JP7306252B2 - String-like micelle composition and hydrous gel - Google Patents

String-like micelle composition and hydrous gel Download PDF

Info

Publication number
JP7306252B2
JP7306252B2 JP2019225407A JP2019225407A JP7306252B2 JP 7306252 B2 JP7306252 B2 JP 7306252B2 JP 2019225407 A JP2019225407 A JP 2019225407A JP 2019225407 A JP2019225407 A JP 2019225407A JP 7306252 B2 JP7306252 B2 JP 7306252B2
Authority
JP
Japan
Prior art keywords
log kow
string
cord
surfactant
micelle composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019225407A
Other languages
Japanese (ja)
Other versions
JP2021094497A (en
Inventor
隆明 小池
直也 菊田
倫孝 間宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2019225407A priority Critical patent/JP7306252B2/en
Publication of JP2021094497A publication Critical patent/JP2021094497A/en
Application granted granted Critical
Publication of JP7306252B2 publication Critical patent/JP7306252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Pyrrole Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Colloid Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明は、紐状ミセル組成物および含水ゲルに関する。 The present invention relates to a cord-like micelle composition and a hydrous gel.

ミセルが一次元的に成長して高分子鎖のように振る舞う紐状ミセルは、外部エネルギー(機械力、光、熱)に対する鎖の破壊に対して、自己修復能力を有しており、レオロジー調節や洗浄性、泡沫安定性等の観点から、洗浄剤や化粧品、土木分野におけるセメント他、多岐にわたってその活用が注目されている。また、紐状ミセルの網目構造により構成される含水ゲルについても、温度やpHなどの外部刺激に対し、粘弾性挙動等で可逆的な応答性を示すため、各種センサーに使用できるスマート材料として利用も期待されている。紐状ミセルを形成する系としては、水媒体中のカチオン性界面活性剤に電解質成分を添加した系が古くから知られている。非特許文献1では、紐状ミセルを形成する系として、カチオン性界面活性剤の臭化セチルトリメチルアンモニウム(CTAB)に電解質として臭化カリウムを添加した紐状ミセル組成物が記載されており、特許文献1ではCTABに電解質としてサリチル酸ナトリウムを添加した紐状ミセル組成物が開示されている。イオン性界面活性剤に電解質成分を添加すると界面活性剤の親水基間の静電反発力が低下する。これに伴いミセルの曲率も小さくなり、結果として紐状ミセルが形成される。一方、親水性の高い界面活性剤と親水性の低い界面活性剤を組み合わせた系においても紐状ミセルが形成できる事が報告されている。非特許文献2ではドデシル硫酸ナトリウムにポリオキシエチレンドデシルエーテルを組み合わせた紐状ミセル組成物が、非特許文献3ではポリオキシエチレンソルビタンモノオレアートにポリオキシエチレンアルキルエーテルを組み合わせた紐状ミセル組成物が記載されている。界面活性剤の混合系は、先述した電解質を加える系とは紐状ミセル形成の機構が異なり、親水性の高い界面活性剤の疎水基間に親水性の低い界面活性剤が入り込む事で、ミセルの充填状態が変化し、紐状ミセルを形成する。しかしながら、これら紐状ミセルを形成する多くの系は、水とは別に、少なくとも2つ以上の複数の化合物を必須成分としており、界面活性剤の単一成分系で紐状ミセルを形成する報告例は非常に少ない。一方で、諸物性への悪影響や系の複雑化回避の観点から、電解質成分や複数の界面活性剤の併用を好まない紐状ミセルの要望は多い。一部のショ糖脂肪酸エステルやフッ素系界面活性剤において、単一成分系で紐状ミセルを形成する事例も報告されているものの、紐状ミセルを形成する温度や濃度の条件が極端に限られており、常温付近の温度で安定な紐状ミセルを得ることが難しい。以上のことから、界面活性剤の単一成分系にて、常温付近の温度で簡便且つ安定に紐状ミセルを形成できる界面活性剤組成物の開発が求められている。 String-like micelles, which grow one-dimensionally and behave like macromolecular chains, have the ability to self-repair against chain breakage due to external energy (mechanical force, light, heat), and regulate rheology. From the viewpoint of , washability, foam stability, etc., its use in a wide range of applications, such as detergents, cosmetics, and cement in the civil engineering field, is attracting attention. In addition, the hydrous gel, which is composed of a network structure of string-like micelles, exhibits reversible viscoelastic behavior and other responsiveness to external stimuli such as temperature and pH, so it can be used as a smart material that can be used for various sensors. is also expected. As a system for forming cord-like micelles, a system in which an electrolyte component is added to a cationic surfactant in an aqueous medium has long been known. Non-Patent Document 1 describes, as a system for forming worm-like micelles, a worm-like micelle composition in which potassium bromide is added as an electrolyte to a cationic surfactant cetyltrimethylammonium bromide (CTAB). Document 1 discloses a string-like micelle composition in which sodium salicylate is added as an electrolyte to CTAB. Addition of an electrolyte component to the ionic surfactant reduces the electrostatic repulsion between the hydrophilic groups of the surfactant. Accompanying this, the curvature of the micelles also decreases, resulting in the formation of string-like micelles. On the other hand, it has been reported that worm-like micelles can be formed even in a system in which a surfactant with high hydrophilicity and a surfactant with low hydrophilicity are combined. Non-Patent Document 2 describes a string-like micelle composition in which sodium dodecyl sulfate is combined with polyoxyethylene dodecyl ether, and Non-Patent Document 3 describes a string-like micelle composition in which polyoxyethylene sorbitan monooleate is combined with polyoxyethylene alkyl ether. is described. The mixed system of surfactants has a different mechanism of string-like micelle formation from the electrolyte-added system mentioned above. changes its packing state to form worm-like micelles. However, many of the systems that form these worm-like micelles contain at least two or more compounds as essential components in addition to water. very few. On the other hand, from the viewpoint of avoiding adverse effects on various physical properties and complication of the system, there are many demands for cord-like micelles that do not favor the combined use of electrolyte components and multiple surfactants. Although some sucrose fatty acid esters and fluorosurfactants have been reported to form worm-like micelles in single-component systems, the temperature and concentration conditions for forming worm-like micelles are extremely limited. Therefore, it is difficult to obtain stable worm-like micelles at temperatures near room temperature. In view of the above, there is a demand for the development of a surfactant composition that is a single-component surfactant system and that can easily and stably form string-like micelles at a temperature near normal temperature.

特開2003-147330号広報Japanese Unexamined Patent Publication No. 2003-147330

F.Kern,P.Lemarechal,S.J.Candau,M.E.Cates, Langmuir,8,437-440(1992)F. Kern, P.; Lemarechal, S.; J. Candau, M.; E. Cates, Langmuir, 8, 437-440 (1992) D.P.Acharya,T.Sato,M.Kaneko,Y.Singh,H.Kunieda, J.Phys.Chem.B,110,754-760 (2006)D. P. Acharya, T.; Sato, M.; Kaneko, Y.; Singh, H. Kunieda, J.; Phys. Chem. B, 110, 754-760 (2006) D.Varade,K.Ushiyama,L.K.Shrestha, K.Aramaki, J.Colloid Interface Sci,312,489-497 (2007)D. Varade, K.; Ushiyama, L.; K. Shrestha, K.; Aramaki, J.; Colloid Interface Sci, 312, 489-497 (2007)

本発明が解決しようとする課題は、界面活性剤の単一成分系にて、常温(5~35℃)付近の温度で簡便に紐状ミセルを形成することができ、油溶性物質の可溶化や紐状ミセルを鋳型とした反応場としての利用が可能な紐状ミセル組成物を提供することである。 The problem to be solved by the present invention is that a single-component surfactant system can easily form string-like micelles at a temperature around normal temperature (5 to 35 ° C.), solubilizing oil-soluble substances. It is an object of the present invention to provide a string-like micelle composition that can be used as a reaction field using a string-like micelle as a template.

本発明は、水と下記一般式(1)で表される界面活性剤(A)とを含有し、界面活性剤(A)の含有量が、水100質量部に対して、1.2~20.0質量部である紐状ミセル組成物に関する。
一般式(1)

Figure 0007306252000001
[一般式(1)中、Rは、炭素数11~15のアルキル基を表す。] The present invention contains water and a surfactant (A) represented by the following general formula (1), and the content of the surfactant (A) is 1.2 to 1.2 parts per 100 parts by mass of water. It relates to a cord-like micelle composition that is 20.0 parts by mass.
General formula (1)
Figure 0007306252000001
[In general formula (1), R represents an alkyl group having 11 to 15 carbon atoms. ]

また、本発明は、界面活性剤(A)のアルキル基が、ドデシル基、トリデシル基またはテトラデシル基のいずれかである上記紐状ミセル組成物に関する。 The present invention also relates to the cord-like micelle composition, wherein the alkyl group of surfactant (A) is any one of dodecyl group, tridecyl group and tetradecyl group.

また、本発明は、紐状ミセル中に油溶性物質(B)を含有する上記紐状ミセル組成物に関する。 The present invention also relates to the above-mentioned cord-like micelle composition containing an oil-soluble substance (B) in the cord-like micelle.

