JP7313743B1 - Thermal insulation structure for mobile equipment - Google Patents

Thermal insulation structure for mobile equipment Download PDF

Info

Publication number
JP7313743B1
JP7313743B1 JP2022191876A JP2022191876A JP7313743B1 JP 7313743 B1 JP7313743 B1 JP 7313743B1 JP 2022191876 A JP2022191876 A JP 2022191876A JP 2022191876 A JP2022191876 A JP 2022191876A JP 7313743 B1 JP7313743 B1 JP 7313743B1
Authority
JP
Japan
Prior art keywords
heat
high reflectance
moving body
radiant heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022191876A
Other languages
Japanese (ja)
Inventor
修平 野口
和恵 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon-Shanetu Co., Ltd.
Original Assignee
Nihon-Shanetu Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon-Shanetu Co., Ltd. filed Critical Nihon-Shanetu Co., Ltd.
Priority to JP2022191876A priority Critical patent/JP7313743B1/en
Application granted granted Critical
Publication of JP7313743B1 publication Critical patent/JP7313743B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Abstract

【課題】屋外で移動する自動車、鉄道車両等の設備の内装基材の表面に、アルミホイル等輻射熱に対して高反射率の素材を施工する事により、即効性で軽量しかも冷暖房効果の大きい移動体の遮熱構造を提供する。【解決手段】移動体の遮熱構造10は、屋外を移動し、内部に冷却装置を有する乗り物30やコンテナ20等に構築され、乗り物30やコンテナ20等を構成する内装基材2の室内側に、アルミホイル等輻射熱に対して高反射率の素材4が大気に接して施されている。本発明の移動体の遮熱構造10を乗り物30やコンテナ20に構築することで、冷却・暖房効果を大きくすることができる。【選択図】図1[Problem] By applying a material with high reflectance to radiant heat such as aluminum foil on the surface of the interior base material of equipment such as automobiles and railway vehicles that move outdoors, movement is immediate, lightweight, and has a large cooling and heating effect. Provides a heat shield structure for the body. SOLUTION: A heat shield structure 10 for a moving object is constructed in a vehicle 30, a container 20, or the like that moves outdoors and has a cooling device inside, and is installed on the indoor side of an interior base material 2 that constitutes the vehicle 30, the container 20, or the like. In addition, a material 4 having a high reflectance against radiant heat, such as aluminum foil, is applied in contact with the atmosphere. By constructing the heat shield structure 10 for a moving body of the present invention in the vehicle 30 or the container 20, the cooling/heating effect can be increased. [Selection drawing] Fig. 1

Description

本発明は、屋外で移動する自動車、鉄道車両、航空機、船舶等の乗物や輸送用コンテナ等の設備の内装基材の表面に、アルミホイル等輻射熱に対して高反射率の素材を施工する事により、即効性で軽量しかも冷暖房効果の大きい移動体の遮熱構造に関する。 The present invention relates to a heat shielding structure for mobile bodies that is quick, lightweight, and has a high cooling and heating effect by applying a material with high reflectivity to radiant heat, such as aluminum foil, on the surface of the interior base material of vehicles such as automobiles, railroad vehicles, aircraft, and ships that move outdoors, and equipment such as shipping containers.

自動車やコンテナに遮熱効果を施したものが開示されている(例えば、特許文献1)。自動車の内装材と外装材の間に遮熱材を施工したり、コンテナの外装材の屋外側に遮熱塗装を施したりすることで、外部からの熱の侵入を防いでいる。 Automobiles and containers with a heat shielding effect have been disclosed (for example, Patent Document 1). Intrusion of heat from the outside is prevented by installing heat shielding materials between the interior and exterior materials of automobiles and by applying heat shielding paint to the exterior of containers.

特許文献1に記載のコンテナは、外装パネルと内壁面をなす内装材との間に遮熱シートを介在させたことで、外来の輻射熱は遮熱シートにより高い効率で反射され、遮熱シートより内側への輻射熱の侵入の大部分がカットされ、収納空間の温度上昇を阻止できる。 In the container described in Patent Document 1, a heat shield sheet is interposed between the exterior panel and the interior material forming the inner wall surface, so that external radiant heat is reflected by the heat shield sheet with high efficiency.

特開2020-186040号公報Japanese Patent Application Laid-Open No. 2020-186040

屋外で移動する自動車や鉄道車両等の特徴は、全体容積が極力小さく、しかし室内容積は極力大きくする必要がある。その結果、そのしわ寄せとして外装材と内装材との空間を小さくする必要がある。外装材と内装材との間を移動する熱は輻射熱が最も多く、断熱を考えるのであれば、外装材と内装材との空間に遮熱材を使用することは最も効果的と考えられる。この場合、遮熱材は外装材と内装材の間に、しかも遮熱材の両面に空気層も確保され、遮熱材の特徴である高反射率や低放射率の性能を利用しやすいと考えられるが、実際には伝導熱や対流熱を考慮する必要がある。 The characteristics of automobiles, railroad vehicles, etc. that move outdoors require that the overall volume be as small as possible, but that the interior volume be as large as possible. As a result, it is necessary to reduce the space between the exterior material and the interior material. Most of the heat that moves between the exterior material and the interior material is radiant heat, so if heat insulation is considered, it is considered most effective to use a heat shield material in the space between the exterior material and the interior material. In this case, the heat shielding material secures an air layer between the exterior and interior materials, and on both sides of the heat shielding material, making it easy to use the high reflectance and low emissivity properties of the heat shielding material.

例えば、建物の壁内の例を見ると、外装材と内装材との空間を移動する熱の割合は、伝導熱6%、対流熱29%、輻射熱65%(合計100%)である。この空間に、反射率85%の遮熱材を一層設けた場合、その熱の割合は伝導熱6%、対流熱29%、輻射熱6%で合計41%となる。そうすると、あたかも熱移動量100%から41%に減少したようにみえるが、逆に見ると41%もの熱が伝達されている事になる。 For example, looking at the example inside the wall of a building, the proportions of heat transferred in the space between the exterior and interior materials are conductive heat 6%, convective heat 29%, and radiant heat 65% (total 100%). If one layer of heat shielding material with a reflectance of 85% is provided in this space, the proportion of the heat is conductive heat 6%, convective heat 29%, and radiant heat 6%, for a total of 41%. Then, it looks as if the amount of heat transfer has decreased from 100% to 41%, but when viewed conversely, 41% of the heat is transferred.

注目すべきは、伝導熱と対流熱の割合は減少していない事である。即ち、放射側が小空間で有る場合、伝導熱や対流熱の影響が大きく、これを極力少なくする必要がある。自動車も同様な構造や環境であるから、類似の性能と考えられる。従って、内装材と外装材の間に施工した場合では、遮熱材の本来の性能が十分に生かされていない。 It should be noted that the ratio of conductive and convective heat has not decreased. That is, when the radiation side is in a small space, the influence of conductive heat and convective heat is great, and it is necessary to reduce this as much as possible. Automobiles have similar structures and environments, so they are considered to have similar performance. Therefore, when it is constructed between the interior material and the exterior material, the original performance of the heat shield material is not fully utilized.

本発明は、これらの問題を解決する為になされたものであり、即効性があり、冷却・暖房効果が大きい移動体の遮熱構造を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve these problems, and it is an object of the present invention to provide a heat shielding structure for a moving body that has an immediate effect and a large cooling and heating effect.

本発明に係る移動体の遮熱構造は、屋外を移動し、内部に冷却装置を有する移動体に構築され、移動体を構成する内装基材の室内側に、アルミホイル等輻射熱に対して高反射率の素材が大気に接して形成されていることを特徴とする。 The heat shield structure of a moving body according to the present invention is constructed in a moving body that moves outdoors and has a cooling device inside, and is characterized in that a material having a high reflectance against radiant heat, such as aluminum foil, is formed in contact with the atmosphere on the indoor side of the interior base material that constitutes the moving body.

