JP7310688B2 - Method and apparatus for estimating thickness of deposits on inner wall surface of exhaust gas passage - Google Patents

Method and apparatus for estimating thickness of deposits on inner wall surface of exhaust gas passage Download PDF

Info

Publication number
JP7310688B2
JP7310688B2 JP2020069294A JP2020069294A JP7310688B2 JP 7310688 B2 JP7310688 B2 JP 7310688B2 JP 2020069294 A JP2020069294 A JP 2020069294A JP 2020069294 A JP2020069294 A JP 2020069294A JP 7310688 B2 JP7310688 B2 JP 7310688B2
Authority
JP
Japan
Prior art keywords
exhaust gas
thickness
gas passage
deposits
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020069294A
Other languages
Japanese (ja)
Other versions
JP2021165682A (en
Inventor
栄一 小野
靖宏 宮越
道之 広瀬
光宏 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2020069294A priority Critical patent/JP7310688B2/en
Publication of JP2021165682A publication Critical patent/JP2021165682A/en
Application granted granted Critical
Publication of JP7310688B2 publication Critical patent/JP7310688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、排ガス通路内壁面の付着物厚み推定方法及び装置に係り、特に、付着物厚みを高精度で推定して連続操業時間を延ばし、稼働率を上げることが可能な排ガス通路内壁面の付着物厚み推定方法及び装置に関する。 The present invention relates to a method and apparatus for estimating the thickness of deposits on the inner wall surface of an exhaust gas passage, and in particular, it is possible to estimate the thickness of deposits with high accuracy, extend the continuous operation time, and increase the operating rate of the inner wall surface of the exhaust gas passage. The present invention relates to a deposit thickness estimation method and apparatus.

図1に例示するような廃棄物焼却施設や溶融施設、各種加熱炉や溶融炉等を運転する際に、炉、ボイラ、煙道、排ガス処理系の壁面に付着物を生じる場合がある。図1において、10は焼却炉または溶融炉、12は二次焼却燃焼炉(二次燃焼炉とも称する)、13はバーナー、14は減温塔、15は水噴霧設備、16は除塵設備、18は誘引ファン、20は煙突である。なお、HClやSOx除去を効率良く行うための減温は、図1に示したように、減温塔14に設けた水噴霧設備15による他、図2に示すように、熱回収しつつ減温するためのボイラ22を設けたり、図3に示すように、ボイラ22と減温塔14の水噴霧設備15の両者を併用して、ボイラ22で熱回収と減温を行った後、水噴霧により温度を下げることによって行っている。 When operating a waste incineration facility, melting facility, various heating furnaces, melting furnaces, etc., such as those illustrated in FIG. In FIG. 1, 10 is an incinerator or a melting furnace, 12 is a secondary incineration combustion furnace (also referred to as a secondary combustion furnace), 13 is a burner, 14 is a cooling tower, 15 is water spray equipment, 16 is dust removal equipment, 18 is an induced draft fan, and 20 is a chimney. Note that the temperature reduction for efficiently removing HCl and SOx can be performed by the water spray equipment 15 provided in the temperature reduction tower 14 as shown in FIG. A boiler 22 for heating is provided, or as shown in FIG. This is done by lowering the temperature by spraying.

ところで、壁面への付着は、焼却や溶融時の高温下で揮発する成分や燃焼排ガス等に随伴する成分が、(1)温度が下がって凝縮して壁面に付着する、(2)流速が遅くなって壁面に堆積する、(3)凝縮物に付着・堆積する等が原因となって引き起こされる。 By the way, the adhesion to the wall surface is caused by the components that volatilize at high temperatures during incineration or melting and the components that accompany combustion exhaust gas, etc. (1) When the temperature drops, they condense and adhere to the wall surface, and (2) The flow velocity is slow. (3) adhesion and deposition on condensate;

この付着物は、付着物自身を原因とする煙道の閉塞による炉内や煙道圧の上昇、局所的高温部の生起などによる、ガスの吹き出し、未燃分の増加、伝熱阻害やその他種々の操業・設備トラブルや場合によっては炉の緊急停止に至る原因になるため、大きな問題となっている。また、付着物が崩れ落ちて下部ホッパーに溜り、近傍の配管を目詰まりさせることによっても同様の事態となる。このため、できるだけ自動で剥離させることを狙って、(i)付着しにくくする薬剤を燃料中に添加したり(特許文献1)、(ii)側壁に分散液を噴射したり(特許文献2)、(iii)空気をブラストするビンブロー、エアハンマー、ハンマリング等の自動剥離機器を利用することが行われているが、抜本的な解決には至っていない。 This deposit is caused by the blockage of the flue caused by the deposit itself, which increases the pressure inside the furnace and the flue. It is a big problem because it causes various operational and equipment troubles, and in some cases, emergency shutdown of the furnace. In addition, the same situation occurs when the deposits fall down and accumulate in the lower hopper, clogging nearby pipes. For this reason, aiming at automatic separation as much as possible, (i) adding a chemical that makes it difficult to adhere to the fuel (Patent Document 1), or (ii) injecting a dispersion liquid onto the side wall (Patent Document 2). , (iii) Bin blowing with air, air hammer, hammering, and other automatic peeling equipment are being used, but a drastic solution has not been reached.

特開2002-285179号公報JP-A-2002-285179 特開2006-29701号公報Japanese Patent Application Laid-Open No. 2006-29701

実際の付着対策として最終的には、設備の稼働を停止して清掃(掻き取り)を行っているが、付着物の付着状況に関しては、特に廃棄物を対象としている場合、毎回同じようなものではなく、量と質の両面で大きく異なっている場合がある。このような場合、清掃作業に際して準備する要員数や器具類、所要日数などに過不足が生じるため、結果として準備過剰や不良になり、無駄が生じている。従って、設備の稼働を停止して剥離作業を行う場合、付着状況を予め推定することによって、清掃日、要員数、器具類、作業日数等のより適正な予測ができるため無駄をなくす効果は大きい。 As an actual adhesion countermeasure, the operation of the equipment is eventually stopped and cleaning (scraping) is performed, but regarding the adhesion status of the adhesion, especially when the target is waste, the same thing happens every time. Instead, they may differ greatly in both quantity and quality. In such a case, the number of personnel, tools, required days, etc., to be prepared for the cleaning work may be excessive or insufficient, resulting in over-preparation or poor preparation, resulting in waste. Therefore, when the operation of the equipment is stopped and the peeling work is performed, by estimating the adhesion situation in advance, it is possible to more appropriately predict the cleaning date, number of personnel, equipment, work days, etc., so it is highly effective in eliminating waste. .

又、炉が緊急停止した場合、その原因にもよるが、炉内や煙道のガス、スラグや灰が噴き出す場合がある。この段階では緊急排出弁等からガスを逃がしたり、不活性ガスで封じ込めたり、置換しながら冷却する必要がある。特に、溶融炉では緊急停止した場合、スラグや原料等が固まってしまい、再開するためには削岩機によるスラグのはつり作業や炉壁の付着物除去作業が必要になる。従って、炉の操業にとって緊急停止は最も避けたい事態で、できるだけその前の段階で問題の発生を予知することが望ましい。 In addition, in the event of an emergency shutdown of the furnace, depending on the cause, gas, slag, and ash may be ejected from the furnace or flue. At this stage, it is necessary to release the gas from an emergency discharge valve or the like, contain it with an inert gas, or cool it while replacing it. In particular, in the case of an emergency stop in a melting furnace, slag, raw materials, etc. will solidify, and in order to restart the melting furnace, it is necessary to chip off the slag with a rock drill and remove deposits from the furnace wall. Therefore, an emergency shutdown is the most desirable situation for the operation of the furnace, and it is desirable to predict the occurrence of a problem as early as possible.

図4に、急激に温度を下げるためデポジット(以下、付着物8と称する)が付着しやすい減温塔14(内径3m~6m、高さ7m~10m程度)の場合を例示するように、焼却・溶融設備の内部の付着物8の付着状況(例えば、最高800mm程度になる付着物厚みt)を推定するには、(1)外部から内部の状況を測定して内部の状況を推定するか、(2)内部から内部の状況を測定するという2つの方法がある。 FIG. 4 shows the case of a cooling tower 14 (inner diameter 3 m to 6 m, height 7 m to 10 m) to which deposits (hereinafter referred to as deposits 8) tend to adhere due to a rapid temperature drop. In order to estimate the adhesion state of the deposit 8 inside the melting facility (for example, the deposit thickness t, which is about 800 mm at the maximum), (1) measure the internal state from the outside and estimate the internal state. , and (2) measuring internal conditions from within.