また、本発明は、油溶性物質(B)が、疎水性のエチレン性不飽和単量体を含有する上記紐状ミセル組成物に関する。 The present invention also relates to the cord-like micelle composition, wherein the oil-soluble substance (B) contains a hydrophobic ethylenically unsaturated monomer.

また、本発明は、25℃での動的粘弾性測定において、角周波数0.01rad/sで貯蔵弾性率G’が損失弾性率G”よりも小さく、かつ角周波数1rad/sで貯蔵弾性率G’が損失弾性率G”より大きい上記紐状ミセル組成物に関する。 Further, in the dynamic viscoelasticity measurement at 25° C., the storage elastic modulus G′ is smaller than the loss elastic modulus G″ at an angular frequency of 0.01 rad/s, and the storage elastic modulus is less than the loss elastic modulus G″ at an angular frequency of 1 rad/s. It relates to the above cord-like micelle composition, wherein G' is greater than the loss modulus G''.

また、本発明は、上記紐状ミセル組成物により形成された含水ゲルに関する。 The present invention also relates to a hydrous gel formed from the cord-like micelle composition.

また、本発明は、上記紐状ミセル組成物中で疎水性のエチレン性不飽和単量体を重合させる重合体の製造方法に関する。 The present invention also relates to a method for producing a polymer, comprising polymerizing a hydrophobic ethylenically unsaturated monomer in the cord-like micelle composition.

本発明の紐状ミセル組成物は、単一成分系にて、常温(5~35℃)付近の温度で簡便に紐状ミセルを形成することができ、油溶性物質の可溶化や反応場としての利用が可能である。したがって、そのレオロジー挙動を活かして、身体洗浄剤や化粧品、薬剤、刺激応答性のスマートゲル材料等、様々な用途への展開が期待できる。 The worm-like micelle composition of the present invention is a single-component system, and can easily form worm-like micelles at a temperature around normal temperature (5 to 35 ° C.). is available. Therefore, by making use of its rheological behavior, it can be expected to be used in various applications such as body cleansing agents, cosmetics, medicines, and stimulation-responsive smart gel materials.

Maxwellモデルを示す図。The figure which shows a Maxwell model. MaxwellモデルにおけるG’(ω)、G”(ω)の模式的曲線を示すグラフ。Graph showing schematic curves of G′(ω), G″(ω) in the Maxwell model. 実施例2の紐状ミセル組成物のG’曲線とG”曲線を示すグラフ。4 is a graph showing the G' and G'' curves of the stringy micelle composition of Example 2. FIG. 実施例2の紐状ミセル組成物のCole-Coleプロット(G”vsG’)を示すグラフ。2 is a graph showing a Cole-Cole plot (G″vsG′) of the cord-like micelle composition of Example 2. FIG.

<界面活性剤(A)>
まず、本発明に使用する界面活性剤(A)について説明する。
界面活性剤(A)は一般式(1)で表される界面活性剤である。
一般式(1)

Figure 0007306252000002
[一般式(1)中、Rは、炭素数11~15のアルキル基を表す。] <Surfactant (A)>
First, the surfactant (A) used in the present invention will be explained.
Surfactant (A) is a surfactant represented by general formula (1).
General formula (1)
Figure 0007306252000002
[In general formula (1), R represents an alkyl group having 11 to 15 carbon atoms. ]

炭素数11~15のアルキル基としては、炭素数11~15の直鎖または分岐のアルキル基が挙げられ、具体的には、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、2-エチルデシル基等が挙げられる。 Examples of alkyl groups having 11 to 15 carbon atoms include linear or branched alkyl groups having 11 to 15 carbon atoms, and specifically, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, 2- Ethyldecyl group and the like can be mentioned.

界面活性剤(A)の置換基Rは、炭素数11~15の範囲のアルキル基であり、炭素数が12~14のアルキル基である事が好ましい。炭素数が11~15の範囲である事により、界面活性剤(A)の単一成分系でも水媒体中で容易に紐状ミセルを形成する事ができる。又、炭素数が12~14の範囲の界面活性剤(A)では、より十分に発達した紐状ミセルを安定に得る事ができる。 The substituent R of the surfactant (A) is an alkyl group having 11 to 15 carbon atoms, preferably an alkyl group having 12 to 14 carbon atoms. Since the number of carbon atoms is in the range of 11 to 15, even a single-component system of the surfactant (A) can easily form cord-like micelles in an aqueous medium. Further, the surfactant (A) having 12 to 14 carbon atoms can stably obtain more fully developed worm-like micelles.

<界面活性剤(A)の製造方法>
界面活性剤(A)は、一般式(2)で表されるエチレン性不飽和単量体とピロリジン-2-カルボン酸とのマイケル付加反応により得ることができる。
一般式(2)

Figure 0007306252000003
[一般式(2)中、Rは、炭素数11~15のアルキル基を表す。] <Method for producing surfactant (A)>
Surfactant (A) can be obtained by a Michael addition reaction between an ethylenically unsaturated monomer represented by general formula (2) and pyrrolidine-2-carboxylic acid.
general formula (2)
Figure 0007306252000003
[In general formula (2), R represents an alkyl group having 11 to 15 carbon atoms. ]

一般式(2)で表されるエチレン性不飽和単量体としては、例えば、ウンデシルアクリレート、ドデシルアクリレート、トリデシルアクリレート、テトラデシルアクリレート、ペンタデシルアクリレート等が挙げられる。 Examples of ethylenically unsaturated monomers represented by general formula (2) include undecyl acrylate, dodecyl acrylate, tridecyl acrylate, tetradecyl acrylate, pentadecyl acrylate and the like.

ピロリジン-2-カルボン酸の内、天然物原料から製造されるピロリジン-2-カルボン酸(L体)は、アミノ酸の中でも優れた保湿性を有している上、安全性も高い事から、多くの食品や化粧品などに用いられている。 Among pyrrolidine-2-carboxylic acids, pyrrolidine-2-carboxylic acid (L form), which is produced from natural raw materials, has excellent moisturizing properties among amino acids and is highly safe, so it is widely used. It is used in many foods and cosmetics.

以下、具体的な界面活性剤(A)の製造方法を説明する。一般式(2)で表されるエチレン性不飽和単量体とピロリジン-2-カルボン酸とを等モル量、反応溶媒中で加熱することで得ることができる。反応溶媒としては、アルコール溶剤を含有している事が好ましい。反応溶媒100質量%中、アルコール溶剤の含有量は40質量%以上である事が好ましく、60質量%以上である事がより好ましい。アルコール溶剤の中でも、ピロリジン-2-カルボン酸の溶解性、溶媒の安全性、除去の容易さを考慮すると、エタノールであることが好ましい。反応性を考慮すると、原料成分の濃度は20~70質量%の範囲である事が好ましい。反応温度は50~90℃の範囲でおこなう事が好ましく、反応時間は5時間~24時間である事が好ましい。 A specific method for producing the surfactant (A) will be described below. It can be obtained by heating equimolar amounts of the ethylenically unsaturated monomer represented by the general formula (2) and pyrrolidine-2-carboxylic acid in a reaction solvent. The reaction solvent preferably contains an alcohol solvent. The content of the alcohol solvent in 100% by mass of the reaction solvent is preferably 40% by mass or more, more preferably 60% by mass or more. Among alcohol solvents, ethanol is preferred in consideration of the solubility of pyrrolidine-2-carboxylic acid, the safety of the solvent, and the ease of removal. Considering the reactivity, the concentration of the raw material components is preferably in the range of 20 to 70% by mass. The reaction temperature is preferably in the range of 50 to 90° C., and the reaction time is preferably in the range of 5 to 24 hours.

<紐状ミセル組成物の調製方法>
本発明の紐状ミセル組成物の調製について説明する。本発明の紐状ミセル組成物は、水と一般式(1)の界面活性剤(A)を含有し、これらを混合することによって得ることができる。界面活性剤(A)の含有量は、水100質量部に対して、1.2~20.0質量部であり、5~20.0質量部であることがより好ましい。1.2~20.0質量部の範囲である事により、水中で界面活性剤(A)が紐状ミセルを形成する事ができる。
<Method for preparing string-like micelle composition>
The preparation of the cord-like micelle composition of the present invention will now be described. The cord-like micelle composition of the present invention can be obtained by containing water and the surfactant (A) of general formula (1) and mixing them. The content of surfactant (A) is 1.2 to 20.0 parts by mass, more preferably 5 to 20.0 parts by mass, per 100 parts by mass of water. The range of 1.2 to 20.0 parts by mass enables the surfactant (A) to form string-like micelles in water.

<紐状ミセル中への油溶性物質(B)の可溶化>
更に本発明の紐状ミセル組成物は、油溶性物質(B)を含有する事が可能である。油溶性物質(B)は紐状ミセルのコア部やパリセード層(界面活性剤のアルキル基間)に取り込まれ、紐状ミセル中に可溶化される。例えば、紐状ミセル組成物に油溶性物質(B)として、香料や薬剤等の機能性物質を添加すれば、機能付与成分を内包した紐状ミセル溶液又は含水ゲルを得る事が可能である。
<Solubilization of oil-soluble substance (B) in cord-like micelles>
Furthermore, the cord-like micelle composition of the present invention can contain an oil-soluble substance (B). The oil-soluble substance (B) is incorporated into the core of the worm-like micelle or the palisade layer (between the alkyl groups of the surfactant) and solubilized in the worm-like micelle. For example, by adding a functional substance such as a perfume or a drug as an oil-soluble substance (B) to the worm-like micelle composition, it is possible to obtain a worm-like micelle solution or hydrous gel encapsulating the function-imparting component.

