大きな現実的な意義を有する。 In recent years, a number of new electrolyte additives for multifunctional lithium-ion batteries have emerged. As a result of research, 4,4'-bi-1,3-dioxolane-2,2'-dione, which has a CAS number of 24690-44-6, is used as an electrolyte additive in positive and negative electrodes of lithium ion batteries. It has been found that the structural stability and thermal stability of the material can be effectively improved. In addition, 4,4'-bi-1,3-dioxolane-2,2'-dione exhibits excellent cycle and safety performance under high voltage, extreme temperature and low temperature conditions, and greatly improves the performance of lithium ion batteries. Has a stimulating effect. However, the conventional synthesis process of 4,4'-bi-1,3-dioxolane-2,2'-dione is not mature, and the raw materials are usually expensive and the process is complicated during the synthesis process. There are problems such as low yield and purity of the product, and in the current synthesis process of 4,4'-bi-1,3-dioxolane-2,2'-dione, the reaction should generally be carried out at high temperature. It is believed that there are For example, when the reaction is performed at 60 to 130° C. for 12 hours or more, the yield can reach about 88 to 90%, but the reaction temperature is high, the reaction is unstable, and the reaction time is too long, resulting in production efficiency. affects For this reason, research on methods for synthesizing 4,4'-bi-1,3-dioxolane-2,2'-dione is of great practical significance.

本発明は上記技術的課題を解決するために、4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの合成方法を提供する。本発明に係る合成方法は簡単であり、原材料が安価で入手しやすく、エネルギー消費量が低く、反応条件が温和で安定しており、収率が高い。 In order to solve the above technical problems, the present invention provides a method for synthesizing 4,4'-bi-1,3-dioxolane-2,2'-dione. The synthetic method according to the present invention is simple, the raw materials are cheap and readily available, the energy consumption is low, the reaction conditions are mild and stable, and the yields are high.

本発明はその目的を実現するために、以下の技術的手段を用いる。 The present invention uses the following technical means in order to achieve its object.

アルゴンガス雰囲気下でイミダゾール、テトラヒドロフランを反応器に加え、冷却し-5~5℃まで降温し、ホスゲンを滴下し始め、0.5~1時間かけて滴下が終了し、0.5~1時間撹拌し、ろ過し、1,1’-カルボニルジイミダゾールを含むろ液を得た後、-8~-15℃の温度で、前記ろ液をエリスリトールのテトラヒドロフラン溶液に滴下し、1~1.5時間かけて滴下が終了し、保温しながら0.5~2時間撹拌し、真空で溶剤を除去し、残留物を得、残留物をジクロロメタンに溶解させ、冷水で洗浄し、乾燥後濃縮し4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの粗生成物を得、粗生成物を精製し、精製された4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを得た4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの合成方法。 Add imidazole and tetrahydrofuran to the reactor under an argon gas atmosphere, cool down to −5 to 5° C., start dropping phosgene, finish dropping over 0.5 to 1 hour, and finish dropping for 0.5 to 1 hour. After stirring and filtering to obtain a filtrate containing 1,1′-carbonyldiimidazole, the filtrate is added dropwise to a tetrahydrofuran solution of erythritol at a temperature of −8 to −15° C. The dropwise addition was completed over time, stirred for 0.5-2 hours while maintaining temperature, the solvent was removed in vacuo to obtain a residue, the residue was dissolved in dichloromethane, washed with cold water, dried and concentrated4. ,4'-bi-1,3-dioxolane-2,2'-dione crude product is obtained, the crude product is purified, purified 4,4'-bi-1,3-dioxolane-2, Synthesis of 4,4'-bi-1,3-dioxolane-2,2'-dione with 2'-dione.

ホスゲンと、イミダゾールと、エリスリトールとのモル比が1:(3~6):(0.45~0.8)である。 The molar ratio of phosgene, imidazole and erythritol is 1:(3-6):(0.45-0.8).

エリスリトールがテトラヒドロフラン溶液に1g/4~4.5mlである。即ち、4~4.5mlのテトラヒドロフラン溶液にエリスリトール1gを含有する。 Erythritol is 1 g/4-4.5 ml in tetrahydrofuran solution. That is, 1 g of erythritol is contained in 4-4.5 ml of tetrahydrofuran solution.

冷水で2~3回洗浄する。 Wash 2-3 times with cold water.

乾燥は無水硫酸ナトリウム及び/又は酸化カルシウムで乾燥する。 Dry with anhydrous sodium sulfate and/or calcium oxide.

濃縮し真空度を0.08~0.10MPaに制御し、温度50~60℃で1.5~2時間濃縮する。 Concentrate, control the degree of vacuum to 0.08-0.10 MPa, and concentrate at a temperature of 50-60° C. for 1.5-2 hours.

精製はアセトンで再結晶する。 Recrystallize with acetone for purification.

真空で溶剤を除去する場合、真空度が0.08~0.09Mpaに制御され、真空処理時間が30~40minである。 When the solvent is removed by vacuum, the degree of vacuum is controlled to 0.08-0.09 Mpa, and the vacuum treatment time is 30-40 minutes.

