JP7307689B2 - Method for producing high-strength solidified soil - Google Patents

Method for producing high-strength solidified soil Download PDF

Info

Publication number
JP7307689B2
JP7307689B2 JP2020032676A JP2020032676A JP7307689B2 JP 7307689 B2 JP7307689 B2 JP 7307689B2 JP 2020032676 A JP2020032676 A JP 2020032676A JP 2020032676 A JP2020032676 A JP 2020032676A JP 7307689 B2 JP7307689 B2 JP 7307689B2
Authority
JP
Japan
Prior art keywords
strength
quicklime
water content
soil
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020032676A
Other languages
Japanese (ja)
Other versions
JP2021134301A (en
Inventor
辰哉 江守
一彦 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2020032676A priority Critical patent/JP7307689B2/en
Publication of JP2021134301A publication Critical patent/JP2021134301A/en
Application granted granted Critical
Publication of JP7307689B2 publication Critical patent/JP7307689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、粘性土に固化材を混合する高強度固化処理土の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing high-strength solidified soil by mixing a solidifying agent into cohesive soil.

従来、浚渫土や軟弱粘性土等の粘性土を有効利用する技術として、セメント等の固化材を混合した固化処理土が公知である。一般的な固化処理土の一軸圧縮強さは、0.1MPaから大きくても2~3MPa程度である。近年では浚渫土の更なる有効利用拡大を目指して、より高強度の固化処理土を得る技術が提案されている。例えば、特許文献1のようにケーキを造立して裏込め材や路盤材として再利用する方法、特許文献2のように脱水ケーキを弱材齢期に再締固めを行い、高強度化、大ブロック化する方法等が挙げられる。 Conventionally, as a technique for effectively utilizing cohesive soil such as dredged soil and soft cohesive soil, solidified soil mixed with a solidifying material such as cement is known. The unconfined compressive strength of general solidified soil ranges from 0.1 MPa to 2-3 MPa at most. In recent years, with the aim of further expanding the effective use of dredged soil, techniques for obtaining solidified soil with higher strength have been proposed. For example, as in Patent Document 1, a cake is built and reused as a backfill material or roadbed material, and as in Patent Document 2, the dehydrated cake is re-compacted at the age of weak material to increase strength and increase the size. A method of blocking is included.

特許第2764645号公報Patent No. 2764645 特開2002-146763号公報JP-A-2002-146763

新舎博・松本歩・長尾喬平・小森裕「浚渫粘土を原料とした高強度固化処理土ブロックの製造実験」土木学会論文集C(地圏工学)Vol.75、 No.1、 62-75、 2019Hiroshi Shinsha, Ayumu Matsumoto, Kyohei Nagao, Yutaka Komori, "Experiment of producing high-strength solidified soil block using dredged clay as raw material", Journal of Japan Society of Civil Engineers, Ser. C (Geosphere Engineering), Vol.75, No.1, 62-75 , 2019

上述の技術の高強度化の方向性としては、固化材の添加量を増やすこと、混練水を減らすこと等、すなわち、W/C(水固化材比)を下げることにある。母材となる浚渫土は一般的には高含水比の状態にあり、W/Cを下げるためには脱水工程を必要とする。具体的には浚渫土に固化材を添加混合した後、高圧フィルタープレスにより強制的に圧密排水させる方法がある。しかし、浚渫土の難透水性はよく知られており、圧密排水過程では非常に大きな圧縮圧力と長期の圧密時間を要することから、高コストかつ施工能力の低さが課題となっている。 The directions for increasing the strength of the above technology are to increase the amount of solidifying agent added and to reduce the amount of kneading water, that is, to lower the W/C (water solidifying agent ratio). Dredged soil, which is the base material, generally has a high moisture content, and requires a dehydration process to lower the W/C. Specifically, there is a method of forcibly consolidating and draining the dredged soil after adding and mixing the solidifying material with a high-pressure filter press. However, it is well known that the dredged soil has low permeability, and the consolidation drainage process requires a very large compaction pressure and a long period of consolidation time.

その一方で、浚渫土の含水比を天日乾燥等で十分に低下させた上で、固化材を混合するという方法も提案されている(非特許文献1参照)。しかし、浚渫土の含水比が低いと流動性が失われ塑性状を示し、固化材との混練性(ワーカビリティ)が著しく低下し、強度発現を阻害することが懸念される。また、天日乾燥は自然現象に依存するので、浚渫土の含水比をコントロールすることは極めて難しい。 On the other hand, a method has also been proposed in which the water content of the dredged soil is sufficiently reduced by sun drying or the like, and then a solidifying material is mixed (see Non-Patent Document 1). However, if the dredged soil has a low moisture content, it loses its fluidity and exhibits plasticity, and there is concern that the workability with the solidifying material will be significantly reduced and strength development will be hindered. Also, it is very difficult to control the water content of the dredged soil because the sun drying depends on natural phenomena.