本明細書における油溶性物質(B)とは、オクタノール/水分配係数(LogKow)が1以上の水に不溶な化合物を指す。LogKowは、下記の式1により表され、ある化合物Aが、水相と油相(オクタノール)のいずれに分配されやすいかを表す指標として用いられる。LogKowが高いほど疎水性が高く、逆にLogKowが低いほど親水性が高い事を示す。紐状ミセル中へ効果的に取り込まれ、可溶化される点から、油溶性物質(B)のLogKowは、1~16の範囲である事が好ましい。LogKowは、フラスコ振盪法やHPLC法などの実験からも算出できるし、ハンセン溶解度パラメータソフトHSPiPのYMB法(物性推算機能)等、化学構造からのシミュレーションで算出することも可能であるが、本明細書におけるLogKowは、ハンセン溶解度パラメータソフトHSPiPのYMB法により算出したものである。
〔式1〕
LogKow=Log(オクタノール相における化合物Aの濃度/水相における化合物Aの濃度)
The oil-soluble substance (B) used herein refers to a water-insoluble compound having an octanol/water partition coefficient (Log Kow) of 1 or more. Log Kow is represented by the following formula 1, and is used as an index indicating whether a certain compound A is likely to be distributed into the water phase or the oil phase (octanol). Higher Log Kow indicates higher hydrophobicity, and conversely, lower Log Kow indicates higher hydrophilicity. The Log Kow of the oil-soluble substance (B) is preferably in the range of 1 to 16 from the viewpoint of being effectively incorporated into the wormlike micelles and solubilized. Log Kow can be calculated from experiments such as the flask shaking method and HPLC method, and can also be calculated from chemical structure simulations such as the YMB method (physical property estimation function) of the Hansen solubility parameter software HSPiP. Log Kow in the book is calculated by the YMB method of the Hansen solubility parameter software HSPiP.
[Formula 1]
Log Kow = Log (concentration of compound A in octanol phase/concentration of compound A in aqueous phase)

紐状ミセル中に可溶化できる油溶性物質(B)としては、アラキジン酸(LogKow=8.66)、イソステアリン酸(LogKow=7.78)、オレイン酸(LogKow=7.54)、カプリン酸(LogKow=3.94)、ステアリン酸(LogKow=8.01)、ソルビン酸(LogKow=1.33)、パルミチン酸(LogKow=3.72)、ベヘン酸(LogKow=9.93)、ミリスチリン酸(LogKow=6.01)、α-リノレン酸(LogKow=6.91)、リノール酸(LogKow=7.28)、リシノール酸(LogKow=6.11)等の脂肪族カルボン酸類; Oil-soluble substances (B) that can be solubilized in wormlike micelles include arachidic acid (Log Kow = 8.66), isostearic acid (Log Kow = 7.78), oleic acid (Log Kow = 7.54), capric acid ( Log Kow = 3.94), stearic acid (Log Kow = 8.01), sorbic acid (Log Kow = 1.33), palmitic acid (Log Kow = 3.72), behenic acid (Log Kow = 9.93), myristic acid ( Log Kow = 6.01), α-linolenic acid (Log Kow = 6.91), linoleic acid (Log Kow = 7.28), ricinoleic acid (Log Kow = 6.11) and other aliphatic carboxylic acids;

イソステアリルパルミテート(LogKow=14.57)、イソステアリン酸ヘキサデシル(LogKow=15.28)、イソ吉草酸イソアミル(LogKow=3.58)、
オレイン酸エチル(LogKow=8.49)、オレイン酸オレイル(LogKow=15.40)、セバシン酸ジイソプロピル(LogKow=5.24)、セバシン酸ジエチル(LogKow=4.45)、ミリスチリン酸イソピロピル(LogKow=7.35)、ミリスチリン酸オクチルドデシル(LogKow=14.41)、ミリスチリン酸セチル(LogKow=13.71)、ミリスチリン酸ミリスチル(LogKow=12.63)、モノステアリン酸プロピレングリコール(LogKow=7.44)、ラウリン酸ヘキシル(LogKow=7.79)、リノール酸イソプロピル(LogKow=7.38)、リノール酸エチル(LogKow=7.01)等の脂肪族カルボン酸エステル類;
ノニル酸ワニリルアミド(LogKow=3.72)等の脂肪族カルボン酸アミド類;
isostearyl palmitate (Log Kow = 14.57), hexadecyl isostearate (Log Kow = 15.28), isoamyl isovalerate (Log Kow = 3.58),
Ethyl oleate (Log Kow = 8.49), oleyl oleate (Log Kow = 15.40), diisopropyl sebacate (Log Kow = 5.24), diethyl sebacate (Log Kow = 4.45), isopropyl myristate (Log Kow = 7.35), octyldodecyl myristate (Log Kow = 14.41), cetyl myristate (Log Kow = 13.71), myristyl myristate (Log Kow = 12.63), propylene glycol monostearate (Log Kow = 7.44). ), hexyl laurate (Log Kow = 7.79), isopropyl linoleate (Log Kow = 7.38), ethyl linoleate (Log Kow = 7.01), and other aliphatic carboxylic acid esters;
Aliphatic carboxylic acid amides such as nonylic acid vanillylamide (Log Kow = 3.72);

イソステアリルアルコール(LogKow=7.52)、オクチルドデカノール(LogKow=7.74)、オレイルアルコール(LogKow=7.67)、ステリアリルアルコール(LogKow=6.94)、セタノール(LogKow=6.94)、ヘキシルデカノール(LogKow=6.94)、ベヘニルアルコール(LogKow=9.56)、ミリスチルアルコール(LogKow=5.85)、ラウリルアルコール(LogKow=5.01)等の脂肪族アルコール類; isostearyl alcohol (Log Kow = 7.52), octyldodecanol (Log Kow = 7.74), oleyl alcohol (Log Kow = 7.67), steraryl alcohol (Log Kow = 6.94), cetanol (Log Kow = 6.94 ), hexyldecanol (Log Kow = 6.94), behenyl alcohol (Log Kow = 9.56), myristyl alcohol (Log Kow = 5.85), lauryl alcohol (Log Kow = 5.01);

カンペステロール(LogKow=9.63)、コレステロール(LogKow=9.25)、β-シトステロール(LogKow=10.11)、ブラシカステロール(LogKow=9.62)、ラノステロール(LogKow=10.47)等のステロール類;
α-テルピオネール(LogKow=3.03)、β-テルピオネール(LogKow=2.97)、γ-テルピオネール(LogKow=3.27)、δ-テルピネオール(LogKow=3.06)等のモノテルペンアルコール類;
イソピマール酸(LogKow=4.17)、アビチエン酸(LogKow=5.08)、パラストリン酸(LogKow=5.10)、ネオアビチエン酸(LogKow=5.24)、ロジン酸類;
スクアラン(LogKow=7.42)、エイコサン(LogKow=10.23)、ヘキサヒドロクメン(LogKow=2.69)等の飽和炭化水素類;
シメン(LogKow=3.82)、リモネン(LogKow=4.39)、l-メントール(LogKow=2.89)等のモノテルペン類;
スクアレン(LogKow=13.60)等のトリテルペン類;
campesterol (Log Kow = 9.63), cholesterol (Log Kow = 9.25), β-sitosterol (Log Kow = 10.11), brassicasterol (Log Kow = 9.62), lanosterol (Log Kow = 10.47), etc. sterols;
Monoterpenes such as α-terpineol (Log Kow = 3.03), β-terpineol (Log Kow = 2.97), γ-terpineol (Log Kow = 3.27), δ-terpineol (Log Kow = 3.06) alcohol;
isopimaric acid (Log Kow = 4.17), abitienoic acid (Log Kow = 5.08), parastric acid (Log Kow = 5.10), neoabithienic acid (Log Kow = 5.24), rosin acids;
Saturated hydrocarbons such as squalane (Log Kow = 7.42), eicosane (Log Kow = 10.23), hexahydrocumene (Log Kow = 2.69);
monoterpenes such as cymene (Log Kow = 3.82), limonene (Log Kow = 4.39), l-menthol (Log Kow = 2.89);
triterpenes such as squalene (Log Kow = 13.60);

