JP7310919B2 - フィルタ生成方法、フィルタ生成装置及びプログラム - Google Patents

フィルタ生成方法、フィルタ生成装置及びプログラム Download PDF

Info

Publication number
JP7310919B2
JP7310919B2 JP2021562294A JP2021562294A JP7310919B2 JP 7310919 B2 JP7310919 B2 JP 7310919B2 JP 2021562294 A JP2021562294 A JP 2021562294A JP 2021562294 A JP2021562294 A JP 2021562294A JP 7310919 B2 JP7310919 B2 JP 7310919B2
Authority
JP
Japan
Prior art keywords
block
filter
image
encoding
filter generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021562294A
Other languages
English (en)
Other versions
JPWO2021111595A1 (ja
Inventor
健人 宮澤
幸浩 坂東
隆行 黒住
英明 木全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of JPWO2021111595A1 publication Critical patent/JPWO2021111595A1/ja
Application granted granted Critical
Publication of JP7310919B2 publication Critical patent/JP7310919B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/537Motion estimation other than block-based
    • H04N19/54Motion estimation other than block-based using feature points or meshes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Description

本発明は、フィルタ生成方法、フィルタ生成装置及びプログラムに関する。
動画像符号化技術又は映像符号化技術の1つとして、インター符号化が知られている。インター符号化では、符号化対象画像に対してブロック分割による矩形近似を行い、ブロック単位で参照画像との間の動きパラメータを探索し予測画像を生成する(例えば、非特許文献1)。ここで、動きパラメータとしては、縦方向の移動距離と横方向の移動距離との2パラメータで表現される平行移動が用いられてきた。
他方で、平行移動では表現しきれないような被写体(オブジェクト)の歪がある場合には、affine変換や射影変換等のより高次の動きも利用することで予測精度が向上し、符号化効率が改善されることが知られている。例えば、非特許文献2では、カメラの移動に伴う被写体の歪に対してaffine変換を用いた予測を行なっている。また、例えば、非特許文献3では、多視点画像における視点間予測に対してaffine変換、射影変換、bilinear変換を適用している。
座標(x, y)に位置する画素にaffine変換を施した場合、その画素の変換後の座標(x', y')は以下の式(1)で表される。
Figure 0007310919000001
ここで、a, b, c, d, eはaffineパラメータである。
また、JVET(Joint Video Experts Team)において検討されている次世代標準規格としてVVC(Versatile Video Coding)が知られている(非特許文献4)。VVCでは4/6パラメータaffine予測モードが採用されている。4/6パラメータaffine予測モードでは、符号化ブロックを4×4のサブブロックに分割し、画素単位のaffine変換をサブブロック単位での平行移動によって近似する。このとき、各サブブロックの動きベクトルは、4パラメータaffine予測モードでは、図1に示すように、当該サブブロックの左上と右上に位置するコントロールポイントの動きベクトルv0=(mv0x, mv0y)及びv1=(mv1x, mv1y)の2本のベクトルからなる4パラメータ(mv0x, mv0y, mv1x, mv1y)を用いて、以下の式(2)で算出される。
Figure 0007310919000002
ここで、Wは符号化ブロックの横の画素サイズ、Hは符号化ブロックの縦の画素サイズである。
一方で、6パラメータaffine予測モードでは、図1に示すように、更に、当該サブブロックの左下に位置するコントロールポイントの動きベクトルv2=(mv2x, mv2y)を加えた3本のベクトルからなる6パラメータ(mv0x, mv0y, mv1x, mv1y mv2x, mv2y)を用いて、以下の式(3)で算出される。
Figure 0007310919000003
このように、VVCは、平行移動の組み合わせによりaffine変換を近似することで計算量の削減を行っている。