本発明は、上述のような従来技術の問題に鑑み、高強度固化処理土の製造において実用的な施工性と低コストを実現可能な高強度固化処理土の製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION In view of the problems of the prior art as described above, it is an object of the present invention to provide a method for producing high-strength solidified soil that can realize practical workability and low cost in the production of high-strength solidified soil. do.

上記目的を達成するための高強度固化処理土の製造方法は、粘性土に固化材を混合し固化処理土を製造する方法であって、
粘性土を所定の含水比に調整し前記含水比が調整された粘性土を生石灰の添加により脱水した場合の脱水後の含水比を推定する工程と、
前記推定された脱水後の含水比および目標強度に基づいて固化材の添加量を決定する工程と、
前記固化処理土を製造する際に処理対象の粘性土を前記所定の含水比に調整する工程と、
前記含水比調整後の粘性土に前記決定された添加量で前記固化材を添加し混合する工程と、
前記混合された固化処理土に生石灰を添加し混合して化学的に脱水する工程と、を含み、
前記目標強度を高強度に設定し高強度の固化処理土を製造するものである。
A method for producing high-strength solidified soil for achieving the above object is a method for producing solidified soil by mixing a solidifying material with cohesive soil,
a step of adjusting the cohesive soil to a predetermined water content ratio and dehydrating the cohesive soil with the adjusted water content ratio by adding quicklime, and estimating the water content ratio after dehydration;
determining the addition amount of the solidifying material based on the estimated water content after dehydration and the target strength;
a step of adjusting the cohesive soil to be treated to the predetermined water content ratio when producing the solidified soil;
a step of adding and mixing the solidification material in the determined addition amount to the cohesive soil after adjusting the water content;
adding quicklime to the mixed solidified soil, mixing and chemically dehydrating;
A high-strength solidified soil is produced by setting the target strength to a high strength.

この高強度固化処理土の製造方法によれば、まず高含水比状態の粘性土と固化材とを混合するため混練時のワーカビリティーが高く、均一に混合することができるので、固化処理土の品質が向上する。粘性土と固化材の混合後に脱水材として生石灰を添加することにより粘性土の含水比を大幅に低減させることができ、水和反応時の余剰水を脱水することで少ない固化材添加量で固化処理土の高強度化を実現することができる。生石灰の添加混合により化学的に脱水処理を行うので、脱水量のコントロールが可能となる他、高圧脱水機等の特殊な製造機械を必要としないので、製造コストを抑えることができ、低コストを実現できる。また、固化材の水和反応に加えて生石灰のポラゾン反応により長期的に高強度増加が期待できる。また、生石灰による固化膨張で固化材の固化収縮の相殺を期待でき、乾燥収縮ひび割れの低減を図ることができる。 According to this method for producing high-strength solidified soil, first, the cohesive soil having a high water content and the solidifying material are mixed, so that the workability during kneading is high and the solidifying material can be uniformly mixed, so that the quality of the solidified soil is improved. improves. By adding quicklime as a dehydrating agent after mixing cohesive soil and solidifying material, the water content ratio of the cohesive soil can be greatly reduced, and by dehydrating the surplus water during the hydration reaction, solidification can be achieved with a small amount of solidifying material added. Higher strength of treated soil can be realized. Since chemical dehydration is performed by adding and mixing quicklime, it is possible to control the amount of dehydration, and since special manufacturing equipment such as a high-pressure dehydrator is not required, manufacturing costs can be reduced. realizable. In addition to the hydration reaction of the hardening material, the porazon reaction of quicklime can be expected to increase the strength in the long term. In addition, it is expected that the solidification expansion of the quicklime will offset the solidification shrinkage of the solidification material, and the reduction of drying shrinkage cracks can be achieved.

上記高強度固化処理土の製造方法において前記所定の含水比を高含水比に設定し調整することが好ましい。たとえば、前記粘性土の液性限界の1.1~1.5倍とし、粘性土の含水比を高めに調整することで必要十分な流動性を保った状態で粘性土と固化材とを均一に混合することができる。 It is preferable to set and adjust the predetermined water content to a high water content in the method for producing high-strength solidified soil. For example, by increasing the water content of the cohesive soil to 1.1 to 1.5 times the liquid limit of the cohesive soil, the cohesive soil and solidifying material are uniformly mixed while maintaining necessary and sufficient fluidity. can be done.

また、前記脱水後の含水比は次式により求めることができる。
w=(w-0.77d)/(1+1.32d)
ただし、w:脱水後の含水比、w:脱水前の含水比、d:生石灰添加率
生石灰添加率d=生石灰添加量/粘性土の乾燥重量
Moreover, the water content ratio after the dehydration can be determined by the following equation.
w=( w0-0.77d )/(1+1.32d)
However, w: water content ratio after dehydration, w0 : water content ratio before dehydration, d: quicklime addition rate quicklime addition rate d = amount of quicklime added/dry weight of cohesive soil

また、前記固化材添加量の決定工程において前記固化材の添加量を変数とした複数の配合により配合試験を実施し、前記試験結果に基づいて前記固化材の添加量を決定することが好ましい。また、前記生石灰の添加量をも変数とした複数の配合により前記配合試験を実施し、前記試験結果に基づいて前記生石灰の添加量を決定することが好ましい。 Further, in the step of determining the amount of the solidifying material to be added, it is preferable to conduct a blending test with a plurality of formulations using the amount of the solidifying material to be added as a variable, and to determine the amount of the solidifying material to be added based on the test results. Further, it is preferable that the blending test is carried out using a plurality of blends with the addition amount of the quicklime as a variable, and the addition amount of the quicklime is determined based on the test results.