クレゾール(LogKow=2.13)等のフェノール類;
クルクミン(LogKow=2.07)等のポリフェノール類;
フェニルエチルアルコール(LogKow=1.56)等の芳香族アルコール類;
メフェナム酸(LogKow=3.69)等の芳香族カルボン酸類;
安息香酸ベンジル(LogKow=3.72)、安息香酸エチル(LogKow=2.52)、
p-オキシ安息香酸ブチル(LogKow=3.37)、p-オキシ安息香酸メチル(LogKow=1.93)、p-オキシ安息香酸イソプロピル(LogKow=2.82)、p-オキシ安息香酸エチル(LogKow=2.43)、サリチル酸メチル(LogKow=2.29)、ニコチン酸ベンジルエステル(LogKow=2.94)、フタル酸ジエチル(LogKow=3.23)、フタル酸ジブチル(LogKow=4.61)、ブチルフタリルブチルグリコレート(LogKow=4.15)、フルルビプロフェン(LogKow=4.00)等の芳香族カルボン酸エステル類;
Phenols such as cresol (Log Kow = 2.13);
Polyphenols such as curcumin (Log Kow = 2.07);
aromatic alcohols such as phenylethyl alcohol (Log Kow = 1.56);
aromatic carboxylic acids such as mefenamic acid (Log Kow = 3.69);
benzyl benzoate (Log Kow = 3.72), ethyl benzoate (Log Kow = 2.52),
Butyl p-oxybenzoate (Log Kow = 3.37), methyl p-oxybenzoate (Log Kow = 1.93), isopropyl p-oxybenzoate (Log Kow = 2.82), ethyl p-oxybenzoate (Log Kow = 2.43), methyl salicylate (Log Kow = 2.29), benzyl nicotinate (Log Kow = 2.94), diethyl phthalate (Log Kow = 3.23), dibutyl phthalate (Log Kow = 4.61), aromatic carboxylic acid esters such as butyl phthalyl butyl glycolate (Log Kow = 4.15) and flurbiprofen (Log Kow = 4.00);

グリベンクラミド(LogKow=3.31)、トルブタミド(LogKow=2.08)等のスルホニル尿素類;
トコフェロール(LogKow=11.49)等の脂溶性ビタミン類;
インドメタシン(LogKow=4.00)、ウルソデオキシコール酸(LogKow=3.74)、パクリタキセル(LogKow=2.24)、プランルカスト(LogKow=4.61)、フェニトイン(LogKow=1.88)、プロブコール(LogKow=11.71)、フェニルブタゾン(LogKow=3.37)、フェノフィブラート(LogKow=6.71)、フロセミド(LogKow=1.45)、ベザフィブラート(LogKow=4.05)、ラウロマクロゴール(LogKow=4.69)、リスペリドン(LogKow=3.72)、リボフラビン酪酸エステル(LogKow=2.14)等の化合物が挙げられるが、これらに限定されない。
Sulfonylureas such as glibenclamide (Log Kow = 3.31), tolbutamide (Log Kow = 2.08);
Fat-soluble vitamins such as tocopherol (Log Kow = 11.49);
indomethacin (Log Kow = 4.00), ursodeoxycholic acid (Log Kow = 3.74), paclitaxel (Log Kow = 2.24), pranlukast (Log Kow = 4.61), phenytoin (Log Kow = 1.88), Probucol (Log Kow = 11.71), Phenylbutazone (Log Kow = 3.37), Fenofibrate (Log Kow = 6.71), Furosemide (Log Kow = 1.45), Bezafibrate (Log Kow = 4.05), Lauromacro Compounds such as Gall (Log Kow = 4.69), Risperidone (Log Kow = 3.72), Riboflavin butyrate (Log Kow = 2.14), etc., include, but are not limited to.

また、本発明の紐状ミセル組成物は、油溶性物質(B)として、疎水性のエチレン性不飽和単量体を含有させ、紐状ミセル組成物中で疎水性のエチレン性不飽和単量体を重合させて重合体を製造することも可能である。例えば、疎水性のエチレン性不飽和単量体と光重合開始剤とを紐状ミセル中に可溶化させ、光照射して光重合する事により、紐状ミセルを鋳型とした重合体を得ることができる。紐状ミセルの形態変化を抑制する目的で、重合反応は常温以下の温度でおこなう事が好ましい。 Further, the cord-like micelle composition of the present invention contains a hydrophobic ethylenically unsaturated monomer as the oil-soluble substance (B), and the hydrophobic ethylenically unsaturated monomer in the cord-like micelle composition It is also possible to polymerize the body to produce a polymer. For example, a hydrophobic ethylenically unsaturated monomer and a photopolymerization initiator are solubilized in a string-like micelle and photopolymerized by light irradiation to obtain a polymer using the string-like micelle as a template. can be done. For the purpose of suppressing the morphological change of the cord-like micelles, the polymerization reaction is preferably carried out at room temperature or below.

紐状ミセル中に可溶化できる疎水性のエチレン性不飽和単量体としては、例えば、スチレン(LogKow=2.71)等の芳香族エチレン性不飽和単量体;
ブチルアクリレート(LogKow=2.23)、ブチルメタクリレート(LogKow=2.79)、2-エチルへキシルアクリレート(LogKow=4.05)、エチルメタクリレート(LogKow=1.63)、メチルメタクリレート(LogKow=1.13)、プロピルメタクリレート(LogKow=2.16)、t-ブチルアクリレート(LogKow=1.99)等の直鎖または分岐アルキル基含有エチレン性不飽和単量体;
シクロヘキシルメタクリレート(LogKow=3.26)等の脂環式アルキル基含有エチレン性不飽和単量体;
トリフルオロエチルメタクリレート(LogKow=1.96)、トリフルオロエチルアクリレート(LogKow=1.41)等のフッ素化アルキル基含有エチレン性不飽和単量体;
Hydrophobic ethylenically unsaturated monomers that can be solubilized in the wormlike micelles include, for example, aromatic ethylenically unsaturated monomers such as styrene (Log Kow = 2.71);
Butyl acrylate (Log Kow = 2.23), butyl methacrylate (Log Kow = 2.79), 2-ethylhexyl acrylate (Log Kow = 4.05), ethyl methacrylate (Log Kow = 1.63), methyl methacrylate (Log Kow = 1 .13), linear or branched alkyl group-containing ethylenically unsaturated monomers such as propyl methacrylate (Log Kow = 2.16), t-butyl acrylate (Log Kow = 1.99);
Alicyclic alkyl group-containing ethylenically unsaturated monomers such as cyclohexyl methacrylate (Log Kow = 3.26);
fluorinated alkyl group-containing ethylenically unsaturated monomers such as trifluoroethyl methacrylate (Log Kow = 1.96) and trifluoroethyl acrylate (Log Kow = 1.41);

1,6-ヘキサンジオールジアクリレート(LogKow=2.93)、1,9-ノナンジオールジアクリレート(LogKow=4.62)、1,10-デカンジオールジアクリレート(LogKow=4.88)、トリシクロデカンジメタノールジアクリレート(LogKow=4.16)、ジペンタエリスリトールヘキサアクリレート(LogKow=3.04)、ジビニルベンゼン(LogKow=3.52)、ペンタエリスリトールテトラアクリレート(LogKow=1.77)、トリメチロルプロパントリアクリレート(LogKow=1.92)等、二つ以上のエチレン性不飽和基を有するエチレン性不飽和単量体が挙げられる。 1,6-hexanediol diacrylate (Log Kow = 2.93), 1,9-nonanediol diacrylate (Log Kow = 4.62), 1,10-decanediol diacrylate (Log Kow = 4.88), tricyclo Decane dimethanol diacrylate (Log Kow = 4.16), dipentaerythritol hexaacrylate (Log Kow = 3.04), divinylbenzene (Log Kow = 3.52), pentaerythritol tetraacrylate (Log Kow = 1.77), trimethylol Examples include ethylenically unsaturated monomers having two or more ethylenically unsaturated groups such as propane triacrylate (Log Kow = 1.92).

紐状ミセル中に可溶化できる光重合開始剤としては、例えば、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(LogKow=8.02)、1-ヒドロキシシクロヘキシルフェニルケトン(LogKow=2.56)、ベンゾフェノン(LogKow=3.01)、O-ベンゾイル安息香酸メチル(LogKow=2.01)、ジベンジルケトン(LogKow=3.64)、フルオレノン(LogKow=3.42)、2,2’-ジエトキシアセトフェノン(LogKow=1.9)、2-ヒドロキシ-2-メチルプロピオフェノン(LogKow=1.31)、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(LogKow=2.51)、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(LogKow=2.96)、1-ヒドロキシシクロヘキシルフェニルケトン(LogKow=2.56)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)-ベンジル]-フェニル}-2-メチルプロパン-1-オン(LogKow=2.95)、チオキサントン(LogKow=3.9)、2-メチルチオキサントン(LogKow=4.38)、2-イソプロピルチオキサントン(LogKow=5.22)、4-イソプロピルチオキサントン(LogKow=5.22)、2-クロロチオキサントン(LogKow=4.5)、ジエチルチオキサントン(LogKow=5.82)等が挙げられる。 Photoinitiators that can be solubilized in wormlike micelles include, for example, 9,9-bis[4-(2-acryloyloxyethoxy)phenyl]fluorene (Log Kow=8.02), 1-hydroxycyclohexylphenyl ketone ( Log Kow = 2.56), benzophenone (Log Kow = 3.01), methyl O-benzoylbenzoate (Log Kow = 2.01), dibenzyl ketone (Log Kow = 3.64), fluorenone (Log Kow = 3.42), 2,2'-diethoxyacetophenone (Log Kow = 1.9), 2-hydroxy-2-methylpropiophenone (Log Kow = 1.31), 2,2-dimethoxy-1,2-diphenylethan-1-one (Log Kow = 2.51), 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one (Log Kow = 2.96), 1-hydroxycyclohexylphenyl ketone (Log Kow = 2 .56), 2-hydroxy-1-{4-[4-(2-hydroxy-2-methylpropionyl)-benzyl]-phenyl}-2-methylpropan-1-one (Log Kow = 2.95), thioxanthone (Log Kow = 3.9), 2-methylthioxanthone (Log Kow = 4.38), 2-isopropylthioxanthone (Log Kow = 5.22), 4-isopropylthioxanthone (Log Kow = 5.22), 2-chlorothioxanthone (Log Kow = 5.22). = 4.5), diethylthioxanthone (Log Kow = 5.82), and the like.