なお、H.265/HEVCと同様に、VVCでもマージモードが採用されている。affine予測モードが適用された符号化ブロックに対してもマージモードが適用される。マージモードでは、符号化対象ブロックの動きパラメータを伝送する代わりに、隣接した符号化済みブロックの位置を示すマージインデックスを伝送し、インデックスが示す位置の符号化済みブロックの動きベクトルを用いて復号を行う。
Recommendation ITU-T H.265: High efficiency video coding, 2013 H. Jozawa, et al. "Two-stage motion compensation using adaptive global MC and local affine MC." IEEE Trans. on CSVT 7.1 (1997): 75-85. R-J-S. Monteiro, et al. "Light field image coding using high-order intrablock prediction." IEEE Journal of Selected Topics in Signal Processing 11.7 (2017): 1120-1131. JVET-M1002-v1_encoder description VTM4
しかしながら、affine変換や射影変換等は平行移動の場合よりも多くのパラメータが必要となるため、その推定に必要な計算量や符号化オーバヘッドが増大し、非効率である。
一方で、VVCでは計算量を削減することができるものの、サブブロック単位の平行移動ではオブジェクトの変形を完全に捉えきれず、参照範囲のはみ出しや画素の取り漏らし等が発生し予測誤差が大きくなる場合がある。例えば、図2に示すように、参照画像内のオブジェクトがせん断変形する場合、回転変形する場合、拡大・縮小変形する場合等には、参照範囲のはみ出しや画素の取り漏らしがある。特に、図3に示すように、符号化対象画像内のオブジェクトが矩形から変形している場合には、符号化対象画像及び参照画像の両方で誤差が累積し、予測誤差がより大きくなる。つまり、サブブロック単位の平行移動により予測を行う方式では、特に符号化対象画像内のオブジェクトが矩形近似しづらい場合に、affine変換を表現しきれない。
本発明の一実施形態は、上記の点に鑑みてなされたもので、計算量を抑えつつ予測誤差を削減することを目的とする。
上記目的を達成するため、本発明の一実施形態に係るフィルタ生成方法は、動画像符号化又は映像符号化におけるインター予測画像に対するフィルタを生成するためのフィルタ生成方法であって、符号化対象ブロックに含まれるサブブロック毎に、前記サブブロックに対応する、参照画像中の領域を取得する第1の取得手順と、前記参照画像のブロック分割情報を参照して、前記領域を含む、前記参照画像のブロックである符号化ブロックを取得する第2の取得手順と、前記符号化対象ブロック又は複数の符号化対象ブロック毎に、前記第2の取得手順でそれぞれ取得された1以上の符号化ブロックを逆変換した画像を前記フィルタとして生成する生成手順と、をコンピュータが実行することを特徴とする。
計算量を抑えつつ予測誤差を削減することができる。
サブブロックにおけるコントロールポイントの動きベクトルを示す図である。 オブジェクトの変形の一例を示す図(その1)である。 オブジェクトの変形の一例を示す図(その2)である。 第一の実施形態に係る符号化装置の全体構成の一例を示す図である。 第一の実施形態に係るフィルタ生成部の機能構成の一例を示す図である。 第一の実施形態に係るフィルタ生成処理の一例を示すフローチャートである。 第二の実施形態に係る符号化装置の全体構成の一例を示す図である。 第二の実施形態に係るフィルタ生成部の機能構成の一例を示す図である。 第二の実施形態に係るフィルタ生成処理の一例を示すフローチャートである。 一実施形態に係る符号化装置のハードウェア構成の一例を示す図である。
以下、本発明の各実施形態について説明する。本発明の各実施形態では、動画像符号化又は映像符号化の際の各種変換(例えば、affine変換や射影変換、bilinear変換等)の計算量を抑えつつ、その変換による予測誤差を削減した予測画像を作成し、この予測画像をフィルタとして利用する場合について説明する。なお、以降では、予測誤差を「予測残差」とも表す。
以降で説明する第一の実施形態では当該フィルタをループ内フィルタとして適用する場合について説明し、第二の実施形態では当該フィルタをポストフィルタとして適用し、マージモードと組み合わせた場合について説明する。なお、以降の各実施形態では、一例として、affine変換を想定して説明する。
[第一の実施形態]
以降では、第一の実施形態について説明する。
(全体構成)
まず、第一の実施形態に係る符号化装置10の全体構成について、図4を参照しながら説明する。図4は、第一の実施形態に係る符号化装置10の全体構成の一例を示す図である。
図4に示すように、第一の実施形態に係る符号化装置10は、イントラ予測部101と、インター予測部102と、フィルタ生成部103と、フィルタ部104と、モード判定部105と、DCT部106と、量子化部107と、逆量子化部108と、Inv-DCT部109と、参照画像メモリ110と、参照画像ブロック分割形状メモリ111とを有する。
イントラ予測部101は、既知のイントラ予測によって符号化対象ブロックの予測画像(イントラ予測画像)を生成する。インター予測部102は、既知のインター予測によって符号化対象ブロックの予測画像(インター予測画像)を生成する。フィルタ生成部103は、インター予測画像を修正(フィルタリング)するためのフィルタを生成する。フィルタ部104は、フィルタ生成部103により生成されたフィルタを用いてインター予測画像をフィルタリングする。なお、フィルタ部104は、フィルタリングとして、例えば、インター予測画像とフィルタとの画素単位での重み付き平均を算出すればよい。