このうち、前者の(1)外部から内部の状況を測定して内部の状況を推定することに関しては、超音波や放射能などを利用することが考えられる。超音波は精度自体があまり高くなく、空洞があったり付着状態の粗密の程度によって測定結果が大きく左右されるため、推定精度に問題がある。これに対して、放射能は感度が非常に高いので、煙道中の粉塵が多くても精度良く測定できる可能性があるが、遮蔽の問題があって、いずれも特殊な場合を除けば実用に至っていない。又、覗き窓を開けてカメラや光で計測する方法も検討されているが、覗き窓へのダスト付着や覗き窓の設置位置の制約等の問題がある。 Regarding the former (1) measuring the internal situation from the outside and estimating the internal situation, it is conceivable to use ultrasonic waves, radioactivity, and the like. The accuracy of ultrasonic waves is not very high, and the measurement results are greatly affected by the presence of cavities and the degree of coarseness and fineness of the adhesion state, so there is a problem with estimation accuracy. On the other hand, since radioactivity has extremely high sensitivity, it may be possible to measure with high accuracy even if there is a lot of dust in the flue. Not yet. A method of opening a viewing window and measuring with a camera or light has also been studied, but there are problems such as dust adhering to the viewing window and restrictions on the installation position of the viewing window.

一方、後者の(2)内部から内部の状況を測定することに関しては、炉を停止した段階で炉や煙道等に外気を通風したり、マンホール14aを開放して冷却した後であれば測定可能であるが、稼働中は測定機器が高温に晒され、且つ、ダストやSOx、HCl等の有害ガスに晒されることになるため、高度な、あるいは、設備的に大掛かりな工夫が必要であり、実用的なレベルに至っていなかった。 On the other hand, with respect to the latter (2) measuring the internal conditions from the inside, if the outside air is ventilated to the furnace and flue, etc. when the furnace is stopped, or after cooling by opening the manhole 14a, measurement can be performed. Although it is possible, the measuring equipment is exposed to high temperatures and harmful gases such as dust, SOx, and HCl during operation, so advanced or large-scale equipment devices are required. , did not reach a practical level.

対象となる煙道や反応容器の寸法は小さなものから大きなものまで様々であるが、多くは内径数m~5m程度、高さ5m~10m程度の範囲にある。このような形状に対して、付着物は容器内断面の中心に向かって成長し、長さは800mm以上にまでなる場合がある。この付着物の位置と大きさを光や音波等で計測する場合、センサの位置によっては付着物自体が障害となって計測に影響を与える。このため、センサをより長く装入することや、壁面に数多くセンサを設置したりして対応しようとしてきた。しかし、煙道や反応容器内が高温の場合、センサの冷却や測定面の清浄状態確保のために、複雑で大型化した冷却装置が数多く必要となり、必要な設置工事も大掛かりとなり、現実的ではなかった。又、焼却炉や溶融炉の煙道ガスには一般的に数g~10g/m3程度のダストが含まれており、これらが測定の障害になる。 The dimensions of target flues and reaction vessels vary from small to large, but most are in the range of several meters to 5 meters in inner diameter and 5 to 10 meters in height. For such shapes, deposits grow towards the center of the cross-section inside the container and can be up to 800 mm or more in length. When the position and size of the adhering matter are measured using light, sound waves, or the like, the adhering matter itself becomes an obstacle depending on the position of the sensor and affects the measurement. For this reason, attempts have been made to insert sensors longer or install many sensors on the wall. However, when the temperature inside the flue or reaction vessel is high, many complicated and large-sized cooling devices are required to cool the sensor and ensure the cleanliness of the measurement surface. I didn't. In addition, the flue gas of incinerators and melting furnaces generally contains several g to 10 g/m 3 of dust, which interferes with measurement.

これらのことから、付着状態の把握は、経験的に付着が操業に影響し始める操業日数を判断して、この日数の操業後に停止してマンホール14a等を開放して冷却し、主に目視で形状把握を行った上で清掃していた。つまり、経験による対応であり、操業中及びダストの存在下で付着量を測定できる方法はなかった。 Based on these facts, the state of adhesion can be grasped by empirically determining the number of days of operation when adhesion begins to affect the operation, stopping the operation after this number of days, opening the manhole 14a, etc., and cooling. Cleaning was done after grasping the shape. In other words, it was a response based on experience, and there was no method that could measure the adhesion amount during operation and in the presence of dust.

なお、煙道に外部からセンサを入れる場合、前述のとおり、冷却のために空気や冷却水を通して一定温度に維持する必要があるが、直接冷却する場合は、使用した空気や水を煙道内や反応容器内に吹き込んでしまうことになる。このため、冷却媒体の量が多くなると排ガス量の増加やガスの温度の局所的低下等の問題が起こる可能性もある。 When the sensor is inserted into the flue from the outside, as mentioned above, it is necessary to maintain a constant temperature through air or cooling water for cooling. It blows into the reaction vessel. Therefore, if the amount of cooling medium increases, problems such as an increase in the amount of exhaust gas and a local decrease in gas temperature may occur.

本発明は、このような状況に鑑みてなされたもので、付着物厚みを高精度で推定して連続操業時間を延ばし、清掃作業の効率化を図ることによって、稼働率を上げることが可能な排ガス通路内壁面の付着物厚み推定方法及び装置を提供することを課題とする。 The present invention has been made in view of this situation, and it is possible to increase the operating rate by estimating the thickness of the deposit with high accuracy, extending the continuous operation time, and improving the efficiency of the cleaning work. An object of the present invention is to provide a method and apparatus for estimating the thickness of deposits on the inner wall surface of an exhaust gas passage.

発明者らは、測定機器の特徴として、1.耐高温性に関しては、できるだけ短時間かつ少ない測定点で立体的な計測が可能で測定精度が高くできること、2.ダストの存在による砂嵐状の環境下でも測定できること、3.測定によるガスの性状が測定及び操業に影響するほど大きく変化しないこと、4.測定補助機器が大掛かりにならないこと、を前提に、(1)測定作業及び測定機器面と(2)測定環境の両面から抜本的に改良できる案を検討した。 The inventors have identified the following characteristics of the measuring instrument: 1. 2. With respect to high temperature resistance, it is possible to perform three-dimensional measurement in as short a time as possible with as few measurement points as possible, and to increase the measurement accuracy. 3. It can be measured even in a sandstorm environment due to the presence of dust. 4. The measured properties of the gas do not change so much as to affect the measurement and operation; On the premise that the auxiliary measurement equipment will not become large-scaled, we examined proposals that can be drastically improved in terms of (1) the measurement work and the measurement equipment, and (2) the measurement environment.

(1)測定作業及び測定機器に関しては、(イ)できるだけ短時間かつ少ない測定点で立体的な計測が可能な測定が精度高くできること、(ロ)測定機器がこれに必要な耐高温性を有すること、(ハ)測定機器及び測定補助機器が大掛かりにならないこと、が主な検討項目である。 (1) Regarding measurement work and measuring equipment, (a) high-accuracy measurement that enables three-dimensional measurement in as few measuring points as possible in the shortest possible time, and (b) the measuring equipment must have the necessary high-temperature resistance. and (c) that the measuring equipment and auxiliary measurement equipment should not be large-scaled.

(2)測定環境に関しては、(I)ダストの存在による砂嵐状の環境下でも測定できる対策があること、(II)ガスの性状が測定に影響しない対策があること、が主な検討項目である。 (2) With regard to the measurement environment, the main items to be examined are (I) measures that can be taken even in sandstorm environments due to the presence of dust, and (II) measures that do not affect the measurement due to gas properties. be.

まず測定機器について、例えば直径3m~5mで高さ5m~10mの大空間の一部あるいは大部分に付着している付着物8の形状を短時間で立体的に精度高く計測可能な方法として、図5に示す如く、可視、紫外光、赤外光又はレーザー光を用いた3次元光センサ(3Dセンサとも称する)32が適するものと考えた。 First, with regard to the measuring equipment, for example, as a method that can measure the shape of the deposit 8 adhering to part or most of a large space of 3 m to 5 m in diameter and 5 m to 10 m in height in a short time with high three-dimensional accuracy, As shown in FIG. 5, a three-dimensional optical sensor (also called a 3D sensor) 32 using visible, ultraviolet, infrared or laser light was considered suitable.

計測位置については、付着物8の内部張出し長さ(付着物厚み)tより長い位置で、測定箇所は、図6(A)に示す如く、横断面の円周上1箇所であると大きな死角を生じるので、図6(B)に2箇所の場合を例示する如く、同一横断面の円周上2箇所(ほぼ対向する位置)~3箇所(円周をほぼ3分割する位置)とすることにより、死角を減らして最小の機器数で全体の計測が可能となる。図6(C)に、図6(B)に対応する縦断面を示す。 The measurement position is longer than the internal extension length (deposit thickness) t of the deposit 8, and the measurement point is one on the circumference of the cross section as shown in FIG. 6(A). Therefore, as shown in FIG. 6B, there are two locations on the circumference of the same cross section (approximately facing positions) to three locations (positions dividing the circumference into three). This reduces blind spots and enables overall measurement with a minimum number of devices. FIG. 6(C) shows a longitudinal section corresponding to FIG. 6(B).