紐状ミセルに可溶化する油溶性物質(B)は、界面活性剤(A)100質量部に対して、0.5~10質量部の範囲で含有する事が好ましい。0.5~10質量部の範囲で含有する事により、油溶性物質(B)を可溶化した状況においても、紐状の形態が崩れにくい安定な紐状ミセル組成物を得る事ができる。 The oil-soluble substance (B) solubilized in the cord-like micelle is preferably contained in the range of 0.5 to 10 parts by mass with respect to 100 parts by mass of the surfactant (A). By containing it in the range of 0.5 to 10 parts by mass, it is possible to obtain a stable string-like micelle composition that does not easily lose its string-like shape even when the oil-soluble substance (B) is solubilized.

<動的粘弾性挙動からの紐状ミセル形成の確認方法>
紐状ミセルの粘弾性挙動は、その絡み合いの程度にもよるが、十分に発達した紐状ミセルは、単一の緩和時間を有するMaxwellモデルで説明できる。これは弾性成分を表すバネ1個と、ニュートン粘性成分を表すダッシュポット1個を直列につないだモデルで示される(図1)。単一のMaxwellモデルで定義される液体は、紐状ミセル溶液の系以外では報告されておらず、紐状ミセル特有の挙動として、紐状ミセル形成の簡易判別法に用いられている。Maxwellモデルで定義される十分に発達した紐状ミセル溶液は、ストレス制御式レオメータを用いて動的粘弾性測定を行った際、下記の式2に対応する挙動を示す。
〔式2〕
G’(ω)=G0×(ω2τ2)/(1+ω2τ2
G”(ω)=G0×(ωτ)/(1+ω2τ2
<Confirmation method of string-like micelle formation from dynamic viscoelastic behavior>
The viscoelastic behavior of wormlike micelles depends on their degree of entanglement, but well-developed wormlike micelles can be described by the Maxwell model with a single relaxation time. This is represented by a model in which one spring representing the elastic component and one dashpot representing the Newtonian viscous component are connected in series (Fig. 1). A liquid defined by a single Maxwell model has not been reported except for a system of wormlike micelle solution, and is used as a simple determination method for wormlike micelle formation as a behavior peculiar to wormlike micelles. A well-developed string-like micelle solution defined by the Maxwell model exhibits behavior corresponding to Equation 2 below when dynamic viscoelasticity measurements are performed using a stress-controlled rheometer.
[Formula 2]
G '(ω) = G0 ×( ω2τ2 )/(1+ ω2τ2 )
G"(ω)= G0 ×(ωτ)/(1+ ω2τ2 )

ここで、G’(ω)(Pa)は貯蔵弾性率、G”(ω)(Pa)は損失弾性率、ω(rad/s)は与える剪断応力の角速度(角周波数)、τ(s)は緩和時間を示す。ここで緩和時間τ(s)は与える剪断応力の初期値が、1/e(eは自然対数の底=2.718)になるまでに要する時間を表す。G’(ω)はサンプルに対して剪断応力をかけた際に、エネルギーを貯蔵する部位、つまりバネ部分の弾性率変化に対応し、G”(ω)はエネルギー損失の部位、つまり、ダッシュポット部分の粘性率変化に対応している。この挙動を横軸ω、縦軸にG’(ω)、G’(ω)にして模式的に図示する(図2)。式2のG0は、高周波数側で得られるG’のプラトー領域の平坦弾性率で表される。式1からG’曲線とG”曲線はω=1/τにおいて、G’=G”となり交差する。また式2に従う動的粘弾性挙動を示す場合、Cole-Coleプロット(G”vsG’のプロット)をとるとG’軸上に中心を持つ半円状にデータが重なる。すなわち、Cole-Coleプロットにおいて、プロットが半円状に描けるようであれば、水中で界面活性剤が紐状ミセルを形成していると判別する事ができる。 Here, G′ (ω) (Pa) is the storage modulus, G″ (ω) (Pa) is the loss modulus, ω (rad/s) is the angular velocity (angular frequency) of the applied shear stress, τ (s) is the relaxation time, where the relaxation time τ (s) represents the time required for the initial value of the applied shear stress to reach 1/e (e is the base of natural logarithm = 2.718). ω) corresponds to the elastic modulus change at the site of energy storage, i.e., the spring portion, when shear stress is applied to the sample, and G″(ω) is the site of energy loss, i.e., the viscosity of the dashpot portion. Responds to rate changes. This behavior is schematically illustrated with ω on the horizontal axis and G′(ω) and G′(ω) on the vertical axis (FIG. 2). G 0 in Equation 2 is represented by the flat elastic modulus of the plateau region of G′ obtained on the high frequency side. From Equation 1, the G' curve and the G'' curve intersect at ω=1/τ, where G'=G''. When dynamic viscoelastic behavior according to Equation 2 is shown, a Cole-Cole plot (G″vsG′ plot) is taken and the data overlaps in a semicircular shape centered on the G′ axis. That is, the Cole-Cole plot , if the plot can be drawn in the shape of a semicircle, it can be determined that the surfactant forms string-like micelles in water.

25℃での紐状ミセル組成物の動的粘弾性測定において、角周波数0.01rad/s(低周波数領域)で貯蔵弾性率G’が損失弾性率G”より小さく、周波数1rad/s(高周波数領域)で貯蔵弾性率G’が損失弾性率G”より大きいことが好ましい。上記の条件を満たすことで、より十分に発達した紐状ミセルを得る事ができる。 In the dynamic viscoelasticity measurement of the string-like micelle composition at 25 ° C., the storage elastic modulus G' is smaller than the loss elastic modulus G'' at an angular frequency of 0.01 rad/s (low frequency region) and at a frequency of 1 rad/s (high It is preferred that the storage modulus G′ is greater than the loss modulus G″ in the frequency domain). Satisfying the above conditions makes it possible to obtain more fully developed cord-like micelles.

更に動的粘弾性測定で得られたG’、G”からCole-Coleプロットを作成した際、プロットがG’軸上に中心を持つ半円状に乗る事がより好ましい。プロットが半円状にのることにより、より発達した紐状ミセルを安定に得る事ができる。 Furthermore, when a Cole-Cole plot is created from G' and G'' obtained by dynamic viscoelasticity measurement, it is more preferable that the plot is in a semicircular shape centered on the G' axis. The plot is semicircular. It is possible to stably obtain more well-developed worm-like micelles.

<クライオ電子顕微鏡による紐状ミセルの確認方法>
Cole-Coleプロットにて半円状にプロットがのらない等、紐状ミセルが十分に発達しておらず、動的粘弾性測定だけでは紐状ミセル形成の判別が難しい場合、紐状ミセル組成物を凍結してクライオ透過型電子顕微鏡(クライオTEM)を用いて直接観察する事により、紐状ミセルの有無を判別する事ができる。
<Confirmation method of string-like micelles by cryo-electron microscope>
If the worm-like micelles are not sufficiently developed, such as the Cole-Cole plot does not appear in a semicircle, and it is difficult to determine the formation of worm-like micelles only by dynamic viscoelasticity measurement, the worm-like micelle composition The presence or absence of cord-like micelles can be determined by directly observing a frozen object using a cryo-transmission electron microscope (cryo-TEM).

以下に、実施例により本発明をさらに具体的に説明するが、以下の実施例は、本発明の権利範囲を何ら制限するものではない。なお、実施例における「部」は「質量部」、「%」
は「質量%」を表す。
EXAMPLES The present invention will be described in more detail with reference to Examples below, but the Examples below do not limit the scope of the present invention. In addition, "parts" in the examples are "mass parts" and "%"
represents "% by mass".