本発明の効果としては、本発明に用いられる原材料が安価で入手しやすく、合成方法が簡単で操作しやすく、エネルギー消費量が低く、反応時間が短く、反応条件が温和で安定しており、製品の収率が高く、94%以上に達することができる。 As the effects of the present invention, the raw materials used in the present invention are inexpensive and easily available, the synthesis method is simple and easy to operate, the energy consumption is low, the reaction time is short, the reaction conditions are mild and stable, The product yield is high and can reach over 94%.

本願は低温反応を用い、従来高温反応が必要であると考えられている局面を打ち破り、4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを合成する新しい方法を開発した。当業者は4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを製造する場合、高温での長期間反応が反応の進行を促進し、4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの合成に寄与し、低温の場合、反応の進行に影響し、反応速度を遅くし、収率が低く、その上4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを合成できなくなると考えている。発明者は長期間検討し、ホスゲン、イミダゾール、エリスリトールを原料として用いて4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを製造することで、低温、短時間の反応合成を実現し、収率も94%以上に達することができることが判明した。 The present application uses a low-temperature reaction to break through the situation in which a high-temperature reaction is conventionally considered necessary, and develops a new method for synthesizing 4,4'-bi-1,3-dioxolane-2,2'-dione. . Those skilled in the art know that when preparing 4,4'-bi-1,3-dioxolane-2,2'-dione, a long-term reaction at elevated temperature accelerates the progress of the reaction, yielding 4,4'-bi-1, It contributes to the synthesis of 3-dioxolane-2,2′-dione, and when the temperature is low, it affects the progress of the reaction, slows down the reaction rate, lowers the yield, and additionally produces 4,4′-bi-1,3 -Dioxolane-2,2'-dione cannot be synthesized. The inventors have studied for a long time and produced 4,4'-bi-1,3-dioxolane-2,2'-dione using phosgene, imidazole, and erythritol as raw materials, thereby achieving low-temperature, short-time reaction synthesis. and the yield can reach 94% or more.

図1は定格容量が950mAhであるLP063450ARタイプのプリズム型リチウムイオン電池のサイクル性能図である。FIG. 1 is a cycle performance diagram of an LP063450AR type prismatic lithium ion battery with a rated capacity of 950 mAh. 図2は本発明の4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを添加した定格容量が950mAhであるLP063450ARタイプのプリズム型リチウムイオン電池のサイクル性能図である。FIG. 2 is a cycle performance diagram of an LP063450AR type prismatic lithium ion battery with a rated capacity of 950 mAh to which 4,4'-bi-1,3-dioxolane-2,2'-dione of the present invention is added. 図3は本発明で製造された4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンのマススペクトルである。FIG. 3 is a mass spectrum of 4,4'-bi-1,3-dioxolane-2,2'-dione produced according to the present invention. 図4は図3の一部を切り取った図である。FIG. 4 is a cutaway view of FIG. 3;

以下に具体的実施例に基づき本発明をさらに説明する。
一、具体的実施例
The present invention will be further described based on specific examples below.
1. Specific embodiment

実施例1
アルゴンガス雰囲気下で4.0molのイミダゾール、125mlのテトラヒドロフランを四つ口フラスコに入れ、冷却し0℃まで降温し、1.0molのホスゲンを滴下し始め、0.5時間かけて滴下が終了し、0.5時間撹拌し、ろ過し、1,1’-カルボニルジイミダゾールを含むろ液を得た。その後、-10℃の温度で、前記ろ液をエリスリトール0.5molを含むテトラヒドロフラン(250ml)溶液に滴下し、1.5時間かけて滴下が終了し、保温しながら1時間撹拌し、真空で溶剤を除去し、残留物を得た。残留物をジクロロメタンに溶解させ、冷水で2回洗浄した。20gの無水硫酸ナトリウムを加えて乾燥し、濃縮し4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの粗生成物を得た。粗生成物を再結晶し、82.20gの4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの純品(収率94.4%)を得た。
得られた4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを集め、測定した結果、密度は1.6075g/cm3であり、沸点は535.33℃(760mmHg)であり、HPLCにより検出された純度は99.87%であった。
Example 1
In an argon gas atmosphere, 4.0 mol of imidazole and 125 ml of tetrahydrofuran were placed in a four-necked flask, cooled to 0° C., and 1.0 mol of phosgene was started dropwise, and the dropwise addition was completed over 0.5 hours. , 0.5 hours, and filtered to obtain a filtrate containing 1,1′-carbonyldiimidazole. Then, at a temperature of −10° C., the filtrate was added dropwise to a tetrahydrofuran (250 ml) solution containing 0.5 mol of erythritol, and the dropwise addition was completed over 1.5 hours. was removed to give a residue. The residue was dissolved in dichloromethane and washed twice with cold water. 20 g of anhydrous sodium sulfate was added for drying and concentration to obtain a crude product of 4,4'-bi-1,3-dioxolane-2,2'-dione. The crude product was recrystallized to obtain 82.20 g of pure 4,4'-bi-1,3-dioxolane-2,2'-dione (yield 94.4%).
The resulting 4,4'-bi-1,3-dioxolane-2,2'-dione was collected and measured to have a density of 1.6075 g/cm3 and a boiling point of 535.33°C (760 mmHg). , the purity detected by HPLC was 99.87%.