ダスト濃度の影響については、以下の検討を行った。焼却炉や溶融炉の形式や対象物の種類にもよるが、炉出口のダスト濃度は概ね十数g/m3以下である。排ガス温度が700℃~300℃程度であることから、実質的な濃度としては1~5g/m3程度となる。実際に溶融炉から採取したダストを用い、レーザー散乱式粒度計で粒子数と粒度分布の測定が可能か否か検討した結果、図7に示す如く、1μ以上の総粒子個数として0.35g/m3程度に測定限界があった。粒度の測定と光による形状計測に対するダスト濃度の影響の程度は必ずしも同じではないが、粒子濃度が測定できない程にダスト濃度が高い場合は、光も透過しないと考えられる。つまり、付着物厚みtの計測において、ダストが多ければ光が透過せず計測できないことになる。ダスト等の影響により、3Dセンサ32で用いるレーザーの透過が阻害され、位置検出をしたい対象点に反射して返ってくる割合が減る。ここで、図7の縦軸の位置検出率[%]は、この影響下で、測定対象点へ送出したレーザーに対し、正しく位置を検出できた割合を示す。 Regarding the effect of dust concentration, the following studies were conducted. Although it depends on the type of incinerator or melting furnace and the type of object, the dust concentration at the furnace outlet is generally less than ten g/m 3 . Since the exhaust gas temperature is about 700° C. to 300° C., the substantial concentration is about 1 to 5 g/m 3 . As a result of examining whether or not it is possible to measure the number of particles and the particle size distribution using a laser scattering particle size meter using dust actually collected from a melting furnace, the total number of particles of 1 μm or more was 0.35 g/ There was a measurement limit of about m3 . Although the degree of influence of dust concentration on particle size measurement and shape measurement by light is not necessarily the same, when the dust concentration is so high that the particle concentration cannot be measured, it is considered that light will not be transmitted. In other words, when measuring the deposit thickness t, if there is a lot of dust, the light cannot pass through and the measurement cannot be performed. Due to the influence of dust or the like, transmission of the laser used in the 3D sensor 32 is obstructed, and the ratio of the laser reflected back to the target point whose position is to be detected decreases. Here, the position detection rate [%] on the vertical axis of FIG. 7 indicates the rate of correct position detection for the laser sent to the measurement target point under this influence.

なお、廃棄物の焼却炉や溶融炉の場合、廃棄物の種類や炉の形式によってダストの量は大幅に変化する。前述のとおり、炉出口ダスト濃度と粒子数の測定限界ダスト濃度を比べれば、その差は数倍~10倍以上となっており、焼却炉や溶融炉を通常の負荷で稼働させている時に測定することは容易ではない。従って、この問題を如何に解決するか、つまり、炉を停止させたり冷やしたりしない状態で、ダストの存在による砂嵐状の環境下でも測定できる対策が必要であった。 In the case of waste incinerators and melting furnaces, the amount of dust varies greatly depending on the type of waste and the type of furnace. As mentioned above, when comparing the dust concentration at the outlet of the furnace and the measurement limit dust concentration of the number of particles, the difference is several times to 10 times or more. it is not easy to do. Therefore, it was necessary to find a way to solve this problem, that is, to take measures that would allow measurement even in a sandstorm-like environment due to the presence of dust without stopping or cooling the furnace.

焼却炉や溶融炉の操業は、安定性を維持して長期間の連続運転を行うために、変動をなるべく少なくして運転するのが一般的である。一方、煙道内における付着物の形状の測定を行うには、前述の通りダスト濃度を大幅に低減させる必要がある。そこで発明者らは、炉の操業を短時間停止し、その間に測定することを考え、停止試験を実施したところ、完全停止の場合でも、未燃物や無機塩の熱分解等により可燃ガスや有害ガスが発生するため、図1中に示したように、二次燃焼以降の工程は、ガス、油、コークス等の助燃材や空気、酸素等の支燃材を用いてきちんと管理する必要があること、および特に溶融炉の場合には溶融物が部分的に凝固する部分が発生し、場合によっては、これが再操業の際の問題になる可能性があった。つまり、短時間であっても完全に操業を停止すると、問題が出る可能性のあることが判明した。これらの結果から、廃棄物負荷の大幅低減あるいはゼロとした場合に助燃材と支燃材を焚いて炉温を維持することにより、ダストの発生を大幅に抑制した状態を30分以上作ることができ、炉内の問題を発生させずに再稼働できることを見出した。 Incinerators and melting furnaces are generally operated with as little fluctuation as possible in order to maintain stability and carry out continuous operation for a long period of time. On the other hand, in order to measure the shape of deposits in the flue, it is necessary to greatly reduce the dust concentration as described above. Therefore, the inventors stopped the operation of the furnace for a short period of time, and carried out a stop test, thinking of measuring during that time. Since harmful gases are generated, as shown in Fig. 1, it is necessary to properly manage the processes after the secondary combustion using combustion aids such as gas, oil and coke, and combustion support materials such as air and oxygen. One, and especially in the case of melting furnaces, was the occurrence of areas where the melt partially solidified, which in some cases could be a problem during re-operation. In other words, it was found that a complete stoppage of operations, even for a short period of time, could lead to problems. From these results, it is possible to create a state in which the generation of dust is greatly suppressed for 30 minutes or more by maintaining the furnace temperature by burning the combustion aid and the combustion support material when the waste load is greatly reduced or zero. It was found that the furnace could be restarted without causing problems in the furnace.

ここで、ダストの発生を大幅に抑制した状態を30分以上作るのは、測定に要する最低時間を確保するためである。 Here, the reason why the state in which the generation of dust is greatly suppressed is set for 30 minutes or longer is to secure the minimum time required for the measurement.

即ち、例えば減温塔14の場合、減温塔14の上部から下部で設置されたマンホール14aやハンドホールの中で適した位置を探して測定を行うが、測定手順として、まず、1)マンホール14aやハンドホールのフランジの蓋を外し、2)測定器具へ必要に応じて冷却空気や冷却水を接続・通水し、挿入・設置し、3)測定を行い、4)測定後は測定器具を外して、5)フランジの蓋を元通りに閉めて完了となる。 That is, for example, in the case of the cooling tower 14, a suitable position is searched for in the manhole 14a or the handhole installed from the top to the bottom of the cooling tower 14, and the measurement is performed. 14a and the cover of the flange of the hand hole are removed, 2) connect cooling air and cooling water to the measuring instrument as necessary, insert and install, 3) perform measurement, 4) measuring instrument after measurement 5) Close the lid of the flange as before to complete.

測定時間は5分~10分程度であるが、そのための作業時間が設置に10分、後片付けに10分以上かかるので、測定に際しては最短で30分程度が必要となる。 The measurement time is about 5 to 10 minutes, but the work time for this is 10 minutes for installation and 10 minutes or more for cleanup, so the shortest time required for measurement is about 30 minutes.

ただし、炉の方式や形状、廃棄物の種類等によっては、ダストの発生を大幅に抑制した状態を作るのに10分以上掛かる場合がある。この場合の安定化に掛かる時間は、さらに20分程度が最短でも必要になる。 However, depending on the type and shape of the furnace, the type of waste, etc., it may take 10 minutes or more to create a state in which the generation of dust is greatly suppressed. In this case, the minimum time required for stabilization is about 20 minutes.

測定時間が長くなった場合のデメリットは、稼働率が低下すること、定常操業状態に戻すのに要する時間がより長引くなどである。 Disadvantages of a longer measurement time include lower availability and longer time required to return to steady state operation.

又、大幅な低負荷運転を負荷率20%以下とする根拠は、負荷率20%が測定に必要なダスト濃度を下げるための最大負荷であるためである。 Further, the grounds for setting the load factor to 20% or less for the significantly low-load operation is that the load factor of 20% is the maximum load for lowering the dust concentration required for measurement.

即ち、通常の廃棄物の焼却炉や溶融炉の場合、炉出口ダスト濃度は500℃程度で1~5g/m3程度(既記述)である。負荷率を20%に下げた場合、可燃性ガスと燃焼空気等の支燃性ガスの量も同じ比率で下がるため、ダスト濃度に変化はないと思われるが、実測してみると負荷率50%では0.5~2.0g/m3、負荷率20%では0.3~1.5g/m3であった。この理由は、炉内や煙道の流速が遅くなったことによって、凝集や沈殿効果が増したことがあると考えられるが、詳細は不明である。ただし、数値としては、負荷率20%程度で3D光学測定が可能なダスト濃度の範囲に入る可能性があるということで、負荷率の上限は20%となる。 That is, in the case of ordinary waste incinerators and melting furnaces, the concentration of dust at the outlet of the furnace is about 1 to 5 g/m 3 at about 500° C. (as described above). If the load factor is lowered to 20%, the amount of combustible gas and combustion-supporting gas such as combustion air will also decrease at the same rate, so it is thought that there will be no change in the dust concentration. % and 0.3 to 1.5 g/m 3 at a load rate of 20% . The reason for this is thought to be that the flow velocity in the furnace and the flue became slow, which increased the coagulation and sedimentation effects, but the details are unknown. However, the upper limit of the load factor is 20% because there is a possibility that the dust concentration range in which 3D optical measurement can be performed is possible at a load factor of about 20%.