モード判定部105は、イントラ予測モード又はインター予測モードのいずれであるかを判定する。DCT部106は、モード判定部105による判定結果に応じて、符号化対象ブロックと、インター予測画像又はイントラ予測画像との予測残差を既知の手法により離散コサイン変換(DCT: discrete cosine transform)する。量子化部107は、離散コサイン変換後の予測残差を既知の手法により量子化する。これにより、離散コサイン変換及び量子化後の予測残差と、イントラ予測又はインター予測に用いられた予測パラメータとが出力される。この予測残差と予測パラメータとが符号化対象ブロックの符号化結果である。
また、逆量子化部108は、量子化部107から出力された予測残差を既知の手法により逆量子化する。Inv-DCT部109は、逆量子化後の予測残差を既知の手法により逆離散コサイン変換(Inverse DCT)する。そして、逆離散コサイン変換後の予測残差と、イントラ予測画像又は(フィルタ部104によるフィルタ後の)インター予測画像とを用いて復号された復号画像が、参照画像メモリ110に格納される。また、参照画像ブロック分割形状メモリ111には、参照画像を符号化した際のブロック分割形状(例えば、四分木ブロック分割情報等)が格納される。
(フィルタ生成部103の機能構成)
次に、第一の実施形態に係るフィルタ生成部103の詳細な機能構成について、図5を参照しながら説明する。図5は、第一の実施形態に係るフィルタ生成部103の機能構成の一例を示す図である。
図5に示すように、第一の実施形態に係るフィルタ生成部103には、affine変換パラメータ取得部201と、ブロック分割取得部202と、参照画像内オブジェクト決定部203と、逆affine変換パラメータ計算部204と、affine変換部205と、予測画像生成部206と、フィルタ領域限定部207とが含まれる。ここで、フィルタ生成部103には、参照画像ブロック分割情報と、符号化対象画像情報と、参照画像情報とが入力される。参照画像ブロック分割情報とは、参照画像のブロック分割を表す情報である。符号化対象画像情報とは、符号化対象ブロックの画素情報と、インター予測モード情報(マージモード情報、affineパラメータを含む)と、参照画像を示すインデックスとが含まれる情報である。参照画像情報とは、参照画像の画素情報のことである。
affine変換パラメータ取得部201は、affine変換に用いられるaffineパラメータを取得する。ブロック分割取得部202は、符号化対象ブロックの或るサブブロックに対応する参照領域(参照画像内の対応する矩形領域)を取得した上で、参照画像ブロック分割情報を参照して、当該参照領域を完全に含む符号化ブロックを取得する。なお、参照領域を完全に含む符号化ブロックを取得することで、符号化対象のオブジェクト領域から(一部でも)はみ出てしまっているものが除外され、従来の矩形近似よりも正確な領域を取得することが可能になる。
参照画像内オブジェクト決定部203は、ブロック分割取得部202によって符号化ブロックが取得された場合、参照画像中のオブジェクトの領域を示すブロック集合に当該符号化ブロックを追加する。逆affine変換パラメータ計算部204は、逆affine変換に用いられる逆affineパラメータを計算する。affine変換部205は、逆affineパラメータを用いて、参照画像内オブジェクト決定部203によって作成されたブロック集合を逆affine変換する。予測画像生成部206は、affine変換部205の逆affine変換の結果から新たな予測画像を生成する。フィルタ領域限定部207は、予測画像生成部206によって生成された予測画像の領域のうち、符号化対象ブロックに対応する領域に限定した画像をフィルタ(つまり、この予測画像を、符号化対象ブロックに対応する領域に施すフィルタ)とする。
(フィルタ生成処理)
次に、第一の実施形態に係るフィルタ生成部103が実行するフィルタ生成処理について、図6を参照しながら説明する。図6は、第一の実施形態に係るフィルタ生成処理の一例を示すフローチャートである。なお、以降では、或るフレーム画像の各ブロック(各符号化対象ブロック)をそれぞれ符号化する際に、これら各符号化対象ブロックのインター予測画像に対するフィルタをそれぞれ生成する場合について説明する。
まず、フィルタ生成部103は、予測画像の更新処理(つまり、後述するステップS102~ステップS110)が行なわれていない符号化対象ブロックBを取得する(ステップS101)。次に、フィルタ生成部103は、当該符号化対象ブロックBに対してaffine予測モードが選択されているか否かを判定する(ステップS102)。
上記のステップS102でaffine予測モードが選択されていると判定されなかった場合、フィルタ生成部103は、当該符号化対象ブロックBに対しては処理を行わず、ステップS110に進む。一方で、上記のステップS102でaffine予測モードが選択されていると判定された場合、フィルタ生成部103のaffine変換パラメータ取得部201は、affineパラメータを取得する(ステップS103)。