実施例2
アルゴンガス雰囲気下で3.0molのイミダゾール、62mlのテトラヒドロフランを四つ口フラスコに入れ、冷却し-2℃まで降温し、1.0molのホスゲンを滴下し始め、0.6時間かけて滴下が終了し、0.6時間撹拌し、ろ過し、1,1’-カルボニルジイミダゾールを含むろ液を得た。その後、-8℃の温度で、前記ろ液をエリスリトール0.45molを含むテトラヒドロフラン(220ml)溶液に滴下し、1時間かけて滴下が終了し、保温しながら1.5時間撹拌し、真空で溶剤を除去し、残留物を得た。残留物をジクロロメタンに溶解させ、冷水で2回洗浄した。20gの無水硫酸ナトリウムを加えて乾燥し、濃縮し4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの粗生成物を得た。粗生成物を再結晶し、74.4gの4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの純品(収率94.96%)を得た。
得られた4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを集め、測定した結果、密度は1.6083g/cm3であり、沸点は535.38℃(760mmHg)であり、HPLCにより検出された純度は99.89%であった。
Example 2
Put 3.0 mol of imidazole and 62 ml of tetrahydrofuran in a four-necked flask under an argon gas atmosphere, cool down to -2°C, start dropping 1.0 mol of phosgene, and finish dropping over 0.6 hours. The mixture was stirred for 0.6 hours and filtered to obtain a filtrate containing 1,1′-carbonyldiimidazole. Then, at a temperature of −8° C., the filtrate was added dropwise to a tetrahydrofuran (220 ml) solution containing 0.45 mol of erythritol, and the dropwise addition was completed over 1 hour. was removed to give a residue. The residue was dissolved in dichloromethane and washed twice with cold water. 20 g of anhydrous sodium sulfate was added for drying and concentration to obtain a crude product of 4,4'-bi-1,3-dioxolane-2,2'-dione. The crude product was recrystallized to obtain 74.4 g of pure 4,4'-bi-1,3-dioxolane-2,2'-dione (yield 94.96%).
The resulting 4,4'-bi-1,3-dioxolane-2,2'-dione was collected and measured to have a density of 1.6083 g/cm3 and a boiling point of 535.38°C (760 mmHg). , the purity detected by HPLC was 99.89%.

実施例3
アルゴンガス雰囲気下で5.0molのイミダゾール、204mlのテトラヒドロフランを四つ口フラスコに入れ、冷却し-5℃まで降温し、1.0molのホスゲンを滴下し始め、0.8時間かけて滴下が終了し、0.8時間撹拌し、ろ過し、1,1’-カルボニルジイミダゾールを含むろ液を得た。その後、-12℃の温度で、前記ろ液をエリスリトール0.7molを含むテトラヒドロフラン(384ml)溶液に滴下し、1.2時間かけて滴下が終了し、保温しながら0.8時間撹拌し、真空で溶剤を除去し、残留物を得た。残留物をジクロロメタンに溶解させ、冷水で2回洗浄した。20gの無水硫酸ナトリウムを加えて乾燥し、濃縮し4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの粗生成物を得た。粗生成物を再結晶し、82.95gの4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの純品(収率95.29%)を得た。
得られた4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを集め、測定した結果、密度は1.6078g/cm3であり、沸点は535.47℃(760mmHg)であり、HPLCにより検出された純度は99.91%であった。
Example 3
Put 5.0 mol of imidazole and 204 ml of tetrahydrofuran in a four-necked flask under an argon gas atmosphere, cool down to -5°C, start dropping 1.0 mol of phosgene, and finish dropping over 0.8 hours. The mixture was stirred for 0.8 hour and filtered to obtain a filtrate containing 1,1′-carbonyldiimidazole. Then, at a temperature of −12° C., the filtrate was added dropwise to a tetrahydrofuran (384 ml) solution containing 0.7 mol of erythritol, and the dropwise addition was completed over 1.2 hours. Solvent was removed at rt to give a residue. The residue was dissolved in dichloromethane and washed twice with cold water. 20 g of anhydrous sodium sulfate was added for drying and concentration to obtain a crude product of 4,4'-bi-1,3-dioxolane-2,2'-dione. The crude product was recrystallized to obtain 82.95 g of pure 4,4'-bi-1,3-dioxolane-2,2'-dione (yield 95.29%).
The resulting 4,4'-bi-1,3-dioxolane-2,2'-dione was collected and measured to have a density of 1.6078 g/cm3 and a boiling point of 535.47°C (760 mmHg). , the purity detected by HPLC was 99.91%.