本発明に係る移動体の遮熱構造は、屋外を移動し、内部に冷却装置を有する移動体に構築され、着色層や保護層がアルミホイル等輻射熱に対して高反射率の素材よりも室内側に大気に接して形成されていることを特徴とする。 The heat shield structure of a moving body according to the present invention is constructed in a moving body that moves outdoors and has a cooling device inside, and is characterized in that the colored layer and the protective layer are formed in contact with the atmosphere on the indoor side rather than a material having a high reflectance against radiant heat such as aluminum foil.

本発明に係る移動体の遮熱構造は、移動体が、自動車、鉄道車両、航空機、船舶等の乗物、輸送用コンテナであることを特徴とする。 The heat shield structure for a moving body according to the present invention is characterized in that the moving body is a vehicle such as an automobile, a railroad vehicle, an aircraft, a ship, or a transportation container.

本発明に係る移動体の遮熱構造は、内部に冷却装置を有する移動体を構成する内装基材の室内側に、アルミホイル等輻射熱に対して高反射率の素材が大気に接して施されている。室内側で、アルミホイル等輻射熱に対して高反射率の素材が大気に接する構造とすることで、冷却・暖房効果が大きく、これらの効果に即効性がある。 In the heat shield structure for a moving body according to the present invention, a material having a high reflectance against radiant heat, such as aluminum foil, is applied on the interior side of the interior base material that constitutes the moving body having a cooling device inside so that it is in contact with the atmosphere. On the indoor side, materials with high reflectance against radiant heat, such as aluminum foil, are in contact with the atmosphere, so the cooling and heating effects are great and these effects are immediate.

また、本発明に係る移動体の遮熱構造は、内部に冷却装置を有する移動体に構築され、着色層や保護層がアルミホイル等輻射熱に対して高反射率の素材よりも室内側に大気に接して形成されている。この移動体の遮熱構造を構築することで、冷却・暖房効果が大きくすることに加え、太陽光を乱反射層させることができ、かつアルミホイル等輻射熱に対して高反射率の素材の腐蝕を防止することができる。 In addition, the heat shield structure of the moving body according to the present invention is constructed in a moving body having a cooling device inside, and the colored layer and the protective layer are formed in contact with the atmosphere on the indoor side rather than a material with a high reflectance against radiant heat such as aluminum foil. By constructing this heat-shielding structure of the moving body, in addition to increasing the cooling and heating effect, it is possible to create a diffuse reflection layer for sunlight and prevent corrosion of materials with high reflectance against radiant heat such as aluminum foil.

(a)本発明の実施形態に係る移動体である自動車の天井部に構築した移動体の遮熱構造の断面図である。(b)本発明の実施形態に係る移動体の床材等外装材兼内装機材に構築した移動体の遮熱構造の断面図である。(a) It is sectional drawing of the heat-shielding structure of the mobile body built in the ceiling part of the motor vehicle which is a mobile body which concerns on embodiment of this invention. (b) It is sectional drawing of the heat-shielding structure of the moving body which constructed|assembled exterior materials, such as a floor material, and interior equipment of the moving body which concerns on embodiment of this invention. 本発明の実施形態に係る移動体の遮熱構造をコンテナに構築した図である。It is the figure which constructed|assembled the heat-shielding structure of the mobile body which concerns on embodiment of this invention in the container. 本発明の実施形態に係る移動体の遮熱構造をコンテナに構築した図である。It is the figure which constructed|assembled the heat-shielding structure of the mobile body which concerns on embodiment of this invention in the container. 本発明の実施形態に係る移動体の遮熱構造を鉄道車両に構築した図である。It is a figure which built the thermal insulation structure of the mobile body which concerns on embodiment of this invention in the railway vehicle. 本発明の実施形態に係る移動体の遮熱構造を鉄道車両に構築した図である。It is a figure which built the thermal insulation structure of the mobile body which concerns on embodiment of this invention in the railway vehicle.

以下、本発明を実施するための最良の形態について、図1から図5を参照し、説明する。 BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described below with reference to FIGS. 1 to 5. FIG.

熱は高温側から低温側に移動する。自動車、鉄道車両、航空機、船舶等の乗物や輸送用コンテナ等の移動体(移動設備)は太陽に直接晒され、しかも密封空間であることから、最も大きなエネルギーをもつ輻射熱の影響を受けやすい。従って、省エネルギーや熱中症対策には輻射熱の影響を重視する必要がある。 Heat moves from the hot side to the cold side. Vehicles such as automobiles, railroad vehicles, aircraft, and ships, as well as moving bodies (moving equipment) such as shipping containers, are directly exposed to the sun and are in sealed spaces, so they are susceptible to the effects of radiant heat, which has the greatest energy. Therefore, it is necessary to emphasize the influence of radiant heat for energy saving and measures against heatstroke.

本発明に係る移動体の遮熱構造10aは、図1(a)に示すように、外装材1との間に所定の静止空間(静止空気層)3が形成された内装基材2の表側(室内側)に遮熱材6が設けられている。遮熱材6は、アルミホイル等輻射熱に対して高反射率素材4(以下、高反射率素材4ともいう)と、この高反射率素材4の表側(室内側)に設けられた着色層(保護層)5とを備えている。着色層5は、高反射率素材4よりも室内側に設けられ、大気に接している。また、本発明に係る移動体の遮熱構造10bは、図1(b)に示すように、外装材1(内装基材2)の表側(室内側)に、高反射率素材4(遮熱材6)のみ備えて構成されている。この場合も、高反射率素材4は、室内側に設けられ、大気に接している。
そして、移動体の室内側には、冷却装置が備えられている。
As shown in FIG. 1(a), the heat shielding structure 10a for a moving object according to the present invention is provided with a heat shielding material 6 on the front side (inside the room) of an interior base material 2 in which a predetermined static space (static air layer) 3 is formed between the exterior material 1 and the interior base material 2. The heat shielding material 6 includes a high reflectance material 4 (hereinafter also referred to as a high reflectance material 4) against radiant heat such as aluminum foil, and a colored layer (protective layer) 5 provided on the front side (indoor side) of the high reflectance material 4. The colored layer 5 is provided on the indoor side of the high reflectance material 4 and is in contact with the atmosphere. In addition, as shown in FIG. 1B, the heat shielding structure 10b of the moving body according to the present invention is configured with only the high reflectance material 4 (heat shielding material 6) on the front side (inside the room) of the exterior material 1 (interior base material 2). Also in this case, the high reflectance material 4 is provided on the indoor side and is in contact with the atmosphere.
A cooling device is provided on the indoor side of the moving body.

輻射熱を阻止するには、高反射率素材4が有効で有る事は一般的に知られている。輻射熱を阻止し性能を最大限に発揮するには、六つの大きなポイントがある。 It is generally known that the high reflectance material 4 is effective in blocking radiant heat. There are six major points to prevent radiant heat and maximize performance.

第一は、自動車や鉄道車両等の小空間の最も効果的な冷暖房効果は、高反射率素材4を移動体の室内側に使用することである。高反射率素材4の放射側が人間の近くにあることは、何よりも即効性があり省エネルギー効果が大きい。
第二は、高反射率素材4の放射側が極力大きな静止空間3に面している事である。放射側が静止空間3に近ければ、対流熱の影響が少ないと言える。又、大きな空間で有れば、急速な温度上昇を避けることが出来る。
第三は、高反射率素材4を極力移動体の室内全面に使用する事である。高反射率素材4の効果は面積に比例し、従って少しでも大きな面積を遮熱することが好ましい。
First, the most effective cooling and heating effect for small spaces such as automobiles and railway vehicles is to use the high reflectance material 4 on the interior side of the moving body. The fact that the radiation side of the high reflectance material 4 is close to the human body has an immediate effect and a large energy-saving effect above all.
The second is that the radiation side of the high reflectance material 4 faces the still space 3 which is as large as possible. If the radiation side is close to the static space 3, it can be said that the influence of convective heat is small. Also, if there is a large space, a rapid temperature rise can be avoided.
The third is to use the high reflectance material 4 on the entire indoor surface of the moving body as much as possible. The effect of the high reflectance material 4 is proportional to the area, so it is preferable to shield as large an area as possible.

