JP7301705B2 - Rotary Oscillatory Wave Drives, Optics, and Electronics - Google Patents

Rotary Oscillatory Wave Drives, Optics, and Electronics Download PDF

Info

Publication number
JP7301705B2
JP7301705B2 JP2019180976A JP2019180976A JP7301705B2 JP 7301705 B2 JP7301705 B2 JP 7301705B2 JP 2019180976 A JP2019180976 A JP 2019180976A JP 2019180976 A JP2019180976 A JP 2019180976A JP 7301705 B2 JP7301705 B2 JP 7301705B2
Authority
JP
Japan
Prior art keywords
contact
vibration wave
driving device
rotary vibration
wave driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019180976A
Other languages
Japanese (ja)
Other versions
JP2021058031A (en
Inventor
悠貴 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019180976A priority Critical patent/JP7301705B2/en
Publication of JP2021058031A publication Critical patent/JP2021058031A/en
Application granted granted Critical
Publication of JP7301705B2 publication Critical patent/JP7301705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、振動体と接触体とを有し前記接触体を駆動する超音波モータに関するものである。 The present invention relates to an ultrasonic motor having a vibrating body and a contact body and driving the contact body.

一般的に、超音波モータは駆動振動が形成される振動体と、振動体に加圧接触する接触体とを有し、振動体と接触体とを駆動振動により相対的に移動させる。振動体と接触体との接触部に適度な弾性を持たせることで異音の発生を抑制し、かつ力伝達が適正になされるため摺動効率を改善させることが可能となる。接触部の形状として、例えば特許文献1、2のような形状が提案されている。 In general, an ultrasonic motor has a vibrating body in which driving vibration is generated and a contact body that press-contacts the vibrating body, and the vibrating body and the contact body are relatively moved by the driving vibration. By giving appropriate elasticity to the contact portion between the vibrating body and the contact body, it is possible to suppress the generation of abnormal noise and to improve the sliding efficiency because the force is properly transmitted. As the shape of the contact portion, for example, shapes such as those disclosed in Patent Documents 1 and 2 have been proposed.

特許文献1では接触部を窒化処理が施されたステンレス鋼板で作成し、接触部の一部をエッチング加工で除去することによりばね部を形成することで弾性を持たせている。このステンレス鋼板を別部材に接合させることで接触体を形成している。しかし、エッチング処理は加工に要する時間が長くなり加工コストが高くなってしまう課題があった。 In Japanese Unexamined Patent Application Publication No. 2002-100001, the contact portion is made of a nitrided stainless steel plate, and a part of the contact portion is removed by etching to form a spring portion, thereby imparting elasticity. A contact body is formed by joining this stainless steel plate to another member. However, the etching process has a problem that the time required for processing is long and the processing cost is high.

特許文献2では、振動体と接触体との接触を担う接触部において接触体側の接触部にプレス加工等による曲げ加工を行い、断面がC型となるように形成されたリングを別部材の本体部に接着剤、金属ろう付け、溶接等の手段で接合する例が記載されている。このように構成することで、切削加工よりも工数の小さい曲げ加工を採用できるため、加工コストを大幅に低減することが可能となる。しかし、このように薄板の一部を曲げ加工した部材は反り等の影響により平面度が悪化し周方向の場所によってリングと本体部との接触状態が変化する。そのため、接触部の剛性が周方向の位置によって差が生じてしまい、接触体と振動体との接触状態にムラができるため異音が発生したり、接触部の摺動効率が低下し性能が低下したりするという課題があった。 In Japanese Patent Laid-Open No. 2002-200013, in the contact portion that is responsible for contact between the vibrating body and the contact body, the contact portion on the contact body side is subjected to bending by press work or the like, and a ring formed so as to have a C-shaped cross section is formed as a main body of a separate member. Examples are described in which the parts are joined by means of adhesives, metal brazing, welding, or the like. By configuring in this way, it is possible to adopt bending work that requires less man-hour than cutting work, so that it is possible to significantly reduce the processing cost. However, the flatness of the member obtained by bending a part of the thin plate is deteriorated due to the influence of warping and the like, and the contact state between the ring and the main body changes depending on the position in the circumferential direction. As a result, the rigidity of the contact portion varies depending on the position in the circumferential direction, and the contact state between the contact body and the vibrating body becomes uneven, generating abnormal noise and reducing the sliding efficiency of the contact portion, resulting in poor performance. There was a problem of lowering

特開2006-211755JP 2006-211755 特開2010-263769JP 2010-263769

本発明は異音を抑え、安定化した性能を備えた回転型の振動波駆動装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a rotary vibration wave driving device that suppresses abnormal noise and has stable performance.

本発明の回転型の振動波駆動装置は、円環状の弾性体及び電気-機械エネルギー変換素子を有する振動体と、
前記振動体と接する円環状の接触体と、を備え、前記接触体は、本体部、前記本体部と接合層を介して接合される平面部、前記平面部の一端に設けられた前記振動体との接触端を有し、前記一端から他端に向けて前記接合層の厚みが厚い部位が設けられている。
A rotary vibration wave drive device of the present invention comprises a vibrating body having an annular elastic body and an electro-mechanical energy conversion element,
an annular contact body in contact with the vibrating body, wherein the contact body includes a main body, a planar section joined to the main body via a bonding layer, and the vibrating body provided at one end of the planar section. and a portion where the thickness of the bonding layer is thick from the one end to the other end.