また、前記配合試験は一軸圧縮強度試験および/またはフロー試験を含む。また、配合計画または前記式による前記固化材の水和反応に寄与しない水量(余裕水)に基づいて前記生石灰添加量の上限値を設定することが好ましい。 Also, the compounding test includes a uniaxial compressive strength test and/or a flow test. Further, it is preferable to set the upper limit of the amount of quicklime to be added based on the mixing plan or the amount of water (surplus water) that does not contribute to the hydration reaction of the solidifying material according to the above formula.

また、前記生石灰の添加混合工程の実施時期を前記固化材の凝結開始時間に基づいて設定することが好ましい。 Further, it is preferable to set the execution timing of the step of adding and mixing the quicklime based on the solidification start time of the solidifying material.

本発明の高強度固化処理土の製造方法によれば、高強度固化処理土の製造において実用的な施工性と低コストを実現することができる。 According to the method for producing high-strength solidified soil of the present invention, practical workability and low cost can be realized in the production of high-strength solidified soil.

本実施形態による高強度固化処理土の製造方法の各工程を説明するためのフローチャートである。4 is a flow chart for explaining each step of the method for producing high-strength solidified soil according to the present embodiment. 本実験例に使用した材料の基本情報を示す表(a)、図2(a)の浚渫土の初期含水比を示す表(b)、図2(a)の浚渫土を生石灰により脱水した場合の式(1)から算出した脱水後含水比を示す表(c)(d)である。Table (a) showing the basic information of the materials used in this experiment, Table (b) showing the initial water content ratio of the dredged soil in FIG. 2 (a), When the dredged soil in FIG. Tables (c) and (d) showing the water content after dehydration calculated from the formula (1). 本実験例の配合データおよび実験結果を示す表である。It is a table|surface which shows the compounding data and experimental result of this experiment example. 図3の実験例における水セメント比(W/C)と一軸圧縮強度(材齢28日)との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the water-cement ratio (W/C) and the unconfined compressive strength (material age: 28 days) in the experimental example of FIG. 3. FIG.

以下、本発明を実施するための形態について図面を用いて説明する。図1は本実施形態による高強度固化処理土の製造方法の各工程を説明するためのフローチャートである。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated using drawing. FIG. 1 is a flow chart for explaining each step of the method for producing high-strength solidified soil according to this embodiment.

本実施形態による高強度固化処理土の製造方法は、必要十分な流動性を保った状態で粘性土と固化材としてのセメントとを混練した後、脱水材として生石灰を添加混合することで混練水を化学的に脱水することで、高強度固化処理土の製造において実用的な施工性と低コスト化を実現したものである。なお、本実施形態において高強度固化処理土とは、少なくとも9.8MPaの一軸圧縮強度を有する固化処理土をいう。なお、前記設定強度(9.8Mpa)は、準硬石として使用するのに必要な強度であり、海水暴露において求められる非劣化強度である。 In the method for producing high-strength solidified soil according to the present embodiment, after kneading cohesive soil and cement as a solidifying agent in a state in which necessary and sufficient fluidity is maintained, quicklime is added and mixed as a dehydrating agent. By chemically dehydrating the soil, we realized practical workability and cost reduction in the production of high-strength solidified soil. In this embodiment, high-strength solidified soil refers to solidified soil having a uniaxial compressive strength of at least 9.8 MPa. The set strength (9.8 Mpa) is the strength required for use as a semi-hard stone, and is the non-deteriorating strength required for exposure to seawater.

本実施形態による高強度固化処理土の製造方法の各工程S01~S10について図1を参照して説明する。まず、現場浚渫時の粘性土の含水比に合わせて粘性土を所定の含水比に調整する(S01) Each step S01 to S10 of the method for producing high-strength solidified soil according to this embodiment will be described with reference to FIG. First, the cohesive soil is adjusted to a predetermined moisture content in accordance with the moisture content of the cohesive soil during field dredging (S01).

粘性土の所定の含水比は、次のように設定し調整する。
・現地で浚渫等により採取された粘性土の自然含水比および液性限界を事前に調べておく。
・現地で浚渫等により採取された粘性土の含水比を液性限界wLの1.1~1.5倍の含水比に設定し調整する。
The predetermined water content ratio of cohesive soil is set and adjusted as follows.
・Investigate the natural water content and liquid limit of cohesive soil collected by dredging, etc., in advance.
・Adjust the water content of the cohesive soil collected by dredging, etc. at the site to 1.1 to 1.5 times the liquid limit wL.

