JP7301123B2 - Actinic ray-sensitive or radiation-sensitive resin composition production method, pattern formation method, electronic device production method - Google Patents

Actinic ray-sensitive or radiation-sensitive resin composition production method, pattern formation method, electronic device production method Download PDF

Info

Publication number
JP7301123B2
JP7301123B2 JP2021511395A JP2021511395A JP7301123B2 JP 7301123 B2 JP7301123 B2 JP 7301123B2 JP 2021511395 A JP2021511395 A JP 2021511395A JP 2021511395 A JP2021511395 A JP 2021511395A JP 7301123 B2 JP7301123 B2 JP 7301123B2
Authority
JP
Japan
Prior art keywords
group
filter
resin
sensitive
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021511395A
Other languages
Japanese (ja)
Other versions
JPWO2020203246A1 (en
Inventor
聡 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2020203246A1 publication Critical patent/JPWO2020203246A1/en
Application granted granted Critical
Publication of JP7301123B2 publication Critical patent/JP7301123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

本発明は、感活性光線性又は感放射線性樹脂組成物の製造方法、パターン形成方法、及び電子デバイスの製造方法に関する。 The present invention relates to a method for producing an actinic ray-sensitive or radiation-sensitive resin composition, a pattern forming method, and a method for producing an electronic device.

KrFエキシマレーザー(248nm)用レジスト以降、光吸収による感度低下を補うべく、化学増幅を利用したパターン形成方法が用いられている。例えば、ポジ型の化学増幅法では、まず、露光部に含まれる光酸発生剤が、光照射により分解して酸を発生する。そして、露光後のベーク(PEB:Post Exposure Bake)過程等において、発生した酸の触媒作用により、感活性光線性又は感放射線性樹脂組成物に含まれる樹脂が有するアルカリ不溶性の基をアルカリ可溶性の基に変化させる等して現像液に対する溶解性を変化させる。その後、例えば塩基性水溶液を用いて、現像を行う。これにより、露光部を除去して、所望のパターンを得る。
半導体素子の微細化のために、露光光源の短波長化及び投影レンズの高開口数(高NA)化が進み、現在では、193nmの波長を有するArFエキシマレーザーを光源とする露光機が開発されている。このような現状のもと、感活性光線性又は感放射線性樹脂組成物(レジスト組成物)として、種々の構成が提案されている。
Since the resist for KrF excimer laser (248 nm), a pattern forming method using chemical amplification has been used in order to compensate for the decrease in sensitivity due to light absorption. For example, in a positive chemical amplification method, first, a photoacid generator contained in an exposed area is decomposed by light irradiation to generate an acid. Then, in the post-exposure baking (PEB: Post Exposure Bake) process or the like, the alkali-insoluble groups of the resin contained in the actinic ray-sensitive or radiation-sensitive resin composition are converted into alkali-soluble groups by the catalytic action of the generated acid. The solubility in the developer is changed by, for example, changing the base. Thereafter, development is performed using, for example, a basic aqueous solution. Thereby, the exposed portion is removed to obtain a desired pattern.
For the miniaturization of semiconductor devices, the wavelength of the exposure light source is shortened and the numerical aperture (NA) of the projection lens is increased. Currently, an exposure machine using an ArF excimer laser with a wavelength of 193 nm as a light source has been developed. ing. Under such circumstances, various structures have been proposed as actinic ray-sensitive or radiation-sensitive resin compositions (resist compositions).

更に、昨今では、レジストパターンの更なる微細化の要求に伴って、現像後のレジストパターン表面欠陥の改善がより一層望まれている。
例えば、特許文献1では、樹脂成分と、露光により酸を発生する酸発生成分と、有機溶剤とを含むレジスト組成物に対して特定の条件にてフィルタリングを行ことにより、現像後のレジストパターン表面欠陥を抑制する方法を開示している。
Furthermore, in recent years, along with the demand for further miniaturization of resist patterns, improvement of resist pattern surface defects after development is even more desired.
For example, in Patent Document 1, a resist composition containing a resin component, an acid-generating component that generates an acid upon exposure, and an organic solvent is subjected to filtering under specific conditions to obtain a resist pattern surface after development. A method for suppressing defects is disclosed.

特許第04637967号明細書Patent No. 04637967

本発明者は、特許文献1を参照してレジスト組成物を調製して検討したところ、上記レジスト組成物により形成されるパターン上に依然として表面欠陥(特に、ブリッジ欠陥)が発生することを知見した。 The inventors of the present invention prepared and studied a resist composition with reference to Patent Document 1, and found that surface defects (especially bridge defects) still occurred on the pattern formed by the resist composition. .

そこで、本発明は、ブリッジ欠陥が抑制されたパターンを形成し得る感活性光線性又は感放射線性樹脂組成物の製造方法を提供することを課題とする。
また、本発明は、ブリッジ欠陥が抑制されたパターンを形成し得る感活性光線性又は感放射線性樹脂組成物を用いたパターン形成方法、及び電子デバイスの製造方法を提供することを課題とする。
Accordingly, an object of the present invention is to provide a method for producing an actinic ray-sensitive or radiation-sensitive resin composition capable of forming a pattern in which bridging defects are suppressed.
Another object of the present invention is to provide a pattern forming method using an actinic ray-sensitive or radiation-sensitive resin composition capable of forming a pattern in which bridging defects are suppressed, and a method for manufacturing an electronic device.

本発明者は、上記課題を解決すべく鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。 As a result of intensive studies aimed at solving the above problems, the inventors of the present invention have found that the above problems can be solved by the following configuration.