一方、廃棄物の負荷率のみを20%にして可燃ガスや支燃ガス量による発熱量を上げて、負荷率の変更前後で全熱量は同程度に維持する場合、これは炉温を下げない効果があるが、このような操業方法を選択した場合、排ガス量は大きく変化しないためダスト濃度は負荷率にほぼ比例して下がり、0.2~1g/m3と推測される。 On the other hand, if only the waste load factor is set to 20% and the calorific value due to the amount of combustible gas and combustion-supporting gas is increased, and the total calorific value is maintained at the same level before and after changing the load factor, this does not lower the furnace temperature. It is effective, but if such an operation method is selected, the amount of exhaust gas does not change greatly, so the dust concentration decreases almost in proportion to the load factor, and is estimated to be 0.2 to 1 g/m 3 .

上記2つのことから、廃棄物負荷率の上限を20%とし、この負荷率以下で操業することにより、3D形状計測が円滑に行える。 Based on the above two facts, 3D shape measurement can be performed smoothly by setting the upper limit of the waste load factor to 20% and operating at a load factor of 20% or less.

廃棄物の供給を停止し炉温維持に必要な助燃材や電力を供給して(炉の定格負荷の20%程度以下)30分間維持した場合の効果は以下の通りとなる。 When the waste supply is stopped and the combustion aid and power required to maintain the furnace temperature are supplied (approximately 20% or less of the rated load of the furnace) for 30 minutes, the effects are as follows.

1週間に1回、30分かけて測定を行い、1時間かけて復帰させるものとする。炉の廃棄物の負荷率は30分間がゼロ、復帰時の1時間まで均して50%とする。現状の場合、連続操業時間が14日、炉停止から再稼働までが5日とし、煙道内付着物形状計測により連続操業時間が7日間延びたとすると、RUN1回当たりの稼働率は
現状の正味の稼働率=(14×24)/(14+5)×24=0.736
発明成果の稼働率=(21×24-1.5×0.5×3)/(21+5)×24=0.804
となる。この差は一見少ないように見えるが、1)清掃時間と清掃費用が短縮でき、2)設備と要員を変えることなく効率が6%以上上げられる。
Measurements shall be taken once a week for 30 minutes and shall be returned for 1 hour. The furnace waste load factor is 0 for 30 minutes and averaged to 50% for 1 hour after recovery. In the current situation, the continuous operation time is 14 days, and the time from reactor shutdown to restart is 5 days. Availability = (14 x 24)/(14 + 5) x 24 = 0.736
Availability of invention results = (21 x 24 - 1.5 x 0.5 x 3) / (21 + 5) x 24 = 0.804
becomes. Although this difference may seem small at first glance, 1) cleaning time and cleaning costs can be reduced, and 2) efficiency can be increased by more than 6% without changing equipment and personnel.

なお、測定は頻度高く行うことが望ましいが、長期間の測定および操業データとの組合せ学習によって信頼性を高められることを考えると、数日あるいは1週間に1回等、データ蓄積と操業条件等の膨大なデータを機械学習に取り込むことにより学習効果を高め、その結果として測定頻度を大幅に少なくできる可能性がある。 It is desirable to conduct measurements frequently, but considering that reliability can be improved by combining long-term measurements and operation data, data accumulation and operation conditions, etc., such as once every few days or once a week By incorporating the huge amount of data in machine learning, the learning effect can be enhanced, and as a result, the frequency of measurement can be greatly reduced.

もう一つ、計測に際して注意する必要があるのが計測温度であり、3Dセンサ32の測定プローブは耐熱温度以下に冷却する必要がある。この温度は測定器のメーカーや機種によって異なるが、おおよそ70℃程度と言われている。 Another thing to be careful about is the measurement temperature, and it is necessary to cool the measurement probe of the 3D sensor 32 to below the heat-resistant temperature. Although this temperature varies depending on the manufacturer and model of the measuring instrument, it is said to be approximately 70°C.

図8(A)に示すような水冷ジャケット34を用いた冷水による間接熱交換方式の場合は、比較的小型になるが機器は複雑になる。図において、36はケーブルスぺースである。冷却に気体(空気)を用いる場合は、図8(B)に示すように、3Dセンサ32の測定プローブを空冷ジャケット38に入れて、空冷ジャケット38に気体(空気又可燃性でない窒素N2等のガス)を通して冷却し、冷却後のガスは炉や煙道内に放散すればよい。水冷ジャケット34、空冷ジャケット38には耐熱ガラス製等の透明な覗き窓を設け、この覗き窓で測定用の光の授受やカメラ撮影を行う。水冷と空冷を併用する例を図8(C)に示す。 In the case of an indirect heat exchange system using cold water using a water-cooling jacket 34 as shown in FIG. 8A, the equipment is relatively small but complicated. In the figure, 36 is a cable space. When gas (air) is used for cooling, as shown in FIG. 8(B), the measurement probe of the 3D sensor 32 is placed in the air cooling jacket 38, and the air cooling jacket 38 is filled with gas (air, non-flammable nitrogen N 2 , etc.). gas), and the gas after cooling can be dissipated into the furnace or flue. The water-cooling jacket 34 and the air-cooling jacket 38 are provided with transparent peepholes made of heat-resistant glass or the like, through which light for measurement is transmitted and received and photographing is performed with a camera. FIG. 8C shows an example of using both water cooling and air cooling.

3Dセンサ32の測定プローブ入りジャケット34、38の装入・設置は、炉や煙道の適切な場所(例えばマンホール14aやハンドホール)に予め設けておいた台座の装入口を開けて装入・設置する。計測データは、3Dモデルに落とし込むことによって使い勝手の良いものになる。 The charging and installation of the jackets 34 and 38 containing the measurement probes of the 3D sensor 32 is performed by opening the charging port of the pedestal provided in advance at an appropriate place (for example, manhole 14a or handhole) in the furnace or flue. Install. The measurement data becomes user-friendly by putting it into a 3D model.

又、3Dレーザー計測法を用いることによって、3Dセンサ(発信・受信)32は付着物8の壁面からの張出し高さ以上に装入する必要があるという点に対して、図6(B)(C)に示したように、2つの3Dセンサ32A、32Bを用いて、ほぼ対向する位置から互いに対向する面を測定することにより、各3Dセンサ32A、32Bの死角、及び、付着物8自体が邪魔をして測定できなくなる部分を大幅に低減できる。付着物8自体の成長は日あるいは週単位で緩慢に変化するため、この変化を知るには、1日1回程度、1つの測定器と保護部品を用いて順番に測定すればよく、保護部品を煙道や反応容器内に深く装入する必要もないので、3Dセンサ32A、32Bの冷却や測定器表面の清浄状態の維持が容易になり、操作も簡便になる。 In addition, by using the 3D laser measurement method, the 3D sensor (transmitting/receiving) 32 needs to be inserted above the height of the sticking object 8 projecting from the wall surface. As shown in C), using two 3D sensors 32A and 32B, by measuring surfaces facing each other from substantially facing positions, blind spots of each 3D sensor 32A and 32B and the deposit 8 itself It is possible to greatly reduce the part that interferes and cannot be measured. Since the growth of the deposit 8 itself changes slowly on a daily or weekly basis, in order to know this change, it is sufficient to measure once a day using one measuring instrument and protective component in order. is not required to be deeply charged into the flue or reaction vessel, cooling the 3D sensors 32A and 32B and maintaining a clean surface of the measuring device are facilitated, and operation is simplified.

空冷ジャケット38の使用冷却気体量は800℃の粉塵環境下で、覗き窓付でセラミック製の内面に断熱材を施した空冷ジャケット38に3Dセンサ32を入れたものを用いて耐熱効果を確認した結果、70℃を少なくとも15分間保持するのに必要な常温の冷却ガス量は、炉や煙道を通過するガス量の高々2%以下であった。 The amount of cooling gas used in the air-cooling jacket 38 is a dusty environment at 800°C, and the heat-resistant effect was confirmed by using the air-cooling jacket 38 with a peephole and a ceramic inner surface with heat insulating material, in which the 3D sensor 32 was inserted. As a result, the amount of room-temperature cooling gas required to maintain 70°C for at least 15 minutes was at most 2% or less of the amount of gas passing through the furnace and flue.

本発明は、上記の検討結果に基づいてなされたもので、排ガス通路の内壁面に付着した付着物の厚みを推定する方法であって、排ガス通路の中に挿入された3次元光センサを用いて、排ガス通路の内壁面の付着物形状を内部から直接3次元計測する3次元計測工程と、前記3次元計測工程における付着物の3次元計測から得られた付着物厚みの実測データ、及び、操業データを蓄積して付着物厚みを学習する学習工程と、前記学習工程から得られた学習結果を用いて付着物厚みを予測する予測工程と、を備えたことにより前記課題を解決するものである。 The present invention has been made based on the above study results, and is a method for estimating the thickness of deposits adhering to the inner wall surface of an exhaust gas passage, which uses a three-dimensional optical sensor inserted into the exhaust gas passage. a three-dimensional measurement step of directly three-dimensionally measuring the shape of the deposit on the inner wall surface of the exhaust gas passage from the inside ; actual measurement data of the thickness of the deposit obtained from the three-dimensional measurement of the deposit in the three-dimensional measurement step; The problem is solved by providing a learning step of accumulating operation data to learn the deposit thickness and a prediction step of predicting the deposit thickness using the learning result obtained from the learning step. be.