ステップS103に続いて、フィルタ生成部103は、当該符号化ブロックBに含まれるサブブロックSのうち、参照領域を特定するための処理(つまり、後述するステップS105~ステップS106)が行なわれていないサブブロックSを取得する(ステップS104)。次に、フィルタ生成部103のブロック分割取得部202は、既知のaffine予測モードの処理に従ってサブブロックSの動きベクトルを算出し(つまり、動き補償を行って)、当該サブブロックSに対応する参照領域Spを取得する(ステップS105)。次に、フィルタ生成部103のブロック分割取得部202は、参照画像ブロック分割情報(符号化パラメータの一例)を参照して、当該参照領域Spを完全に含む符号化ブロックB'が存在するか否か判定する(ステップS106)。
上記のステップS106で参照領域Spを完全に含む符号化ブロックB'が存在すると判定されなかった場合、フィルタ生成部103は、当該サブブロックSを処理済みとして、ステップS104に戻る。一方で、参照領域Spを完全に含む符号化ブロックB'が存在すると判定された場合、フィルタ生成部103は、ブロック分割取得部202によって当該符号化ブロックB'を取得し、参照画像内オブジェクト決定部203によって当該符号化ブロックB'を、参照画像中のオブジェクトの領域を示すブロック集合Rに追加する(ステップS107)。また、このとき、フィルタ生成部103は、当該サブブロックSを処理済みとする。
続いて、フィルタ生成部103は、当該符号化ブロックBに含まれる全てのサブブロックで処理を完了したか否か(つまり、全てのサブブロックで参照領域を特定するための処理が行なわれたか否か)を判定する(ステップS108)。
上記のステップS108で当該符号化ブロックBに含まれる全てのサブブロックで処理を完了したと判定されなかった場合、フィルタ生成部103は、ステップS104に戻る。これにより、当該符号化ブロックBに含まれる全てのサブブロックSに対してステップS104~ステップS108(又はステップS106でNOとなる場合はステップS104~ステップS106)が繰り返し実行される。
一方で、上記のステップS108で当該符号化ブロックBに含まれる全てのサブブロックで処理を完了したと判定された場合、フィルタ生成部103は、逆affine変換パラメータ計算部204によって逆affineパラメータを計算した上で、この逆affineパラメータを用いて、affine変換部205によって当該ブロック集合Rに対して逆affine変換を実施(つまり、符号化対象ブロックBのaffine変換の逆変換)し、予測画像生成部206によって当該逆affine変換後のブロック集合Rを新たな予測画像とする(ステップS109)。この予測画像の領域のうち、フィルタ領域限定部207によって当該符号化対象ブロックBに対応する領域に限定されることで(つまり、予測画像の適用領域が限定されることで)、当該符号化対象ブロックBに対するフィルタが得られる。ここで、フィルタとして使用する予測画像の領域の限定するのは、ブロック集合Rの逆affine変換後の領域が、符号化対象ブロックB以外の符号化済み画素位置を含む場合に、符号化済み画素が変更されて復号処理ができなくなるのを防ぐためである。
続いて、フィルタ生成部103は、上記のステップS101で取得された符号化対象ブロックBを処理済みとして(ステップS110)、当該フレーム画像内の全ての符号化対象ブロックが処理済みか否か(つまり、全ての符号化対象ブロックで予測画像の更新処理が行なわれたか否か)を判定する(ステップS111)。
上記のステップS111で全ての符号化対象ブロックが処理済みであると判定されなかった場合、フィルタ生成部103は、ステップS101に戻る。これにより、当該フレーム画像に含まれる全ての符号化ブロックに対してステップS101~ステップS111(又はステップS102でNOとなる場合はステップS101~ステップS102及びステップS110~ステップS111)が繰り返し実行される。
一方で、上記のステップS111で全ての符号化対象ブロックが処理済みであると判定された場合、フィルタ生成部103は、フィルタ生成処理を終了する。これにより、1つのフレーム画像に含まれる各符号化対象ブロックに対するフィルタが生成される。
[第二の実施形態]
以降では、第二の実施形態について説明する。なお、第二の実施形態では、主に、第一の実施形態との相違点について説明し、第一の実施形態と同様の構成要素については、適宜、その説明を省略する。
(全体構成)
まず、第二の実施形態に係る符号化装置10の全体構成について、図7を参照しながら説明する。図7は、第二の実施形態に係る符号化装置10の全体構成の一例を示す図である。
図7に示すように、第二の実施形態に係る符号化装置10は、イントラ予測部101と、インター予測部102と、フィルタ生成部103と、フィルタ部104と、モード判定部105と、DCT部106と、量子化部107と、逆量子化部108と、Inv-DCT部109と、参照画像メモリ110と、参照画像ブロック分割形状メモリ111とを有する。
ここで、第二の実施形態では、フィルタ部104の位置が異なる。第二の実施形態では、フィルタ部104は、復号画像(つまり、インター予測画像とInv-DCT部109による逆離散コサイン変換後の予測残差とを用いて復号された復号画像)をフィルタリングする。
(フィルタ生成部103の機能構成)
次に、第二の実施形態に係るフィルタ生成部103の詳細な機能構成について、図8を参照しながら説明する。図8は、第二の実施形態に係るフィルタ生成部103の機能構成の一例を示す図である。