本発明によれば、接触部の静剛性の不均一性が緩和され、接触体と振動体との安定した接触状態を実現し、異音の発生を抑制する回転型の振動波駆動装置を提供する。 According to the present invention, non-uniformity in the static rigidity of the contact portion is alleviated, a stable contact state between the contact body and the vibrating body is realized, and a rotary vibration wave drive device that suppresses the generation of abnormal noise is provided. do.

本発明の実施例1における回転型の振動波駆動装置の断面図を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows sectional drawing of the rotary vibration wave drive device in Example 1 of this invention. 本発明の実施例1における回転型の振動波駆動装置の接触部の構造を示す図である。It is a figure which shows the structure of the contact part of the rotary vibration wave drive device in Example 1 of this invention. 本発明の実施例1における回転型の振動波駆動装置の効果を説明する図である。It is a figure explaining the effect of the rotary vibration wave drive device in Example 1 of this invention. 本発明の実施例1における回転型の振動波駆動装置の接触部のその他の構造を示す図である。It is a figure which shows other structures of the contact part of the rotary vibration wave drive device in Example 1 of this invention. 本発明の実施例2における回転型の振動波駆動装置の接触部の構造を示す図である。FIG. 8 is a diagram showing the structure of the contact portion of the rotary vibration wave drive device according to Embodiment 2 of the present invention; 本発明の実施例2における回転型の振動波駆動装置の接触部のその他の構造を示す図である。It is a figure which shows other structures of the contact part of the rotary vibration wave drive device in Example 2 of this invention. 本発明の実施例2における回転型の振動波駆動装置の接触部のその他の構造を示す図である。It is a figure which shows other structures of the contact part of the rotary vibration wave drive device in Example 2 of this invention.

本発明の回転型の振動波駆動装置は、円環状の弾性体及び電気-機械エネルギー変換素子を有する振動体と、
振動体と接する円環状の接触体と、を備え、接触体は、本体部、前記本体部と接合層を介して接合される平面部、平面部の一端に設けられた前記振動体との接触端を有する。そして前記一端から他端に向けて前記接合層の厚みが厚い部位が設けられている。以下、図面を参照して詳細に説明する。
A rotary vibration wave drive device of the present invention comprises a vibrating body having an annular elastic body and an electro-mechanical energy conversion element,
a ring-shaped contact body in contact with the vibrating body, the contact body comprising a main body, a planar section joined to the main body via a bonding layer, and a contact with the vibrating body provided at one end of the planar section. have an edge. A portion where the thickness of the bonding layer is thick is provided from the one end toward the other end. A detailed description will be given below with reference to the drawings.

図1は本発明の実施例1における回転型の振動波駆動装置の断面図を示す。円環状の弾性体と電気-機械エネルギー変換素子10を有する振動体1は、不図示の電極によって交流電流を印可することにより進行波振動を励振させるようになっている。電気-機械エネルギー変換素子は圧電素子や電歪素子で構成でき、圧電素子を採用する場合は、圧電素子を構成する圧電材料としてPZT、あるいはチタン酸バリウム系材料など鉛を使わない圧電材料を用いてよい。 Embodiment 1 FIG. 1 shows a cross-sectional view of a rotary vibration wave driving device according to Embodiment 1 of the present invention. A vibrating body 1 having an annular elastic body and an electro-mechanical energy conversion element 10 is adapted to excite traveling wave vibration by applying alternating current through electrodes (not shown). The electro-mechanical energy conversion element can be composed of a piezoelectric element or an electrostrictive element. When a piezoelectric element is used, PZT or a lead-free piezoelectric material such as barium titanate is used as the piezoelectric material for the piezoelectric element. you can

2は振動体1と接する円環状の接触体であり、付勢部材3により振動体1と接触体2とは加圧した状態で接触している。そして振動体1に励起する周方向に進行する進行波振動により、接触体2と振動体1とが周方向に相対的に移動可能に構成されている。また、付勢部材3と電気-機械エネルギー変換素子10との間には、加圧伝達部材11及び加圧受け部材12を介しており、付勢部材3の付勢力が均等に加わるようになっている。付勢部材3として、本実施例では円環状の板バネを複数重ねたものを用いているが、ウェーブワッシャや複数のコイルバネ等を用いてもよい。また、加圧伝達部材11としてはフェルトのほか、ゴムを用いることもできる。 An annular contact member 2 is in contact with the vibrating member 1, and the vibrating member 1 and the contact member 2 are in contact with each other while being pressed by an urging member 3. As shown in FIG. The contact member 2 and the vibrating member 1 are configured to be relatively movable in the circumferential direction due to the traveling wave vibration that is excited in the vibrating member 1 and progresses in the circumferential direction. A pressure transmitting member 11 and a pressure receiving member 12 are interposed between the biasing member 3 and the electro-mechanical energy conversion element 10, so that the biasing force of the biasing member 3 is evenly applied. ing. As the biasing member 3, in this embodiment, a plurality of annular leaf springs are used, but a wave washer, a plurality of coil springs, or the like may be used. In addition to felt, rubber can also be used as the pressure transmitting member 11 .