実施例4
アルゴンガス雰囲気下で6.0molのイミダゾール、164mlのテトラヒドロフランを四つ口フラスコに入れ、冷却し5℃まで降温し、1.0molのホスゲンを滴下し始め、1時間かけて滴下が終了し、1時間撹拌し、ろ過し、1,1’-カルボニルジイミダゾールを含むろ液を得た。その後、-15℃の温度で、前記ろ液をエリスリトール0.6molを含むテトラヒドロフラン(307ml)溶液に滴下し、1.5時間かけて滴下が終了し、保温しながら2時間撹拌し、真空で溶剤を除去し、残留物を得た。残留物をジクロロメタンに溶解させ、冷水で2回洗浄した。20gの無水硫酸ナトリウムを加えて乾燥し、濃縮し4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの粗生成物を得た。粗生成物を再結晶し、83.4gの4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの純品(収率95.8%)を得た。
得られた4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを集め、測定した結果、密度は1.609g/cm3であり、沸点は535.71℃(760mmHg)であり、HPLCにより検出された純度は99.85%であった。
Example 4
Place 6.0 mol of imidazole and 164 ml of tetrahydrofuran in a four-necked flask under an argon gas atmosphere, cool down to 5° C., start dropping 1.0 mol of phosgene, and finish dropping over 1 hour. The mixture was stirred for hours and filtered to obtain a filtrate containing 1,1′-carbonyldiimidazole. Then, at a temperature of −15° C., the filtrate was added dropwise to a tetrahydrofuran (307 ml) solution containing 0.6 mol of erythritol, and the dropwise addition was completed over 1.5 hours. was removed to give a residue. The residue was dissolved in dichloromethane and washed twice with cold water. 20 g of anhydrous sodium sulfate was added for drying and concentration to obtain a crude product of 4,4'-bi-1,3-dioxolane-2,2'-dione. The crude product was recrystallized to obtain 83.4 g of pure 4,4'-bi-1,3-dioxolane-2,2'-dione (yield 95.8%).
The resulting 4,4'-bi-1,3-dioxolane-2,2'-dione was collected and measured to have a density of 1.609 g/cm3 and a boiling point of 535.71°C (760 mmHg). , the purity detected by HPLC was 99.85%.

実施例5
アルゴンガス雰囲気下で4.0molのイミダゾール、136mlのテトラヒドロフランを四つ口フラスコに入れ、冷却し3℃まで降温し、1.0molのホスゲンを滴下し始め、0.7時間かけて滴下が終了し、0.7時間撹拌し、ろ過し、1,1’-カルボニルジイミダゾールを含むろ液を得た。その後、-13℃の温度で、前記ろ液をエリスリトール0.8molを含むテトラヒドロフラン(420ml)溶液に滴下し、1.3時間かけて滴下が終了し、保温しながら0.5時間撹拌し、真空で溶剤を除去し、残留物を得た。残留物をジクロロメタンに溶解させ、冷水で2回洗浄した。20gの無水硫酸ナトリウムを加えて乾燥し、濃縮し4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの粗生成物を得た。粗生成物を再結晶し、83.74gの4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの純品(収率96.2%)を得た。
得られた4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを集め、測定した結果、密度は1.6087g/cm3であり、沸点は535.64℃(760mmHg)であり、HPLCにより検出された純度は99.86%であった。
Example 5
In an argon gas atmosphere, 4.0 mol of imidazole and 136 ml of tetrahydrofuran were placed in a four-neck flask, cooled to 3° C., and 1.0 mol of phosgene was started dropwise, and the dropwise addition was completed over 0.7 hours. , 0.7 hours, and filtered to obtain a filtrate containing 1,1′-carbonyldiimidazole. Then, at a temperature of −13° C., the filtrate was added dropwise to a tetrahydrofuran (420 ml) solution containing 0.8 mol of erythritol, and the dropwise addition was completed over 1.3 hours. Solvent was removed at rt to give a residue. The residue was dissolved in dichloromethane and washed twice with cold water. 20 g of anhydrous sodium sulfate was added for drying and concentration to obtain a crude product of 4,4'-bi-1,3-dioxolane-2,2'-dione. The crude product was recrystallized to obtain 83.74 g of pure 4,4'-bi-1,3-dioxolane-2,2'-dione (yield 96.2%).
The resulting 4,4'-bi-1,3-dioxolane-2,2'-dione was collected and measured to have a density of 1.6087 g/cm3 and a boiling point of 535.64°C (760 mmHg). , the purity detected by HPLC was 99.86%.