上述のように粘性土の含水比を高めに設定することで、粘性土と固化材との必要十分な混練時の流動性を確保し維持することができる。 By setting the water content ratio of the cohesive soil to a high value as described above, it is possible to secure and maintain necessary and sufficient fluidity during kneading of the cohesive soil and the solidifying material.

次に、含水比が調整された粘性土を生石灰の添加により脱水した場合の生石灰による含水比の低減効果、すなわち、脱水後の含水比を推定する(S02)。 Next, the water content ratio reduction effect of quicklime when dehydrating the cohesive soil with the water content ratio adjusted by adding quicklime, that is, the water content ratio after dehydration is estimated (S02).

生石灰は、消化吸水反応により見かけの含水比の低減効果だけでなく、化学的な含水比の低減効果がある。上記含水比の粘性土に生石灰を添加し脱水するとした場合の脱水後の含水比は、下記の式(1)による計算で推定する。なお、式(1)は、「石灰による軟弱地盤の安定処理工法」(日本石灰協会)に記載の生石灰による含水比の低減効果式である。
w=(w-0.77d)/(1+1.32d) (1)
ただし、w:脱水後の含水比、w:脱水前の含水比、d:生石灰添加率
生石灰添加率d=生石灰添加量/粘性土の乾燥重量
Quicklime not only has the effect of reducing the apparent water content by digestion and water absorption, but also has the effect of chemically reducing the water content. The water content ratio after dehydration when quicklime is added to the cohesive soil with the above water content ratio and dewatered is estimated by calculation using the following formula (1). In addition, the formula (1) is a formula for the effect of reducing the water content ratio by quicklime described in "Stabilization method for soft ground using lime" (Japan Lime Association).
w=( w0-0.77d )/(1+1.32d) (1)
However, w: water content ratio after dehydration, w0 : water content ratio before dehydration, d: quicklime addition rate quicklime addition rate d = amount of quicklime added/dry weight of cohesive soil

たとえば、粘性土(ρ=2.686g/cm、wL=75.9%、w=100%)に生石灰(d=5%)を添加すると、式(1)からw=90.2%となり、約10%の含水比低減効果が得られる。このように、生石灰を用いて化学的に脱水することで、脱水量をコントロールすることができる。 For example, adding quicklime (d=5%) to cohesive soil (ρ=2.686g/cm 3 , wL=75.9%, w 0 =100%) gives w=90.2% from equation (1), which is about 10% of water content ratio reduction effect is obtained. By chemically dehydrating with quicklime in this manner, the amount of dehydration can be controlled.

次に、脱水後の含水比に対応する水分量がセメント添加による水和反応に供するものと考え、目標の一軸圧縮強度を満たすセメント添加量を暫定的に決定し、その決定された添加量を参考にしてセメント添加量を変数としさらに生石灰添加量を変数として数種類の配合で配合試験を実施する(S03)。かかる試験結果に基づいてセメント添加量および生石灰添加量を決定する(S04)。 Next, assuming that the amount of water corresponding to the water content after dehydration is used for the hydration reaction due to the addition of cement, the amount of cement to be added that satisfies the target uniaxial compressive strength was tentatively determined, and the determined amount of addition was used. For reference, a blending test is carried out with several types of blending using the amount of cement added as a variable and the amount of quicklime added as a variable (S03). Based on the test results, the amount of cement to be added and the amount of quicklime to be added are determined (S04).

たとえば、固化処理土の一軸圧縮強度は水セメント比(W/C)と高い相関があるので、生石灰による脱水後の水分量(W)からセメント添加量(C)を決定し、セメント添加量および生石灰添加量を変数として各々3~5水準程度の配合を用意し、目標の一軸圧縮強度およびフロー値に応じた配合検討を行う。なお、生石灰添加量が決まっている場合には、セメント添加量を変数として配合を用意する。 For example, the unconfined compressive strength of solidified soil is highly correlated with the water-cement ratio (W/C). With the amount of quicklime added as a variable, 3 to 5 levels of mixtures are prepared for each, and the mixtures are examined according to the target unconfined compressive strength and flow value. In addition, when the amount of quicklime to be added is determined, a formulation is prepared with the amount of cement to be added as a variable.

上記配合試験として、たとえば、NEXCO試験方法 試験法 313に基づくフロー試験およびJIS A1216:2009に基づく一軸圧縮試験がある。目標性能の例として、シリンダーフロー値100~120mm、一軸圧縮強度qu(材齢28日)10MPa以上が挙げられる。配合は、練り混ぜ直後のワーカビリティーや強度を確認しながら決定する。なお、配合試験は、一軸圧縮試験およびフロー試験のいずれか一方でよい場合もある。 Examples of the compounding test include a flow test based on NEXCO Test Method Test Method 313 and a uniaxial compression test based on JIS A1216:2009. Examples of target performance include a cylinder flow value of 100 to 120 mm and unconfined compressive strength qu (material age of 28 days) of 10 MPa or more. The composition is determined while checking the workability and strength immediately after kneading. In some cases, either the uniaxial compression test or the flow test may be used as the compounding test.