振動体1は不図示の回転防止部材により、ベース部材4に対して相対的に回転しないように支持されている。図1中の上方に描かれた、接触体2における振動体1と接する部位と反対側の部位にはゴム部材6を介して錘5が取り付けられている。ゴム部材6の材質としてブチルゴムのほか、シリコンゴム等を用いることができる。また、本実施例では接触体2と錘5とを接合する手段としてゴム部材6を用いているが、ゴムを使わずに接着やねじ締結等の手段で固定してもよい。錘5はシャフト8と一体的に回転するようにシャフト8に支持されている。シャフト8はベース部材4に二つの回転軸受け7a、7bを介して相対的に回転可能に支持されている。回転軸受け7bはシャフト8からの抜け防止のため、抜け防止部材9によって図1中の紙面上下方向への変位が規制されるように位置決めされている。このため、振動体1と接触体2とは所定の回転軸を中心に相対的に回転移動するようになっている。また、回転軸受け7の代わりに滑り軸受けやスラストベアリング等の別形態の軸受けを用いてもよい。 The vibrating body 1 is supported by an anti-rotation member (not shown) so as not to rotate relative to the base member 4 . A weight 5 is attached via a rubber member 6 to a portion of the contact member 2 opposite to the portion in contact with the vibrating member 1, which is depicted in the upper part of FIG. As the material of the rubber member 6, silicon rubber or the like can be used in addition to butyl rubber. Also, in this embodiment, the rubber member 6 is used as a means for joining the contact member 2 and the weight 5, but the contact member 2 and the weight 5 may be fixed by means of adhesion, screw fastening, or the like without using rubber. The weight 5 is supported by the shaft 8 so as to rotate integrally therewith. The shaft 8 is relatively rotatably supported by the base member 4 via two rotary bearings 7a and 7b. In order to prevent the rotation bearing 7b from coming off from the shaft 8, it is positioned so that displacement in the vertical direction of the plane of FIG. Therefore, the vibrating body 1 and the contacting body 2 are adapted to rotate relative to each other about a predetermined rotation axis. Further, instead of the rotary bearing 7, a sliding bearing, a thrust bearing, or another type of bearing may be used.

図2を用いて接触体2の構成を説明する。図2は図1に示した断面図から、振動体1と接触体2とが互いに接する部分を拡大した図である。図2において、接触体2は接触部である平面部201と本体部202と、両者を接合する接合層203を備えている。平面部201には、この平面部201の一端を構成する振動体1と接する接触端がある。 The configuration of the contact member 2 will be described with reference to FIG. FIG. 2 is an enlarged view of a portion where the vibrating body 1 and the contact body 2 are in contact with each other from the sectional view shown in FIG. In FIG. 2, the contact member 2 includes a flat portion 201 and a body portion 202, which are contact portions, and a bonding layer 203 that bonds the two. The flat portion 201 has a contact end that is in contact with the vibrating body 1 forming one end of the flat portion 201 .

接合層203としては2液性エポキシ接着剤や嫌気性接着剤等の接着剤や、UV硬化性接着剤、接着性のある樹脂等を用いることができる。接合層はそれら材料を含有していればよい。すなわち嫌気性およびUV硬化性を兼ね備えた材料、あるいは嫌気性接着剤およびUV硬化性接着剤の混合物であってもよい。
平面部201はSUS材で形成されており、プレス加工で母材から打ち抜くことで作成される。本体部202は黄銅等の切削性に優れた金属材料を切削加工として形成される。
As the bonding layer 203, an adhesive such as a two-liquid epoxy adhesive or an anaerobic adhesive, a UV curable adhesive, an adhesive resin, or the like can be used. The joining layer should just contain these materials. That is, it may be a material that is both anaerobic and UV curable, or a mixture of anaerobic and UV curable adhesives.
The plane portion 201 is made of SUS material and is produced by punching out from a base material by press working. The body portion 202 is formed by cutting a metal material such as brass having excellent machinability.

接触体2は振動体1に対して摩擦接触した状態となるため、高耐久性を実現させるためには耐摩耗性に優れた材料が必要であり、接触部である平面部201はSUS材等で構成されることが望ましい。しかしながら、耐摩耗性に優れた材料は切削性に乏しく、本実施例の接触体2と同一の形状を全て切削加工で一体的に成型すると加工コストが大幅に上がってしまう。しかし、本実施例のようにプレス加工で形成した平面部201と快削性に優れた材料を切削加工してなる本体部202とを接合することで加工コストを大幅に低減することができる。 Since the contact member 2 is in frictional contact with the vibrating member 1, a material with excellent wear resistance is required to achieve high durability. It is desirable to consist of However, materials with excellent wear resistance are poor in machinability, and if the same shape as the contact body 2 of the present embodiment is entirely formed by cutting, the machining cost will increase significantly. However, by joining the flat portion 201 formed by press working and the body portion 202 formed by cutting a material having excellent free-cutting properties as in this embodiment, the processing cost can be greatly reduced.