実施例6
アルゴンガス雰囲気下で4.0molのイミダゾール、125mlのテトラヒドロフランを四つ口フラスコに入れ、冷却し-3℃まで降温し、1.0molのホスゲンを滴下し始め、0.9時間かけて滴下が終了し、0.9時間撹拌し、ろ過し、1,1’-カルボニルジイミダゾールを含むろ液を得た。その後、-9℃の温度で、前記ろ液をエリスリトール0.5molを含むテトラヒドロフラン(268ml)溶液に滴下し、1.4時間かけて滴下が終了し、保温しながら1.8時間撹拌し、真空で溶剤を除去し、残留物を得た。残留物をジクロロメタンに溶解させ、冷水で2回洗浄した。20gの無水硫酸ナトリウムを加えて乾燥し、濃縮し4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの粗生成物を得た。粗生成物を再結晶し、84gの4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの純品(収率96.5%)を得た。
得られた4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを集め、測定した結果、密度は1.6073g/cm3であり、沸点は535.38℃(760mmHg)であり、HPLCにより検出された純度は99.86%であった。
Example 6
Place 4.0 mol of imidazole and 125 ml of tetrahydrofuran in a four-necked flask under an argon gas atmosphere, cool down to -3°C, start dropping 1.0 mol of phosgene, and finish dropping over 0.9 hours. The mixture was stirred for 0.9 hours and filtered to obtain a filtrate containing 1,1′-carbonyldiimidazole. Then, at a temperature of −9° C., the filtrate was added dropwise to a tetrahydrofuran (268 ml) solution containing 0.5 mol of erythritol, and the dropwise addition was completed over 1.4 hours. Solvent was removed at rt to give a residue. The residue was dissolved in dichloromethane and washed twice with cold water. 20 g of anhydrous sodium sulfate was added for drying and concentration to obtain a crude product of 4,4'-bi-1,3-dioxolane-2,2'-dione. The crude product was recrystallized to obtain 84 g of pure 4,4'-bi-1,3-dioxolane-2,2'-dione (yield 96.5%).
The resulting 4,4'-bi-1,3-dioxolane-2,2'-dione was collected and measured to have a density of 1.6073 g/cm3 and a boiling point of 535.38°C (760 mmHg). , the purity detected by HPLC was 99.86%.

実施例7
アルゴンガス雰囲気下で4.0molのイミダゾール、125mlのテトラヒドロフランを四つ口フラスコに入れ、冷却し-1℃まで降温し、1.0molのホスゲンを滴下し始め、0.6時間かけて滴下が終了し、0.6時間撹拌し、ろ過し、1,1’-カルボニルジイミダゾールを含むろ液を得た。その後、-11℃の温度で、前記ろ液をエリスリトール0.45molを含むテトラヒドロフラン(240ml)溶液に滴下し、1.2時間かけて滴下が終了し、保温しながら1.2時間撹拌し、真空で溶剤を除去し、残留物を得た。残留物をジクロロメタンに溶解させ、冷水で2回洗浄した。20gの無水硫酸ナトリウムを加えて乾燥し、濃縮し4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの粗生成物を得た。粗生成物を再結晶し、76.23gの4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの純品(収率97.3%)を得た。
得られた4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを集め、質量分析検出を行い、図3及び図4を参照してそのマススペクトルを検出した。測定した結果、密度は1.6088g/cm3であり、沸点は535.68℃(760mmHg)であり、HPLCにより検出された純度は99.84%であった。
Example 7
Place 4.0 mol of imidazole and 125 ml of tetrahydrofuran in a four-necked flask under an argon gas atmosphere, cool down to -1°C, start dropping 1.0 mol of phosgene, and finish dropping over 0.6 hours. The mixture was stirred for 0.6 hours and filtered to obtain a filtrate containing 1,1′-carbonyldiimidazole. Then, at a temperature of −11° C., the filtrate was added dropwise to a tetrahydrofuran (240 ml) solution containing 0.45 mol of erythritol, and the dropwise addition was completed over 1.2 hours. Solvent was removed at rt to give a residue. The residue was dissolved in dichloromethane and washed twice with cold water. 20 g of anhydrous sodium sulfate was added for drying and concentration to obtain a crude product of 4,4'-bi-1,3-dioxolane-2,2'-dione. The crude product was recrystallized to obtain 76.23 g of pure 4,4'-bi-1,3-dioxolane-2,2'-dione (yield 97.3%).
The obtained 4,4'-bi-1,3-dioxolane-2,2'-dione was collected and subjected to mass spectrometric detection, and the mass spectrum was detected with reference to FIGS. 3 and 4. FIG. Density was determined to be 1.6088 g/cm 3 , boiling point was 535.68° C. (760 mmHg), and purity was 99.84% as detected by HPLC.

二、試験性能
1、高温性能の検討
実験で検討使用されるリチウムイオン電池はBYD社製の定格容量が950mAhであるLP063450ARタイプのプリズム型リチウムイオン電池である。電池をそれぞれ25℃及び5℃で1C倍率(950mA)で充放電サイクル試験を行い、定電流定電圧充電システム(CC-CV)及び定電流放電システムを用い、充放電電圧範囲は3.0~4.5Vである。まず1Cの定電流で4.5Vになるまで充電してから、4.5Vの定電圧で電流が20mA以下になるまで充電した後、1Cの定電流で終止電圧が3.0Vになるまで放電する。このようにサ繰り返して充放電を500回行い、サイクルデータの採取はLAND-2001T型電池測定システムで行われる。
2. Test performance 1. Study of high-temperature performance The lithium-ion battery used in the experiment is a BYD LP063450AR type prismatic lithium-ion battery with a rated capacity of 950mAh. The battery was subjected to a charge-discharge cycle test at 25 ° C. and 5 ° C. at 1C magnification (950 mA), using a constant current constant voltage charging system (CC-CV) and a constant current discharging system, and the charging / discharging voltage range was 3.0 ~ 4.5V. First, charge at a constant current of 1C to 4.5V, then charge at a constant voltage of 4.5V until the current drops to 20mA or less, then discharge at a constant current of 1C until the final voltage reaches 3.0V. do. In this way, the battery is repeatedly charged and discharged 500 times, and the cycle data is collected by the LAND-2001T type battery measurement system.