〔1〕 半導体装置製造工程で使用される感活性光線性又は感放射線性樹脂組成物の製造方法であって、
酸の作用により分解して極性が増大する樹脂と、溶剤と、を含むポリマー溶液を精製する工程Aと、
上記工程Aを経たポリマー溶液に、活性光線又は放射線の照射によって酸を発生する化合物を加えて、感活性光線性又は感放射線性樹脂組成物を調製する工程Bと、を含み、
上記工程Aが、上記ポリマー溶液をフィルタXに通過させてろ過する工程Xを含む、感活性光線性又は感放射線性樹脂組成物の製造方法。
〔2〕 上記フィルタXが、孔径が0.03μm以下のナイロン膜、孔径が0.01μm以下のポリオレフィン樹脂膜、及び孔径が0.01μm以下のフッ素樹脂膜からなる群から選ばれる、〔1〕に記載の感活性光線性又は感放射線性樹脂組成物の製造方法。
〔3〕 上記フィルタXの差圧が0.3MPa以下である、〔1〕又は〔2〕に記載の感活性光線性又は感放射線性樹脂組成物の製造方法。
〔4〕 上記工程Xが、15~25℃の温度環境下にて実施される、〔1〕~〔3〕のいずれかに記載の感活性光線性又は感放射線性樹脂組成物の製造方法。
〔5〕 上記工程Aが、上記工程Xを2回以上含む、〔1〕~〔4〕のいずれかに記載の感活性光線性又は感放射線性樹脂組成物の製造方法。
〔6〕 上記工程Aが、
上記ポリマー溶液をフィルタX0に通過させてろ過する工程X0と、上記工程X0を経た上記ポリマー溶液をフィルタX1に通過させてろ過する工程X1とを含むか、
上記ポリマー溶液をフィルタX1に通過させてろ過する工程X1と、上記工程X1を経た上記ポリマー溶液をフィルタX2に通過させてろ過する工程X2とを含むか、又は、
上記ポリマー溶液をフィルタX0に通過させてろ過する工程X0と、上記工程X0を経た上記ポリマー溶液をフィルタX1に通過させてろ過する工程X1と、上記工程X1を経た上記ポリマー溶液をフィルタX2に通過させてろ過する工程X2とを含み、
上記フィルタX0及び上記フィルタX2は、上記フィルタX1とは異なるフィルタであって、孔径が0.01μm以下のポリオレフィン樹脂膜及び孔径が0.01μm以下のフッ素樹脂膜から選ばれる、〔1〕~〔4〕のいずれかに記載の感活性光線性又は感放射線性樹脂組成物の製造方法。
〔7〕 上記工程Aが、
上記ポリマー溶液をフィルタX0に通過させてろ過する工程X0と、上記工程X0を経た上記ポリマー溶液をフィルタX1に通過させてろ過する工程X1とを含み、且つ上記工程X1を経た上記ポリマー溶液に対して、再度、上記工程X0及び上記工程X1を実施する工程を1回以上含むか、
上記ポリマー溶液をフィルタX1に通過させてろ過する工程X1と、上記工程X1を経た上記ポリマー溶液をフィルタX2に通過させてろ過する工程X2とを含み、且つ上記工程X2を経た上記ポリマー溶液に対して、再度、上記工程X1及び上記工程X2を実施する工程を1回以上含むか、又は、
上記ポリマー溶液をフィルタX0に通過させてろ過する工程X0と、上記工程X0を経た上記ポリマー溶液をフィルタX1に通過させてろ過する工程X1と、上記工程X1を経た上記ポリマー溶液をフィルタX2に通過させてろ過する工程X2とを含み、且つ上記工程X2を経た上記ポリマー溶液に対して、再度、上記工程X0と上記工程X1と上記X2とを実施する工程を1回以上含む、〔6〕に記載の感活性光線性又は感放射線性樹脂組成物の製造方法。
〔8〕 上記フィルタX0の差圧、上記フィルタX1の差圧、及び上記フィルタX2の差圧が、いずれも0.3MPa以下である、〔6〕又は〔7〕に記載の感活性光線性又は感放射線性樹脂組成物の製造方法。
〔9〕 上記酸の作用により分解して極性が増大する樹脂が、アクリル酸エステル及びメタクリル酸エステルの少なくとも一方から誘導される繰り返し単位を含む樹脂を含む、〔1〕~〔8〕のいずれかに記載の感活性光線性又は感放射線性樹脂組成物の製造方法。
〔10〕 上記酸の作用により分解して極性が増大する樹脂が、カーボネート構造及びスルトン構造の1種以上を含む、〔1〕~〔9〕のいずれかに記載の感活性光線性又は感放射線性樹脂組成物の製造方法。
〔11〕 〔1〕~〔10〕のいずれかに記載の感活性光線性又は感放射線性樹脂組成物の製造方法により製造された感活性光線性又は感放射線性樹脂組成物を用いて、支持体上にレジスト膜を形成する工程と、
上記レジスト膜を露光する工程と、
上記露光されたレジスト膜を、現像液を用いて現像する工程と、を有する、パターン形成方法。
〔12〕 〔11〕に記載のパターン形成方法を含む、電子デバイスの製造方法。
[1] A method for producing an actinic ray-sensitive or radiation-sensitive resin composition used in a semiconductor device manufacturing process, comprising:
A step A of purifying a polymer solution containing a resin that is decomposed by the action of an acid to increase its polarity and a solvent;
A step B of adding a compound that generates an acid upon exposure to actinic rays or radiation to the polymer solution that has undergone step A to prepare an actinic ray-sensitive or radiation-sensitive resin composition,
A method for producing an actinic ray-sensitive or radiation-sensitive resin composition, wherein the step A includes a step X of filtering the polymer solution through a filter X.
[2] The filter X is selected from the group consisting of a nylon membrane with a pore size of 0.03 μm or less, a polyolefin resin membrane with a pore size of 0.01 μm or less, and a fluororesin membrane with a pore size of 0.01 μm or less [1] A method for producing the actinic ray-sensitive or radiation-sensitive resin composition according to 1.
[3] The method for producing an actinic ray-sensitive or radiation-sensitive resin composition according to [1] or [2], wherein the filter X has a differential pressure of 0.3 MPa or less.
[4] The method for producing an actinic ray-sensitive or radiation-sensitive resin composition according to any one of [1] to [3], wherein the step X is carried out in a temperature environment of 15 to 25°C.
[5] The method for producing an actinic ray-sensitive or radiation-sensitive resin composition according to any one of [1] to [4], wherein the step A includes the step X two or more times.
[6] The above step A is
a step X0 of filtering the polymer solution through a filter X0; and a step X1 of filtering the polymer solution that has undergone the step X0 through a filter X1;
A step X1 of filtering the polymer solution through a filter X1, and a step X2 of filtering the polymer solution that has undergone the step X1 through a filter X2, or
A step X0 of filtering the polymer solution through a filter X0, a step X1 of filtering the polymer solution that has undergone the step X0 through a filter X1, and a step X1 of filtering the polymer solution that has undergone the step X1 through a filter X2. and a step X2 of allowing and filtering,
[1] to [ 4].
[7] The above step A is
a step X0 of filtering the polymer solution through a filter X0; and a step X1 of filtering the polymer solution that has undergone the step X0 through a filter X1. and again include the step of performing the step X0 and the step X1 one or more times,
a step X1 of filtering the polymer solution through a filter X1; and a step X2 of filtering the polymer solution that has undergone the step X1 through a filter X2. and again includes the step of performing the step X1 and the step X2 one or more times, or
A step X0 of filtering the polymer solution through a filter X0, a step X1 of filtering the polymer solution that has undergone the step X0 through a filter X1, and a step X1 of filtering the polymer solution that has undergone the step X1 through a filter X2. and filtering, and the step of once or more performing the steps X0, X1, and X2 again on the polymer solution that has undergone the step X2. A method for producing the described actinic ray-sensitive or radiation-sensitive resin composition.
[8] The actinic ray-sensitive or according to [6] or [7], wherein the differential pressure of the filter X0, the differential pressure of the filter X1, and the differential pressure of the filter X2 are all 0.3 MPa or less. A method for producing a radiation-sensitive resin composition.
[9] Any one of [1] to [8], wherein the resin that is decomposed by the action of an acid to increase polarity includes a resin containing a repeating unit derived from at least one of an acrylic acid ester and a methacrylic acid ester. A method for producing the actinic ray-sensitive or radiation-sensitive resin composition according to 1.
[10] Actinic ray-sensitive or radiation-sensitive according to any one of [1] to [9], wherein the resin that is decomposed by the action of an acid to increase its polarity contains one or more of a carbonate structure and a sultone structure. a method for producing a flexible resin composition.
[11] Using an actinic ray- or radiation-sensitive resin composition produced by the method for producing an actinic ray- or radiation-sensitive resin composition according to any one of [1] to [10], supporting a step of forming a resist film on the body;
exposing the resist film;
and developing the exposed resist film using a developer.
[12] A method for manufacturing an electronic device, including the pattern forming method according to [11].

本発明によれば、ブリッジ欠陥が抑制されたパターンを形成し得る感活性光線性又は感放射線性樹脂組成物の製造方法を提供できる。
また、本発明は、ブリッジ欠陥が抑制されたパターンを形成し得る感活性光線性又は感放射線性樹脂組成物を用いたパターン形成方法、及び電子デバイスの製造方法を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the actinic-ray-sensitive or radiation-sensitive resin composition which can form the pattern by which bridge|bridging defect was suppressed can be provided.
Further, the present invention can provide a pattern forming method using an actinic ray-sensitive or radiation-sensitive resin composition capable of forming a pattern in which bridging defects are suppressed, and a method for manufacturing an electronic device.

工程Aの実施形態の一例を説明するための装置の概略図である。It is the schematic of the apparatus for demonstrating an example of embodiment of process A. FIG. 工程Aの実施形態の一例を説明するための装置の概略図である。It is the schematic of the apparatus for demonstrating an example of embodiment of process A. FIG. 工程Aの実施形態の一例を説明するための装置の概略図である。It is the schematic of the apparatus for demonstrating an example of embodiment of process A. FIG. 工程Aの実施形態の一例を説明するための装置の概略図である。It is the schematic of the apparatus for demonstrating an example of embodiment of process A. FIG.