次に、固化処理土を実際に製造する際には処理対象の粘性土を上述のように設定された所定の含水比に調整する(S05)。この際に、粘性土の含水比を高めに設定し調整することで、脱水処理は不要でかつ実施の容易な加水調整で済む。 Next, when actually producing the solidified soil, the cohesive soil to be treated is adjusted to the predetermined moisture content set as described above (S05). At this time, by setting and adjusting the water content ratio of the cohesive soil to a high value, dehydration treatment is not required and only an easy addition of water is required.

次に、粘性土に上述のように決定された添加量のセメントを添加し混合する(S06)。 Next, the amount of cement determined as described above is added to the cohesive soil and mixed (S06).

次に、粘性土にセメントが混合された混合材料に上述のように決定された生石灰を添加し混合して脱水する(S07)。 Next, the quicklime determined as described above is added to the mixed material in which cement is mixed with cohesive soil, and the mixture is dehydrated (S07).

上記工程S06,S07では、粘性土とセメントとを十分に混合攪拌した後で脱水材として生石灰を投入し、再度混合攪拌を行う。これは、流動性が高い状態で粘性土とセメントを均質に混合したうえで、生石灰の脱水効果によりセメント水和反応に不要な余剰水を脱水する考え方に基づくものである。 In the above steps S06 and S07, the cohesive soil and cement are sufficiently mixed and stirred, then quicklime is added as a dehydrating agent, and mixed and stirred again. This is based on the idea of mixing cohesive soil and cement homogeneously in a state of high fluidity, and then dewatering surplus water that is unnecessary for the cement hydration reaction by the dehydrating effect of quicklime.

また、工程S06の終了から工程S07の開始までの期間、すなわち、脱水材の添加・再混合を実施する時期としては、セメントの凝結初期までに行うのが好ましい。この凝結開始時間については、コンクリートの凝結時間試験方法(JIS 1147)等を参考に決定してもよい。 As for the period from the end of step S06 to the start of step S07, that is, the timing of adding and re-mixing the dehydrating agent, it is preferable to perform it before the initial stage of cement setting. This setting start time may be determined by referring to the concrete setting time test method (JIS 1147).

次に、上述のようにして得られた混合材料を、たとえば、要求される最終形状に対応した型枠に打設し(S08)、必要な期間養生し(S09)、高強度固化処理土を製造する(S10)。上述のようにして、たとえば、水底マウンドに使用する高強度固化処理土からなる石状材料を製造することができる。なお、高強度固化処理土の製造を、条件を変えずに行う場合には、工程S05~S10を繰り返す。 Next, the mixed material obtained as described above is placed, for example, in a mold corresponding to the required final shape (S08), cured for a required period (S09), and high-strength solidified soil is obtained. Manufacture (S10). As described above, for example, a stone-like material consisting of high-strength solidified soil for use in underwater mounds can be produced. Incidentally, when the high-strength solidified soil is produced without changing the conditions, steps S05 to S10 are repeated.

本実施形態の高強度固化処理土の製造方法によれば、高含水比状態の粘性土と固化材としてのセメントとを混合するため混練時のワーカビリティーが高く、均一に混合することができるので、固化処理土の品質が向上する。粘性土とセメントの混合後に脱水材として生石灰を添加することにより粘性土の含水比を大幅に低減させることができ、水和反応時の余剰水を脱水することで少ないセメント添加量で固化処理土の高強度化を実現することができる。生石灰の添加混合により化学的に脱水処理を行うので、脱水量のコントロールが可能となる他、高圧脱水機等の特殊な製造機械を必要としないので、製造コストを抑えることができ、低コストを実現できる。また、セメントの水和反応に加えて生石灰のポラゾン反応により長期的に高強度増加が期待できる。また、生石灰による固化膨張でセメントの固化収縮の相殺を期待でき、乾燥収縮ひび割れの低減を図ることができる。 According to the method for producing high-strength solidified soil of the present embodiment, cohesive soil having a high water content and cement as a solidifying material are mixed, so workability during kneading is high and uniform mixing is possible. The quality of solidified soil is improved. By adding quicklime as a dehydrating agent after cohesive soil and cement are mixed, the water content of the cohesive soil can be greatly reduced. can achieve high strength. Since chemical dehydration is performed by adding and mixing quicklime, it is possible to control the amount of dehydration, and since special manufacturing equipment such as a high-pressure dehydrator is not required, manufacturing costs can be reduced. realizable. In addition to the hydration reaction of cement, a high strength increase can be expected in the long term due to the porazon reaction of quicklime. In addition, the solidification expansion of quicklime can be expected to offset the solidification shrinkage of cement, and the reduction of drying shrinkage cracks can be achieved.