第四は、高反射率素材4の放射側の温度が低温である事である。放射熱は、絶対温度の四乗に比例して増加するので、放射側の温度を低下させておくことが非常に重要である。例えば、高反射率素材4の施工面や周囲に隙間等があると放射側に熱が流出し、高反射率素材4の放射側の温度が上昇し、結果的に低放射の性能が大幅に低下する可能性がある。
第五は、高反射率素材4の放射側に放射された僅かな熱を、冷房装置等で吸収する事である。僅かな熱を放置しておくと放射側の温度を高める結果となり、前述と同様の結果となる。
第六は、高反射率素材4の放射側には、何も接触する物が無い事である。放射側に金物や胴縁等或いは種々の素材が接触していると、高反射率素材4からこれらの素材に伝導熱が伝達され、大幅な熱ロスとなる。
Fourth, the temperature of the radiation side of the high reflectance material 4 is low. Since radiant heat increases as the fourth power of absolute temperature, it is very important to keep the temperature on the radiant side low. For example, if there is a gap or the like on the construction surface or around the high reflectance material 4, heat flows out to the radiation side, the temperature of the radiation side of the high reflectance material 4 rises, and as a result, the performance of low radiation is greatly reduced.
Fifth, the slight heat radiated to the radiation side of the high reflectance material 4 should be absorbed by a cooling device or the like. Allowing a small amount of heat will result in an increase in the temperature of the radiating side, with the same result as before.
Sixth, the radiation side of the high reflectance material 4 has nothing to contact. If metal objects, furring strips, or various materials are in contact with the radiation side, conductive heat is transferred from the high reflectance material 4 to these materials, resulting in significant heat loss.

本発明の移動体の遮熱構造10a,10bは、内部に冷却装置を有し、屋外で移動する移動体、例えば、自動車、鉄道車両、航空機、船舶等の乗り物や輸送用コンテナに構築され、移動体の内装基材2の室内側に、大気に接してアルミホイル等輻射熱に対して高反射率の素材4が施されている。 The heat shielding structures 10a and 10b of the mobile body of the present invention have a cooling device inside and are constructed in a mobile body that moves outdoors, for example, a vehicle such as an automobile, a railroad vehicle, an aircraft, a ship, or a transportation container.

以下、本発明の移動体の遮熱構造10a,10bについて、図2から図5を参照し、具体的に説明する。図2及び図3は、移動体の遮熱構造を輸送用コンテナに構築した図であり、図4及び図5は、移動体の遮熱構造を鉄道車両に構築した図である。 Hereinafter, the heat shield structures 10a and 10b of the moving body of the present invention will be specifically described with reference to FIGS. 2 to 5. FIG. FIGS. 2 and 3 are diagrams of the heat shield structure for a moving object constructed in a transport container, and FIGS. 4 and 5 are diagrams of the heat shield structure constructed on a railway vehicle.

図2から図5に示すように、輸送用コンテナ20や乗り物(鉄道車両)30の内装基材2は、プラスチック材、革製品、布製品、金属素材、或いはガラス等種々の素材が使用されている。本発明の移動体の遮熱構造10a(10b)は、これらの素材の室内側表面に、高反射率素材4を施して、これらの設備の屋外側と室内側を移動する輻射熱を阻止する。即ち、高反射率素材4や着色層5を、大気に接する構造とする事により、低放射性能をフルに活用する構造とした。 As shown in FIGS. 2 to 5, various materials such as plastic, leather, cloth, metal, and glass are used for the interior base material 2 of a transport container 20 and a vehicle (railroad vehicle) 30. The heat shield structure 10a (10b) of the moving body of the present invention blocks the radiant heat moving between the outdoor side and the indoor side of these facilities by applying a high reflectance material 4 to the indoor surface of these materials. In other words, by making the high reflectance material 4 and the colored layer 5 contact with the air, the structure is such that the low radiation performance is fully utilized.

しかも重要なことは、高反射率素材4の放射側の温度を低温にしておくことである。放射熱は、絶対温度の四乗に比例するので、放射側温度が上昇するのは好ましい事ではないどころか、却って逆の効果を生む事もある。即ち、輸送用コンテナ20や鉄道車両30の室内への放射量を抑える方法として、これらの移動体の室内側にエアコン等の冷却装置21,31を備えることが好ましい。仮に室内に熱が侵入してもエアコン等の設備があればたちまち吸収、アルミホイル等輻射熱に対して高反射率の素材4の室内側温度上昇を阻止できるのである。 Moreover, it is important to keep the temperature of the radiation side of the high reflectance material 4 low. Since radiant heat is proportional to the fourth power of absolute temperature, an increase in the temperature on the radiation side is not only undesirable, but may even produce the opposite effect. That is, as a method of suppressing the amount of radiation into the interior of the transportation container 20 and the railroad vehicle 30, it is preferable to provide cooling devices 21, 31 such as air conditioners on the interior side of these moving bodies. Even if heat enters the room, if there is equipment such as an air conditioner, it can be absorbed immediately, and the temperature rise inside the room can be prevented by the material 4 having a high reflectance against the radiant heat such as aluminum foil.

輻射熱は、反射率+放射率=100%である。即ち、高反射率素材4は、この輻射熱を効率よく反射、或いは極わずかしか放射しない性能を持っている。又、その性能を効率よく引き出す為には、高反射率素材4が、放射側温度が上昇しにくい大きな空間である室内大気に面している事が好ましい。大きな空間は狭小空間に比べて侵入した熱が室内側の大気に拡散しやすく、結果的に高反射率素材4の放射側の温度上昇が小さくなる。 Radiant heat is reflectance + emissivity = 100%. That is, the high reflectance material 4 has the performance of efficiently reflecting this radiant heat or radiating it very little. Also, in order to efficiently bring out the performance, it is preferable that the high reflectance material 4 faces the room air, which is a large space where the temperature on the radiation side is less likely to rise. In a large space, infiltrating heat is more likely to diffuse into the atmosphere inside the room than in a narrow space, and as a result, the temperature rise on the radiation side of the high reflectance material 4 is small.

高反射率の素材4が室内側に設けられていると、夏場、屋外から室内側に向かう最も大きな熱である輻射熱は極わずかしか室内側に放射されず、エアコン等の冷却装置21,31によって、短時間で冷却され低温を維持する事が出来る。
一方、冬場は、高反射率素材4が内装基材2の表面に接しているため、室内の熱は高反射率素材4に反射され室内側に戻される。
When the high reflectance material 4 is provided on the indoor side, only a very small amount of radiant heat, which is the greatest heat directed from the outdoors to the indoor side in summer, is radiated to the indoor side, and cooling devices 21, 31 such as air conditioners can cool in a short time and maintain a low temperature.
On the other hand, in winter, since the high reflectance material 4 is in contact with the surface of the interior base material 2, the heat in the room is reflected by the high reflectance material 4 and returned to the inside of the room.

高反射率素材4を室内側に設けているため、室内の熱が本来過熱或いは冷却しなければならない内装基材がなくなり、その分室温の上昇や下降が短時間になり即効性のある環境ができる。即効性のある環境とは、大きな省エネ効果をもたらす環境といえる。 Since the high reflectance material 4 is provided on the indoor side, there is no interior base material that must be overheated or cooled by the heat in the room, and the rise and fall of the room temperature are shortened accordingly, creating an environment with immediate effect. An environment with an immediate effect can be said to be an environment that brings about a large energy-saving effect.