図8に示すように、第二の実施形態に係るフィルタ生成部103には、affine変換パラメータ取得部201と、ブロック分割取得部202と、参照画像内オブジェクト決定部203と、逆affine変換パラメータ計算部204と、affine変換部205と、予測画像生成部206と、マージモード情報取得部208とが含まれる。ここで、第二の実施形態では、符号化対象画像情報には、マージモード情報が含まれるものとする。マージモード情報取得部208は、符号化対象画像情報からマージモード情報を取得する。
(フィルタ生成処理)
次に、第二の実施形態に係るフィルタ生成部103が実行するフィルタ生成処理について、図9を参照しながら説明する。図9は、第二の実施形態に係るフィルタ生成処理の一例を示すフローチャートである。なお、以降では、或るフレーム画像の各ブロック(各符号化対象ブロック)をそれぞれ符号化する際に、これら各符号化対象ブロックの復号画像に対するフィルタをそれぞれ生成する場合について説明する。
まず、フィルタ生成部103は、マージモード情報取得部208によって取得されたマージモード情報を用いて、当該フレーム画像内の未処理のマージブロック群M(つまり、後述するステップS202~ステップS212の処理が行なわれていないマージブロック群M)を取得する(ステップS201)。次に、フィルタ生成部103は、当該マージブロック群Mに対してaffine予測モードが選択されているか否かを判定する(ステップS202)。
上記のステップS202でaffine予測モードが選択されていると判定されなかった場合、フィルタ生成部103は、当該マージブロック群Mに対しては処理を行わず、ステップS212に進む。一方で、上記のステップS202でaffine予測モードが選択されていると判定された場合、フィルタ生成部103のaffine変換パラメータ取得部201は、affineパラメータを取得する(ステップS203)。
ステップS203に続いて、フィルタ生成部103は、当該マージブロック群Mに含まれる符号化ブロックBのうち、予測画像の更新処理(つまり、後述するステップS202~ステップS211)が行なわれていない符号化ブロックBを取得する(ステップS204)。次に、フィルタ生成部103は、当該符号化ブロックBに含まれるサブブロックSのうち、参照領域を特定するための処理(つまり、後述するステップS206~ステップS207)が行なわれていないサブブロックSを取得する(ステップS205)。次に、フィルタ生成部103のブロック分割取得部202は、既知のaffine予測モードの処理に従ってサブブロックSの動きベクトルを算出し(つまり、動き補償を行って)、当該サブブロックSに対応する参照領域Spを取得する(ステップS206)。次に、フィルタ生成部103のブロック分割取得部202は、参照画像ブロック分割情報(符号化パラメータの一例)を参照して、当該参照領域Spを完全に含む符号化ブロックB'が存在するか否か判定する(ステップS207)。
上記のステップS207で参照領域Spを完全に含む符号化ブロックB'が存在すると判定されなかった場合、フィルタ生成部103は、当該サブブロックSを処理済みとして、ステップS205に戻る。一方で、参照領域Spを完全に含む符号化ブロックB'が存在すると判定された場合、フィルタ生成部103は、ブロック分割取得部202によって当該符号化ブロックB'を取得し、参照画像内オブジェクト決定部203によって当該符号化ブロックB'を、参照画像中のオブジェクトの領域を示すブロック集合Rに追加する(ステップS208)。また、このとき、フィルタ生成部103は、当該サブブロックSを処理済みとする。
続いて、フィルタ生成部103は、当該符号化ブロックBに含まれる全てのサブブロックで処理を完了したか否か(つまり、全てのサブブロックで参照領域を特定するための処理が行なわれたか否か)を判定する(ステップS209)。
上記のステップS209で当該符号化ブロックBに含まれる全てのサブブロックで処理を完了したと判定されなかった場合、フィルタ生成部103は、ステップS205に戻る。これにより、当該符号化ブロックBに含まれる全てのサブブロックSに対してステップS205~ステップS209(又はステップS207でNOとなる場合はステップS205~ステップS207)が繰り返し実行される。
一方で、上記のステップS209で当該符号化ブロックBに含まれる全てのサブブロックで処理を完了したと判定された場合、フィルタ生成部103は、当該符号化ブロックBを処理済みとして、当該マージブロック群Mに含まれる全ての符号化ブロックで処理が完了したか否か(つまり、全ての符号化対象ブロックで予測画像の更新処理が行なわれたか否か)を判定する(ステップS210)。
上記のステップS210で当該マージブロック群Mに含まれる全ての符号化ブロックで処理が完了したと判定されなかった場合、フィルタ生成部103は、ステップS204に戻る。これにより、当該マージブロック群Mに含まれる全ての符号化ブロックBに対してステップS204~ステップS210が繰り返し実行される。