以下、本発明について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされる場合があるが、本発明はそのような実施態様に限定されない。
本明細書中における基(原子団)の表記について、本発明の趣旨に反しない限り、置換及び無置換を記していない表記は、置換基を有さない基と共に置換基を有する基をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。また、本明細書中における「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
置換基は、特に断らない限り、1価の置換基が好ましい。
本明細書中における「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光: Extreme Ultraviolet)、X線、及び電子線(EB:Electron Beam)等を意味する。本明細書中における「光」とは、活性光線又は放射線を意味する。
本明細書中における「露光」とは、特に断らない限り、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線、X線、及びEUV光等による露光のみならず、電子線、及びイオンビーム等の粒子線による描画も含む。
本明細書において、「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
本明細書において表記される二価の基の結合方向は、特に断らない限り制限されない。例えば、「X-Y-Z」なる一般式で表される化合物中の、Yが-COO-である場合、Yは、-CO-O-であってもよく、-O-CO-であってもよい。また、上記化合物は「X-CO-O-Z」であってもよく「X-O-CO-Z」であってもよい。
The present invention will be described in detail below.
The description of the constituent elements described below may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
Regarding the notation of groups (atomic groups) in the present specification, as long as it does not contradict the spirit of the present invention, the notation that does not indicate substituted or unsubstituted includes groups having substituents as well as groups not having substituents. do. For example, an "alkyl group" includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group). Also, the term "organic group" as used herein refers to a group containing at least one carbon atom.
The substituent is preferably a monovalent substituent unless otherwise specified.
The term "actinic rays" or "radiation" as used herein means, for example, the emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays (EUV light: Extreme Ultraviolet), X-rays, and electron beams (EB : Electron Beam) and the like. As used herein, "light" means actinic rays or radiation.
The term "exposure" as used herein means, unless otherwise specified, not only exposure by the emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays, X-rays, and EUV light, but also electron beams, and It also includes drawing with particle beams such as ion beams.
In the present specification, the term "~" is used to include the numerical values before and after it as lower and upper limits.
The bonding direction of the divalent groups described herein is not limited unless otherwise specified. For example, in the compound represented by the general formula "XYZ", when Y is -COO-, Y may be -CO-O- or -O-CO- may Further, the above compound may be "X--CO--O--Z" or "X--O--CO--Z."

本明細書において、(メタ)アクリレートはアクリレート及びメタクリレートを表し、(メタ)アクリルはアクリル及びメタクリルを表す。
本明細書において、樹脂の重量平均分子量(Mw)、数平均分子量(Mn)、及び分散度(分子量分布ともいう)(Mw/Mn)は、GPC(Gel Permeation Chromatography)装置(東ソー製HLC-8120GPC)によるGPC測定(溶媒:テトラヒドロフラン、流量(サンプル注入量):10μL、カラム:東ソー社製TSK gel Multipore HXL-M、カラム温度:40℃、流速:1.0mL/分、検出器:示差屈折率検出器(Refractive Index Detector))によるポリスチレン換算値として定義される。
As used herein, (meth)acrylate refers to acrylate and methacrylate, and (meth)acryl refers to acrylic and methacrylic.
In this specification, the weight average molecular weight (Mw), number average molecular weight (Mn), and dispersity (also referred to as molecular weight distribution) (Mw/Mn) of the resin are measured using a GPC (Gel Permeation Chromatography) device (HLC-8120GPC manufactured by Tosoh Corporation). ) by GPC measurement (solvent: tetrahydrofuran, flow rate (sample injection volume): 10 μL, column: TSK gel Multipore HXL-M manufactured by Tosoh Corporation, column temperature: 40 ° C., flow rate: 1.0 mL / min, detector: differential refractive index It is defined as a polystyrene conversion value by a detector (Refractive Index Detector).

本明細書において酸解離定数(pKa)とは、水溶液中でのpKaを表し、具体的には、下記ソフトウェアパッケージ1を用いて、ハメットの置換基定数及び公知文献値のデータベースに基づいた値を、計算により求められる値である。本明細書中に記載したpKaの値は、全て、このソフトウェアパッケージを用いて計算により求めた値を示す。 As used herein, the acid dissociation constant (pKa) represents the pKa in an aqueous solution. , is a calculated value. All pKa values described herein are calculated using this software package.

ソフトウェアパッケージ1: Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (1994-2007 ACD/Labs)。 Software Package 1: Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (1994-2007 ACD/Labs).

本明細書において、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。 As used herein, halogen atoms include, for example, fluorine, chlorine, bromine, and iodine atoms.

[感活性光線性又は感放射線性樹脂組成物の製造方法]
本発明の感活性光線性又は感放射線性樹脂組成物(以下、「レジスト組成物」ともいう。)の製造方法(以下、「本発明の製造方法」ともいう。)は、下記工程A及び下記工程Bを含む。
工程A:酸の作用により分解して極性が増大する樹脂(以下「酸分解性樹脂」ともいう。)と、溶剤と、を含むポリマー溶液を精製する工程であって、上記ポリマー溶液をフィルタXに通過させてろ過する工程Xを含む。
工程B:上記工程Aを経たポリマー溶液に、活性光線又は放射線の照射によって酸を発生する化合物(以下「光酸発生剤」ともいう。)を加えて、感活性光線性又は感放射線性樹脂組成物を調整する工程
[Method for producing actinic ray-sensitive or radiation-sensitive resin composition]
The method for producing the actinic ray-sensitive or radiation-sensitive resin composition (hereinafter also referred to as "resist composition") of the present invention (hereinafter also referred to as "the manufacturing method of the present invention") comprises the following step A and the following Including step B.
Step A: A step of purifying a polymer solution containing a resin that is decomposed by the action of an acid to increase its polarity (hereinafter also referred to as “acid-decomposable resin”) and a solvent, wherein the polymer solution is filtered through a filter X and filtering through step X.
Step B: A compound that generates an acid upon exposure to actinic rays or radiation (hereinafter also referred to as a "photoacid generator") is added to the polymer solution that has undergone the above step A to form an actinic ray-sensitive or radiation-sensitive resin composition. the process of adjusting things

レジスト組成物の製造においては、一般的に、レジスト組成物を調製した段階でフィルタリングによるろ過精製が実施されている。
今般、本発明者は、レジスト組成物の調製後の段階でのフィルタリングによるろ過精製では、原料成分に混入してレジスト組成物中に持ち込まれた不純物(以下「原料由来不純物」ともいう。)のうち、酸分解性樹脂に由来する、金属原子を含む不純物(以下「金属不純物」ともいう。)及び副生成物(副生成物としては、低分子量体、超分子量体、及びゲル成分が挙げられる。)が除去しきれておらず、これがレジスト組成物中において微小な凝集体を形成することで、パターン上のブリッジ欠陥が引き起こされることを知見している。
これに対して、本発明の製造方法は、酸分解性樹脂、光酸発生剤、及び溶剤を含むレジスト組成物の調製に際し、まず、酸分解性樹脂と溶剤とを含むポリマー溶液に対してフィルタリングによる精製を実施して酸分解性樹脂に由来する不純物成分の量を低減し、得られた精製後のポリマー溶液に、光酸発生剤を加える方法を採っている。この結果として、本発明の製造方法により得られるレジスト組成物は、レジスト組成物中に発生する微小な凝集体の数が低減され、ひいては現像後のパターン上に発生するブリッジ欠陥を抑制できると考えられる。特に、酸分解性樹脂がカーボネート構造及びスルトン構造の1種以上を含む場合、工程Aにおける特定金属不純物の低減効果がより優れ、結果として、現像後のパターン上に発生するブリッジ欠陥をより抑制できることを確認している。
In the production of a resist composition, filtration purification by filtering is generally carried out at the stage of preparation of the resist composition.
Recently, the present inventors have found that in filtration purification by filtering in the post-preparation stage of the resist composition, impurities mixed in the raw material components and brought into the resist composition (hereinafter also referred to as "impurities derived from raw materials") are removed. Among them, impurities containing metal atoms derived from the acid-decomposable resin (hereinafter also referred to as "metal impurities") and by-products (by-products include low-molecular-weight substances, super-molecular-weight substances, and gel components ) is not completely removed, and forms fine aggregates in the resist composition, thereby causing bridging defects on the pattern.
In contrast, in the production method of the present invention, when preparing a resist composition containing an acid-decomposable resin, a photoacid generator, and a solvent, first, the polymer solution containing the acid-decomposable resin and the solvent is filtered. to reduce the amount of impurity components derived from the acid-decomposable resin, and a photoacid generator is added to the resulting polymer solution after purification. As a result, in the resist composition obtained by the production method of the present invention, the number of fine aggregates generated in the resist composition is reduced, and it is believed that bridging defects generated on the pattern after development can be suppressed. be done. In particular, when the acid-decomposable resin contains one or more of a carbonate structure and a sultone structure, the effect of reducing specific metal impurities in step A is superior, and as a result, bridge defects occurring on the pattern after development can be further suppressed. is confirmed.