高反射率素材4はアルミの純度が重要であり、一般的には純度が99%以上の素材が使用される。本発明では、純度99.5%以上のものを使用する。又、輻射熱に対する反射率は95%から98%位の素材が多く使用されている。高反射率素材4は、アルミホイルを使用することがほとんどで、厚みは数ミクロンから10ミクロン程度のものが一般的である。ただ、施工部位の問題で厚みは決められる場合が多く、輻射熱の反射率とは殆ど関係がない。
天井材や床材等は柔軟性が要求されるが、このような所にはアルミ蒸着(アルミニウム蒸着)した素材が効果的である。現在は、殆どの素材にアルミ蒸着が可能で、色も種々のものを作る事が出来る。アルミ蒸着は、10から数百nmと薄く、蒸着層の厚みによって反射率が変わるものが多い。勿論、高反射率のものが好ましいが、厚みを特定するものでは無い。何れにしても、重量的には非常に軽量で、設備の全面に使用しても大幅な軽量化と効果が期待できる。勿論、反射率が高ければアルミ蒸着に関わらずほかの素材でも問題はない。
The purity of aluminum is important for the high reflectance material 4, and generally a material with a purity of 99% or more is used. In the present invention, one with a purity of 99.5% or higher is used. In addition, many materials with a reflectance of 95% to 98% for radiant heat are used. The high reflectance material 4 is mostly aluminum foil, and generally has a thickness of several microns to 10 microns. However, the thickness is often determined by the problem of the construction site, and has almost no relationship with the reflectance of radiant heat.
Flexibility is required for ceiling materials, floor materials, etc. In such places, aluminum vapor deposition (aluminum vapor deposition) materials are effective. Currently, aluminum vapor deposition is possible on most materials, and various colors can be made. Aluminum vapor deposition is as thin as 10 to several hundred nm, and the reflectance often varies depending on the thickness of the vapor deposition layer. Of course, high reflectance is preferable, but the thickness is not specified. In any case, it is very light in terms of weight, and even if it is used on the entire surface of the equipment, a significant weight reduction and effect can be expected. Of course, if the reflectance is high, other materials can be used regardless of aluminum vapor deposition.

本発明では、着色層5や保護層が、高反射率素材4よりも室内側に、大気に接して形成されている事を特徴とし、屋外で移動する自動車、鉄道車両、航空機、船舶等の乗物や輸送用コンテナ等の設備等の移動体の遮熱構造10aも提案する。 The present invention is characterized in that the colored layer 5 and the protective layer are formed in contact with the air on the indoor side of the high reflectance material 4, and also proposes a heat shielding structure 10a for moving bodies such as vehicles such as automobiles, railroad vehicles, aircraft, and ships that move outdoors, and facilities such as transportation containers.

高反射率素材4は、本来高反射率の性能をそのまま利用する為、表面は何も施されていないピカピカした鏡面が好ましい。しかし、人間が内部に滞在する自動車、鉄道車両、航空機、船舶等では、常時屋外から室内に向けて太陽光が照射される。高反射率素材4は鏡と同じ性能を持っている為、太陽光が高反射率素材4に照射されると、反射光が人間の目を傷める。そこで、本発明は高反射率素材4の表面に、輻射熱を良く透過する塗装や高透過樹脂層を施し、太陽光を乱反射層させている。輻射熱を良く透過する塗装や高透過樹脂層は、人間のいる室内側の表面に位置するので内装基材としての機能も重要で、これらには着色したものが使われる。なお、輻射熱を良く透過する塗装や高透過樹脂層が、着色層5や保護層である。 Since the high reflectance material 4 uses the performance of the original high reflectance as it is, it is preferable that the surface is a shiny mirror surface with nothing applied. However, automobiles, railroad vehicles, aircraft, ships, and the like, in which people stay inside, are always exposed to sunlight from the outside to the inside. Since the high reflectance material 4 has the same performance as a mirror, when the high reflectance material 4 is irradiated with sunlight, the reflected light damages human eyes. Therefore, in the present invention, the surface of the high-reflectance material 4 is coated with a coating or a high-transmittance resin layer that allows the radiant heat to pass through well, so that the sunlight is diffusely reflected. Paint and high-transmittance resin layers that transmit radiant heat well are located on the interior surface where people are present, so their function as an interior base material is also important, and colored materials are used for these. The colored layer 5 and the protective layer are the coating and the highly transmissive resin layer which transmit radiant heat well.

又、室内では、高反射率素材4を腐食する様な物質、例えば汗が付着したり、食品をこぼした場合等が接触する事も考えられる。従って、この着色層5や保護層を設ける事により、この様な問題も解決できる。ただし、輸送用コンテナや貨物自動車等、人間が常時滞在しない空間では着色層5や保護層を設けなくても問題はない。
着色層5や保護層を施工すると、当然の事ながら輻射熱の反射率は低下する。但し、波長にもよるが、概ね73%から95%位にはなるが、遮熱面積が大幅に増える事を考えると大きな問題ではない。これらの着色層5や保護層は、人間の目を傷めない為の乱反射構造、金属と接触して電食を起こさない事、耐酸や耐アルカリ性等の性能を持っていれば特にこの方法に拘るものではない。
Further, it is conceivable that a substance that corrodes the high reflectance material 4, such as sweat or spilled food, may come into contact indoors. Therefore, by providing the colored layer 5 and the protective layer, such a problem can be solved. However, there is no problem even if the colored layer 5 and the protective layer are not provided in a space where people do not always stay, such as a shipping container or a truck.
When the colored layer 5 and the protective layer are applied, the reflectance of radiant heat naturally decreases. However, although it depends on the wavelength, it is about 73% to 95%, but it is not a big problem considering that the heat shielding area is greatly increased. The colored layer 5 and the protective layer are not particularly limited to this method as long as they have a diffuse reflection structure so as not to damage human eyes, do not cause electrolytic corrosion when in contact with metal, and have properties such as acid resistance and alkali resistance.

高反射率の素材4を施工する方法として、少なくても以下の方法がある。
第一は、高純度のアルミ素材を直接内装基材2に蒸着するものである。プラスチックやガラス等の固体の素材から、布製品、皮製品、天井断熱材等に至るまで幅広く使用する事が出来る。アルミ蒸着層は非常に薄く、超軽量の遮熱構造となる。
第二は、高純度のアルミホイルを内装基材2に、接着や熱溶着等で取り付ける方法である。アルミホイルは板状(フィルム状)の素材であるので、プラスチック、ガラス、金属等固体の素材に直貼りして使用する事が出来る。
第三は、不織布や樹脂シートにアルミホイルを熱溶着した遮熱材6を、プラスチック、金属等外装材兼内装基材2に、アルミホイルが室内側になる様に施工するものである。
As a method of constructing the material 4 with high reflectance, there are at least the following methods.
The first method is to vapor-deposit a high-purity aluminum material directly on the interior base material 2 . It can be used widely from solid materials such as plastic and glass to cloth products, leather products, and ceiling insulation materials. The aluminum vapor deposition layer is extremely thin, making it an ultra-lightweight heat shield structure.
The second is a method of attaching high-purity aluminum foil to the interior base material 2 by adhesion, heat welding, or the like. Since aluminum foil is a plate-like (film-like) material, it can be used by being directly attached to a solid material such as plastic, glass, or metal.
The third method is to apply a heat shielding material 6 in which aluminum foil is heat-sealed to a non-woven fabric or a resin sheet on the exterior material/interior base material 2 such as plastic or metal so that the aluminum foil faces the room side.