次に、本発明の実験例について説明するが、本発明は本実験例に限定されるものではない。図2(a)に本実験例に使用した材料の基本情報を示し、図2(b)に図2(a)の浚渫土の初期含水比を示し、図2(c)(d)に図2(a)の浚渫土を生石灰により脱水した場合の式(1)から算出した脱水後含水比を2ケース示す。図3に本実験例の各配合のデータおよび実験結果を示す。図4に図3の実験例における水セメント比(W/C)と一軸圧縮強度(材齢28日)との関係を示す。 Next, an experimental example of the present invention will be described, but the present invention is not limited to this experimental example. Figure 2 (a) shows the basic information of the materials used in this experiment, Figure 2 (b) shows the initial water content ratio of the dredged soil in Figure 2 (a), Figure 2 (c) (d) Two cases of water content after dehydration calculated from the formula (1) when the dredged soil of 2(a) is dehydrated with quicklime are shown. FIG. 3 shows the data and experimental results of each formulation in this experimental example. Fig. 4 shows the relationship between the water-cement ratio (W/C) and the unconfined compressive strength (age: 28 days) in the experimental example of Fig. 3 .

図3の実験例の配合ケースは、生石灰QLの添加率を3.0,5.0,10.0%とし、水セメント比(W/C)をそれぞれ2.32,1.99,1.74としたもので、合計9ケースの配合について図2(a)の浚渫土にセメントを混錬してから生石灰を混錬し、養生後に一軸圧縮試験を行い、材齢7日および材齢28日の一軸圧縮強度を測定した。なお、各ケースで3つの試験体(ただし、生石灰添加率5.0%、W/C=2.32の配合では1つの試験体)で試験を行い、これらの測定結果を図4に示し、それらの平均値を図3に示す。また、図4には生石灰を添加しない比較例についての実験結果も示す。 The blending cases of the experimental example in Fig. 3 are 3.0%, 5.0%, and 10.0% quicklime QL, and the water-cement ratios (W/C) are 2.32, 1.99, and 1.74, respectively, for a total of 9 blending cases. The dredged soil of Fig. 2(a) was kneaded with cement and then kneaded with quicklime, and after curing, a uniaxial compression test was performed to measure the uniaxial compressive strength on the 7th and 28th days. In each case, three specimens were tested (however, one specimen was tested with a quicklime addition rate of 5.0% and W/C = 2.32), and these measurement results are shown in Fig. 4, and their average values is shown in FIG. FIG. 4 also shows experimental results for a comparative example in which quicklime is not added.

図4からW/Cが小さいほど一軸圧縮強度(材齢28日)が大きいことが分かり、また、生石灰添加率が3.0,5.0%では一軸圧縮強度(材齢28日)にさほどの差異はないが、10.0%では一軸圧縮強度(材齢28日)が低いことが分かる。目標の一軸圧縮強度(材齢28日)を、たとえば、12MPaに設定すると、今回の実験例の場合、W/C=1.9~2.4、生石灰添加率を3~7%程度に設定することで目標強度を達成できる。 From Fig. 4, it can be seen that the smaller the W/C, the higher the unconfined compressive strength (28 days old), and there is no significant difference in the unconfined compressive strength (28 days old) between quicklime addition rates of 3.0% and 5.0%. However, it can be seen that the unconfined compressive strength (28 days old) is low at 10.0%. If the target unconfined compressive strength (material age 28 days) is set to, for example, 12 MPa, in the case of this experimental example, the target is achieved by setting W/C = 1.9 to 2.4 and the quicklime addition rate to about 3 to 7%. strength can be achieved.

次に、生石灰(脱水材)の添加率上限値について検討する。図4から分かるように、W/Cが低い(≒浚渫土の含水比が低い)場合、生石灰の添加量が多い(d=10%)と水和反応が十分に行われず、強度が低下する傾向がある。これに対し、(1)浚渫土の塑性限界にあたる水分量は水和反応に供しないこと、(2)セメントの水和反応にはセメント添加量の0.6倍の水分量を必要とすること、(3)生石灰添加量の0.45倍の水分量は蒸発することを配合検討の参考として考慮すると、図3における余裕水が0以下になる場合を、セメントの水和反応が十分でないとし、生石灰添加量の上限値とすることが好ましい。図3の実験例では、生石灰添加率が10.0%でW/C1.99、1.74のケースにおいては余裕水が0以下となっている。なお、余裕水は、セメントの水和反応に寄与しない水量であって、脱水後水分量-(水和反応水+塑性限界水+生石灰反応水)から求める。 Next, the upper limit of the addition rate of quicklime (dehydration agent) is examined. As can be seen from Fig. 4, when the W/C is low (≒water content ratio of the dredged soil is low), if the amount of quicklime added is large (d = 10%), the hydration reaction does not occur sufficiently and the strength decreases. Tend. On the other hand, (1) the amount of water that reaches the plastic limit of the dredged soil is not used for hydration reaction, (2) the hydration reaction of cement requires 0.6 times the amount of cement added, ( 3) Considering that the amount of water that is 0.45 times the amount of quicklime added evaporates as a reference for the formulation study, if the excess water in Fig. 3 is 0 or less, the cement hydration reaction is not sufficient, and the amount of quicklime added It is preferable to set it as the upper limit of. In the experimental example of FIG. 3, the excess water is 0 or less in the cases where the quicklime addition rate is 10.0% and the W/C is 1.99 and 1.74. The surplus water is the amount of water that does not contribute to the hydration reaction of cement, and is obtained from the amount of water after dehydration-(hydration reaction water + plastic limit water + quicklime reaction water).