以下において、本発明の製造方法が含む工程A及び工程Bについて各々説明する。
〔工程A〕
工程Aは、酸分解性樹脂と、溶剤と、を含むポリマー溶液を精製する工程であって、上記ポリマー溶液をフィルタXに通過させてろ過する工程X(以下、「工程X」ともいう。)を含む。
The steps A and B included in the manufacturing method of the present invention will be described below.
[Step A]
Step A is a step of purifying a polymer solution containing an acid-decomposable resin and a solvent, and is a step X of filtering the polymer solution through a filter X (hereinafter also referred to as “step X”). including.

工程Xは、15~25℃の温度環境下にて実施されることが好ましい。 Step X is preferably carried out in a temperature environment of 15-25°C.

上記フィルタXの材質としては特に制限されないが、例えば、ポリアミド樹脂、ポリオレフィン樹脂、及びフッ素樹脂が挙げられる。
上記ポリアミド樹脂としては、ナイロン(ナイロンとしては、ナイロン6、ナイロン66、及びナイロン46等が挙げられる。)が好ましい。
上記ポリオレフィン樹脂としては、ポリエチレン又はポリプロピレンが好ましい。
上記フッ素樹脂としては、PTFE(ポリテトラフルオロエチレン)が好ましい。
上記フィルタXの材質としては、なかでもポリアミド樹脂又はポリオレフィン樹脂が好ましい。フィルタXがポリアミド樹脂膜である場合、樹脂中のアミド部位が不純物を吸着することで、ポリマー溶液中の不純物の量を低減できると考えられる。また、フィルタXがポリオレフィン樹脂膜である場合、その孔径によって不純物が除去される。なお、不純物中に含まれる金属不純物は、酸分解性樹脂に由来する副生成物(副生成物としては、低分子量体、超分子量体、及びゲル成分が挙げられる。)に化学的及び/又は物理的に付着することにより、その多くがフィルタリングの際にポリマー溶液から除去されていると推測される。
The material of the filter X is not particularly limited, but examples thereof include polyamide resin, polyolefin resin, and fluororesin.
As the polyamide resin, nylon (nylon includes nylon 6, nylon 66, nylon 46, etc.) is preferable.
Polyethylene or polypropylene is preferable as the polyolefin resin.
As the fluorine resin, PTFE (polytetrafluoroethylene) is preferable.
As the material of the filter X, polyamide resin or polyolefin resin is particularly preferable. When the filter X is a polyamide resin film, it is considered that the amount of impurities in the polymer solution can be reduced because the amide sites in the resin adsorb impurities. Moreover, when the filter X is a polyolefin resin film, impurities are removed by its pore diameter. The metal impurities contained in the impurities are chemically and/or It is speculated that much of it is removed from the polymer solution during filtering due to physical attachment.

フィルタXの孔径としては特に制限されないが、ろ過効率の観点から、例えば、0.5μm以下であり、0.4μm以下が好ましく、0.3μm以下がより好ましい。孔径の下限値は特に制限されないが、例えば、0.001μm以上である。なお、本明細書において、「孔径」とは、メーカーの公称径値を意図する。 Although the pore size of the filter X is not particularly limited, it is, for example, 0.5 μm or less, preferably 0.4 μm or less, and more preferably 0.3 μm or less from the viewpoint of filtration efficiency. Although the lower limit of the pore size is not particularly limited, it is, for example, 0.001 μm or more. In addition, in this specification, the "pore diameter" intends the nominal diameter value of the manufacturer.

フィルタXとしては、なかでも、形成されるパターンのブリッジ欠陥がより抑制される点で、孔径が0.03μm以下のナイロン膜、孔径が0.01μm以下のポリオレフィン樹脂膜、又は、孔径が0.01μm以下のフッ素樹脂膜が好ましい。 As the filter X, among others, a nylon film with a pore size of 0.03 μm or less, a polyolefin resin film with a pore size of 0.01 μm or less, or a pore size of 0.01 μm or less is used in order to further suppress bridging defects in the formed pattern. A fluororesin film having a thickness of 01 μm or less is preferable.

工程Aは、工程Xを1回含んでいてもよいし、2回以上含んでいてもよい。
工程Aが、工程Xを2回以上含む場合、工程Aは、2つ以上のフィルタXが直列に接続された系中に上記ポリマー溶液を一回通過させる一回通液方式でもよいし、フィルタXを通過した上記ポリマー溶液を更に同じフィルタに導き、閉鎖系内を循環させる循環方式でもよい。なお、工程Aは、2つ以上のフィルタXが直列に接続された系中に上記ポリマー溶液を一回通過させる一回通液方式を複数回繰り返す方式であってもよい。
Step A may include step X once, or may include step X twice or more.
When step A includes step X two or more times, step A may be a one-time passing method in which the polymer solution is passed once through a system in which two or more filters X are connected in series. A circulation system may be used in which the polymer solution that has passed through X is further led to the same filter and circulated in a closed system. In addition, the process A may be a system in which a one-time passing system in which the polymer solution is passed once through a system in which two or more filters X are connected in series is repeated multiple times.

工程Aが、工程Xを2回以上含む場合、その回数は特に制限されないが、例えば、2回以上であり、3回以上が好ましい。また、その上限値としては特に制限されないが、例えば、15回以下であり、10回以下が好ましい。なお、工程Aを循環方式で行う場合においては、例えば閉鎖系内にあるフィルタXが1つの場合、上記ポリマー溶液の循環回数は、例えば2回以上であり、3回以上が好ましい。また、その上限値としては特に制限されないが、例えば、15回以下であり、10回以下が好ましい。 When step A includes step X two or more times, the number of times is not particularly limited, but is, for example, two or more, preferably three or more. Although the upper limit is not particularly limited, it is, for example, 15 times or less, preferably 10 times or less. When the process A is carried out in a circulation system, for example, when there is one filter X in the closed system, the number of circulations of the polymer solution is, for example, two or more, preferably three or more. Although the upper limit is not particularly limited, it is, for example, 15 times or less, preferably 10 times or less.

2回以上の工程Xを一回通液方式で実施する場合、複数のフィルタXは、各々、同一であってもよいし、異なっていてもよい。なお、本明細書において、「複数のフィルタが各々異なる」とは、複数のフィルタ同士の孔径及び/又は材質が各々異なることを意図する。 When the process X is performed twice or more by the single-pass method, the plurality of filters X may be the same or different. In this specification, the phrase "the plurality of filters are different" means that the plurality of filters are different in pore size and/or material.