アルミホイルは、金属に接触して使用すると電食を起こす可能性が有るため、その防止策としてこの様な工法がある。例えば、凹凸のある複雑な金属製の床材等でも、平板に遮熱材6を接着し、プレス等で簡単に成型できるので多くの物に使用可能である。本発明では、内装基材2にアルミ層を施す方法に拘るものでは無く、あくまでもアルミホイル等輻射熱に対して高反射率の素材4が内装基材2の室内側の表面に施工されていれば良く、何れの方法でも或いは他の方法でもよい。 Since aluminum foil may cause electrolytic corrosion when used in contact with metal, such a construction method is available as a preventive measure. For example, even a complicated metal flooring material with irregularities can be easily molded by bonding the heat shielding material 6 to a flat plate and pressing, so that it can be used for many things. In the present invention, the method of applying the aluminum layer to the interior base material 2 is not limited, and it is sufficient that the material 4 having a high reflectance with respect to radiant heat such as aluminum foil is applied to the interior side surface of the interior base material 2, and any method or other method may be used.

次に、本発明の本発明の移動体の遮熱構造のメカニズムを詳しく説明する。
例えば、自動車を例にすると、建物と同じく、夏と冬では熱の移動方向が変わる。更に、走行時と停止時でも同様である。当然の事ながら、夏は屋外側から室内側に向けて熱が移動し、冬は逆に室内側から屋外側に熱が移動する。ただ、建物と大きく異なる点は、自動車は動くことによって夏は外装材1の熱を対流によって屋外に放出し、冬は逆に室内に侵入させる量が増える。これ迄、これらの設備は年間を通して夏冬同等と考えてきたが、将来の気温上昇を鑑みると、夏型重視の断熱構造が好ましいと考えられる。
本発明の移動体遮熱構造は、この様な観点から遮熱性能を最大限に引き出す低放射性能を重視した構造とした。
Next, the mechanism of the heat shield structure of the moving body of the present invention will be described in detail.
For example, in a car, the direction of heat transfer changes between summer and winter, just like a building. Furthermore, the same is true during running and stopping. As a matter of course, heat moves from the outdoor side to the indoor side in summer, and conversely, heat moves from the indoor side to the outdoor side in winter. However, the major difference from a building is that the movement of an automobile releases the heat of the exterior material 1 to the outside through convection in summer, and conversely increases the amount of heat that enters the room in winter. Until now, we have considered that these facilities are equivalent in both summer and winter throughout the year.
From this point of view, the heat shielding structure for a moving object according to the present invention is a structure that emphasizes low radiation performance for maximizing heat shielding performance.

外装材1と内装基材2との間等の空間を移動する熱は、建物同様、輻射熱の影響が大きいと考えられる。又、輻射熱を阻止するには、高反射率素材4が効果的であることは良く知られている。夏、自動車の外装材1には屋外から輻射熱が照射されるが、この熱の一部は反射されるものの、熱の大半は外装材1に吸収される。自動車の外装材1を外側から触ると暑いのはこの為である。この熱は、外装材1から内装基材2に向かって二次輻射熱として放射され、大半は内装基材2に吸収され、三次輻射熱として室内側に伝達される。勿論、この時伝導熱も伝達されるが、輻射熱に比べたら明らかに少ないと考えられる。 It is considered that the heat that moves in the space between the exterior material 1 and the interior base material 2 is greatly affected by radiant heat, as is the case with buildings. Also, it is well known that the high reflectance material 4 is effective in blocking radiant heat. In the summer, the exterior material 1 of the automobile is irradiated with radiant heat from the outside. This is the reason why the exterior material 1 of the automobile is hot when touched from the outside. This heat is radiated from the exterior material 1 toward the interior base material 2 as secondary radiant heat, most of which is absorbed by the interior base material 2 and transferred to the interior of the room as tertiary radiant heat. Of course, conductive heat is also transferred at this time, but it is considered that it is clearly less than radiant heat.

外装材から内装基材に向かう二次輻射熱を阻止するには、両者の間に高反射率素材を使用した遮熱材を設けるのが効果的であると考えられてきた。若し、両者の間に両面に高反射率素材を施工した遮熱材を設ければ、輻射熱に対して高反射率の遮熱材は、屋外からの二次輻射熱を効率よく反射して屋外に放射される筈である。ところが、遮熱材の屋外側の静止空気層は外装材の昇温で非常に高温になりやすく、遮熱材の温度を上昇させる。しかし、この段階では反射側の熱は保持され、極わずかしか放射側に放射されない。重要な点は、遮熱材を外装材と内装基材との間に取り付けし、遮熱材の両側に静止空気層を設ける為には、胴縁やボルト等何らかの素材が使われている。すると、これらの部材を通して、反射側から放射側に伝導熱が伝達される。又、この様な空間の周囲、即ち外装材と内装基材は当然接触しているため、ここでも同様に放射側に伝導熱が伝達されている。更に、天井等の内装基材に遮熱材が接触していると、ここからも熱移動が行われる。この様に、遮熱材の反射側から放射側に伝達される熱は、各部分からの熱伝達は少ないにしろ、結果的に合算すると大きな熱になる。しかも、遮熱材の放射側は静止空気層が形成され密封状態になっているので、その静止空気層内での熱移動は少ないが、その空間からその外側に熱が逃げにくい構造になっている。即ち、熱を蓄熱した小空間が出来ている。この蓄熱された熱は、遮熱材の放射側の表面温度を上昇せることになり、遮熱材からの放射量の増加を促進させる事になる。放射量は、絶対温度の四乗に比例する法則による。 In order to prevent secondary radiant heat from the exterior material to the interior base material, it has been considered effective to provide a heat shielding material using a high reflectance material between them. If a heat shielding material with high reflectance material applied on both sides is provided between the two, the heat shielding material with high reflectance against radiant heat should efficiently reflect the secondary radiant heat from the outdoors and radiate it to the outside. However, the still air layer on the outdoor side of the heat shielding material tends to become extremely hot due to the temperature rise of the exterior material, which raises the temperature of the heat shielding material. However, at this stage the heat on the reflective side is retained and very little is radiated to the emitting side. Importantly, some material, such as furrings or bolts, is used to attach the heat shield between the exterior and interior substrates and provide a static air layer on either side of the heat shield. Conductive heat is then transferred from the reflective side to the radiating side through these members. In addition, since the periphery of such a space, that is, the exterior material and the interior base material are naturally in contact with each other, conductive heat is similarly transferred to the radiation side here as well. Furthermore, when the heat shielding material is in contact with the interior base material such as the ceiling, heat is transferred from this point as well. In this way, the heat transferred from the reflection side to the radiation side of the heat shield material results in a large amount of heat, even though the heat transfer from each portion is small. Moreover, since the static air layer is formed on the radiation side of the heat shield material and is in a sealed state, the heat transfer in the static air layer is small, but the structure is such that the heat is difficult to escape from the space to the outside. That is, a small space in which heat is stored is created. This accumulated heat raises the surface temperature of the radiation side of the heat shielding material, promoting an increase in the amount of radiation from the heat shielding material. The amount of radiation is according to the law proportional to the fourth power of absolute temperature.

本発明は、これら狭小空間でなく室内という大きな空間に面した内装基材2の全面に高反射率素材4を施工するもので、遮熱性能の内低放射性能を最大限に引き出すことが出来る方法である。夏、屋外からの輻射熱は前述と同様、外装材1に吸収され、二次輻射熱が内装基材2に直接放射され内装基材2は高温になる。ここで重要なのは、放射側の温度である。放射側にはエアコン(冷却装置21,31)があり、放射される僅かな熱量を忽ち吸収してしまう。即ち、高反射率素材4の表面温度は上昇せず、確実にその性能を利用する事が出来る。 The present invention is a method of constructing a high reflectance material 4 on the entire surface of the interior base material 2 facing a large space such as a room, not such a narrow space, and maximizing the low radiation performance of the heat shielding performance. In summer, radiant heat from the outdoors is absorbed by the exterior material 1 as described above, secondary radiant heat is directly radiated to the interior base material 2, and the interior base material 2 becomes hot. What is important here is the temperature on the radiation side. There is an air conditioner (cooling device 21, 31) on the radiation side, which immediately absorbs the slight amount of heat that is radiated. That is, the surface temperature of the high reflectance material 4 does not rise, and its performance can be used reliably.