図1を参照する。300サイクル経過後、25℃で充放電を繰り返した電池は容量保持率が88.8%であり、65℃で電池の容量が73.1%に過ぎず、容量が急速に減衰した。前記BYD社製の定格容量が950mAhであるLP063450ARタイプのプリズム型リチウムイオン電池は、65℃でのサイクル安定性が25℃でのサイクル安定性よりも劣っていることが分かった。図1から、電池は65℃で放電容量が電池の定格容量よりも高いことがさらに判明した。これは、高温時に電解質の粘度が低減し、リチウムイオンの移動速度が向上し、アクティブリチウムの利用率が高くなり、リチウム電池が高い充放電容量を示しているためである。 Please refer to FIG. After 300 cycles, the battery that was repeatedly charged and discharged at 25°C had a capacity retention rate of 88.8%, and the capacity of the battery at 65°C was only 73.1%, showing a rapid decrease in capacity. It was found that the BYD LP063450AR type prismatic lithium ion battery with a rated capacity of 950 mAh had poorer cycle stability at 65°C than cycle stability at 25°C. From FIG. 1 it was further found that the battery has a higher discharge capacity at 65° C. than the rated capacity of the battery. This is because the viscosity of the electrolyte is reduced at high temperatures, the mobility of lithium ions is improved, the utilization of active lithium is increased, and the lithium battery exhibits high charge-discharge capacity.

本発明で製造された4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンは電池の高温性能を向上する機能を有することを検証するために、BYD社製の定格容量が950mAhであるLP063450ARタイプのプリズム型リチウムイオン電池を試験対象として、当該電池の電解液に電解液の質量が2%である4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを加え、上記同じ操作を繰り返して、電池の高温サイクル性能を検出した。 In order to verify that the 4,4'-bi-1,3-dioxolane-2,2'-dione produced in the present invention has the function of improving the high-temperature performance of batteries, the rated capacity manufactured by BYD was A 950 mAh type LP063450AR prism type lithium ion battery was tested, and 4,4′-bi-1,3-dioxolane-2,2′-dione having an electrolytic solution weight of 2% was added to the electrolyte of the battery. was added, and the same operation was repeated to detect the high-temperature cycle performance of the battery.

図2を参照する。300サイクル経過後、本発明の4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを添加した電池は65℃で電池の容量が87.6%であり、500サイクル後65℃で電池の容量が75.2%である。本発明の4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを添加していない電池は500サイクル後65℃で電池の容量が59%であり、寿命が終わった。本発明で製造された4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンは高電圧、高温での電池のサイクル性能を向上できることが判明した。 Please refer to FIG. After 300 cycles, the battery to which 4,4′-bi-1,3-dioxolane-2,2′-dione of the present invention was added had a battery capacity of 87.6% at 65° C., and a capacity of 65% after 500 cycles. °C, the capacity of the battery is 75.2%. The battery to which the 4,4'-bi-1,3-dioxolane-2,2'-dione of the present invention was not added had a battery capacity of 59% at 65°C after 500 cycles, indicating the end of life. It was found that 4,4'-bi-1,3-dioxolane-2,2'-dione prepared according to the present invention can improve the cycle performance of batteries at high voltage and high temperature.

2、低温性能の検討
LiFePO4リチウムイオン電池を検討対象として、そのサイズが12cm×7cm×0.8cmであり、単独の電池定格容量が10Ahであり、動作電圧が3.3~4.2Vであり、ケースがアルミニウムプラスチックフィルムである。低温試験を行った。25℃を低温試験基準点とし、25℃から-20℃まで、5℃ごとに温度検査点となり、温度変化速度が30min/5℃であり、それぞれの温度で24時間放置してから、前記温度における性能試験を行うことができる。試験結果を表1に示す。
2. Investigation of low-temperature performance LiFePO4 lithium ion battery is the object of investigation, the size is 12 cm × 7 cm × 0.8 cm, the single battery rated capacity is 10 Ah, and the operating voltage is 3.3 to 4.2 V. , the case is aluminum plastic film. A low temperature test was performed. 25°C is taken as a low temperature test reference point, and from 25°C to -20°C, every 5°C is a temperature inspection point, and the temperature change rate is 30min/5°C. Performance tests can be performed in Table 1 shows the test results.

表1 温度の放電容量(0.5C)に対する影響
Table 1 Effect of temperature on discharge capacity (0.5C)

以上の表1から分かるように、温度が低いほど、容量が大きく減衰する。本実験検討対象は低温サイクル性能が悪いという問題があることを示している。 As can be seen from Table 1 above, the lower the temperature, the greater the attenuation of the capacity. This experimental study indicates that there is a problem of poor low-temperature cycle performance.