一方で、上記のステップS210で当該マージブロック群Mに含まれる全ての符号化ブロックで処理が完了したと判定された場合、フィルタ生成部103は、逆affine変換パラメータ計算部204によって逆affineパラメータを計算した上で、この逆affineパラメータを用いて、affine変換部205によって当該ブロック集合Rに対して逆affine変換を実施(つまり、符号化対象ブロックBのaffine変換の逆変換)し、予測画像生成部206によって当該逆affine変換後のブロック集合Rを新たな予測画像とする(ステップS211)。この予測画像が、復号画像に対するフィルタが得られる。ここで、第二の実施形態では、ループ内フィルタではなく、ポストフィルタとして当該予測画像を適用するため、マージブロック群Mに対応する領域に予測画像の適用領域を限定する必要ない。しかしながら、第一の実施形態と同様に、予測画像の適用領域をマージブロック群Mに対応する領域(の画素)に限定することで、予測画像内の符号化ブロックB'が、マージブロック群Mに対応するオブジェクトだけなく、背景領域まで広範囲に含んでしまうようなケースにおける画質悪化を防ぐ効果が期待される。
続いて、フィルタ生成部103は、上記のステップS201で取得されたマージブロック群Mを処理済みとして(ステップS212)、当該フレーム画像内の全てのマージブロック群が処理済みか否か(つまり、当該フレーム画像内の全てのマージブロック群MでステップS202~ステップS212の処理が行なわれたか否か)を判定する(ステップS213)。
上記のステップS213で全てのマージブロック群が処理済みであると判定されなかった場合、フィルタ生成部103は、ステップS201に戻る。これにより、当該フレーム画像に含まれる全てのマージブロック群に対してステップS201~ステップS213(又はステップS202でNOとなる場合はステップS201~ステップS202及びステップS212~ステップS213)が繰り返し実行される。
一方で、上記のステップS213で全てのマージブロック群が処理済みであると判定された場合、フィルタ生成部103は、フィルタ生成処理を終了する。これにより、1つのフレーム画像に含まれる各マージブロック群に対するフィルタが生成される。
[ハードウェア構成]
次に、上記の各実施形態に係る符号化装置10のハードウェア構成について、図10を参照しながら説明する。図10は、一実施形態に係る符号化装置10のハードウェア構成の一例を示す図である。
図10に示すように、一実施形態に係る符号化装置10は、入力装置301と、表示装置302と、外部I/F303と、通信I/F304と、プロセッサ305と、メモリ装置306とを有する。これら各ハードウェアは、それぞれがバス307を介して通信可能に接続されている。
入力装置301は、例えば、キーボードやマウス、タッチパネル等である。表示装置302は、例えば、ディスプレイ等である。なお、符号化装置10は、入力装置301及び表示装置302のうちの少なくとも一方を有していなくてもよい。
外部I/F303は、外部装置とのインタフェースである。外部装置には、例えば、CD(Compact Disc)やDVD(Digital Versatile Disk)、SDメモリカード(Secure Digital memory card)、USB(Universal Serial Bus)メモリカード等の記録媒体303aがある。
通信I/F304は、符号化装置10を通信ネットワークに接続するためのインタフェースである。プロセッサ305は、例えば、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等の各種演算装置である。メモリ装置306は、例えば、HDD(Hard Disk Drive)やSSD(Solid State Drive)、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等の各種記憶装置である。
上記の各実施形態に係る符号化装置10は、図10に示すハードウェア構成を有することにより、上述したフィルタ生成処理等を実現することができる。なお、図10に示すハードウェア構成は一例であって、符号化装置10は、他のハードウェア構成を有していてもよい。例えば、符号化装置10は、複数のプロセッサ305を有していてもよいし、複数のメモリ装置306を有していてもよい。
[まとめ]
以上のように、第一及び第二の実施形態に係る符号化装置10は、動画像符号化又は映像符号化の際の各種変換(上記では、一例としてaffine変換)の計算量を抑えつつ、その変換による予測残差(予測誤差)を削減した予測画像を、インター予測画像に対するフィルタとして作成する。これにより、計算量を抑えたまま予測残差を削減することができ、復号画像の画質を向上させることができる。なお、例えば、ステレオ画像や多視点画像、LightField画像における視点間予測のように、affine予測が多く選択される場合に特にその効果を期待することができる。
なお、上記の第一及び第二の実施形態では、一例として、フィルタ生成部103を有する符号化装置10について説明したが、これに限られず、例えば、フィルタ生成部103は、当該符号化装置10とは異なるフィルタ生成装置が有していてもよい。
本発明は、具体的に開示された上記の各実施形態に限定されるものではなく、請求の範囲の記載から逸脱することなく、種々の変形や変更、既知の技術との組み合わせ等が可能である。
10 符号化装置
101 イントラ予測部
102 インター予測部
103 フィルタ生成部
104 フィルタ部
105 モード判定部
106 DCT部
107 量子化部
108 逆量子化部
109 Inv-DCT部
110 参照画像メモリ
111 参照画像ブロック分割形状メモリ
201 affine変換パラメータ取得部
202 ブロック分割取得部
203 参照画像内オブジェクト決定部
204 逆affine変換パラメータ計算部
205 affine変換部
206 予測画像生成部
207 フィルタ領域限定部
208 マージモード情報取得部