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、本発明の製造方法により製造された高強度固化処理土は、水底マウンドを構成する捨石のみならず、他の用途にも使用できることはもちろんである。 Although the embodiments for carrying out the present invention have been described above, the present invention is not limited to these, and various modifications are possible within the scope of the technical idea of the present invention. For example, the high-strength solidified soil produced by the production method of the present invention can of course be used for other purposes as well as riprap that constitutes an underwater mound.

本発明によれば、高強度固化処理土の製造において実用的な施工性と低コストを実現できるので、高強度固化処理土を効率的に低コストで供給することができ、浚渫土や建設残土等の有効利用を促進できる。 According to the present invention, practical workability and low cost can be realized in the production of high-strength solidified soil, so high-strength solidified soil can be efficiently supplied at low cost, and dredged soil and construction surplus soil can be used. etc. can be promoted.

Claims (8)

粘性土に固化材を混合し固化処理土を製造する方法であって、
粘性土を所定の含水比に調整し前記含水比が調整された粘性土を生石灰の添加により脱水した場合の脱水後の含水比を推定する工程と、
前記推定された脱水後の含水比および目標強度に基づいて固化材の添加量を決定する工程と、
前記固化処理土を製造する際に処理対象の粘性土を前記所定の含水比に調整する工程と、
前記含水比調整後の粘性土に前記決定された添加量で前記固化材を添加し混合する工程と、
前記混合された固化処理土に生石灰を添加し混合して化学的に脱水する工程と、を含み、
前記目標強度を高強度に設定し高強度の固化処理土を製造する高強度固化処理土の製造方法。
A method for producing solidified soil by mixing a solidifying material with cohesive soil,
a step of adjusting the cohesive soil to a predetermined water content ratio and dehydrating the cohesive soil with the adjusted water content ratio by adding quicklime, and estimating the water content ratio after dehydration;
determining the addition amount of the solidifying material based on the estimated water content after dehydration and the target strength;
a step of adjusting the cohesive soil to be treated to the predetermined water content ratio when producing the solidified soil;
a step of adding and mixing the solidification material in the determined addition amount to the cohesive soil after adjusting the water content;
adding quicklime to the mixed solidified soil, mixing and chemically dehydrating;
A method for producing high-strength solidified soil, wherein the target strength is set to high strength to produce high-strength solidified soil.
前記所定の含水比を高含水比に設定し調整する請求項1に記載の高強度固化処理土の製造方法。 2. The method for producing high-strength solidified soil according to claim 1, wherein the predetermined water content is adjusted to a high water content. 前記脱水後の含水比を次式により求める請求項1または2に記載の高強度固化処理土の製造方法。
w=(w-0.77d)/(1+1.32d)
ただし、w:脱水後の含水比、w:脱水前の含水比、d:生石灰添加率
生石灰添加率d=生石灰添加量/粘性土の乾燥重量
3. The method for producing high-strength solidified soil according to claim 1 or 2, wherein the moisture content after dehydration is determined by the following equation.
w=( w0-0.77d )/(1+1.32d)
However, w: water content ratio after dehydration, w0 : water content ratio before dehydration, d: quicklime addition rate quicklime addition rate d = amount of quicklime added/dry weight of cohesive soil
前記固化材添加量の決定工程において前記固化材の添加量を変数とした複数の配合により配合試験を実施し、前記試験結果に基づいて前記固化材の添加量を決定する請求項1乃至3のいずれかに記載の高強度固化処理土の製造方法。 4. The method according to any one of claims 1 to 3, wherein in the step of determining the amount of the solidifying material to be added, a blending test is performed using a plurality of formulations with the amount of the solidifying material to be added as a variable, and the amount of the solidifying material to be added is determined based on the test results. A method for producing high-strength solidified soil according to any one of the above. 前記生石灰の添加量をも変数とした複数の配合により前記配合試験を実施し、前記試験結果に基づいて前記生石灰の添加量を決定する請求項4に記載の高強度固化処理土の製造方法。 5. The method for producing high-strength solidified soil according to claim 4, wherein the blending test is carried out with a plurality of blends in which the amount of quicklime added is also a variable, and the amount of quicklime added is determined based on the test results. 前記配合試験は一軸圧縮強度試験および/またはフロー試験を含む請求項4または5に記載の高強度固化処理土の製造方法。 6. The method for producing high-strength solidified soil according to claim 4 or 5, wherein said mixing test includes a uniaxial compressive strength test and/or a flow test. 配合計画または前記式による前記固化材の水和反応に寄与しない水量に基づいて前記生石灰添加量の上限値を設定する請求項3に記載の高強度固化処理土の製造方法。 4. The method for producing high-strength solidified soil according to claim 3, wherein the upper limit of the amount of quicklime added is set based on the mixing plan or the amount of water that does not contribute to the hydration reaction of the solidifying material according to the formula. 前記生石灰の添加混合工程の実施時期を前記固化材の凝結開始時間に基づいて設定する請求項1乃至7のいずれかに記載の高強度固化処理土の製造方法。 8. The method for producing high-strength solidified soil according to any one of claims 1 to 7, wherein the timing of performing the step of adding and mixing the quicklime is set based on the solidification start time of the solidifying material.
JP2020032676A 2020-02-28 2020-02-28 Method for producing high-strength solidified soil Active JP7307689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020032676A JP7307689B2 (en) 2020-02-28 2020-02-28 Method for producing high-strength solidified soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020032676A JP7307689B2 (en) 2020-02-28 2020-02-28 Method for producing high-strength solidified soil