しかしながら、平面部201をプレス加工で成形すると、プレス時や平面部201の表面硬度を上げるための焼き入れ・焼きなまし加工等で反りが生じてしまうという課題がある。以下、この課題について説明する。 However, when the flat portion 201 is formed by pressing, there is a problem that warpage occurs during pressing or during quenching/annealing for increasing the surface hardness of the flat portion 201 . This problem will be described below.

振動波アクチュエータにおいては、振動体1と接触体2との接触を担う接触部にはある程度の弾性があることが望ましい。弾性があることにより、接触部における不要振動の発生を抑制し異音の発生を抑制することが可能となる。この時、接触部において周方向の静剛性に差があると場所によって接触部の変形形状に差が生じてしまう。これにより、接触状態に差が生じてしまい、振動体で発生した進行波振動が均一に伝わらず異音が発生したり、駆動効率が低下したりするなどの問題が生じる。特に接触体として本実施例の弾性部と本環部のように複数の部材からなるものを用いた場合、弾性に反りがあったり、平面度が悪かったりすると接合層厚さにムラが生じてしまう。その結果、接合層の剛性の影響を大きく受けて静剛性の分布にばらつきが生じてしまうことになる。 In the vibration wave actuator, it is desirable that the contact portion that makes contact between the vibrating body 1 and the contact body 2 has some degree of elasticity. Due to the elasticity, it is possible to suppress the generation of unnecessary vibrations at the contact portion and to suppress the generation of abnormal noise. At this time, if there is a difference in static rigidity in the circumferential direction at the contact portion, the deformed shape of the contact portion will differ from place to place. As a result, a difference occurs in the contact state, causing problems such as the traveling wave vibration generated by the vibrating body not being transmitted uniformly, generating abnormal noise, and lowering the driving efficiency. In particular, when a contact member made up of a plurality of members such as the elastic portion and the main ring portion of this embodiment is used, unevenness in the thickness of the bonding layer occurs if the elasticity is warped or the flatness is poor. put away. As a result, the distribution of the static stiffness is greatly influenced by the stiffness of the bonding layer, and variations occur in the static stiffness distribution.

以上の問題を解決するため、図2に示すように平面部201を円環状の振動体1における円の中心から円環状の接触体2における円の中心へ向かう方向に反りを生じさせた形状とする。さらには、本体部202の内周側の縁Aと平面部201とが接した状態で、平面部201と本体部202とを接合層203を介して接合している。このため、接合層203は内周側から外周側に向けて傾斜した状態となり、それにより内周側よりも外周側の厚みが大きくなっている。本実施例では反りの大きさはとしては0.1mm~0.2mmを想定し、反りを傾斜角度で表現すれば水平方向を基準として1°~4°の範囲を想定しているが、この範囲に限定されるものではない。 In order to solve the above problems, as shown in FIG. do. Furthermore, the flat portion 201 and the main body portion 202 are joined via the joining layer 203 in a state in which the inner edge A of the main body portion 202 and the flat portion 201 are in contact with each other. For this reason, the bonding layer 203 is inclined from the inner peripheral side to the outer peripheral side, whereby the thickness on the outer peripheral side is larger than that on the inner peripheral side. In this embodiment, the magnitude of the warp is assumed to be 0.1 mm to 0.2 mm, and if the warp is expressed as an inclination angle, it is assumed to be in the range of 1° to 4° with respect to the horizontal direction. The range is not limited.

ここで、以上のように構成したときの効果を説明する。図3(a)は本実施例における接触体2の接触部付近に力Fが加わるときの概念を示した図である。図3(a)において、平面部201と不図示の振動体との接触部付近(接触端)に力Fが加わった時、平面部201と本体部202とは本体部202の内周側の縁Aで接しているため、縁Aを支点として平面部201を変位させるように力Fが作用する。そのため、平面部201が力Fを受けて変形するとき、縁Aから平面部201の内周側縁までの範囲がバネとして作用する。それに対し、図3(b)のように平面部201の反り方向が逆向きの時を考える。図3(b)において、平面部201と不図示の振動体との接触部付近に力Fが加わった時、平面部201と本体部202とは平面部201の外周側の縁Aで接しており、同様に縁Aを支点として平面部201と接合層203を変位させるように力Fが作用する。すなわち、接触部付近(接触端)には平面部201の静剛性と接合層203の静剛性とを合成した静剛性が弾性部となり、バネとして作用する。すなわち、接合層203の厚さの影響が出てしまう。接合層203の厚さは平面部201の反りによって決定されるが、プレス加工で形成した平面部201の反りは周方向において一様ではない。そのため、図3(b)の構成では接触部における接触体2の静剛性が周方向においてばらついてしまう。 Here, the effects of the configuration as described above will be described. FIG. 3(a) is a diagram showing the concept of when force F is applied to the vicinity of the contact portion of the contact body 2 in this embodiment. In FIG. 3A, when a force F is applied near the contact portion (contact end) between the plane portion 201 and the vibrating body (not shown), the plane portion 201 and the main body portion 202 move toward the inner peripheral side of the main body portion 202. Since they are in contact with each other at the edge A, a force F acts to displace the plane portion 201 with the edge A as a fulcrum. Therefore, when the flat portion 201 receives the force F and deforms, the range from the edge A to the inner peripheral side edge of the flat portion 201 acts as a spring. In contrast, as shown in FIG. 3B, consider the case where the plane portion 201 is warped in the opposite direction. In FIG. 3B, when a force F is applied near the contact portion between the flat portion 201 and the vibrating body (not shown), the flat portion 201 and the body portion 202 are in contact with each other at the edge A on the outer peripheral side of the flat portion 201. Similarly, a force F acts with the edge A as a fulcrum so as to displace the flat portion 201 and the bonding layer 203 . That is, in the vicinity of the contact portion (contact end), the combined static rigidity of the flat portion 201 and the static rigidity of the bonding layer 203 becomes an elastic portion, which acts as a spring. That is, the thickness of the bonding layer 203 has an effect. The thickness of the bonding layer 203 is determined by the warp of the flat portion 201, but the warp of the flat portion 201 formed by pressing is not uniform in the circumferential direction. Therefore, in the configuration of FIG. 3B, the static rigidity of the contact body 2 at the contact portion varies in the circumferential direction.