ここで懸念されるのが、体温と高反射率素材4の表面温度との関係である。体温は、明らかに高反射率素材4の表面温度より高い。すると、熱は高温側から低温側に移動する熱の理論通り、体温は高反射率素材4の表面に向かって放射されることになる。この時重要なのは、体から放射された輻射熱は、高反射率素材4の表面で反射されて何処に向かうかである。結果的には、室内の殆どは体温より温度が低いため、反射した輻射熱はソファー等の基材に放射され、高温の人体を温める事は殆ど無い。
更に、遮熱施工面積は室内の大半を占めている。遮熱効果は、施工面積に比例するため、遮熱材を外装材1と内装基材2との間に設けた場合に比べ、はるかに大きい。
冬、高反射率素材4は全て室内側の内装基材2の内皮に施工されている為、室内にエアコン等の熱があると、この熱は内装基材2を暖める必要が無く室内は短時間で暖まる。
What is of concern here is the relationship between the body temperature and the surface temperature of the high reflectance material 4 . The body temperature is obviously higher than the surface temperature of the high reflectance material 4 . Then, according to the theory of heat that heat moves from the high temperature side to the low temperature side, the body temperature is radiated toward the surface of the high reflectance material 4 . What is important at this time is where the radiant heat radiated from the body is reflected by the surface of the high reflectance material 4 and where it goes. As a result, most of the indoor temperature is lower than the body temperature, so the reflected radiant heat is radiated to the base material such as the sofa, and hardly warms the high-temperature human body.
Furthermore, the heat shield construction area occupies most of the room. Since the heat shielding effect is proportional to the construction area, it is far greater than the case where the heat shielding material is provided between the exterior material 1 and the interior base material 2 .
In winter, since the high reflectance material 4 is all applied to the inner skin of the interior base material 2 on the indoor side, if there is heat from an air conditioner or the like in the room, the heat does not need to warm the interior base material 2 and the room is warmed in a short time.

一方、車両等の移動体では、エンジンの熱が室内側に伝達されるため、エンジンルームとキャビン等との界壁の断熱が重要である。高反射率素材4を界壁のエンジン側に施工することを考えると、高反射率素材4は輻射熱を効率よく反射し、効果的と考えられる。しかし、車両は走行するので高反射率素材4は輻射熱だけでなくエンジンからの対流熱も多く受けることになる。高反射率素材4は熱伝導率の高い素材で、忽ち温度吸収し遮熱材6自体の温度が上昇、やがて室内側の界壁に伝導熱の形態で伝達され、室内に侵入することになる。逆に、界壁の室内側に施工することを考えると、今度は低放射となる。
仮に、反射率98%の高反射率素材4を使用すると、室内側に放射される輻射熱は僅か2%である。即ち、殆どの輻射熱を阻止することが出来る。注意点は、エンジン側の熱は高反射率素材4の放射側表面まで来ている事である。そこに、室内側から何らかの素材を接触させると今度は伝導熱が生じ、室内側に熱が供給される。即ち、低放射性能を利用するには、極力素材の接触を少なくすることが重要である。
On the other hand, in a mobile object such as a vehicle, the heat of the engine is transferred to the interior of the vehicle, so it is important to insulate the boundary wall between the engine room and the cabin. Considering that the high reflectance material 4 is applied to the engine side of the boundary wall, the high reflectance material 4 efficiently reflects the radiant heat and is considered to be effective. However, since the vehicle runs, the high reflectance material 4 receives not only radiant heat but also convection heat from the engine. The high reflectance material 4 is a material having a high thermal conductivity, and the temperature of the heat shield material 6 itself rises as soon as it absorbs the temperature, which is eventually transmitted to the boundary wall on the indoor side in the form of conductive heat and enters the room. Conversely, when considering construction on the indoor side of the boundary wall, this time the radiation becomes low.
If a high reflectance material 4 with a reflectance of 98% is used, only 2% of the radiant heat is radiated indoors. That is, most of the radiant heat can be blocked. It should be noted that the heat on the engine side reaches the radiation side surface of the high reflectance material 4 . When some material is brought into contact with it from the inside of the room, conductive heat is generated, and the heat is supplied to the inside of the room. In other words, it is important to minimize material contact in order to utilize the low radiation performance.

保冷車は、熱が絶えず屋外側から保冷庫内に侵入している事が多い。これを阻止するには、室内側に高反射率素材4を利用することは効果的であることは言うまでもない。ただ、注意点は、保冷庫内を冷却する冷却ファンの風速が早いということである。風は、高反射率素材4の表面に接触すると熱を奪い室内に侵入する。この対策として、冷却ファンの吹き出しを分散或いは吹き出しの方向を変える事により、高反射率素材4に接するエリアの流速を低下させる事が重要である。保冷庫は、他の断熱工法では室内スペースが狭くなるが、本発明では外装材1又は内装基材2に直貼りでよく、スペースを確保することができ、輸送量の低下が生じない事が大きなメリットである。又、省エネ効果も大きくなり燃費向上が図れる。 In many cases, heat is constantly entering the refrigerator from the outside of the refrigerator car. Needless to say, it is effective to use the high reflectance material 4 on the indoor side in order to prevent this. However, the point to note is that the air speed of the cooling fan that cools the inside of the cold storage is fast. When the wind comes into contact with the surface of the high reflectance material 4, it takes heat and enters the room. As a countermeasure against this, it is important to reduce the flow velocity in the area contacting the high reflectance material 4 by dispersing or changing the blowing direction of the blowing from the cooling fan. In the case of a cold storage, other heat insulation methods require a narrower indoor space, but in the present invention, it can be attached directly to the exterior material 1 or the interior base material 2, so that space can be secured and transportation volume is not reduced. This is a great advantage. Also, the energy saving effect is increased, and the fuel efficiency can be improved.

輸送用コンテナ20は、金属製で輻射熱の反射率も10%程度、大半の輻射熱を吸収し内部に取り込む事になる。しかも屋外で長時間にわたり使用するので、熱量は相当なものになる。これを阻止するのに、高反射率素材4を室内側に施工する事は効果的である。仮に、反射率98%の遮熱材6を使用すると、内部に伝達される輻射熱の量な僅か2%となる。ただし、この熱をそのままにしておくと、放射量は絶対温度の4乗に比例して増加、やがて屋内外の温度差は無くなり遮熱材の効果は消滅する。この様な小空間の性能を高めるには、放射量である2%を吸収する事である。即ち、超小型の冷房設備を設ける事により、非常に環境の良い空間を継続的に作る事が出来る。 The transport container 20 is made of metal and has a radiant heat reflectance of about 10%. Moreover, since it is used outdoors for a long time, the amount of heat is considerable. To prevent this, it is effective to construct the high reflectance material 4 on the indoor side. If the heat shielding material 6 with a reflectance of 98% is used, the amount of radiant heat transmitted to the inside is only 2%. However, if this heat is left as it is, the amount of radiation will increase in proportion to the fourth power of the absolute temperature. To improve the performance of such a small space, it is necessary to absorb 2% of the amount of radiation. In other words, by installing an ultra-compact cooling system, it is possible to continuously create a space with a very good environment.