本発明で製造された4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンは電池の低温性能を向上する機能を有することを検証するために、上記同じLiFePO4リチウムイオン電池を検討対象として、当該電池の電解液に電解液の質量が2%である4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを加え、上記同じ操作を繰り返して、電池の低温サイクル性能を検出した。結果を表2に示す。 In order to verify that the 4,4'-bi-1,3-dioxolane-2,2'-dione produced in the present invention has the function of improving the low temperature performance of the battery, the same LiFePO4 lithium ion battery as above was tested. As a subject of investigation, 4,4′-bi-1,3-dioxolane-2,2′-dione having a mass of 2% of the electrolyte solution was added to the electrolyte solution of the battery, and the same operation as described above was repeated to obtain the battery. The low temperature cycle performance was detected. Table 2 shows the results.

表2 温度の放電容量(0.5C)に対する影響
Table 2 Effect of temperature on discharge capacity (0.5C)

表2から分かるように、本発明の4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを加えた後、電池の低温サイクル性能を改善することができる。
As can be seen from Table 2, the low temperature cycling performance of the battery can be improved after adding the 4,4'-bi-1,3-dioxolane-2,2'-dione of the present invention.

Claims (6)

アルゴンガス雰囲気下でイミダゾール、テトラヒドロフランを反応器に加え、冷却し-5~5℃まで降温し、ホスゲンを滴下し始め、0.5~1時間かけて滴下が終了し、0.5~1時間撹拌し、ろ過し、1,1’-カルボニルジイミダゾールを含むろ液を得た後、-8~-15℃の温度で、前記ろ液をエリスリトールのテトラヒドロフラン溶液に滴下し、1~1.5時間かけて滴下が終了し、保温しながら0.5~2時間撹拌し、真空で溶剤を除去し、残留物を得、残留物をジクロロメタンに溶解させ、冷水で洗浄し、乾燥後濃縮し4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの粗生成物を得、粗生成物を精製し、精製された4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンを得たことを特徴とする、4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの合成方法。 Add imidazole and tetrahydrofuran to the reactor under an argon gas atmosphere, cool down to −5 to 5° C., start dropping phosgene, finish dropping over 0.5 to 1 hour, and finish dropping for 0.5 to 1 hour. After stirring and filtering to obtain a filtrate containing 1,1′-carbonyldiimidazole, the filtrate is added dropwise to a tetrahydrofuran solution of erythritol at a temperature of −8 to −15° C. The dropwise addition was completed over time, stirred for 0.5-2 hours while maintaining temperature, the solvent was removed in vacuo to obtain a residue, the residue was dissolved in dichloromethane, washed with cold water, dried and concentrated4. ,4'-bi-1,3-dioxolane-2,2'-dione crude product is obtained, the crude product is purified, purified 4,4'-bi-1,3-dioxolane-2, A method for synthesizing 4,4'-bi-1,3-dioxolane-2,2'-dione, characterized in that 2'-dione is obtained. ホスゲンと、イミダゾールと、エリスリトールとのモル比が1:(3~6):(0.45~0.8)であることを特徴とする、請求項1に記載の4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの合成方法。 4,4'-bi- according to claim 1, characterized in that the molar ratio of phosgene, imidazole and erythritol is 1:(3-6):(0.45-0.8) A method for synthesizing 1,3-dioxolane-2,2'-dione. エリスリトールがテトラヒドロフラン溶液に1g/4~4.5mlであることを特徴とする、請求項1に記載の4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの合成方法。 The method for synthesizing 4,4'-bi-1,3-dioxolane-2,2'-dione according to claim 1, characterized in that erythritol is 1g/4~4.5ml in the tetrahydrofuran solution. 冷水で2~3回洗浄することを特徴とする、請求項1に記載の4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの合成方法。 The method for synthesizing 4,4'-bi-1,3-dioxolane-2,2'-dione according to claim 1, characterized by washing with cold water two to three times. 乾燥は無水硫酸ナトリウム及び/又は酸化カルシウムで乾燥することを特徴とする、請求項1に記載の4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの合成方法。 2. The method for synthesizing 4,4'-bi-1,3-dioxolane-2,2'-dione according to claim 1, wherein drying is performed with anhydrous sodium sulfate and/or calcium oxide. 精製はアセトンで再結晶することを特徴とする、請求項1に記載の4,4’-ビ-1,3-ジオキソラン-2,2’-ジオンの合成方法。

The method for synthesizing 4,4'-bi-1,3-dioxolane-2,2'-dione according to claim 1, wherein the purification is recrystallization with acetone.

JP2021513778A 2019-05-05 2019-12-23 Method for synthesizing 4,4'-bi-1,3-dioxolane-2,2'-dione Active JP7315810B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910367828.3A CN111892569A (en) 2019-05-05 2019-05-05 Synthesis method of 4,4 '-bi-1, 3-dioxolane-2, 2' -diketone
CN201910367828.3 2019-05-05
PCT/CN2019/127304 WO2020224268A1 (en) 2019-05-05 2019-12-23 Synthesis method for 4,4'-bi-1,3-dioxolane-2,2'-dione

Publications (2)

Publication Number Publication Date
JP2022530931A JP2022530931A (en) 2022-07-05
JP7315810B2 true JP7315810B2 (en) 2023-07-27

Family

ID=73051020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021513778A Active JP7315810B2 (en) 2019-05-05 2019-12-23 Method for synthesizing 4,4'-bi-1,3-dioxolane-2,2'-dione

Country Status (4)