本発明は、又、排ガス通路の内壁面に付着した付着物の厚みを推定する装置であって、排ガス通路の中に挿入され、排ガス通路の内壁面の付着物形状を内部から直接3次元計測する3次元光センサと、前記3次元光センサによる付着物形状の3次元計測から得られた付着物厚みの実測データ、及び、操業データを蓄積して付着物厚みを学習する学習手段と、前記学習手段から得られた学習結果を用いて付着物厚みを予測する予測手段と、を備えたことを特徴とする排ガス通路内壁面の付着物厚み推定装置を提供することにより、同じく前記課題を解決するものである。 The present invention also provides a device for estimating the thickness of deposits adhering to the inner wall surface of an exhaust gas passage, which is inserted into the exhaust gas passage and directly measures the shape of the deposit on the inner wall surface of the exhaust gas passage three-dimensionally from the inside. learning means for accumulating actual measurement data of the deposit thickness obtained from three-dimensional measurement of the deposit shape by the three-dimensional optical sensor and operation data to learn the deposit thickness; Prediction means for predicting the thickness of deposits using the learning result obtained from the learning means. It is something to do.

ここで、前記3次元計測工程で用いる前記3次元光センサを、排ガス通路断面の複数箇所に配設することができる。 Here, the three-dimensional optical sensors used in the three-dimensional measurement process can be arranged at a plurality of locations on the cross section of the exhaust gas passage.

又、前記3次元計測工程で用いる前記3次元光センサによる付着物形状の測定を、ダスト濃度が0.35g/m3以下となる、炉の短時間停止時又は低負荷運転時に行うことができる。 In addition, the measurement of the shape of deposits by the three-dimensional optical sensor used in the three-dimensional measurement process is carried out when the furnace is stopped for a short period of time or during low-load operation when the dust concentration is 0.35 g/m 3 or less. can be done.

又、前記3次元計測工程で用いる前記3次元光センサを、空冷及び/又は水冷ジャケットに挿入して用いることができる。 Also, the three-dimensional optical sensor used in the three-dimensional measurement process can be used by inserting it into an air-cooling and/or water-cooling jacket.

本発明は、焼却・溶融炉の炉内や排ガス処理設備や煙道への付着物8の付着状況を3Dカメラ等で計測し、データ処理によって得られた3次元付着物厚みデータと設備の操業データを組み合わせることによって精度の高い測定(厚み、広がり、硬さ等)を行い、この結果から判断した適する器具を用いて付着物8を効果的に除去する。その際、これらのデータを人工知能(AI)による機械学習によって、原料の種類や組合せ、処理量、処理条件等を制御して一連続単位の操業時間を長くし、付着物8の清掃を効率化すると共に、安全性を高めるうえで総合的に効果的な操業方法を把握する。これらにより、省エネ化、省力化、安全性向上、低コスト化を図る。原理と機能は以下のとおりである。 The present invention measures the state of adhesion of deposits 8 inside an incinerator/melting furnace, exhaust gas treatment equipment, and flue with a 3D camera or the like, and obtains three-dimensional deposit thickness data by data processing and operation of the equipment. By combining the data, highly accurate measurements (thickness, spread, hardness, etc.) are performed, and the deposit 8 is effectively removed using a suitable instrument determined from the results. At that time, these data are machine-learned by artificial intelligence (AI) to control the type and combination of raw materials, processing amount, processing conditions, etc. to lengthen the operation time of one continuous unit, and clean the deposits 8 efficiently. At the same time, grasp the comprehensively effective operation method to enhance safety. Through these measures, we aim to save energy, save labor, improve safety, and reduce costs. The principle and function are as follows.

<1>3Dセンサ32の高温部を図8に例示したように、空冷、水冷等で冷却し、機器が正常に測定できる温度範囲に制御すること、及び、測定時の設備や煙道のダスト濃度を図7に示したように、0.35g/m3以下になるように、原燃料供給や設定温度等を調節して操業する。 <1> Cooling the high temperature part of the 3D sensor 32 with air cooling, water cooling, etc. as illustrated in FIG. As shown in FIG. 7, the operation is performed by adjusting the raw fuel supply, the set temperature, etc. so that the concentration is 0.35 g/m 3 or less.

<2>3Dセンサ32による付着状況の3次元形状把握と、操業データ40、42を、図9に示すようにマッチングさせることにより、厚みを推測し、この推測によって付着物8の除去の時期を判断すると共に、付着物厚みtや付着物8の除去作業に適する治具や安全具を選択して除去作業を行う。 <2> By matching the three-dimensional shape grasp of the adhesion state by the 3D sensor 32 and the operation data 40 and 42 as shown in FIG. Along with the judgment, a jig or a safety tool suitable for the thickness t of the adhering matter and the removing work of the adhering matter 8 is selected to perform the removing work.

<3>操業データ40、42の内容と付着物8の3次元測定データ33を組み合わせる。
操業データ40、42としては、処理対象物の性状(成分、量)、処理に際しての添加物の種類と量、焼却・溶融温度、炉出口温度、炉出ロ排ガス組成と量、ダスト組成とダスト量、二次燃焼条件、ガス冷却方法、有害ガス除去設備排ガス処理過程での添加物等があり、付着物8の付着位置と付着量と付着硬さと付着組成(特に塩類組成の関わり)との関連を推定することが主目的である。必要に応じて、頻度を高めた断続的測定を行い、付着状況との経時的変化を明確にして、廃棄物等の対象物を炉に入れる順番の選択の最適化、温度や負荷等の炉の操業条件の最適化、及び、炉を停止する時期のより的確な判断等が可能となり、炉の連続稼働期間の長期化に繋がる。
<3> Combining the contents of the operation data 40 and 42 with the three-dimensional measurement data 33 of the deposit 8 .
The operation data 40 and 42 include the properties (components and amounts) of the object to be treated, the types and amounts of additives used during treatment, the incineration/melting temperature, the temperature at the furnace outlet, the composition and amount of exhaust gas discharged from the furnace, the dust composition and dust. amount, secondary combustion conditions, gas cooling method, additives in the exhaust gas treatment process of harmful gas removal equipment, etc., and the adhesion position, adhesion amount, adhesion hardness, and adhesion composition (particularly related to salt composition) of the deposit 8 The main purpose is to infer associations. If necessary, perform intermittent measurements with increased frequency, clarify the adhesion status and changes over time, optimize the selection of the order in which objects such as waste are placed in the furnace, and adjust the temperature and load of the furnace. It is possible to optimize the operating conditions of the furnace and more accurately determine when to stop the furnace, leading to a longer continuous operation period of the furnace.

<4>設備稼働中の付着対策の効果を把握する。
付着防止のためにハンマリング機器やエアハンマー、ビンブロー等を設置する場合があるが、現状では外から見えないブラックボックス内に設置されているので、効果の判定が困難である。頻度を高めた断続的測定を行って、付着状況と付着対策の条件(方式、頻度、力)と効果の経時的変化が明確になれば、効果的な対策方法の選択が可能となり、最終的に炉の連続稼働期間の長期化に結びつくことになる。
<4> Understand the effect of adhesion countermeasures during equipment operation.
Hammering equipment, air hammers, bin blows, etc. may be installed to prevent adhesion, but at present, it is difficult to determine the effect because they are installed in a black box that cannot be seen from the outside. If intermittent measurements with increased frequency are performed to clarify the adhesion status, the conditions of adhesion countermeasures (method, frequency, force), and changes over time in the effect, it will be possible to select an effective countermeasure method, and finally This will lead to a longer continuous operating period of the furnace.

以上説明したように、本発明では、内部から計測した3Dセンサ32の計測値による付着物厚み測定データと、炉の操業データを融合・学習させることにより付着物厚みtを操業データから予測する精度を高める。そして、付着物厚みtを予測値で判断して、一定以上の厚みとなった場合(炉の操業に悪影響が出始める時点)に、操業を停止して冷却し、人手あるいはロボットで除去作業を行う。 As described above, in the present invention, the accuracy of predicting the deposit thickness t from the operation data is achieved by fusing and learning the deposit thickness measurement data based on the measured values of the 3D sensor 32 measured from the inside and the operation data of the furnace. increase Then, the deposit thickness t is determined by the predicted value, and when the thickness reaches a certain value or more (at the point when the operation of the furnace begins to be adversely affected), the operation is stopped and cooled, and the removal work is performed manually or by a robot. conduct.