飛行機に乗ればブランケットを提供されるのはごく当たり前で有るが、多人数のいる空間を一定温度にすれば適温には個人差があり、寒く感じる人、暑く感じる人がいるのは当然のことである。暑さや寒さは、室温と輻射熱の量で決まるため、この個人差を少なくする為には、輻射熱の量を少なくする事が重要である。即ち、鉄道車両やバス或いは船舶等などの内装基材2に高反射率素材4を使用する事は非常に効果的である。 It is quite natural to be provided with blankets when boarding an airplane, but if a space with a large number of people is kept at a constant temperature, there are individual differences in the appropriate temperature, and it is natural that some people feel cold and others feel hot. Since heat and cold are determined by room temperature and the amount of radiant heat, it is important to reduce the amount of radiant heat in order to reduce individual differences. That is, it is very effective to use the high reflectance material 4 for the interior base material 2 of railroad cars, buses, ships, and the like.

鉄道車両では、駅毎に乗客の乗り降りの為に扉が開放され、空気の出入りが非常に多い。即ち、熱の出入りが非常に多く、室内は短時間で加熱又は冷却できる事が好ましい。本発明は、内装基材2の表面にアルミホイル等輻射熱に対して高反射率の素材4を施工する事により大幅な省エネ構造を構築することが可能である。何よりも、最も効果を感じるのは乗客で、即温かさや涼しさを感じる事が出来る。 In railway cars, the doors are opened at each station for passengers to get on and off, and there is a lot of air going in and out. That is, it is preferable that the heat flow is very large and the interior of the room can be heated or cooled in a short period of time. According to the present invention, a material 4 having a high reflectance against radiant heat, such as aluminum foil, is applied to the surface of the interior base material 2, so that a significant energy-saving structure can be constructed. Above all, it is the passengers who feel the most effect, who can immediately feel warmth or coolness.

[試験1]
断面が30mm×30mmの硬質ウレタン材で、20cm×20cmの四角い枠を作成した。この一方の面には、ガルバリウム鋼板(登録商標)製の角波材を、もう一方には5mmのウレタンマットを貼った。そして、このウレタンマットの表面に、ポリエステル綿製のシートの片面にアルミ蒸着した遮熱材3mm×5cm×12cm(日本遮熱株式会社製THB-JB3)を、アルミ蒸着面が放射側に成る様に接着した。遮熱材の表面には、人間の目を傷めないような乱反射構造となる着色層が施工されている。遮熱材の反射率は、1800nm:73%、800nm:79%、1400nm:95%、単位当たりの重量は73~91g/m2である。この箱を、1000Wの遠赤外線ヒーターの前に、ガルバリウム鋼板(登録商標)製の角波材がヒーター側になる様に設置した。ガルバリウム鋼板(登録商標)製の角波材のヒーター側の表面にサーモレコーダーを取り付け、温度が40℃から80℃になる迄、徐々に昇温した。この時の、ウレタンマットと遮熱材の表面温度をサーモグラフィーで測定した。室温は、22℃であった。
[Test 1]
A square frame of 20 cm x 20 cm was made from a hard urethane material with a cross section of 30 mm x 30 mm. A square corrugated member made of Galvalume steel plate (registered trademark) was attached to one surface, and a 5 mm urethane mat was attached to the other surface. On the surface of this urethane mat, a heat shielding material 3 mm×5 cm×12 cm (THB-JB3 manufactured by Nippon Thermal Shaft Co., Ltd.) with aluminum deposited on one side of a polyester cotton sheet was adhered so that the aluminum deposited surface faced the radiation side. The surface of the heat shielding material is coated with a colored layer that has a diffuse reflection structure that does not hurt human eyes. The reflectance of the heat shield material is 1800 nm: 73%, 800 nm: 79%, 1400 nm: 95%, and the weight per unit is 73-91 g/m 2 . This box was placed in front of a far-infrared heater of 1000 W so that the square wave material made of Galvalume steel plate (registered trademark) was on the heater side. A thermo recorder was attached to the heater-side surface of the galvalume steel sheet (registered trademark) square corrugated material, and the temperature was gradually raised from 40°C to 80°C. At this time, the surface temperatures of the urethane mat and the heat shield were measured by thermography. Room temperature was 22°C.

[結果1]
試験1の結果1を以下の[表1]に示した。
[Result 1]
Results 1 of Test 1 are shown in [Table 1] below.

Figure 0007313743000002
Figure 0007313743000002

[考察]
(イ)ヒーター側鉄板温度が40℃の時、THB-JB3の蒸着した遮熱材はウレタンマット単体より4.1℃、80℃の時では9.0℃も低い事が解る。
(ロ)即ち、THB-JB3は放射が少なく、熱中症対策や省エネルギーに効果的であることの証明である。
[Discussion]
(a) When the temperature of the iron plate on the heater side is 40°C, the vapor-deposited heat shielding material of THB-JB3 is 4.1°C lower than the urethane mat alone, and when the temperature is 80°C, it is 9.0°C lower.
(b) In other words, THB-JB3 emits little radiation, which proves that it is effective in preventing heat stroke and saving energy.

[試験2]
屋外から、高温の熱が室内側に来る部分の対応試験を行った。
黒色のガルバリウム鋼板(登録商標)で、黒色が外側になる様に300mm×300mm×300mmの箱を二つ作製し、一方の内側に遮熱材(日本遮熱株式会社製THB―CX、片面アルミ箔)を直貼りした。1000KWの遠赤外線ヒーターの前にこの箱を置き、サーモレコーダーにてヒーター側温度及び箱内の温度を測定した。室温は、23.5℃であった。
遮熱なし箱A:表面温度(1)、内部温度(3)
遮熱あり箱B:表面温度(2)、内部温度(4)
[Test 2]
A correspondence test was conducted on the part where high temperature heat comes to the indoor side from the outdoors.
Two boxes of 300 mm × 300 mm × 300 mm were made from black Galvalume Steel Plates (registered trademark) so that the black color was on the outside, and a heat shielding material (THB-CX manufactured by Nippon Heat Shield Co., Ltd., single-sided aluminum foil) was directly attached to the inside of one of the boxes. This box was placed in front of a far-infrared heater of 1000 KW, and the heater-side temperature and the temperature inside the box were measured with a thermo recorder. Room temperature was 23.5°C.
Non-insulated box A: surface temperature (1), internal temperature (3)
Box with heat shield B: surface temperature (2), internal temperature (4)

[結果2]
試験2の結果2を以下の[表2]及び[表3]に示した。
[Result 2]
Results 2 of Test 2 are shown in [Table 2] and [Table 3] below.

Figure 0007313743000003
Figure 0007313743000003

[考察2]
(イ)ヒーター側表面温度を見ると、温度上昇と共に遮熱してある温度(2)の方が高温になっている。これは、遮熱材にて箱内に熱が侵入しにくい事を示している。
(ロ)逆に、箱内温度を見ると、遮熱した箱の温度4の方が低い温度で維持されている。
(ハ)遮熱未施工のヒーター側の温度(2)が80℃の時、遮熱未施工の箱内温度(3)は38.7℃、遮熱施工の箱内の温度(4)は33.7℃とその差は5.0℃にもなっている。即ち、遮熱をすれば温度阻止効果が大きい事が解ると同時に、温度が上昇するとその差は大きくなる事も解る。
[Discussion 2]
(a) Looking at the surface temperature on the heater side, as the temperature rises, the temperature (2) where the heat is shielded becomes higher. This indicates that the heat shielding material makes it difficult for heat to enter the box.
(b) Conversely, looking at the temperature inside the box, the temperature 4 of the heat-shielded box is maintained at a lower temperature.
(C) When the temperature (2) on the heater side without heat shielding is 80°C, the temperature inside the box without heat shielding (3) is 38.7°C, and the temperature inside the box with heat shielding (4) is 33.7°C, with a difference of 5.0°C. That is, it can be seen that heat shielding has a large temperature blocking effect, and at the same time, it can be seen that the difference increases as the temperature rises.