工程Xにおいて、フィルタXの差圧(フィルタX前後の圧力損失を意図する。)は、0.3MPa以下であることが好ましい。下限とは特に制限されないが、0MPaが挙げられる。 In the process X, the differential pressure of the filter X (meaning the pressure loss across the filter X) is preferably 0.3 MPa or less. Although the lower limit is not particularly limited, 0 MPa can be mentioned.

工程Aが工程Xを2回以上含む場合、形成されるパターンのブリッジ欠陥がより抑制される点で、工程Aは、下記工程(1)、工程(2)、又は工程(3)を含むことが好ましい。
工程(1):ポリマー溶液をフィルタX0に通過させてろ過する工程X0と、工程X0を経たポリマー溶液をフィルタX1に通過させてろ過する工程X1とを含む。
工程(2):ポリマー溶液をフィルタX1に通過させてろ過する工程X1と、工程X1を経たポリマー溶液をフィルタX2に通過させてろ過する工程X2とを含む。
工程(3):ポリマー溶液をフィルタX0に通過させてろ過する工程X0と、工程X0を経たポリマー溶液をフィルタX1に通過させてろ過する工程X1と、工程X1を経たポリマー溶液をフィルタX2に通過させてろ過する工程X2とを含む。
When step A includes step X two or more times, step A includes the following step (1), step (2), or step (3) in that bridge defects in the formed pattern are further suppressed. is preferred.
Step (1): includes a step X0 of filtering the polymer solution through a filter X0 and a step X1 of filtering the polymer solution that has passed through the step X0 through a filter X1.
Step (2): includes a step X1 of filtering the polymer solution through a filter X1 and a step X2 of filtering the polymer solution that has passed through the step X1 through a filter X2.
Step (3): Step X0 of passing the polymer solution through the filter X0 and filtering; Step X1 of passing the polymer solution that has undergone the step X0 through the filter X1 and filtering; and Passing the polymer solution that has undergone the step X1 through the filter X2. and a step X2 of filtering.

また、工程(1)~工程(3)は、15~25℃の温度環境下にて実施されることが好ましい。以下、工程(1)~工程(3)の各工程について詳述する。 Further, steps (1) to (3) are preferably carried out in a temperature environment of 15 to 25°C. Each of steps (1) to (3) will be described in detail below.

<工程(1)>
≪工程X0≫
上記フィルタX0としては、工程X1で使用されるフィルタX1とは異なるフィルタであって、孔径が0.01μm以下のポリオレフィン樹脂膜及び孔径が0.01μm以下のフッ素樹脂膜から選ばれるフィルタであれば特に制限されない。
孔径が0.01μm以下のポリオレフィン樹脂膜の孔径の下限値としては、例えば、0.001μm以上である。また、ポリオレフィン樹脂膜を構成するポリオレフィン樹脂としては、ポリエチレン又はポリプロピレンが好ましい。
また、孔径が0.01μm以下のフッ素樹脂膜の孔径の下限値としては、例えば、0.001μm以上である。また、フッ素樹脂膜を構成するフッ素樹脂としては、PTFEが好ましい。
<Step (1)>
≪Step X0≫
As the filter X0, if it is a filter different from the filter X1 used in the step X1 and is selected from a polyolefin resin membrane with a pore size of 0.01 μm or less and a fluororesin membrane with a pore size of 0.01 μm or less. There are no particular restrictions.
The lower limit of the pore size of the polyolefin resin membrane having a pore size of 0.01 μm or less is, for example, 0.001 μm or more. Polyethylene or polypropylene is preferable as the polyolefin resin forming the polyolefin resin film.
The lower limit of the pore diameter of the fluororesin membrane having a pore diameter of 0.01 μm or less is, for example, 0.001 μm or more. PTFE is preferable as the fluororesin constituting the fluororesin membrane.

≪工程X1≫
フィルタX1としては、上述した工程Xで使用されるフィルタXと同義であり、好適態様も同じである。
また、工程X1の手順としても、上述した工程Xの手順と同様である。
≪Step X1≫
The filter X1 is synonymous with the filter X used in the above-described process X, and the preferred embodiment is also the same.
The procedure of step X1 is also the same as the procedure of step X described above.

工程X0及び工程X1において、フィルタX0の差圧(フィルタX0前後の圧力損失を意図する。)、及びフィルタX1の差圧は、各々0.3MPa以下であることが好ましい。下限は特に制限されないが、0MPaが挙げられる。 In the process X0 and the process X1, it is preferable that the differential pressure of the filter X0 (meaning the pressure loss before and after the filter X0) and the differential pressure of the filter X1 are respectively 0.3 MPa or less. Although the lower limit is not particularly limited, 0 MPa can be mentioned.

工程Aは、工程(1)を1回含んでいてもよいし、2回以上含んでいてもよい。なお、工程Aが工程(1)を2回以上含む場合とは、工程Aが、工程X1を経たポリマー溶液に対して、再度、工程X0及び工程X1を実施する工程を1回以上含むことを意図する。
工程Aが、工程(1)を2回以上含む場合、工程(1)は、フィルタX0とフィルタX1とがこの順に交互且つ直列に接続された系中に上記ポリマー溶液を一回通過させる一回通液方式でもよいし、フィルタX0及びフィルタX1をこの順に通過した上記ポリマー溶液を更に同じフィルタX0に導き、閉鎖系内を循環させる循環方式でもよい。
Step A may include step (1) once or two or more times. In addition, the case where step A includes step (1) two or more times means that step A includes the step of performing step X0 and step X1 again on the polymer solution that has undergone step X1 once or more. Intend.
When step A includes step (1) two or more times, step (1) includes passing the polymer solution once through a system in which filters X0 and X1 are alternately connected in series in this order. A flow system may be used, or a circulation system may be used in which the polymer solution that has passed through the filters X0 and X1 in this order is further led to the same filter X0 and circulated in a closed system.

工程Aが、工程(1)を2回以上含む場合、その回数は特に制限されないが、例えば、2回以上であり、3回以上が好ましい。また、その上限値としては特に制限されないが、例えば、15回以下であり、10回以下が好ましい。なお、工程(1)を循環方式で行う場合においては、例えば閉鎖系内にあるフィルタX0及びフィルタX1が各々1つの場合、上記ポリマー溶液の循環回数は、例えば2回以上であり、3回以上が好ましい。また、その上限値としては特に制限されないが、例えば、15回以下であり、10回以下が好ましい。 When step A includes step (1) two or more times, the number of times is not particularly limited, but is, for example, two or more, preferably three or more. Although the upper limit is not particularly limited, it is, for example, 15 times or less, preferably 10 times or less. In the case where step (1) is carried out in a circulation system, for example, when there is one filter X0 and one filter X1 in the closed system, the number of circulations of the polymer solution is, for example, 2 or more, or 3 or more. is preferred. Although the upper limit is not particularly limited, it is, for example, 15 times or less, preferably 10 times or less.

2回以上の工程(1)を一回通液方式で実施する場合、複数のフィルタX0同士、及び複数のフィルタX1同士は、各々、同一であってもよいし、異なっていてもよい。 When the step (1) is performed twice or more by the one-time passing method, the plurality of filters X0 and the plurality of filters X1 may be the same or different.

工程(1)において、フィルタX0とフィルタX1の材質が異なる場合、フィルタX0がポリオレフィン樹脂であり、フィルタX1がポリアミド樹脂である態様が挙げられる。また、工程(1)において、フィルタX0とフィルタX1の孔径が異なる場合、フィルタX1の孔径よりもフィルタX0の孔径の方が大きいことが好ましい。フィルタX1の孔径とフィルタX0の孔径との差としては、例えば、0.001~0.2μmが好ましい。 In step (1), when the materials of the filter X0 and the filter X1 are different, there is an aspect in which the filter X0 is made of polyolefin resin and the filter X1 is made of polyamide resin. In step (1), when the filter X0 and the filter X1 have different pore diameters, the pore diameter of the filter X0 is preferably larger than that of the filter X1. The difference between the pore diameter of the filter X1 and the pore diameter of the filter X0 is preferably 0.001 to 0.2 μm, for example.