Country Link
JP (1) JP7315810B2 (en)
KR (1) KR102509669B1 (en)
CN (1) CN111892569A (en)
WO (1) WO2020224268A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115583934A (en) * 2022-09-30 2023-01-10 河北圣泰材料股份有限公司 Preparation method of 4,4 '-bi-1, 3-dioxolane-2, 2' -diketone

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004528326A (en) 2001-04-12 2004-09-16 ワイス Novel hydroxycyclohexenylphenylcarboxamide uterine contractile oxytocin receptor antagonist
JP2007514670A (en) 2003-12-19 2007-06-07 サルティゴ・ゲーエムベーハー Process for producing N, N-carbonyldiazoles
CN108808066A (en) 2017-04-28 2018-11-13 深圳新宙邦科技股份有限公司 Non-aqueous electrolyte for lithium ion cell and lithium ion battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1147540A (en) * 1966-04-19 1969-04-02 Grace W R & Co Butanetetrol dicarbonates and their production
DE4424400A1 (en) * 1994-07-11 1996-01-18 Bayer Ag Improved process for the preparation of N, N'-carbonyldiazoles, in particular N, N'-carbonyldiimidazole
PL1709014T3 (en) * 2004-01-20 2007-10-31 Merck & Co Inc Antidiabetic oxazolidinediones and thiazolidinediones
WO2005095355A1 (en) * 2004-03-30 2005-10-13 Hodogaya Chemical Co., Ltd. Process for producing n,n'-carbonyldiimidazole
CN112898265A (en) * 2019-11-18 2021-06-04 石家庄圣泰化工有限公司 Preparation method of 4,4 '-bi-1, 3-dioxolane-2, 2' -diketone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004528326A (en) 2001-04-12 2004-09-16 ワイス Novel hydroxycyclohexenylphenylcarboxamide uterine contractile oxytocin receptor antagonist
JP2007514670A (en) 2003-12-19 2007-06-07 サルティゴ・ゲーエムベーハー Process for producing N, N-carbonyldiazoles
CN108808066A (en) 2017-04-28 2018-11-13 深圳新宙邦科技股份有限公司 Non-aqueous electrolyte for lithium ion cell and lithium ion battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Macromolecular Chemistry and Physics,2017年,Vol. 218, 1700022,pp. 1-6

Also Published As

Publication number Publication date
CN111892569A (en) 2020-11-06
KR20210044829A (en) 2021-04-23
KR102509669B1 (en) 2023-03-14
WO2020224268A1 (en) 2020-11-12
JP2022530931A (en) 2022-07-05

Similar Documents

Publication Publication Date Title
CN104009210B (en) A kind of porous silicon/carbon composite material, Preparation method and use
WO2017113820A1 (en) High-voltage wide-temperature lithium ion battery electrolyte, preparation method therefor and application thereof
CN110818674A (en) Preparation method of vinyl sulfate
CN107579280B (en) The lithium secondary cell electrolyte and lithium secondary battery of the ester of silicon substrate containing cyclic disulfonic acid
CN112054238B (en) Cyclic sulfate additive containing silica chain segment, electrolyte containing cyclic sulfate additive and lithium ion battery
JP7315810B2 (en) Method for synthesizing 4,4'-bi-1,3-dioxolane-2,2'-dione
CN113698295A (en) Synthetic method of 2, 2-difluoroethyl acetate
JP2019087533A (en) Electrolyte composition and application thereof
CN110343125B (en) Method for preparing high-purity proportional mixed lithium salt at low cost and application of mixed lithium salt in lithium ion battery
CN101265176B (en) Method for purifying LiODFB
WO2024109206A1 (en) Non-aqueous electrolyte solution and secondary battery
CN111349058A (en) Synthesis method of 1, 4-bis (methylsulfonyl) piperazine
CN115197081A (en) Low-cost zinc battery positive electrode material and preparation method thereof
CN114843587A (en) Cyclic carbonate additive containing silicon-oxygen chain segment, lithium ion battery electrolyte and lithium ion battery
CN111349030A (en) Synthesis method of bis [ (trifluoromethyl) sulfonyl ] methane
CN113527209A (en) Synthesis method of 1- (2,4, 6-triisopropylphenylsulfonyl) imidazole
CN114094184B (en) Low-temperature quick-charging electrolyte containing surfactant and application thereof
CN114605457B (en) Preparation method of lithium bisoxalato borate
CN113087600B (en) Method for synthesizing 1, 4-dimethoxy tetrafluorobenzene
CN111349029A (en) Synthesis method of bis (methylsulfonyl) methane
CN110994028B (en) Electrolyte applied to high-energy-density lithium ion battery and preparation method thereof
CN114079084B (en) Electrolyte additive, electrolyte and lithium ion secondary battery
CN108659034B (en) Synthesis method and application of 6-methyl-6-propionitrile-2, 5,7, 10-tetraoxa-6-silaundecane
CN117720439A (en) Preparation method of 1, 3-propanedisulfonyl fluoride
CN113698428A (en) Method for synthesizing carbonic ester functionalized silane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R150 Certificate of patent or registration of utility model

Ref document number: 7315810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150