Publications (2)

Publication Number Publication Date
JP2021134301A JP2021134301A (en) 2021-09-13
JP7307689B2 true JP7307689B2 (en) 2023-07-12

Family

ID=77660357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020032676A Active JP7307689B2 (en) 2020-02-28 2020-02-28 Method for producing high-strength solidified soil

Country Status (1)

Country Link
JP (1) JP7307689B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311134A (en) 2000-05-01 2001-11-09 Railway Technical Res Inst Flowable earth containing water with added hardener, decision method for additive quantity of hardener, and production method and device therefor
JP2002326099A (en) 2001-05-08 2002-11-12 Green Station:Kk Mud modification method
US20140245930A1 (en) 2011-11-02 2014-09-04 Empire Technology Development Llc Solidifying sludge
JP2016188524A (en) 2015-03-30 2016-11-04 住友大阪セメント株式会社 Method of producing improved soil, method of producing cement composition and method of designing proportion of improved soil ingredient
JP2020015850A (en) 2018-07-26 2020-01-30 日本製鉄株式会社 Manufacturing method of calcia-modified soil

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2764645B2 (en) * 1990-06-15 1998-06-11 株式会社竹中工務店 Effective use of construction surplus soil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311134A (en) 2000-05-01 2001-11-09 Railway Technical Res Inst Flowable earth containing water with added hardener, decision method for additive quantity of hardener, and production method and device therefor
JP2002326099A (en) 2001-05-08 2002-11-12 Green Station:Kk Mud modification method
US20140245930A1 (en) 2011-11-02 2014-09-04 Empire Technology Development Llc Solidifying sludge
JP2016188524A (en) 2015-03-30 2016-11-04 住友大阪セメント株式会社 Method of producing improved soil, method of producing cement composition and method of designing proportion of improved soil ingredient
JP2020015850A (en) 2018-07-26 2020-01-30 日本製鉄株式会社 Manufacturing method of calcia-modified soil

Also Published As

Publication number Publication date
JP2021134301A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
Kou et al. Properties of concrete prepared with PVA-impregnated recycled concrete aggregates
Lim et al. Effect of different sand grading on strength properties of cement grout
JP2022504257A (en) Modified sludge, its preparation method, and construction method using modified sludge as soil covering material.
Bayesteh et al. Effect of stone powder on the rheological and mechanical performance of cement-stabilized marine clay/sand
Al-Hubboubi et al. Performance of super-absorbent polymer as an internal curing agent for self-compacting concrete
CN109305792A (en) A kind of soil-solidified-agent, preparation method and soil solidification construction method
CN108821711A (en) A kind of slope protection plant-growing type eco-concrete and preparation method thereof
JP2002511381A (en) Chemicals to improve the engineering properties of soil
CN110615654A (en) Curing material for reinforcing soft soil foundation in low-temperature construction and application method thereof
JP7307689B2 (en) Method for producing high-strength solidified soil
Avcı et al. Strength and permeability characteristics of superfine cement and fine fly ash mixture grouted sand
JP2019026540A (en) Cement composition for instant demolding type, and production method of precast concrete molding article using the same
Li et al. Internal curing of natural hydraulic lime with superabsorbent polymers
EP2028170B1 (en) Method for making light-weight concrete
CN109555101B (en) Soil solidification method for sandy foundation field
Parto et al. Laboratory investigation on the effect of polypropylene fibers on the California bearing ratio of stabilized wind-blown sand
Candra et al. Correlation of Concrete Strength and Concrete Age K-300 Using Sikacim® Concrete Additive and Master Ease 5010
Anagnostopoulos Physical and Mechanical Properties of Injected Sand with Latex—Superplasticized Grouts
Khiavi et al. Effects of micro silica on permeability of plastic concrete
CN109467369A (en) A kind of extrusion side wall concrete and preparation method thereof
JP2890389B2 (en) Filler and manufacturing method thereof
Haque No-slump concrete with fine sand and clay
Rani et al. Studies on factors affecting unconfined compressive strength of industrial rubber sludge containing heavy metals treated using ordinary Portland cement via stabilization/solidification technique
JP2006219320A (en) Centrifugal molding assistant, concrete, method for producing hume pipe, and hume pipe
Gladson et al. Study On The Effect Of Superabsorbent Polymer On Strength Properties Of Concrete With And Without GGBS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230630

R150 Certificate of patent or registration of utility model

Ref document number: 7307689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150