<工程(2)>
≪工程X1≫
フィルタX1としては、上述した工程Xで使用されるフィルタXと同義であり、好適態様も同じである。
また、工程X1の手順としても、上述した工程Xの手順と同様である。
<Step (2)>
≪Step X1≫
The filter X1 is synonymous with the filter X used in the above-described process X, and the preferred embodiment is also the same.
The procedure of step X1 is also the same as the procedure of step X described above.

≪工程X2≫
上記フィルタX2としては、工程X1で使用されるフィルタX1とは異なるフィルタであって、孔径が0.01μm以下のポリオレフィン樹脂膜及び孔径が0.01μm以下のフッ素樹脂膜から選ばれるフィルタであれば特に制限されない。
孔径が0.01μm以下のポリオレフィン樹脂膜の孔径の下限値としては、例えば、0.001μm以上である。また、ポリオレフィン樹脂膜を構成するポリオレフィン樹脂としては、ポリエチレン又はポリプロピレンが好ましい。
また、孔径が0.01μm以下のフッ素樹脂膜の孔径の下限値としては、例えば、0.001μm以上である。また、フッ素樹脂膜を構成するフッ素樹脂としては、PTFEが好ましい。
≪Step X2≫
As the filter X2, if it is a filter different from the filter X1 used in the step X1 and is selected from a polyolefin resin membrane with a pore size of 0.01 μm or less and a fluororesin membrane with a pore size of 0.01 μm or less. There are no particular restrictions.
The lower limit of the pore size of the polyolefin resin membrane having a pore size of 0.01 μm or less is, for example, 0.001 μm or more. Polyethylene or polypropylene is preferable as the polyolefin resin forming the polyolefin resin film.
The lower limit of the pore diameter of the fluororesin membrane having a pore diameter of 0.01 μm or less is, for example, 0.001 μm or more. PTFE is preferable as the fluororesin constituting the fluororesin membrane.

工程X1及び工程X2において、フィルタX1の差圧、及びフィルタX2の差圧(フィルタX2前後の圧力損失を意図する。)は、各々0.3MPa以下であることが好ましい。下限は特に制限されないが、0MPaが挙げられる。 In the steps X1 and X2, the differential pressure across the filter X1 and the differential pressure across the filter X2 (meaning the pressure loss across the filter X2) are each preferably 0.3 MPa or less. Although the lower limit is not particularly limited, 0 MPa can be mentioned.

工程Aは、工程(2)を1回含んでいてもよいし、2回以上含んでいてもよい。なお、工程Aが工程(2)を2回以上含む場合とは、工程Aが、工程X2を経たポリマー溶液に対して、再度、工程X1及び工程X2を実施する工程を1回以上含むことを意図する。
工程Aが、工程(2)を2回以上含む場合、工程(2)は、フィルタX1とフィルタX2とがこの順に交互且つ直列に接続された系中に上記ポリマー溶液を一回通過させる一回通液方式でもよいし、フィルタX1及びフィルタX2をこの順に通過した上記ポリマー溶液を更に同じフィルタX1に導き、閉鎖系内を循環させる循環方式でもよい。
Step A may include step (2) once or two or more times. In addition, the case where the step A includes the step (2) two or more times means that the step A includes the step of performing the steps X1 and X2 again on the polymer solution that has undergone the step X2 once or more. Intend.
When step A includes step (2) two or more times, step (2) includes passing the polymer solution once through a system in which filters X1 and X2 are alternately connected in series in this order. A liquid flow system may be used, or a circulation system may be used in which the polymer solution that has passed through the filter X1 and the filter X2 in this order is further led to the same filter X1 and circulated in a closed system.

工程Aが、工程(2)を2回以上含む場合、その回数は特に制限されないが、例えば、2回以上であり、3回以上が好ましい。また、その上限値としては特に制限されないが、例えば、15回以下であり、10回以下が好ましい。なお、工程(2)を循環方式で行う場合においては、例えば閉鎖系内にあるフィルタX1及びフィルタX2が各々1つの場合、上記ポリマー溶液の循環回数は、例えば2回以上であり、3回以上が好ましい。また、その上限値としては特に制限されないが、例えば、15回以下であり、10回以下が好ましい。 When step A includes step (2) two or more times, the number of times is not particularly limited, but is, for example, two or more, preferably three or more. Although the upper limit is not particularly limited, it is, for example, 15 times or less, preferably 10 times or less. In the case where step (2) is carried out in a circulation system, for example, when there is one filter X1 and one filter X2 in the closed system, the number of circulations of the polymer solution is, for example, two or more times, or three or more times. is preferred. Although the upper limit is not particularly limited, it is, for example, 15 times or less, preferably 10 times or less.

2回以上の工程(2)を一回通液方式で実施する場合、複数のフィルタX1同士、及び複数のフィルタX2同士は、各々、同一であってもよいし、異なっていてもよい。 When the step (2) is performed twice or more by the one-time passing method, the plurality of filters X1 and the plurality of filters X2 may be the same or different.

工程(2)において、フィルタX1とフィルタX2の材質が異なる場合、フィルタX1がポリアミド樹脂であり、フィルタX2がポリオレフィン樹脂である態様が挙げられる。また、工程(2)において、フィルタX1とフィルタX2の孔径が異なる場合、フィルタX2の孔径よりもフィルタX1の孔径の方が大きいことが好ましい。フィルタX2の孔径とフィルタX1の孔径との差としては、例えば、0.001~0.2μmが好ましい。 In the step (2), when the filter X1 and the filter X2 are made of different materials, the filter X1 may be made of a polyamide resin and the filter X2 may be made of a polyolefin resin. In step (2), when the pore diameters of the filters X1 and X2 are different, it is preferable that the pore diameter of the filter X1 is larger than that of the filter X2. The difference between the pore diameter of the filter X2 and the pore diameter of the filter X1 is preferably 0.001 to 0.2 μm, for example.

<工程(3)>
≪工程X0≫
工程X0は、上述した工程(1)中の工程X0と同義であり、好適態様も同じである。
<Step (3)>
≪Step X0≫
The step X0 has the same meaning as the step X0 in the step (1) described above, and the preferred embodiments are also the same.

≪工程X1≫
フィルタX1としては、上述した工程Xで使用されるフィルタXと同義であり、好適態様も同じである。
また、工程X1の手順としても、上述した工程Xの手順と同様である。
≪Step X1≫
The filter X1 is synonymous with the filter X used in the above-described process X, and the preferred embodiment is also the same.
The procedure of step X1 is also the same as the procedure of step X described above.

≪工程X2≫
工程X2は、工程X1を経たポリマー溶液をフィルタX2に通過させてろ過する工程であり、ろ過精製の対象が工程X1を経たポリマー溶液である以外は、上述した工程(2)中の工程X2と同様であり、好適態様も同じである。
≪Step X2≫
Step X2 is a step of filtering the polymer solution that has undergone Step X1 through a filter X2, and is the same as Step X2 in Step (2) described above, except that the polymer solution that has undergone Step X1 is subjected to filtration purification. The same is true, and the preferred embodiments are also the same.

工程X0、工程X1、及び工程X2において、フィルタX0の差圧、フィルタX1の差圧、及びフィルタX2の差圧は、各々0.3MPa以下であることが好ましい。下限は特に制限されないが、0MPaが挙げられる。 In steps X0, X1, and X2, the differential pressure across the filter X0, the differential pressure across the filter X1, and the differential pressure across the filter X2 are each preferably 0.3 MPa or less. Although the lower limit is not particularly limited, 0 MPa can be mentioned.