通常、廃棄物焼却炉は100t~200t/日程度の処理規模のものがよく用いられている。操業は1日単位で立ち上げから立ち下げを行うもの、平日操業土日停止のサイクルで動かすもの、目詰まり等で清掃作業が必要になるまで連続操業するもの等がある。1日あるいは週単位で操業するものも、停止時は立ち上げを考慮して加熱保温しておくのが一般的である。溶融炉は、規模は焼却炉と同等かやや小さい。こちらは一且起動すると、且詰まり等で清掃作業が必要になるか、耐火物用の部品が摩耗や劣化により交換が必要になるまで連続操業するのが一般的である。特に、炉出口等の小径配管が詰まりやすいため、自動清掃設備を設置したり、清掃しやすいように直管部の両端にフランジを設ける等の設備の工夫を行ったりしている。 Usually, waste incinerators with a processing scale of about 100t to 200t/day are often used. There are operations that start up and shut down in units of one day, operations that operate on weekdays and stops on weekends, and operations that operate continuously until cleaning work is required due to clogging or the like. It is common to heat and keep the temperature in consideration of start-up at the time of shutdown even for those that operate on a daily or weekly basis. Melting furnaces are the same size or slightly smaller than incinerators. Once started, it is common to operate continuously until cleaning work is required due to clogging or the like, or refractory parts need to be replaced due to wear or deterioration. In particular, since small-diameter pipes such as furnace outlets are prone to clogging, equipment such as installing automatic cleaning equipment and providing flanges on both ends of straight pipes for easy cleaning are being devised.

焼却炉と溶融炉のどちらについても、操業の効率は時間当たりの処理量や設備のメンテナンスの頻度や設備寿命、使用ユーティリティ量、操業に必要な担当者数等によって左右される。効率を比較するにあたり、連続操業か夜間停止か土日停止かは、作業者の確保のしやすさや労賃によって左右されるので、操業を固定する必要がある。そこで、現実的かつ効果が明確になりやすい溶融炉の連続操業を対象として説明する。溶融炉を連続操業した場合、方式にもよるが、コークス等の燃料を使用する溶融炉の場合、通常、数か月程度は連続運転が可能である。 For both incinerators and melting furnaces, the efficiency of operation depends on the throughput per hour, the frequency of equipment maintenance, the life of the equipment, the amount of utilities used, and the number of personnel required to operate. When comparing efficiency, it is necessary to fix the operation because whether it is continuous operation, night stop, or weekend stop depends on the ease of securing workers and wages. Therefore, the description will focus on the continuous operation of a melting furnace, which is realistic and the effects are likely to be clear. When a melting furnace is operated continuously, it depends on the method, but in the case of a melting furnace using fuel such as coke, it is usually possible to operate continuously for about several months.

一方で、排ガス処理系での付着や閉塞で問題が出る期間は、処理対象物にもよるが、短い場合は数週間、長い場合でも1か月程度である。 On the other hand, the period during which problems such as adhesion and clogging occur in the exhaust gas treatment system depends on the object to be treated, but it is as short as several weeks and as long as about one month.

例えば、連続操業2週間の場合、炉の停止から冷却に1.5日、清掃に2日、立上げに1.5日の合計5日必要であり、この場合、操業9日に対して休みが5日で稼働率は64%(9÷14)となる。 For example, in the case of continuous operation for 2 weeks, a total of 5 days are required: 1.5 days for cooling, 2 days for cleaning, and 1.5 days for start-up after shutting down the furnace. is 5 days and the operating rate is 64% (9/14).

これに対して、本発明による付着物厚み推定技術を用いると、特にネックとなる部分の推定が可能となり、操業を1週間程度は延ばせる可能性がある。この場合の稼働率は76%(16÷21)となり、20%程度稼働率を上げることができる。又、稼働率に加えて、付着場所と付着物厚みが推定できるので、適切な足場の設置の仕方や清掃器具の準備ができることにより、清掃時間の大幅な短縮が期待できる。この点は、特に付着物が放射能を帯びている場合の清掃業務において、法で決められた作業時間より短時間で作業を済ませることができるため、要員を削減できる可能性もある。又、対象物や処理条件と放射能計測値との対比を行えば、稼働時間をより長くできる条件を見出せる可能性が高まるため、更に稼働率を上げられる可能性が高まる。 On the other hand, if the adhesion thickness estimation technology according to the present invention is used, it becomes possible to estimate the bottleneck portion, and there is a possibility that the operation can be extended by about one week. The operating rate in this case is 76% (16/21), which can be increased by about 20%. In addition to the operating rate, it is possible to estimate the location and thickness of deposits, so that it is possible to set up appropriate scaffolding and prepare cleaning tools, which can be expected to significantly reduce cleaning time. In this regard, it is possible to reduce the number of personnel, especially in the case of cleaning work when the deposits are radioactive, because the work can be completed in a shorter time than the work time stipulated by law. In addition, by comparing the object and treatment conditions with the radioactivity measurement values, the possibility of finding conditions that can extend the operating time increases, so the possibility of further increasing the operating rate increases.

本発明が対象とするプロセスの一例と本発明が対象とする工程の範囲を示すブロック図A block diagram showing an example of a process targeted by the present invention and a range of processes targeted by the present invention. 図1において排ガスを冷却する工程の変形例を示すブロック図Block diagram showing a modification of the process of cooling the exhaust gas in FIG. 図1において排ガスを冷却する工程の他の変形例を示すブロック図Block diagram showing another modification of the process of cooling the exhaust gas in FIG. 図1の減温塔に付着した付着物を示す縦断面図Longitudinal cross-sectional view showing deposits adhering to the cooling tower of FIG. 本発明の実施形態で用いる3Dセンサの配置例を示す減温塔の縦断面図Longitudinal cross-sectional view of a desuperheating tower showing an arrangement example of 3D sensors used in the embodiment of the present invention 本発明の実施形態で用いる3Dセンサの死角を説明するための(A)(B)水平断面図及び(C)縦断面図(A) (B) horizontal cross-sectional view and (C) vertical cross-sectional view for explaining the blind spot of the 3D sensor used in the embodiment of the present invention 本発明の実施形態におけるダスト濃度と3D形状測定限界を示す線図FIG. 2 is a diagram showing dust concentration and 3D shape measurement limit in an embodiment of the present invention. 本発明の実施形態で用いる3Dセンサのジャケットを示す断面図Sectional view showing the jacket of the 3D sensor used in the embodiment of the present invention 本発明の実施形態における付着物厚みの予測処理の構成を示すブロック図FIG. 2 is a block diagram showing the configuration of a deposit thickness prediction process according to an embodiment of the present invention; 本発明の実施形態における処理手順を示す流れ図FIG. 2 is a flow chart showing the processing procedure in the embodiment of the present invention; FIG. 本発明の実施形態における学習方法を示す図A diagram showing a learning method according to an embodiment of the present invention.

以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、本発明は以下の実施形態に記載した内容により限定されるものではない。また、以下に記載した実施形態における構成要件には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。更に、以下に記載した実施形態で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the present invention is not limited by the contents described in the following embodiments. In addition, the configuration requirements in the embodiments described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those within the so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments described below may be combined as appropriate, or may be selected and used as appropriate.

まず、本発明の実施形態におけるセンサの構成と配置を説明する。 First, the configuration and arrangement of sensors in the embodiment of the present invention will be described.

本発明を実施するためのセンサは、図5に示した如く、排ガス通路(減温塔14)の中に例えばマンホール14aを利用して挿入され、排ガス通路の内壁面の付着物形状を3次元計測する3Dセンサ32を備えている。本実施形態では、2つの3Dセンサ32A、32Bが図8(A)に示した水冷ジャケット34、図8(B)に示した空冷ジャケット38、又は、図8(C)に示した水冷・空冷ジャケットに挿入され、図6(B)(C)に示したように対向配置される。 As shown in FIG. 5, the sensor for carrying out the present invention is inserted into the exhaust gas passage (reducing temperature tower 14) using, for example, a manhole 14a, and the shape of deposits on the inner wall surface of the exhaust gas passage is measured three-dimensionally. It has a 3D sensor 32 to measure. In this embodiment, the two 3D sensors 32A and 32B are the water-cooled jacket 34 shown in FIG. 8A, the air-cooled jacket 38 shown in FIG. 8B, or the water-cooled/air-cooled They are inserted into the jacket and arranged opposite to each other as shown in FIGS. 6(B) and 6(C).

そして、センサの出力は、図9に示すような3Dセンサ32の画像データを用いた3次元測定による付着物厚み測定データ33、原料(廃棄物)処理量(装入量)、副原料(石灰、コークスなど)装入量、成分、空気・酸素吹込み量、炉、煙道の温度、排ガス量(風量、風速)、冷却水量、灰、スラグ、飛灰発生量、制御項目と制御数値の範囲、成分分析値、他の操業(計画)データ40、及び、処理量(装入量)、空気・酸素吹込み量、炉、煙道の温度、排ガス量(風量、風速)、排ガス組成(O2、SO2、SO、HCl他)、冷却水量、電力・燃料等使用量、他の操業(実測)データ42が導入され、これらを蓄積して学習するデータ蓄積学習部110と、データ蓄積学習部110の出力に基づいて作成される付着物厚み予測モデル120と、付着物厚み予測部130とを有するコンピュータ100と、コンピュータ100の出力により付着物厚みtを決定して出力する付着物厚み(決定)出力部140とを備えた付着物厚みの予測処理回路に導入される。 Then, the output of the sensor is, as shown in FIG. , coke, etc.) charging amount, components, air/oxygen blowing amount, furnace, flue temperature, flue gas amount (air volume, wind speed), cooling water amount, ash, slag, fly ash generation amount, control items and control values Range, component analysis values, other operation (plan) data 40, and processing amount (charge amount), air/oxygen blowing amount, furnace, flue temperature, exhaust gas amount (air volume, wind speed), exhaust gas composition ( O 2 , SO 2 , SO, HCl, etc.), cooling water amount, electric power/fuel consumption, and other operational (actual measurement) data 42 are introduced, and a data accumulation learning unit 110 for accumulating and learning these, and data accumulation A computer 100 having a deposit thickness prediction model 120 created based on the output of a learning unit 110 and a deposit thickness prediction unit 130; (Decision) is introduced into a deposit thickness prediction processing circuit with an output 140 .