以上説明したように、図3(a)のように構成することで接触体2の弾力として平面部201を支配的に作用させることができるようになり、接合層の影響を受けることなく安定した性能を発揮する回転型駆動装置を提供することが可能となる。図3(a)の構成を採用するにあたり一例を挙げれば、円環状の接触体の周方向において等間隔の3点に着目する。その際、円錐状の頂上部を切り欠いた形状に形成された平面部の一端に設けられた前記振動体との接触端を基準に、一端から他端に向かう方向に接合層の厚みが厚い部位が設けられていれば、効果を発揮する。 As described above, by configuring as shown in FIG. 3A, the flat portion 201 can be made to act predominantly as the elasticity of the contact body 2, and stable without being affected by the bonding layer. It becomes possible to provide a rotary drive device that exhibits performance. To give an example in adopting the configuration of FIG. 3A, attention is focused on three points equidistantly spaced in the circumferential direction of the annular contact body. At that time, the thickness of the bonding layer increases in the direction from one end to the other end with reference to the contact end with the vibrating body provided at one end of the flat portion formed in a shape with the top portion of a cone cut off. If the part is provided, the effect will be exhibited.

本実施例の他の構成として、図4に示すように本体部205において、中心から径方向に離れる方向に向けて肉厚が薄い部位を設けても同様の効果となる。本体部205の肉厚を径方向で変えることで平面部204にどのような反りが生じていたとしても反りの方向を気にすることなく接合することが可能となり、周方向位置による剛性の差を低減することができる。 As another configuration of the present embodiment, as shown in FIG. 4, the body portion 205 may be provided with a portion having a thin wall thickness in a direction away from the center in the radial direction to achieve the same effect. By changing the thickness of the main body portion 205 in the radial direction, it is possible to bond the flat portion 204 without worrying about the direction of the warp, regardless of what kind of warpage occurs in the plane portion 204. Therefore, there is a difference in rigidity depending on the position in the circumferential direction. can be reduced.

図5は本実施例の第二実施形態における接触部付近の構成を示す図である。全体の基本的な構成は第一の実施例と同等であるため、説明は省略し第一の実施例と異なる部分についてのみ説明する。 FIG. 5 is a diagram showing the configuration around the contact portion in the second embodiment of the present embodiment. Since the basic configuration of the whole is the same as that of the first embodiment, the explanation is omitted and only the parts different from the first embodiment are explained.

本実施例においては振動体13と接触体22の形状が実施例1と異なっている。円環状の弾性体および電気-機械エネルギー変換素子を有する振動体13は、円環状の弾性体の径方向の断面が台形に近似した形状となっており、接触面が平面状に形成されているため実施例1よりも加工コストを低減することが可能となっている。なお、断面形状は台形に限らず、四角形であってもよい。接触体22は本体部202と平面部207とで構成されており、平面部207の内径側の端部には立ち上げ部208が一体的に設けられている。平面部207に立ち上げ部208を設ける際にはプレス加工がコストの面から望ましいが、切削加工やエッチング加工等の手段で形成しても構わない。そして立ち上げ部208の端部が振動体13と加圧接触し、振動体13と接触体22とが相対的に移動するように構成されている。 In this embodiment, the shapes of the vibrating body 13 and contact body 22 are different from those of the first embodiment. The vibrating body 13, which has an annular elastic body and an electro-mechanical energy conversion element, has a cross section in the radial direction of the annular elastic body that approximates a trapezoid, and a planar contact surface. Therefore, the processing cost can be reduced more than the first embodiment. In addition, the cross-sectional shape is not limited to a trapezoid, and may be a quadrangle. The contact member 22 is composed of a main body portion 202 and a flat portion 207, and a raised portion 208 is integrally provided at the inner diameter side end portion of the flat portion 207. As shown in FIG. When forming the raised portion 208 on the plane portion 207, press working is preferable from the viewpoint of cost, but it may be formed by means such as cutting or etching. An end portion of the raised portion 208 is pressed against the vibrating body 13, and the vibrating body 13 and the contact body 22 are configured to move relative to each other.