Claims (5)

  1. 動画像符号化又は映像符号化におけるインター予測画像に対するフィルタを生成するためのフィルタ生成方法であって、
    符号化対象ブロックに含まれるサブブロック毎に、前記サブブロックに対応する、参照画像中の領域を取得する第1の取得手順と、
    前記参照画像のブロック分割情報を参照して、前記領域を含む、前記参照画像のブロックである符号化ブロックを取得する第2の取得手順と、
    前記符号化対象ブロック又は複数の符号化対象ブロック毎に、前記第2の取得手順でそれぞれ取得された1以上の符号化ブロックを逆変換した画像を前記フィルタとして生成する生成手順と、
    をコンピュータが実行することを特徴とするフィルタ生成方法。
  2. 前記生成手順は、
    前記画像を、前記符号化対象ブロックが表す領域又は前記複数の符号化対象ブロックが表す領域に対応する領域に施す前記フィルタとして生成する、ことを特徴とする請求項1に記載のフィルタ生成方法。
  3. 前記逆変換は、前記符号化対象ブロックに対する変換の逆変換であり、
    前記変換は、affine変換、射影変換又はbilinear変換である、ことを特徴とする請求項1又は2に記載のフィルタ生成方法。
  4. 動画像符号化又は映像符号化におけるインター予測画像に対するフィルタを生成するためのフィルタ生成装置であって、
    符号化対象ブロックに含まれるサブブロック毎に、前記サブブロックに対応する、参照画像中の領域を取得する第1の取得手段と、
    前記参照画像のブロック分割情報を参照して、前記領域を含む、前記参照画像のブロックである符号化ブロックを取得する第2の取得手段と、
    前記符号化対象ブロック又は複数の符号化対象ブロック毎に、前記第2の取得手段でそれぞれ取得された1以上の符号化ブロックを逆変換した画像を前記フィルタとして生成する生成手段と、
    を有することを特徴とするフィルタ生成装置。
  5. コンピュータに、請求項1乃至3の何れか一項に記載のフィルタ生成方法における各手順を実行させるためのプログラム。
JP2021562294A 2019-12-05 2019-12-05 フィルタ生成方法、フィルタ生成装置及びプログラム Active JP7310919B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/047655 WO2021111595A1 (ja) 2019-12-05 2019-12-05 フィルタ生成方法、フィルタ生成装置及びプログラム