室内側に面する殆どの内装基材が輻射熱に対する高反射率の素材で覆われていて、余分な部材を暖めたり冷やしたりする必要が無いので、短時間で冷暖房効果を発揮する事が出来る。その結果、大きな省エネルギー効果を生み出すことが出来る。
当然の事ながら、室内に放射される輻射熱の量が少なくなるので、熱中症対策に非常に効果的である。
Most of the interior base materials facing the interior side are covered with a material having a high reflectance against radiant heat, and there is no need to heat or cool extra members, so the cooling and heating effect can be exhibited in a short time. As a result, a large energy saving effect can be produced.
As a matter of course, the amount of radiant heat radiated into the room is reduced, so it is very effective against heatstroke.

低温の金属部との接触も無い事、アルミホイル等輻射熱に対して高反射率の素材の表面温度が上昇する事により結露の発生を防止する事が出来る。従って、寒冷地仕様にも対応できる。また、内装基材の表面全体にアルミ蒸着しても良く、アルミ蒸着した場合、非常に軽量となり、乗物等の燃費向上が期待できる。 There is no contact with low-temperature metal parts, and the rise in the surface temperature of materials with high reflectance against radiant heat, such as aluminum foil, can prevent the occurrence of dew condensation. Therefore, it can also correspond to cold district specifications. In addition, the entire surface of the interior base material may be vapor-deposited with aluminum. When aluminum is vapor-deposited, the material becomes extremely lightweight, and improvement in fuel efficiency of vehicles and the like can be expected.

以上、本実施形態について説明したが、これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。 Although the present embodiment has been described above, it is possible to select the configurations mentioned in the above-described embodiments or to change them to other configurations as appropriate without departing from the gist of the present invention.

1 外装材
2 内装基材
3 静止空気層(静止空間)
4 アルミホイル等輻射熱に対して高反射率の素材(高反射率素材)
5 着色層(保護層)
6 遮熱材
10a,10b 移動体の遮熱構造
20 コンテナ(輸送用コンテナ)
30 乗り物(鉄道車両)
21,31 冷却装置(エアコン等)
1 exterior material 2 interior base material 3 static air layer (static space)
4 Materials with high reflectivity against radiant heat such as aluminum foil (high reflectivity materials)
5 Colored layer (protective layer)
6 heat shielding materials 10a, 10b heat shielding structure for moving body 20 container (transportation container)
30 Vehicles (Railway Vehicles)
21,31 Cooling device (air conditioner, etc.)

Claims (3)

屋外を移動し、内部に冷却装置を有する移動体に構築される移動体の遮熱構造であって、
前記移動体を構成する内装基材の室内側に、アルミホイル等輻射熱に対して高反射率の素材が大気に接して形成され、
前記アルミホイル等輻射熱に対して高反射率の素材が、冷却される室内に露出し、前記内装基材に直接設けられている、
ことを特徴とする移動体の遮熱構造。
A heat shield structure for a moving body that moves outdoors and is constructed in a moving body that has a cooling device inside,
A material having a high reflectance against radiant heat, such as aluminum foil, is formed in contact with the atmosphere on the interior side of the interior base material that constitutes the moving body,
A material having a high reflectance against radiant heat such as the aluminum foil is exposed in the room to be cooled and is provided directly on the interior base material.
A heat shield structure for a moving body, characterized by:
屋外を移動し、内部に冷却装置を有する移動体に構築される移動体の遮熱構造であって、
前記移動体を構成する内装基材の室内側に、アルミホイル等輻射熱に対して高反射率の素材が設けられ、
着色層や保護層が、前記アルミホイル等輻射熱に対して高反射率の素材よりも室内側に大気に接して形成され、
前記着色層や保護層が、冷却される室内に露出し、前記アルミホイル等輻射熱に対して高反射率の素材が前記内装基材に直接設けられている、
ことを特徴とする移動体の遮熱構造。
A heat shield structure for a moving body that moves outdoors and is constructed in a moving body that has a cooling device inside,
A material having a high reflectance against radiant heat such as aluminum foil is provided on the indoor side of the interior base material that constitutes the moving body,
The colored layer and protective layer are formed in contact with the atmosphere on the indoor side rather than the material with high reflectance against radiant heat such as aluminum foil ,
The colored layer and the protective layer are exposed in the room to be cooled, and a material having a high reflectance against radiant heat such as aluminum foil is directly provided on the interior base material.
A heat shield structure for a moving body, characterized by:
前記移動体が、自動車、鉄道車両、航空機、船舶等の乗物、輸送用コンテナである、
ことを特徴とする請求項1または請求項2に記載の移動体の遮熱構造。
The mobile body is a vehicle such as an automobile, a railroad vehicle, an aircraft, a ship, or a transportation container.
3. The heat shield structure for a moving body according to claim 1 or 2, characterized in that:
JP2022191876A 2022-11-30 2022-11-30 Thermal insulation structure for mobile equipment Active JP7313743B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022191876A JP7313743B1 (en) 2022-11-30 2022-11-30 Thermal insulation structure for mobile equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022191876A JP7313743B1 (en) 2022-11-30 2022-11-30 Thermal insulation structure for mobile equipment

Publications (1)

Publication Number Publication Date
JP7313743B1 true JP7313743B1 (en) 2023-07-25

Family

ID=87428148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022191876A Active JP7313743B1 (en) 2022-11-30 2022-11-30 Thermal insulation structure for mobile equipment

Country Status (1)

Country Link
JP (1) JP7313743B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074603A1 (en) 2016-10-20 2018-04-26 ちきゅうにやさしい株式会社 Heat shielding structure and method for adding heat shielding structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074603A1 (en) 2016-10-20 2018-04-26 ちきゅうにやさしい株式会社 Heat shielding structure and method for adding heat shielding structure

Similar Documents

Publication Publication Date Title
US4310745A (en) Heating assemblies
US6632516B2 (en) Low emissivity, high reflectivity insulation
Lv et al. Improving cabin thermal environment of parked vehicles under direct sunlight using a daytime radiative cooling cover
CN110567188A (en) Winter and summer temperature adjusting device based on radiation cooling and solar energy utilization and construction method
US5108817A (en) Multi-component heat shield
CA2211549C (en) Low emissivity, high reflectivity insulation
CN107975895A (en) Composite energy-saving devices and methods therefor based on radiation refrigeration and phase-change accumulation energy
US7056575B2 (en) Low emissivity, high reflectivity insulation
JP7313743B1 (en) Thermal insulation structure for mobile equipment
JP2004330930A (en) Heat shield and heat release structure for automobile
WO2018074603A1 (en) Heat shielding structure and method for adding heat shielding structure
JP2003053887A (en) Composite panel
JP2001107480A (en) Heat shield sheet
JP5445808B1 (en) Heat shield structure of uneven material
JP2010143557A (en) Heat insulating automobile
Türler et al. Reducing vehicle auxiliary loads using advanced thermal insulation and window technologies
JP4135609B2 (en) Thermal functional structure for automobile
JP4075383B2 (en) Panel structure
JP4325180B2 (en) Interior heat dissipation structure
JP6175707B2 (en) Thermal insulation structure
JP7370648B1 (en) Energy saving structure of equipment
Chiou Application of solar-powered ventilator in automobiles
CN110567308A (en) Temperature-adjusting energy storage device based on radiation cooling and construction method
JP2016010891A (en) Heat insulating sheet and heat insulating plate using the same
CN215751234U (en) Radiation refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221130

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230705

R150 Certificate of patent or registration of utility model

Ref document number: 7313743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150