さらに、平面部207を、頂上部が円環状の弾性体の中心から円環状の接触体の中心へ向かって突出する円錐の、頂上部を切り欠いた形状とし、接合層209が内周側よりも外周側の厚みが大きくなるようにしている。 Further, the planar portion 207 has a shape of a cone whose apex protrudes from the center of the annular elastic body toward the center of the annular contact body, with the apex notched, and the bonding layer 209 extends from the inner peripheral side. Also, the thickness on the outer peripheral side is increased.

以上のように構成することで、振動体13から付勢力Fが接触体22に加わった時、平面部207全体が本体部202に押し付けられる。このとき、平面部207及び立ち上げ部208が本体部202から振動体1の中心軸の方向に突出している。そのため、本体部202と接着されていない平面部207の一部が弾性を持つバネとして作用し、本体部202の内周側の縁Aを支点として平面部207の一部が弾性変形する。 With the configuration as described above, when the biasing force F is applied from the vibrating body 13 to the contact body 22 , the entire plane portion 207 is pressed against the main body portion 202 . At this time, the flat portion 207 and the rising portion 208 protrude from the main body portion 202 in the direction of the central axis of the vibrating body 1 . Therefore, a portion of the planar portion 207 that is not adhered to the body portion 202 acts as an elastic spring, and the portion of the planar portion 207 is elastically deformed with the edge A on the inner peripheral side of the body portion 202 as a fulcrum.

実施例1と同様に接合層厚さの差は0.1mm~0.2mmを想定しているが、十分な弾性が確保されれば差があればどのくらいの差であっても構わない。上述のように前記平面部は前記一端側で前記本体部と接する部位があることが重要である。 As in Example 1, the difference in thickness of the bonding layer is assumed to be 0.1 mm to 0.2 mm, but as long as sufficient elasticity is ensured, the difference may be any difference. As described above, it is important that the flat portion has a portion that contacts the main body portion on the one end side.

また、図6に示すように中心から径方向にはなれる方向に向けて肉厚が薄い部位を設けた本体部205に平面部210及び平面部210と一体的に形成された立ち上げ部212を接合してもよい。このようにしても接合層211の厚みは外周側の方が大きくなるため、同様の効果を持つ円環型振動波駆動装置を提供することが可能となる。本体部205の肉厚を径方向で変えることで平面部210にどのような反りが生じていたとしても反りの方向を気にすることなく接合することが可能となり、周方向位置による剛性の差を低減することができる。 Further, as shown in FIG. 6, a flat portion 210 and a raised portion 212 integrally formed with the flat portion 210 are formed on the main body portion 205 having a thin portion extending radially from the center. May be joined. Even in this case, since the thickness of the bonding layer 211 is larger on the outer peripheral side, it is possible to provide an annular vibration wave driving device having the same effect. By changing the thickness of the main body portion 205 in the radial direction, it is possible to join the plane portion 210 without worrying about the direction of warping, regardless of what kind of warpage occurs in the plane portion 210, and the difference in rigidity depending on the position in the circumferential direction. can be reduced.

さらに、図7に示すように、平面部213の一方の端部に立ち上げ部214を、もう一方の端部に第二の平面部216を設けてもよい。このようにしても接合層211の厚みは外周側の方が大きくなるため、同様の効果を持つ円環型振動波駆動装置を提供することが可能となる。さらに、接触体24の振動体13との接触部である平面部213をプレス等による曲げ加工等で形成する際の具体的構成を考えると以下の有利な点がある。すなわち立ち上げ部214付近の反りの方向が振動子13に向かう方向になったとしても第二の平面部216と平面部213との間に曲げ加工を施すことで方向を修正することができる。 Furthermore, as shown in FIG. 7, a raised portion 214 may be provided at one end of the flat portion 213 and a second flat portion 216 may be provided at the other end. Even in this case, since the thickness of the bonding layer 211 is larger on the outer peripheral side, it is possible to provide an annular vibration wave driving device having the same effect. Furthermore, considering the specific configuration when forming the plane portion 213, which is the contact portion of the contact member 24 with the vibrating member 13, by bending using a press or the like, there are the following advantages. That is, even if the warp near the rising portion 214 is directed toward the vibrator 13 , the direction can be corrected by bending between the second flat portion 216 and the flat portion 213 .

以上のように構成することで、実施例1よりも接触面の幅が狭くなるため、接触面の平面度等の影響を受けにくく、より安定した性能を発揮することが可能となる。 With the configuration as described above, the width of the contact surface is narrower than that of the first embodiment, so that it is less susceptible to the flatness of the contact surface and the like, and more stable performance can be exhibited.

また、円環状の弾性体の中心から前記円環状の接触体の中心へ向かう方向に反った屈曲部により前記接触端が構成されていてもよく、屈曲部を複数備えていてもよい。 Further, the contact end may be configured by a curved portion curved in a direction from the center of the annular elastic body toward the center of the annular contact body, or a plurality of curved portions may be provided.