ここで、本実施形態における付着物厚みの推定手順を図10に示す。 Here, FIG. 10 shows the procedure for estimating the deposit thickness in this embodiment.

まずステップ110で、付着物8の形状を3次元計測する。 First, in step 110, the shape of the adhering matter 8 is three-dimensionally measured.

次いでステップ120で、3D測定による付着物厚み測定データ(3次元測定データ)33、操業データ40、42を蓄積して付着物厚みtを学習する。 Next, in step 120, deposit thickness measurement data (three-dimensional measurement data) 33 by 3D measurement and operation data 40, 42 are accumulated to learn the deposit thickness t.

次いでステップ130で、学習結果を用いて付着物厚みtを予測する。 Next, in step 130, the learning result is used to predict the deposit thickness t.

更に、ステップ120における付着物厚みの学習の様子を図11に示す。 Furthermore, FIG. 11 shows how the deposit thickness is learned in step 120 .

まず、図11(A)の学習段階で、測定・画像データからなる生データI(33)と、設定・計画データ、操業データ、計測データからなる生データII(40、42)を加工して、学習用データセット50を作成する。この際、異常データは除外し、測定・画像データを融合する。 First, at the learning stage in FIG. , to create a training data set 50 . At this time, abnormal data are excluded, and measurement and image data are merged.

次に、学習用データセット50を、学習用プログラム112、学習前パラメータ114、学習装置の構成を決めるハイパーパラメータ116を含むデータ蓄積学習部110に入力し、学習済モデル122、学習済パラメータ124、推論プログラム126を有する付着物厚み予測モデル120で学習する。 Next, the learning data set 50 is input to the data accumulation learning unit 110 including the learning program 112, the pre-learning parameters 114, and the hyperparameters 116 that determine the configuration of the learning device, and the trained model 122, the trained parameters 124, A deposit thickness prediction model 120 having an inference program 126 is learned.

学習結果は付着物厚み予測部130に入力され、実際の入力データ128に基づいて、学習済モデル122により付着物厚みtを決定して出力する。 The learning result is input to the deposit thickness prediction unit 130, and based on the actual input data 128, the learned model 122 determines and outputs the deposit thickness t.

その結果に基づいて、例えば(a)原料の種類と量が十分にあって、付着物厚みtを最少にする原料・操業条件選択を行う。あるいは、(b)原料の選択に制約がある場合で、付着物厚みtを最少化できる原料・操業条件を選択する付着物厚みの最少化を行う。あるいは、(c)停止・清掃を計画通りに行う場合は、原料条件を問わず、早く付着物厚みtを増やす操業選択を行う付着物厚みの最大化を行う。更に、望ましい原料条件を知ることもできる。 Based on the results, for example, (a) selection of raw materials and operating conditions is performed to minimize the deposit thickness t with sufficient types and amounts of raw materials. Alternatively, (b) when there are restrictions on the selection of raw materials, the deposit thickness is minimized by selecting raw materials and operating conditions that can minimize the deposit thickness t. Alternatively, (c) when stopping and cleaning are carried out as planned, regardless of raw material conditions, an operation selection is made to quickly increase the deposit thickness t, thereby maximizing the deposit thickness. Furthermore, desirable raw material conditions can also be known.

以上のように、コンピュータ100のデータ蓄積学習部110では、焼却・溶融炉の炉内や排ガス処理設備や煙道への付着物8の付着状況を3Dセンサ32で計測し、データ処理によって得られた3D測定による付着物厚み測定データ(3次元測定データとも称する)33と、設備の操業(計画)データ40と、操業(実測)データ42を組み合わせることによって、より精度の高い推定(厚み、広がり、硬さ、放射能濃度等)を行い、この結果に基づいて作成した付着物厚み予測モデル120を用いて、付着物厚み予測部130、付着物厚み(決定)出力部140の出力により付着物8を除去する時期を判断すると共に、除去作業に適する器具を選択し、これを用いて人手又はロボットにより付着物8を効果的に除去する。 As described above, in the data accumulation learning unit 110 of the computer 100, the 3D sensor 32 measures the adhesion state of the deposits 8 in the furnace of the incineration/melting furnace, the exhaust gas treatment equipment, and the flue, and the data is obtained by data processing. By combining deposit thickness measurement data (also referred to as three-dimensional measurement data) 33 by 3D measurement, facility operation (plan) data 40, and operation (actual measurement) data 42, more accurate estimation (thickness, spread , hardness, radioactivity concentration, etc.), and using the deposit thickness prediction model 120 created based on this result, the deposit Along with determining when to remove the deposit 8, an instrument suitable for the removal work is selected and used to effectively remove the deposit 8 manually or by a robot.

上記のようにして、3D測定による付着物厚み測定データ33と、炉の操業データ40、42を融合・学習させて付着物厚みtを推定すれば、操業データ40、42から付着物厚みtを予測する精度が高められる。これにより、3D測定をしなくても付着物厚みtの予測が精度高く行えるため、3D測定時に必要な炉の低負荷操業の頻度が低下し、炉の運用効率が向上する。 As described above, if the deposit thickness measurement data 33 obtained by 3D measurement and the furnace operation data 40 and 42 are integrated and learned to estimate the deposit thickness t, the deposit thickness t can be estimated from the operation data 40 and 42. Prediction accuracy is improved. As a result, the deposit thickness t can be predicted with high accuracy without 3D measurement, so the frequency of low-load operation of the furnace required for 3D measurement is reduced, and the operating efficiency of the furnace is improved.

又、付着物厚みtが薄い場合の操業方法を探る指標としても使用可能である。 It can also be used as an index for searching for an operation method when the deposit thickness t is thin.

なお、本実施形態においては、本発明が焼却炉及び溶融炉の減温塔に適用されていたが、本発明の適用対象はこれに限定されず、図1~図3に例示した対象範囲や、焼却炉及び溶融炉以外にも適用可能である。 In the present embodiment, the present invention is applied to the temperature reduction tower of the incinerator and the melting furnace, but the application of the present invention is not limited to this, and the target range and , incinerators and melting furnaces.

t…付着物厚み
8…付着物
10…焼却炉または溶融炉
12…二次燃焼炉
14…減温塔
22…ボイラ
32、32A、32B…3次元光センサ(3Dセンサ)
33…3次元測定による付着物厚み測定データ(3次元測定データ)
34…水冷ジャケット
38…空冷ジャケット
40…操業(計画)データ
42…操業(実測)データ
50…学習用データセット
100…コンピュータ
110…データ蓄積学習部
112…学習用プログラム
114…学習前パラメータ
116…ハイパーパラメータ
120…付着物厚み予測モデル
122…学習済モデル
124…学習済パラメータ
126…推論プログラム
128…入力データ
130…付着物厚み予測部
140…付着物厚み(決定)出力部
t Deposit thickness 8 Deposit 10 Incinerator or melting furnace 12 Secondary combustion furnace 14 Temperature reduction tower 22 Boiler 32, 32A, 32B Three-dimensional optical sensor (3D sensor)
33: Deposit thickness measurement data by three-dimensional measurement (three-dimensional measurement data)
34 Water-cooled jacket 38 Air-cooled jacket 40 Operation (planned) data 42 Operation (actual measurement) data 50 Learning data set 100 Computer 110 Data accumulation learning unit 112 Learning program 114 Pre-learning parameter 116 Hyper Parameter 120 Deposit thickness prediction model 122 Learned model 124 Learned parameter 126 Inference program 128 Input data 130 Deposit thickness prediction unit 140 Deposit thickness (decision) output unit

Claims (8)