Publications (2)

Publication Number Publication Date
JPWO2021111595A1 JPWO2021111595A1 (ja) 2021-06-10
JP7310919B2 true JP7310919B2 (ja) 2023-07-19

Family

ID=76221862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021562294A Active JP7310919B2 (ja) 2019-12-05 2019-12-05 フィルタ生成方法、フィルタ生成装置及びプログラム

Country Status (3)

Country Link
US (1) US20230007237A1 (ja)
JP (1) JP7310919B2 (ja)
WO (1) WO2021111595A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190222865A1 (en) 2018-01-12 2019-07-18 Qualcomm Incorporated Affine motion compensation with low bandwidth

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190222865A1 (en) 2018-01-12 2019-07-18 Qualcomm Incorporated Affine motion compensation with low bandwidth

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Jiancong (Daniel) Luo and Yuwen He,CE2-related: Prediction refinement with optical flow for affine mode,Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,JVET-N0236-r5,14th Meeting: Geneva, CH,2019年03月,pp.1-7
Tzu-Der Chuang et al.,CE2-related: Phase-variant affine subblock motion compensation,Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,JVET-N0510-v2,14th Meeting: Geneva, CH,2019年03月,pp.1-4

Also Published As

Publication number Publication date
US20230007237A1 (en) 2023-01-05
JPWO2021111595A1 (ja) 2021-06-10
WO2021111595A1 (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
JP7335315B2 (ja) 画像予測方法および関連装置
EP2805499B1 (en) Video decoder, video encoder, video decoding method, and video encoding method
WO2016050051A1 (zh) 图像预测方法及相关装置
KR20230043079A (ko) 스킵 모드를 이용한 영상 복호화 방법 및 이러한 방법을 사용하는 장치
US20150063452A1 (en) High efficiency video coding (hevc) intra prediction encoding apparatus and method
JP5216710B2 (ja) 復号化処理方法
JP5306485B2 (ja) 動きベクトル予測符号化方法、動きベクトル予測復号方法、動画像符号化装置、動画像復号装置およびそれらのプログラム
JPS62203496A (ja) 動画像信号の高能率符号化方式
JPWO2011099440A1 (ja) 動きベクトル予測符号化方法、動きベクトル予測復号方法、動画像符号化装置、動画像復号装置およびそれらのプログラム
JP7310919B2 (ja) フィルタ生成方法、フィルタ生成装置及びプログラム
US11202082B2 (en) Image processing apparatus and method
WO2019150411A1 (ja) 映像符号化装置、映像符号化方法、映像復号装置、映像復号方法、及び映像符号化システム
JP6564315B2 (ja) 符号化装置、復号装置、及びプログラム
JP5809574B2 (ja) 符号化方法、復号方法、符号化装置、復号装置、符号化プログラム及び復号プログラム
US11528485B2 (en) Encoding apparatus and program
CN112313950B (zh) 视频图像分量的预测方法、装置及计算机存储介质
JP6317720B2 (ja) 動画像符号化装置、動画像符号化方法、動画像符号化プログラム
JP6065090B2 (ja) 動画像復号装置、動画像復号方法、動画像復号プログラム
JP6311821B2 (ja) 動画像処理装置及び動画像処理方法
JP6825699B2 (ja) 動画像処理装置、動画像処理方法、及び、動画像処理プログラム
JP2018182435A (ja) 動きベクトル予測装置及びコンピュータプログラム
JP2016054514A (ja) 動画像符号化装置、動画像符号化方法、動画像符号化プログラム
Krishnegowda et al. Optimal coding unit decision for early termination in high efficiency video coding using enhanced whale optimization algorithm
JP2002262290A (ja) 画像処理方法及び画像処理装置
JP2013223149A (ja) 画像符号化装置、画像復号装置、画像符号化プログラム及び画像復号プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R150 Certificate of patent or registration of utility model

Ref document number: 7310919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150