また本願発明の適用例として、光学素子と、撮像素子と、前述の回転型の振動波駆動装置を有し、回転型の振動波駆動装置の駆動により前記光学素子と前記撮像素子との相対位置が変わるように構成された光学機器を構成してもよい。また光学機器に限らず、前述の回転型の振動波駆動装置と、この回転型の振動波駆動装置に連結された可動部を有し、回転型の振動波駆動装置の駆動により前記可動部が変位するよう構成された電子機器を構成してもよい。 Further, as an application example of the present invention, an optical element, an imaging element, and the rotary vibration wave driving device described above are provided, and the relative position between the optical element and the imaging device is determined by driving the rotary vibration wave driving device. An optical instrument configured to change . Further, not limited to optical equipment, it has a rotary vibration wave driving device and a movable part connected to the rotary vibration wave driving device, and the movable part is driven by the rotary vibration wave driving device. An electronic device configured to be displaced may be configured.

本発明は超音波モータ等の振動型駆動装置に利用可能である。 INDUSTRIAL APPLICABILITY The present invention is applicable to vibration type driving devices such as ultrasonic motors.

1 振動体
2 接触体
3 付勢部材
4 ベース部材
5 錘
6 ゴム部材
7 回転軸受け
8 シャフト
9 抜け防止部材
10 電気-機械エネルギー変換素子
11 加圧伝達部材
12 加圧受け部材
13 振動体
201 平面部
202 本体部
203 接合層
204 平面部
205 本体部
207 平面部
208 立ち上げ部
209 接合層
210 平面部
211 接合層
212 立ち上げ部
213 平面部
214 立ち上げ部
215 接合層
216 第二の平面部
REFERENCE SIGNS LIST 1 vibrating body 2 contacting body 3 biasing member 4 base member 5 weight 6 rubber member 7 rotary bearing 8 shaft 9 disengagement prevention member 10 electrical-mechanical energy conversion element 11 pressure transmitting member 12 pressure receiving member 13 vibrating body 201 plane portion 202 body part 203 joining layer 204 plane part 205 body part 207 plane part 208 rising part 209 joining layer 210 plane part 211 joining layer 212 rising part 213 plane part 214 rising part 215 joining layer 216 second plane part

Claims (13)

円環状の弾性体及び電気-機械エネルギー変換素子を有する振動体と、
前記振動体と接する円環状の接触体と、を備え、
前記接触体は、本体部、前記本体部と接合層を介して接合される平面部、前記平面部の一端に設けられた前記振動体との接触端を有し、
前記一端から他端に向かう方向に前記接合層の厚みが厚い部位が設けられた回転型の振動波駆動装置。
a vibrating body having an annular elastic body and an electro-mechanical energy conversion element;
an annular contact body in contact with the vibrating body,
The contact member has a body portion, a flat portion bonded to the body portion via a bonding layer, and a contact end with the vibrating body provided at one end of the flat portion,
A rotary vibration wave driving device in which a portion where the thickness of the bonding layer is thick is provided in a direction from the one end to the other end.
前記接触端は前記平面部の端部と一体に設けられた立ち上げ部であることを特徴とする請求項1に記載の回転型の振動波駆動装置。 2. A rotary vibration wave driving device according to claim 1, wherein said contact end is a raised portion provided integrally with an end of said flat portion. 前記接合層は前記一端から他端に向けて傾斜していることを特徴とする請求項1または2に記載の回転型の振動波駆動装置。 3. The rotary vibration wave driving device according to claim 1, wherein the joining layer is inclined from the one end to the other end. 前記平面部は前記一端側で前記本体部と接する部位があることを特徴とする請求項1~3のいずれか1項に記載の回転型の振動波駆動装置。 The rotary vibration wave driving device according to any one of claims 1 to 3, wherein the planar portion has a portion contacting the main body portion at the one end side. 前記一端から他端に向かう方向は前記円環状の接触体の径方向である請求項1~4のいずれか1項に記載の回転型の振動波駆動装置。 5. The rotary vibration wave driving device according to claim 1, wherein the direction from the one end to the other end is the radial direction of the annular contact body. 前記円環状の接触体の中心に向かって、前記円環状の接触体の径方向に、前記接触端は前記本体部より突出していることを特徴とする請求項1~5のいずれか1項に記載の回転型の振動波駆動装置。 6. The contact end according to claim 1, wherein the contact end protrudes from the body portion toward the center of the annular contact body in a radial direction of the annular contact body. A rotary oscillatory wave drive device as described. 前記平面部は、頂上部が円環状の弾性体の中心から円環状の接触体の中心へ向かって突出する円錐の、頂上部を切り欠いた形状である請求項1~6のいずれか1項に記載の回転型の振動波駆動装置。 7. The planar portion has a shape of a cone whose apex is notched and protrudes from the center of the annular elastic body toward the center of the annular contact body. 2. The rotary vibration wave driving device according to 1. 前記円環状の弾性体の中心から前記円環状の接触体の中心へ向かう方向に反った屈曲部により前記接触端が構成されていることを特徴とする請求項1~7のいずれか1項に記載の回転型の振動波駆動装置。 8. The contact end according to any one of claims 1 to 7, wherein the contact end is formed by a bent portion that warps in a direction from the center of the annular elastic body toward the center of the annular contact body. A rotary oscillatory wave drive device as described. 前記屈曲部を複数備えた請求項8に記載の回転型の振動波駆動装置。 9. The rotary vibration wave driving device according to claim 8, comprising a plurality of said bent portions. 前記平面部はSUS材で構成されていることを特徴とする請求項1~9のいずれか1項に記載の回転型の振動波駆動装置。 10. The rotary vibration wave driving device according to claim 1, wherein the planar portion is made of SUS material. 前記接合層はエポキシ接着剤、嫌気性接着剤、UV硬化性接着剤、あるいは樹脂、を含有していることを特徴とする請求項1~10のいずれか1項に記載の回転型の振動波駆動装置。 The rotary vibration wave according to any one of claims 1 to 10, wherein the bonding layer contains an epoxy adhesive, an anaerobic adhesive, a UV curable adhesive, or a resin. drive. 前記本体部は、前記円環状の接触体の中心から、前記円環状の接触体の径方向に離れる方向に向けて、肉厚が薄い部位を有することを特徴とする請求項1~11のいずれか1項に記載の回転型の振動波駆動装置。 12. The body portion according to any one of claims 1 to 11, wherein the main body portion has a thin portion in a direction away from the center of the annular contact body in a radial direction of the annular contact body. 1. A rotary vibration wave driving device according to claim 1. 光学素子と、
撮像素子と、
請求項1~12のいずれか1項に記載の回転型の振動波駆動装置を有し、
前記回転型の振動波駆動装置の駆動により前記光学素子と前記撮像素子との相対位置が変わるように構成された光学機器。
an optical element;
an imaging device;
Having the rotary vibration wave driving device according to any one of claims 1 to 12,
An optical apparatus configured such that a relative position between the optical element and the imaging element is changed by driving the rotary vibration wave driving device.
JP2019180976A 2019-09-30 2019-09-30 Rotary Oscillatory Wave Drives, Optics, and Electronics Active JP7301705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019180976A JP7301705B2 (en) 2019-09-30 2019-09-30 Rotary Oscillatory Wave Drives, Optics, and Electronics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019180976A JP7301705B2 (en) 2019-09-30 2019-09-30 Rotary Oscillatory Wave Drives, Optics, and Electronics