排ガス通路の内壁面に付着した付着物の厚みを推定する方法であって、
排ガス通路の中に挿入された3次元光センサを用いて、排ガス通路の内壁面の付着物形状を内部から直接3次元計測する3次元計測工程と、
前記3次元計測工程における付着物の3次元計測から得られた付着物厚みの実測データ、及び、操業データを蓄積して付着物厚みを学習する学習工程と、
前記学習工程から得られた学習結果を用いて付着物厚みを予測する予測工程と、
を備えたことを特徴とする排ガス通路内壁面の付着物厚み推定方法。
A method for estimating the thickness of deposits adhering to the inner wall surface of an exhaust gas passage, comprising:
A three-dimensional measurement step of directly three-dimensionally measuring the shape of deposits on the inner wall surface of the exhaust gas passage from the inside using a three-dimensional optical sensor inserted into the exhaust gas passage;
a learning step of learning the deposit thickness by accumulating actual measurement data of the deposit thickness obtained from the three-dimensional measurement of the deposit in the three-dimensional measurement step and operation data;
A prediction step of predicting the deposit thickness using the learning result obtained from the learning step;
A method for estimating the thickness of deposits on an inner wall surface of an exhaust gas passage, comprising:
前記3次元計測工程で用いる前記3次元光センサを、排ガス通路断面の複数箇所に配設することを特徴とする請求項1に記載の排ガス通路内壁面の付着物厚み推定方法。 2. The method for estimating the thickness of deposits on the inner wall surface of the exhaust gas passage according to claim 1, wherein the three-dimensional optical sensors used in the three-dimensional measurement step are arranged at a plurality of locations on the cross section of the exhaust gas passage. 前記3次元計測工程で用いる前記3次元光センサによる付着物形状の測定を、ダスト濃度が0.35g/m3以下となる、炉の短時間停止時又は低負荷運転時に行うことを特徴とする請求項1又は2に記載の排ガス通路内壁面の付着物厚み推定方法。 The measurement of the shape of deposits by the three-dimensional optical sensor used in the three-dimensional measurement step is performed when the furnace is stopped for a short time or during low-load operation when the dust concentration is 0.35 g/m 3 or less. The method for estimating the thickness of deposits on the inner wall surface of the exhaust gas passage according to claim 1 or 2. 前記3次元計測工程で用いる前記3次元光センサを、空冷及び/又は水冷ジャケットに挿入して用いることを特徴とする請求項1乃至3のいずれかに記載の排ガス通路内壁面の付着物厚み推定方法。 4. Estimation of deposit thickness on inner wall surface of exhaust gas passage according to any one of claims 1 to 3, characterized in that said three-dimensional optical sensor used in said three-dimensional measurement step is used by being inserted into an air-cooling and/or water-cooling jacket. Method. 排ガス通路の内壁面に付着した付着物の厚みを推定する装置であって、
排ガス通路の中に挿入され、排ガス通路の内壁面の付着物形状を内部から直接3次元計測する3次元光センサと、
前記3次元光センサによる付着物形状の3次元計測から得られた付着物厚みの実測データ、及び、操業データを蓄積して付着物厚みを学習する学習手段と、
前記学習手段から得られた学習結果を用いて付着物厚みを予測する予測手段と、
を備えたことを特徴とする排ガス通路内壁面の付着物厚み推定装置。
A device for estimating the thickness of deposits adhering to the inner wall surface of an exhaust gas passage,
a three-dimensional optical sensor that is inserted into the exhaust gas passage and directly measures the shape of deposits on the inner wall surface of the exhaust gas passage three-dimensionally from the inside ;
learning means for learning the thickness of the deposit by accumulating actual measurement data of the deposit thickness obtained from the three-dimensional measurement of the shape of the deposit by the three-dimensional optical sensor and operation data;
Prediction means for predicting deposit thickness using the learning result obtained from the learning means;
An apparatus for estimating the thickness of deposits on the inner wall surface of an exhaust gas passage, comprising:
前記3次元光センサが、排ガス通路断面の複数箇所に配設されていることを特徴とする請求項5に記載の排ガス通路内壁面の付着物厚み推定装置。 6. The apparatus for estimating the thickness of deposits on the inner wall surface of the exhaust gas passage according to claim 5, wherein the three-dimensional optical sensors are arranged at a plurality of locations on the cross section of the exhaust gas passage. 前記3次元光センサが、炉の短時間停止又は低負荷運転により、ダスト濃度が0.35g/m3以下となる時に付着物形状を測定するようにされていることを特徴とする請求項5又は6に記載の排ガス通路内壁面の付着物厚み推定装置。 6. The three-dimensional optical sensor measures the shape of deposits when the dust concentration becomes 0.35 g/m 3 or less due to short-time shutdown or low-load operation of the furnace. 7. The device for estimating the thickness of deposits on the inner wall surface of the exhaust gas passage according to 6 above. 前記3次元光センサが、空冷及び/又は水冷ジャケットに挿入されていることを特徴とする請求項5乃至7のいずれかに記載の排ガス通路内壁面の付着物厚み推定装置。 8. An apparatus for estimating the thickness of deposits on an inner wall surface of an exhaust gas passage according to any one of claims 5 to 7, wherein said three-dimensional optical sensor is inserted in an air-cooled and/or water-cooled jacket.
JP2020069294A 2020-04-07 2020-04-07 Method and apparatus for estimating thickness of deposits on inner wall surface of exhaust gas passage Active JP7310688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020069294A JP7310688B2 (en) 2020-04-07 2020-04-07 Method and apparatus for estimating thickness of deposits on inner wall surface of exhaust gas passage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020069294A JP7310688B2 (en) 2020-04-07 2020-04-07 Method and apparatus for estimating thickness of deposits on inner wall surface of exhaust gas passage

Publications (2)

Publication Number Publication Date
JP2021165682A JP2021165682A (en) 2021-10-14
JP7310688B2 true JP7310688B2 (en) 2023-07-19

Family

ID=78021751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020069294A Active JP7310688B2 (en) 2020-04-07 2020-04-07 Method and apparatus for estimating thickness of deposits on inner wall surface of exhaust gas passage

Country Status (1)

Country Link
JP (1) JP7310688B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294867A (en) 2000-04-11 2001-10-23 Sumitomo Metal Ind Ltd Method for managing furnace wall of coke oven
JP2003515176A (en) 1999-11-29 2003-04-22 スペシャルティ ミネラルズ (ミシガン) インコーポレーテツド Wear measurement of refractory lining of metallurgical vessel
JP2013116937A (en) 2011-12-01 2013-06-13 Jfe Steel Corp Method and management unit for operating coke oven
JP2013119982A (en) 2011-12-06 2013-06-17 Mitsubishi Heavy Ind Ltd Operation control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515176A (en) 1999-11-29 2003-04-22 スペシャルティ ミネラルズ (ミシガン) インコーポレーテツド Wear measurement of refractory lining of metallurgical vessel
JP2001294867A (en) 2000-04-11 2001-10-23 Sumitomo Metal Ind Ltd Method for managing furnace wall of coke oven
JP2013116937A (en) 2011-12-01 2013-06-13 Jfe Steel Corp Method and management unit for operating coke oven
JP2013119982A (en) 2011-12-06 2013-06-17 Mitsubishi Heavy Ind Ltd Operation control system

Also Published As

Publication number Publication date
JP2021165682A (en) 2021-10-14

Similar Documents

Publication Publication Date Title
EP2468837A1 (en) Method and device for assessing through-wall leakage of a heating wall of a coke oven
CN104132750A (en) Method and device for measuring temperature of molten metal
JP2012062376A (en) Gasification furnace, operation method of the same, and coal gasification compound power plant
JP7310688B2 (en) Method and apparatus for estimating thickness of deposits on inner wall surface of exhaust gas passage
US11215574B2 (en) Monitoring of heated tubes
CZ291083B6 (en) Method of indicating real time indications of corrosion and rate of material degradation of a component and apparatus for making the same
Demin Development of «whole» evaluation algorithm of the control quality of «cupola–mixer» melting duplex process
JP7358291B2 (en) Method and device for estimating the thickness of deposits on the inner wall surface of the exhaust gas passage
JP2008309405A (en) Control method of plasma type ash melting furnace and plasma type ash melting furnace
JP7358290B2 (en) Method and device for estimating the thickness of deposits on the inner wall surface of the exhaust gas passage
Linjewile et al. Prediction and real-time monitoring techniques for corrosion characterisation in furnaces
JP3868398B2 (en) Remote monitoring system for melting furnace
US11504738B2 (en) Coating and method for forming the same
Bernhardt et al. Influence of load-flexible operation on heating surface fouling in German lignite-fired power plants—Probe-based measurements and new approach for in-process fouling monitoring
JP6863257B2 (en) Waste incinerator Boiler blockage and corrosion control methods
CN106871957B (en) A kind of measurement method of pulverized-coal fired boiler slag position and slag amount
Belford et al. Development, installation, and operation of a full-copper, deep-cooled slag tap-block for a six-in-line copper slag-cleaning electric furnace
Altmann et al. Prognosis and control of slagging in steam generators using lignite
JP2003308118A (en) Operation management method and maintenance management method for a plurality of plants
JP4548777B2 (en) Method for predicting remaining amount of refractory and method for operating ash melting furnace using the same
Davis et al. A multi‐point corrosion monitoring system applied in a 1,300 MW coal‐fired boiler
Matyas et al. Evaluation of Crystal Accumulation in High Level Waste Glasses with Research-Scale Melter
Mäkinen Optimization of the cleaning system operation in a waste-to-energy plant
Belford et al. Development, installation, and operation of a full-copper, deep-cooled slag tapblock for a six-in-line copper matte settling electric furnace
JP2008309461A (en) Control method of plasma type ash melting furnace and plasma type ash melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R150 Certificate of patent or registration of utility model

Ref document number: 7310688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150