工程Aは、工程(3)を1回含んでいてもよいし、2回以上含んでいてもよい。なお、工程Aが工程(3)を2回以上含む場合とは、工程X2を経たポリマー溶液に対して、再度、工程X0と工程X1と工程X2とを実施する工程を1回以上含むことを意図する。
工程Aが、工程(3)を2回以上含む場合、工程(3)は、フィルタX0とフィルタX1とフィルタX2とがこの順に交互且つ直列に接続された系中に上記ポリマー溶液を一回通過させる一回通液方式でもよいし、フィルタX0とフィルタX1とフィルタX2とをこの順に通過した上記ポリマー溶液を更に同じフィルタX0に導き、閉鎖系内を循環させる循環方式でもよい。
Step A may include step (3) once or two or more times. Note that the case where step A includes step (3) two or more times means that the step of performing step X0, step X1, and step X2 again on the polymer solution that has undergone step X2 is included one or more times. Intend.
When step A includes step (3) two or more times, step (3) passes the polymer solution once through a system in which filter X0, filter X1, and filter X2 are alternately connected in series in this order. Alternatively, the polymer solution passed through the filters X0, X1 and X2 in this order may be led to the same filter X0 and circulated in a closed system.

工程Aが、工程(3)を2回以上含む場合、その回数は特に制限されないが、例えば、2回以上であり、3回以上が好ましい。また、その上限値としては特に制限されないが、例えば、15回以下であり、10回以下が好ましい。なお、工程(3)を循環方式で行う場合においては、例えば閉鎖系内にあるフィルタX0、フィルタX1、及びフィルタX2が各々1つの場合、上記ポリマー溶液の循環回数は、例えば2回以上であり、3回以上が好ましい。また、その上限値としては特に制限されないが、例えば、15回以下であり、10回以下が好ましい。 When step A includes step (3) two or more times, the number of times is not particularly limited, but is, for example, two or more, preferably three or more. Although the upper limit is not particularly limited, it is, for example, 15 times or less, preferably 10 times or less. In the case where step (3) is carried out in a circulation system, for example, when there is one filter X0, one filter X1, and one filter X2 in the closed system, the number of circulations of the polymer solution is, for example, two or more. , preferably 3 or more times. Although the upper limit is not particularly limited, it is, for example, 15 times or less, preferably 10 times or less.

2回以上の工程(3)を一回通液方式で実施する場合、複数のフィルタX0同士、複数のフィルタX1同士、及び複数のフィルタX2同士は、各々、同一であってもよいし、異なっていてもよい。 When the step (3) is performed twice or more by a single flow method, the plurality of filters X0, the plurality of filters X1, and the plurality of filters X2 may be the same or different. may be

工程(3)において、フィルタX0とフィルタX1の材質が異なる場合、フィルタX0がポリオレフィン樹脂又はフッ素樹脂であり、フィルタX1がポリアミド樹脂である態様が挙げられる。また、工程(3)において、フィルタX0とフィルタX1の孔径が異なる場合、フィルタX1の孔径よりもフィルタX0の孔径の方が大きいことが好ましい。フィルタX1の孔径とフィルタX0の孔径との差としては、例えば、0.001~0.2μmが好ましい。
工程(3)において、フィルタX1とフィルタX2の材質が異なる場合、フィルタX1がポリアミド樹脂であり、フィルタX2がポリオレフィン樹脂又はフッ素樹脂である態様が挙げられる。また、工程(3)において、フィルタX1とフィルタX2の孔径が異なる場合、フィルタX2の孔径よりもフィルタX1の孔径の方が大きいことが好ましい。フィルタX2の孔径とフィルタX1の孔径との差としては、例えば、0.001~0.2μmが好ましい。
また、工程(3)において、フィルタX0とフィルタX2とは異なる材質であることが好ましい。また、フィルタX2、フィルタX1、及びフィルタ0の順で、孔径がより大きいことが好ましい。
In step (3), when the filter X0 and the filter X1 are made of different materials, the filter X0 may be made of polyolefin resin or fluororesin, and the filter X1 may be made of polyamide resin. In step (3), when the pore diameters of the filter X0 and the filter X1 are different, it is preferable that the pore diameter of the filter X0 is larger than that of the filter X1. The difference between the pore diameter of the filter X1 and the pore diameter of the filter X0 is preferably 0.001 to 0.2 μm, for example.
In the step (3), when the filter X1 and the filter X2 are made of different materials, the filter X1 may be made of polyamide resin, and the filter X2 may be made of polyolefin resin or fluororesin. In step (3), when the pore diameters of the filters X1 and X2 are different, it is preferable that the pore diameter of the filter X1 is larger than that of the filter X2. The difference between the pore diameter of the filter X2 and the pore diameter of the filter X1 is preferably 0.001 to 0.2 μm, for example.
In step (3), it is preferable that the filters X0 and X2 are made of different materials. Moreover, it is preferable that the filter X2, the filter X1, and the filter 0 have larger pore sizes in this order.

<その他の任意工程>
本発明の製造方法は、工程Aと工程B以外のその他の工程を任意で含んでいてもよい。
その他の工程としては、工程Aを経て得られたポリマー溶液中に含まれ得る金属不純物(金属原子を含む不純物)の含有量を計測する工程Z(以下「工程Z」ともいう。)が挙げられる。なお、「金属不純物」とは、金属イオン、及び、固体(金属単体、及び、粒子状の金属含有化合物等が挙げられる。)としてポリマー溶液中に含まれる不純物を意図する。
半導体装置製造工程において、レジスト組成物中の金属不純物は低減されることが求められている。金属不純物中の上記金属原子の種類としては特に制限されないが、レジスト組成物での含有量が少ないことが望まれる金属として、例えば、Na、K、Ca、Fe、Cu、Mg、Mn、Al、Li、Cr、Ni、Sn、Zn、Ag、As、Au、Ba、Cd、Co、Pb、V、W、Zr、及びMo等の各金属原子(以下「特定金属原子」ともいう。)が挙げられる。
なお、本明細書において、ポリマー溶液中における金属不純物の含有量とは、ICP-MS(inductively coupled plasma mass spectrometry)で測定される金属原子の含有量を意図する。なお、ICP-MSを用いた金属原子の含有量の測定方法は、後述する実施例に記載するとおりである。
<Other optional steps>
The production method of the present invention may optionally include steps other than steps A and B.
Other steps include step Z (hereinafter also referred to as “step Z”) of measuring the content of metal impurities (impurities containing metal atoms) that may be contained in the polymer solution obtained through step A. . The term “metal impurities” means impurities contained in the polymer solution as metal ions and solids (including simple metals and particulate metal-containing compounds).
In the semiconductor device manufacturing process, it is required to reduce metal impurities in the resist composition. The types of metal atoms in the metal impurities are not particularly limited, but metals whose content in the resist composition is desired to be small include, for example, Na, K, Ca, Fe, Cu, Mg, Mn, Al, Metal atoms such as Li, Cr, Ni, Sn, Zn, Ag, As, Au, Ba, Cd, Co, Pb, V, W, Zr, and Mo (hereinafter also referred to as “specific metal atoms”). be done.
In this specification, the content of metal impurities in the polymer solution means the content of metal atoms measured by ICP-MS (inductively coupled plasma mass spectrometry). The method for measuring the content of metal atoms using ICP-MS is as described in Examples below.