<界面活性剤(A)の製造>
[製造例1]
還流器および撹拌機を備えた反応容器に、デシルアクリレート92.2質量部、ピロリジン-2-カルボン酸50.0質量部、エタノール213.4質量部を仕込んだ。撹拌しながら昇温した後、78℃で16時間反応させた。反応の終点は薄層クロマトグラフィーにより原料のスポットが消失した事で判断した。反応後、減圧乾燥により溶媒を除去し、アセトンで再結晶をおこない、化合物(3)で表される界面活性剤の結晶を得た。生成物の同定は、日本電子社製ECX-400P(400MHz)を用いて1H-NMR測定(測定時の溶媒には重クロロホルムを使用)によりおこない、目的物である事を確認した。
化合物(3)
<Production of surfactant (A)>
[Production Example 1]
A reactor equipped with a reflux device and a stirrer was charged with 92.2 parts by mass of decyl acrylate, 50.0 parts by mass of pyrrolidine-2-carboxylic acid, and 213.4 parts by mass of ethanol. After raising the temperature while stirring, the mixture was reacted at 78° C. for 16 hours. The end point of the reaction was determined by the disappearance of the raw material spot by thin layer chromatography. After the reaction, the solvent was removed by drying under reduced pressure, and recrystallization was performed with acetone to obtain crystals of the surfactant represented by compound (3). The product was identified by 1 H-NMR measurement using ECX-400P (400 MHz) manufactured by JEOL Ltd. (deuterated chloroform was used as a solvent for measurement), and it was confirmed that the product was the intended product.
compound (3)

Figure 0007306252000004
Figure 0007306252000004

[製造例2]
還流器および撹拌機を備えた反応容器に、ウンデシルアクリレート98.3質量部、ピロリジン-2-カルボン酸50.0質量部、エタノール222.5質量部を仕込んだ。撹拌しながら昇温した後、78℃で16時間反応させた。反応の終点は薄層クロマトグラフィーにより原料のスポットが消失した事で判断した。反応後、減圧乾燥により溶媒を除去し、アセトンで再結晶をおこない、化合物(4)で表される界面活性剤の結晶を得た。生成物の同定は製造例1と同様に1H-NMR測定によりおこない、目的物である事を確認した。
化合物(4)
[Production Example 2]
A reactor equipped with a reflux device and a stirrer was charged with 98.3 parts by mass of undecyl acrylate, 50.0 parts by mass of pyrrolidine-2-carboxylic acid, and 222.5 parts by mass of ethanol. After raising the temperature while stirring, the mixture was reacted at 78° C. for 16 hours. The end point of the reaction was determined by the disappearance of the raw material spot by thin layer chromatography. After the reaction, the solvent was removed by drying under reduced pressure, and recrystallization was performed with acetone to obtain crystals of the surfactant represented by compound (4). The product was identified by 1 H-NMR measurement in the same manner as in Production Example 1, and confirmed to be the desired product.
compound (4)

Figure 0007306252000005
Figure 0007306252000005

[製造例3]
還流器および撹拌機を備えた反応容器に、ドデシルアクリレート104.4質量部、ピロリジン-2-カルボン酸50.0質量部、エタノール231.6質量部を仕込んだ。撹拌しながら昇温した後、78℃で16時間反応させた。反応の終点は薄層クロマトグラフィーにより原料のスポットが消失した事で判断した。反応後、減圧乾燥により溶媒を除去し、アセトンで再結晶をおこない、化合物(5)で表される界面活性剤の結晶を得た。生成物の同定は製造例1と同様に1H-NMR測定によりおこない、目的物である事を確認した。
化合物(5)
[Production Example 3]
104.4 parts by mass of dodecyl acrylate, 50.0 parts by mass of pyrrolidine-2-carboxylic acid, and 231.6 parts by mass of ethanol were charged into a reactor equipped with a reflux device and a stirrer. After raising the temperature while stirring, the mixture was reacted at 78° C. for 16 hours. The end point of the reaction was determined by the disappearance of the raw material spot by thin layer chromatography. After the reaction, the solvent was removed by drying under reduced pressure, and recrystallization was performed with acetone to obtain crystals of the surfactant represented by compound (5). The product was identified by 1 H-NMR measurement in the same manner as in Production Example 1, and confirmed to be the desired product.
Compound (5)

Figure 0007306252000006
Figure 0007306252000006

[製造例4]
還流器および撹拌機を備えた反応容器に、トリデシルアクリレート110.5質量部、ピロリジン-2-カルボン酸50.0質量部、エタノール240.8質量部を仕込んだ。撹拌しながら昇温した後、78℃で16時間反応させた。反応の終点は薄層クロマトグラフィーにより原料のスポットが消失した事で判断した。反応後、減圧乾燥により溶媒を除去し、アセトンで再結晶をおこない、化合物(6)で表される界面活性剤の結晶を得た。生成物の同定は製造例1と同様に1H-NMR測定によりおこない、目的物である事を確認した。
化合物(6)
[Production Example 4]
110.5 parts by mass of tridecyl acrylate, 50.0 parts by mass of pyrrolidine-2-carboxylic acid, and 240.8 parts by mass of ethanol were charged into a reactor equipped with a reflux device and a stirrer. After raising the temperature while stirring, the mixture was reacted at 78° C. for 16 hours. The end point of the reaction was determined by the disappearance of the raw material spot by thin layer chromatography. After the reaction, the solvent was removed by drying under reduced pressure, and recrystallization was performed with acetone to obtain crystals of the surfactant represented by compound (6). The product was identified by 1 H-NMR measurement in the same manner as in Production Example 1, and confirmed to be the desired product.
compound (6)

Figure 0007306252000007
Figure 0007306252000007

[製造例5]
還流器および撹拌機を備えた反応容器に、テトラデシルアクリレート116.6質量部、ピロリジン-2-カルボン酸50.0質量部、エタノール249.6質量部を仕込んだ。撹拌しながら昇温した後、78℃で16時間反応させた。反応の終点は薄層クロマトグラフィーにより原料のスポットが消失した事で判断した。反応後、減圧乾燥により溶媒を除去し、アセトンで再結晶をおこない、化合物(7)で表される界面活性剤の結晶を得た。生成物の同定は製造例1と同様に1H-NMR測定によりおこない、目的物である事を確認した。
化合物(7)
[Production Example 5]
116.6 parts by mass of tetradecyl acrylate, 50.0 parts by mass of pyrrolidine-2-carboxylic acid, and 249.6 parts by mass of ethanol were charged into a reactor equipped with a reflux device and a stirrer. After raising the temperature while stirring, the mixture was reacted at 78° C. for 16 hours. The end point of the reaction was determined by the disappearance of the raw material spot by thin layer chromatography. After the reaction, the solvent was removed by drying under reduced pressure, and recrystallization was performed with acetone to obtain crystals of the surfactant represented by compound (7). The product was identified by 1 H-NMR measurement in the same manner as in Production Example 1, and confirmed to be the desired product.
compound (7)

Figure 0007306252000008
Figure 0007306252000008

[製造例6]
還流器および撹拌機を備えた反応容器に、ペンタデシルアクリレート122.7質量部、ピロリジン-2-カルボン酸50.0質量部、エタノール259.1質量部を仕込んだ。撹拌しながら昇温した後、78℃で16時間反応させた。反応の終点は薄層クロマトグラフィーにより原料のスポットが消失した事で判断した。反応後、減圧乾燥により溶媒を除去し、アセトンで再結晶をおこない、化合物(8)で表される界面活性剤の結晶を得た。生成物の同定は製造例1と同様に1H-NMR測定によりおこない、目的物である事を確認した。
化合物(8)
[Production Example 6]
122.7 parts by mass of pentadecyl acrylate, 50.0 parts by mass of pyrrolidine-2-carboxylic acid, and 259.1 parts by mass of ethanol were charged into a reactor equipped with a reflux device and a stirrer. After raising the temperature while stirring, the mixture was reacted at 78° C. for 16 hours. The end point of the reaction was determined by the disappearance of the raw material spot by thin layer chromatography. After the reaction, the solvent was removed by drying under reduced pressure, and recrystallization was performed with acetone to obtain crystals of the surfactant represented by compound (8). The product was identified by 1 H-NMR measurement in the same manner as in Production Example 1, and confirmed to be the desired product.
compound (8)

Figure 0007306252000009
Figure 0007306252000009

[製造例7]
還流器および撹拌機を備えた反応容器に、ヘキサデシルアクリレート128.8質量部、ピロリジン-2-カルボン酸50.0質量部、エタノール268.2質量部を仕込んだ。撹拌しながら昇温した後、78℃で16時間反応させた。反応の終点は薄層クロマトグラフィーにより原料のスポットが消失した事で判断した。反応後、減圧乾燥により溶媒を除去し、アセトンで再結晶をおこない、化合物(9)で表される界面活性剤の結晶を得た。生成物の同定は製造例1と同様に1H-NMR測定によりおこない、目的物である事を確認した。
化合物(9)
[Production Example 7]
A reactor equipped with a reflux device and a stirrer was charged with 128.8 parts by mass of hexadecyl acrylate, 50.0 parts by mass of pyrrolidine-2-carboxylic acid, and 268.2 parts by mass of ethanol. After raising the temperature while stirring, the mixture was reacted at 78° C. for 16 hours. The end point of the reaction was determined by the disappearance of the raw material spot by thin layer chromatography. After the reaction, the solvent was removed by drying under reduced pressure, and recrystallization was performed with acetone to obtain crystals of the surfactant represented by compound (9). The product was identified by 1 H-NMR measurement in the same manner as in Production Example 1, and confirmed to be the desired product.
compound (9)

Figure 0007306252000010
Figure 0007306252000010

<紐状ミセル組成物の製造>
[実施例1]
製造例2で製造した界面活性剤18.0部を水100.0部に添加し、撹拌しながら溶解させ、紐状ミセル組成物を調製した。25℃にて紐状ミセルが形成されていることを動的粘弾性の測定およびクライオ電子顕微鏡による観察により確認した(以下に確認方法の詳細を示す)。
<Production of string-like micelle composition>
[Example 1]
18.0 parts of the surfactant produced in Production Example 2 was added to 100.0 parts of water and dissolved with stirring to prepare a string-like micelle composition. The formation of string-like micelles at 25° C. was confirmed by dynamic viscoelasticity measurement and cryo-electron microscope observation (details of the confirmation method are shown below).