Publications (2)

Publication Number Publication Date
JP2021058031A JP2021058031A (en) 2021-04-08
JP7301705B2 true JP7301705B2 (en) 2023-07-03

Family

ID=75271384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019180976A Active JP7301705B2 (en) 2019-09-30 2019-09-30 Rotary Oscillatory Wave Drives, Optics, and Electronics

Country Status (1)

Country Link
JP (1) JP7301705B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176786A (en) 2000-12-08 2002-06-21 Canon Inc Vibration wave motor
JP2003033059A (en) 2001-07-23 2003-01-31 Canon Inc Oscillatory wave driver
JP2016182019A (en) 2015-03-25 2016-10-13 キヤノン株式会社 Vibration type actuator and imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176786A (en) 2000-12-08 2002-06-21 Canon Inc Vibration wave motor
JP2003033059A (en) 2001-07-23 2003-01-31 Canon Inc Oscillatory wave driver
JP2016182019A (en) 2015-03-25 2016-10-13 キヤノン株式会社 Vibration type actuator and imaging apparatus

Also Published As

Publication number Publication date
JP2021058031A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP5709413B2 (en) Vibration type driving device
JP5631018B2 (en) Rotational vibration wave drive
US9263972B2 (en) Vibrator, vibration type driving apparatus and manufacturing method of vibrator
US8970091B2 (en) Vibration-type driving apparatus
US11515811B2 (en) Vibration-type actuator, pan head, and electronic apparatus
US11165370B2 (en) Vibration actuator
JP7301705B2 (en) Rotary Oscillatory Wave Drives, Optics, and Electronics
CN102739102B (en) Annular vibration wave actuator
JP6184063B2 (en) Vibration wave driving device and electronic device
JP2012067849A (en) Rotary driving device
JP6593411B2 (en) Vibration wave motor and optical equipment
JP6611446B2 (en) Vibration type driving device and imaging device
JP5883177B2 (en) Vibration type driving device
JP2007097266A (en) Vibrating actuator
WO2021210366A1 (en) Vibration wave motor and electronic devcie equipped with same
JP2013031285A (en) Oscillating wave motor
JPH1094274A (en) Apparatus with vibration driver
JP2013215085A (en) Vibration actuator
JP2012231611A (en) Oscillatory wave motor
JP2006333679A (en) Vibration wave motor
JPH09191668A (en) Oscillation wave unit
JP2009033791A (en) Ultrasonic motor
JP2012070547A (en) Rotary drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220701

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230621

R151 Written notification of patent or utility model registration

Ref document number: 7301705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151