[実施例2~15、比較例1~6]
表1、2に示す材料および配合に変更した以外は、実施例1と同様にして組成物をそれぞれ調製した。ただし、油溶性物質は、界面活性剤が水に溶解した後に添加し、撹拌しながら可溶化させた。尚、比較例2および4は、界面活性剤が水に完全に溶解せず、相転移を起こしたため、紐状ミセル形成の評価(動的粘弾性測定、クライオ電子顕微鏡観察)を断念した。実施例14、15、比較例6の組成物については、縦横1cm四方で高さ5cmの透明ガラスセルに仕込み、25℃の窒素雰囲気下、水銀キセノンランプを用いて、主波長365nm、光量48mW/cm2、20分(積算光量57.6J/cm2)の条件で更に光照射して重合した。光重合後の組成物についても、動的粘弾性の測定およびクライオ電子顕微鏡による観察を同様におこなった。光重合反応の進行はFT-IRでエチレン性不飽和単量体の不飽和基に由来する吸収ピーク(810cm-1)の消失によって確認した。
[Examples 2 to 15, Comparative Examples 1 to 6]
Compositions were prepared in the same manner as in Example 1, except that the materials and formulations shown in Tables 1 and 2 were changed. However, the oil-soluble substance was added after the surfactant was dissolved in water and solubilized while stirring. In Comparative Examples 2 and 4, the surfactant was not completely dissolved in water and phase transition occurred, so evaluation of string-like micelle formation (dynamic viscoelasticity measurement, cryo-electron microscope observation) was abandoned. The compositions of Examples 14 and 15 and Comparative Example 6 were placed in a transparent glass cell having a size of 1 cm square and 5 cm high. Polymerization was carried out by further light irradiation under the conditions of cm 2 and 20 minutes (accumulated light intensity: 57.6 J/cm 2 ). The composition after photopolymerization was similarly subjected to dynamic viscoelasticity measurement and cryo-electron microscopy observation. The progress of the photopolymerization reaction was confirmed by FT-IR by the disappearance of the absorption peak (810 cm -1 ) derived from the unsaturated group of the ethylenically unsaturated monomer.

<紐状ミセル形成の判別>
調製した組成物の動的粘弾性挙動を確認するため、TAインスツルメンツ製応力制御型レオメータAR-2000を用い、周波数分散による動的粘弾性測定をおこなった。得られたG’、G”曲線について、角周波数0.01rad/s(低周波数領域)にて貯蔵弾性率G’が損失弾性率G”よりも小さく、かつ角周波数1rad/s(高周波数領域)で貯蔵弾性率G’が損失弾性率G”よりも大きい(適合)か否か(不適合)かを確認し、更にCole-Coleプロット(G”vsG’のプロット)を作成して半円状のプロットが描ける(適合)か否か(不適合)かを確認した。半円状のプロットを与えた組成物については十分に発達した紐状ミセルを形成しているものと判断した。尚、実施例8、9を光重合した実施例14、15では、重合後に組成物の貯蔵弾性率G’が増加する現象が確認された。
<Determination of string-like micelle formation>
In order to confirm the dynamic viscoelastic behavior of the prepared composition, dynamic viscoelasticity measurement by frequency dispersion was performed using a stress-controlled rheometer AR-2000 manufactured by TA Instruments. Regarding the obtained G′ and G″ curves, the storage elastic modulus G′ is smaller than the loss elastic modulus G″ at an angular frequency of 0.01 rad/s (low frequency region), and at an angular frequency of 1 rad/s (high frequency region ) to check whether the storage modulus G' is greater than the loss modulus G'' (conforming) or not (non-conforming), and further create a Cole-Cole plot (G''vsG' plot) to create a semicircular shape It was confirmed whether the plot of can be drawn (conforming) or not (nonconforming). Compositions with semicircular plots were judged to form well-developed worm-like micelles. In addition, in Examples 14 and 15 in which Examples 8 and 9 were photopolymerized, a phenomenon was confirmed in which the storage elastic modulus G' of the composition increased after the polymerization.

一例として、実施例2の紐状ミセル組成物のG’曲線とG”曲線のグラフを図3に示す。図3中の縦軸に記載されている「E+0m」とは「10m」を、「E-0m」とは「10-m」を、それぞれ意味する(但し、mは整数を表す)。低周波数領域ではG”がG’より大きく、高周波数領域になるにつれて、G”曲線がG’曲線と交わり交差し、交点でG”が極大値を示していることがわかる。更に、極大値以降の高周波数領域ではG’がG”より大きくなり、G’が一定となる平坦領域を示していることがわかる。このG’とG”に基づいたCole-Coleプロットを図4に示す。G”=0、G’=26.4を中心とする半円状にデータが分布している事がわかる。以上のことから、実施例2の組成物は、典型的なMaxwellモデルをとることがわかり、十分に発達した紐状ミセルが形成されていることが確認された。 As an example, a graph of the G' curve and the G'' curve of the cord-like micelle composition of Example 2 is shown in FIG . "E-0m" respectively means "10 -m " (where m represents an integer). It can be seen that G″ is larger than G′ in the low frequency region, and as the frequency increases, the G″ curve intersects with the G′ curve, and the G″ shows a maximum value at the intersection point. It can be seen that G' is larger than G'' in the subsequent high-frequency region, indicating a flat region in which G' is constant. A Cole-Cole plot based on these G' and G'' is shown in FIG. 4. It can be seen that the data are distributed in a semicircular shape around G''=0 and G'=26.4. From the above, it was found that the composition of Example 2 followed a typical Maxwell model, and it was confirmed that well-developed cord-like micelles were formed.

また、日本電子社製クライオ透過型電子顕微鏡(JEM-2100F(G5))を用いて、液体エタンにより-170℃で凍結した紐状ミセル組成物の直接観察(「クライオTEM観察」と略記することがある)をおこない、紐状ミセルの形成の有無を確認した。クライオTEM観察は、動的粘弾性測定だけでは判断が難しい場合において、紐状ミセルの形成の有無の確認に有用である。 In addition, using a cryo-transmission electron microscope (JEM-2100F (G5)) manufactured by JEOL Ltd., direct observation of the string-like micelle composition frozen at -170 ° C. with liquid ethane (abbreviated as "cryo-TEM observation" ) was performed, and the presence or absence of the formation of string-like micelles was confirmed. Cryo-TEM observation is useful for confirming the presence or absence of formation of string-like micelles when it is difficult to make a judgment only by dynamic viscoelasticity measurement.

上記の動的粘弾性測定、クライオTEM観察での評価を総合的に踏まえ、紐状ミセルの形成を判別した。表1、2にその結果を示す。尚、評価を断念した比較例2および4は、下記の評価結果を×とした。評価基準は下記の通りである。尚、表中において「評価NG」とは、評価することができなかったことを意味する。
◎:動的粘弾性測定およびクライオTEM観察から、十分に発達した紐状ミセルの形成を確認できた。(良好)
〇:動的粘弾性測定では判断できなかったが、クライオTEM観察から紐状ミセルの形成を確認できた。(実用範囲内)
×:動的粘弾性測定、クライオTEM観察のいずれにおいても紐状ミセルの形成を確認できなかった。(不良)
Based on the above dynamic viscoelasticity measurement and cryo-TEM observation comprehensively, the formation of string-like micelles was determined. Tables 1 and 2 show the results. Comparative Examples 2 and 4, for which the evaluation was abandoned, were evaluated as x in the following evaluation results. Evaluation criteria are as follows. In the table, "Evaluation NG" means that the evaluation was not possible.
A: Formation of sufficiently developed string-like micelles was confirmed by dynamic viscoelasticity measurement and cryo-TEM observation. (Good)
O: Formation of string-like micelles was confirmed by cryo-TEM observation, although it could not be determined by dynamic viscoelasticity measurement. (within practical range)
x: Formation of string-like micelles could not be confirmed in either dynamic viscoelasticity measurement or cryo-TEM observation. (defective)

<含水ゲルの形成の確認>
スクリュー瓶中で調製した組成物について、瓶の上と下を逆にして、そのまま1日静置し、組成物の流動性を確認した。流動性に乏しく、組成物が沈降しない場合は含水ゲルを形成しているものと判断した。評価基準は光重合下記の通りである。
〇:含水ゲルを形成した。
×:含水ゲルを形成しなかった。
<Confirmation of formation of hydrous gel>
The composition prepared in a screw bottle was turned upside down and allowed to stand still for one day to check the fluidity of the composition. When the fluidity was poor and the composition did not settle, it was determined that a hydrous gel was formed. Evaluation criteria for photopolymerization are as follows.
O: A hydrous gel was formed.
x: No hydrous gel was formed.

Figure 0007306252000011
Figure 0007306252000011

Figure 0007306252000012
Figure 0007306252000012

上記の結果より、実施例1~15の組成物ではいずれも25℃にて紐状ミセルの形成が認められた。中でも実施例2~4、6~15では、動的粘弾性測定でCole-Coleプロットが半円状に描ける程、十分に発達した紐状ミセルが形成されており、更に界面活性剤濃度が5%以上の実施例2、6、8、10~14においては、流動性を失った透明な含水ゲルが得られた。一方、比較例1~6の組成物では紐状ミセルの形成は認められなかった。また、紐状ミセル中にエチレン性不飽和単量体と光開始剤を可溶化して光重合をおこなった実施例14、15の組成物では、光重合後も外観の透明性や紐状の形態を維持しながら、貯蔵弾性率G’が増加したため、紐状の高分子重合体が得られたことが示唆された。一方、比較例6の組成物では、紐状の高分子重合体は得られなかった。重合前後における貯蔵弾性率G’の変化もなく、クライオTEM観察からも紐状ミセルは確認されていない。以上の事から、本発明の組成物は、簡便に紐状ミセルを形成し、且つ、安定に油溶性物質を可溶化できる他、紐状ミセルを鋳型とした反応場としての利用もできる事が実証された。 From the above results, the formation of string-like micelles was observed at 25° C. in all of the compositions of Examples 1 to 15. Among them, in Examples 2 to 4 and 6 to 15, sufficiently developed cord-like micelles were formed so that the Cole-Cole plot in dynamic viscoelasticity measurement could be drawn in a semicircular shape, and the surfactant concentration was 5. % or more, transparent hydrous gels that lost fluidity were obtained. On the other hand, in the compositions of Comparative Examples 1 to 6, formation of string-like micelles was not observed. Further, in the compositions of Examples 14 and 15, in which the ethylenically unsaturated monomer and the photoinitiator were solubilized in the string-like micelle and photopolymerized, the transparency of the appearance and the appearance of the string-like micelle were maintained even after the photopolymerization. Since the storage modulus G' increased while maintaining the shape, it was suggested that a string-like polymer was obtained. On the other hand, with the composition of Comparative Example 6, no string-like polymer was obtained. There was no change in the storage modulus G' before and after polymerization, and no cord-like micelles were confirmed by cryo-TEM observation. From the above, the composition of the present invention can easily form worm-like micelles and stably solubilize oil-soluble substances, and can also be used as a reaction field using worm-like micelles as a template. Proven.

Claims (7)

水と下記一般式(1)で表される界面活性剤(A)とを含有し、界面活性剤(A)の含有量が、水100質量部に対して、1.2~20.0質量部である紐状ミセル組成物。
一般式(1)
Figure 0007306252000013

[一般式(1)中、Rは、炭素数11~15のアルキル基を表す。]
It contains water and a surfactant (A) represented by the following general formula (1), and the content of the surfactant (A) is 1.2 to 20.0 mass parts per 100 mass parts of water. A string-like micelle composition that is part.
General formula (1)
Figure 0007306252000013

[In general formula (1), R represents an alkyl group having 11 to 15 carbon atoms. ]
界面活性剤(A)のアルキル基が、ドデシル基、トリデシル基またはテトラデシル基のいずれかである請求項1記載の紐状ミセル組成物。 2. The cord-like micelle composition according to claim 1, wherein the alkyl group of the surfactant (A) is any one of dodecyl, tridecyl and tetradecyl groups. 紐状ミセル中に油溶性物質(B)を含有する請求項1又は2記載の紐状ミセル組成物。 3. The cord-like micelle composition according to claim 1, which contains an oil-soluble substance (B) in the cord-like micelle. 油溶性物質(B)が、疎水性のエチレン性不飽和単量体を含有する請求項3記載の紐状ミセル組成物。 4. The cord-like micelle composition according to claim 3, wherein the oil-soluble substance (B) contains a hydrophobic ethylenically unsaturated monomer. 25℃での動的粘弾性測定において、角周波数0.01rad/sで貯蔵弾性率G’が損失弾性率G”よりも小さく、かつ角周波数1rad/sで貯蔵弾性率G’が損失弾性率G”より大きい請求項1~4記載の紐状ミセル組成物。 In the dynamic viscoelasticity measurement at 25 ° C., the storage elastic modulus G' is smaller than the loss elastic modulus G'' at an angular frequency of 0.01 rad/s, and the storage elastic modulus G' is less than the loss elastic modulus at an angular frequency of 1 rad/s. The string-like micelle composition according to claims 1-4, which is larger than G″. 請求項1~5いずれか記載の紐状ミセル組成物により形成された含水ゲル。 A hydrous gel formed from the cord-like micelle composition according to any one of claims 1 to 5. 請求項4記載の紐状ミセル組成物中で疎水性のエチレン性不飽和単量体を重合させる重合体の製造方法。 A method for producing a polymer by polymerizing a hydrophobic ethylenically unsaturated monomer in the cord-like micelle composition according to claim 4.
JP2019225407A 2019-12-13 2019-12-13 String-like micelle composition and hydrous gel Active JP7306252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019225407A JP7306252B2 (en) 2019-12-13 2019-12-13 String-like micelle composition and hydrous gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019225407A JP7306252B2 (en) 2019-12-13 2019-12-13 String-like micelle composition and hydrous gel

Publications (2)

Publication Number Publication Date
JP2021094497A JP2021094497A (en) 2021-06-24
JP7306252B2 true JP7306252B2 (en) 2023-07-11

Family

ID=76430016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019225407A Active JP7306252B2 (en) 2019-12-13 2019-12-13 String-like micelle composition and hydrous gel

Country Status (1)

Country Link
JP (1) JP7306252B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227659A (en) 2008-02-27 2009-10-08 Fancl Corp Thread-like micelle-forming composition
JP2014534220A (en) 2011-10-27 2014-12-18 マサチューセッツ インスティテュート オブ テクノロジー Amino acid derivative functionalized at the n-terminus capable of forming drug-encapsulating microspheres
JP2015174856A (en) 2014-03-18 2015-10-05 東洋インキScホールディングス株式会社 Amphoteric surface active agent and method of producing the same
JP2016540757A (en) 2013-12-03 2016-12-28 ユニリーバー・ナームローゼ・ベンノートシヤープ Personal cleaning composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6706233B2 (en) * 2016-10-11 2020-06-03 花王株式会社 Rheology modifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227659A (en) 2008-02-27 2009-10-08 Fancl Corp Thread-like micelle-forming composition
JP2014534220A (en) 2011-10-27 2014-12-18 マサチューセッツ インスティテュート オブ テクノロジー Amino acid derivative functionalized at the n-terminus capable of forming drug-encapsulating microspheres
JP2016540757A (en) 2013-12-03 2016-12-28 ユニリーバー・ナームローゼ・ベンノートシヤープ Personal cleaning composition
JP2015174856A (en) 2014-03-18 2015-10-05 東洋インキScホールディングス株式会社 Amphoteric surface active agent and method of producing the same

Also Published As

Publication number Publication date
JP2021094497A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
Ushikubo et al. Stability mechanisms of liquid water-in-oil emulsions
Okuro et al. Lecithin and phytosterols-based mixtures as hybrid structuring agents in different organic phases
Zhang et al. Transparent dispersions of milk-fat-based nanostructured lipid carriers for delivery of β-carotene
Gohon et al. Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35
WO2016098456A1 (en) Copolymer and oily gelling agent
Li et al. Process optimization and stability of D-limonene nanoemulsions prepared by catastrophic phase inversion method
JP5131647B2 (en) Composition for preparing amino-modified silicone microemulsion, method for producing amino-modified silicone microemulsion, and amino-modified silicone microemulsion
Shrestha et al. Phase behavior of monoglycerol fatty acid esters in nonpolar oils: Reverse rodlike micelles at elevated temperatures
Ziembowicz et al. Thermodynamic insights into the binding of mono-and dicationic imidazolium surfactant ionic liquids with methylcellulose in the diluted regime
Chong et al. Novel steric stabilizers for lyotropic liquid crystalline nanoparticles: PEGylated-phytanyl copolymers
CN107428880A (en) Surfactant response emulsion polymerization microgel
JP2016503086A (en) Polymer base for obtaining stable aqueous compositions containing suspended particles
Pyne et al. Cholesterol based surface active ionic liquid that can form microemulsions and spontaneous vesicles
Salonen et al. Dispersions of internally liquid crystalline systems stabilized by charged disklike particles as pickering emulsions: basic properties and time-resolved behavior
Zou et al. Soy oil and SPI based-oleogels structuring with glycerol monolaurate by emulsion-templated approach: Preparation, characterization and potential application
JP5296571B2 (en) Stringed micelle forming composition
JP2015151359A (en) cosmetic
Trujillo-Cayado et al. Progress in the formulation of concentrated ecological emulsions for agrochemical application based on environmentally friendly ingredients
Wang et al. Developing peony (Paeonia suffruticosa Andr.) seed oil products based on α-Linolenic acid by microemulsification
Shrestha et al. Nonionic reverse micelle formulation and their microstructure transformations in an aromatic solvent ethylbenzene
Li et al. Preparation of α-linolenic-acid-loaded water-in-oil-in-water microemulsion and its potential as a fluorescent delivery carrier with a free label
JP7306252B2 (en) String-like micelle composition and hydrous gel
Ziembowicz et al. Effect of mono-and dicationic ionic liquids on the viscosity and thermogelation of methylcellulose in the semi-diluted regime
Schuldes et al. Internal Structure of Nanometer-Sized Droplets Prepared by Antisolvent Precipitation
KR20140067975A (en) Oily gel composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230612

R151 Written notification of patent or utility model registration

Ref document number: 7306252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151