各金属原子(特に特定金属原子)の含有量は、溶液の全質量に対して、100質量ppb以下が好ましく、50質量ppb以下がより好ましく、20質量ppb以下が更に好ましく、10質量ppbが特に好ましく、5.0質量ppb以下が最も好ましく、1.0質量ppb以下がより最も好ましい。なお、各金属原子の含有量の下限値としては、実質的に含まないこと(測定装置の検出限界以下であること)が好ましく、0であるのがより好ましい。
また、ポリマー溶液中、特定金属原子の総含有量は、溶液の全質量に対して、100質量ppb以下が好ましく、50質量ppb以下がより好ましく、20質量ppb以下が更に好ましく、10質量ppbが特に好ましく、5.0質量ppb以下が最も好ましく、1.0質量ppb以下がより最も好ましい。なお、特定金属原子の総含有量の下限値としては、実質的に含まないこと(測定装置の検出限界以下であること)が好ましく、0であるのがより好ましい。
The content of each metal atom (particularly the specific metal atom) is preferably 100 mass ppb or less, more preferably 50 mass ppb or less, still more preferably 20 mass ppb or less, particularly 10 mass ppb, relative to the total mass of the solution. It is preferably 5.0 mass ppb or less, most preferably 1.0 mass ppb or less. The lower limit of the content of each metal atom is preferably not substantially contained (below the detection limit of the measuring device), and more preferably 0.
Further, the total content of the specific metal atoms in the polymer solution is preferably 100 mass ppb or less, more preferably 50 mass ppb or less, still more preferably 20 mass ppb or less, and 10 mass ppb or less with respect to the total mass of the solution. Particularly preferred is 5.0 mass ppb or less, most preferably 1.0 mass ppb or less. The lower limit of the total content of the specific metal atoms is preferably not substantially contained (below the detection limit of the measuring device), and more preferably 0.

以下において、工程Aの実施形態の一例について、図面を参照して説明する。図1~4は、工程Aに用いられる装置の概略図である。 Below, an example of embodiment of the process A is described with reference to drawings. 1-4 are schematic diagrams of the equipment used in step A. FIG.

図1の装置は、工程Aが工程Xを1回のみの一回通液方式で実施する態様である場合に用いられる装置である。
図1の装置では、タンク1、ポンプ2、及びフィルタXが設置されたカラム100が、流路5~7で接続されている。さらに、流路7に、流量計3、及び充填口8が設置されている。ポンプ2を駆動させることにより、タンク1に充填されたポリマー溶液は、フィルタXが設置されたカラム100を通過し、カラム100を通過したポリマー溶液が処理液充填容器4に充填される。
The apparatus of FIG. 1 is an apparatus used when the process A is a mode in which the process X is performed only once by a one-time feeding method.
In the apparatus of FIG. 1, a tank 1, a pump 2, and a column 100 provided with a filter X are connected by channels 5-7. Furthermore, a flow meter 3 and a filling port 8 are installed in the flow path 7 . By driving the pump 2 , the polymer solution filled in the tank 1 passes through the column 100 in which the filter X is installed, and the polymer solution that has passed through the column 100 is filled in the processing liquid filling container 4 .

図2の装置は、工程Aが、2回以上の工程Xを循環方式で実施する態様である場合に用いられる装置である。
図2の装置では、タンク1、ポンプ2、及びフィルタXが設置されたカラム100が、流路5~7で接続されている。
また、流路7は、タンク1にも接続されており、ポンプ2を駆動させることにより、タンク1内に収容されたポリマー溶液が、系内で循環されるようになっている。さらに、流路7に、充填口8が設置されており、所定の循環ろ過工程を経たポリマー溶液が処理液充填容器4に充填されるようになっている。
ここで、所定の循環回数を達成できるように、ポンプの駆動開始時点では充填口8は閉じられている場合が多い。
循環回数は流路7に設置された流量計3を用いて計算できる。
The apparatus of FIG. 2 is an apparatus used when the process A is a mode in which the process X is performed two or more times in a circulating manner.
In the apparatus of FIG. 2, a tank 1, a pump 2, and a column 100 provided with a filter X are connected by channels 5-7.
The flow path 7 is also connected to the tank 1, and by driving the pump 2, the polymer solution contained in the tank 1 is circulated within the system. Further, a filling port 8 is provided in the flow path 7 so that the treatment liquid filling container 4 is filled with the polymer solution that has undergone a predetermined circulating filtration process.
Here, in many cases, the filling port 8 is closed at the start of driving the pump so that a predetermined number of circulations can be achieved.
The number of times of circulation can be calculated using the flow meter 3 installed in the flow path 7 .

図3の装置は、工程Aが、工程(3)を1回のみの一回通液方式で実施する態様である場合に用いられる装置である。
図3の装置では、タンク1、ポンプ2、フィルタX0が設置されたカラム200、フィルタX1が設置されたカラム300、及びフィルタX2が設置されたカラム400が、流路5、6、7、9、及び10で接続されている。さらに、流路7に、流量計3、及び充填口8が設置されている。ポンプ2を駆動させることにより、タンク1に充填されたポリマー溶液はカラム200、カラム300、及びカラム400を通過し、カラム400を通過したポリマー溶液が処理液充填容器4に充填される。
The apparatus of FIG. 3 is an apparatus used when the process A is a mode in which the process (3) is performed only once by a one-time feeding method.
In the apparatus of FIG. 3, a tank 1, a pump 2, a column 200 equipped with a filter X0, a column 300 equipped with a filter X1, and a column 400 equipped with a filter X2 are connected to channels 5, 6, 7, and 9. , and 10. Furthermore, a flow meter 3 and a filling port 8 are installed in the flow path 7 . By driving the pump 2 , the polymer solution filled in the tank 1 passes through the columns 200 , 300 and 400 , and the polymer solution that has passed through the column 400 is filled into the treatment liquid container 4 .

図4の装置は、工程Aが、工程(3)を循環方式で実施する態様である場合に用いられる装置である。
図4の装置では、タンク1、ポンプ2、フィルタX0が設置されたカラム500、フィルタX1が設置されたカラム600、及びフィルタX2が設置されたカラム700が、流路5、6、7、9、及び10で接続されている。
また、流路7は、タンク1にも接続されており、ポンプ2を駆動させることにより、タンク1内に収容されたポリマー溶液が、系内で循環されるようになっている。さらに、流路7に、充填口8が設置されており、所定の循環ろ過工程を経たポリマー溶液が処理液充填容器4に充填されるようになっている。
ここで、所定の循環回数を達成できるように、ポンプの駆動開始時点では充填口8は閉じられている場合が多い。
循環回数は流路7に設置された流量計3を用いて計算できる。
The apparatus of FIG. 4 is an apparatus used when step A is a mode in which step (3) is carried out in a circulating manner.
In the apparatus of FIG. 4, a tank 1, a pump 2, a column 500 equipped with a filter X0, a column 600 equipped with a filter X1, and a column 700 equipped with a filter X2 are connected to channels 5, 6, 7, and 9. , and 10.
The flow path 7 is also connected to the tank 1, and by driving the pump 2, the polymer solution contained in the tank 1 is circulated within the system. Further, a filling port 8 is provided in the flow path 7 so that the treatment liquid filling container 4 is filled with the polymer solution that has undergone a predetermined circulating filtration process.
Here, in many cases, the filling port 8 is closed at the start of driving the pump so that a predetermined number of circulations can be achieved.
The number of times of circulation can be calculated using the flow meter 3 installed in the flow path 7 .

<ポリマー溶液>
次に、ポリマー溶液について説明する。
ポリマー溶液は、酸分解性樹脂と溶剤とを含む。
ポリマー溶液としては、活性光線又は放射線の照射によって酸を発生する化合物(光酸発生剤)を実質的に含まないことが好ましい。ここで、「ポリマー溶液が、光酸発生剤を実質的に含まない。」とは、光酸発生剤の含有量が、ポリマー溶液の全質量に対して、3.0質量%以下であることを意図し、2.0質量%以下が好ましく、1.0質量%以下がより好ましい。
ポリマー溶液としては、なかでも、酸分解性樹脂及び溶剤以外のその他の成分を実質的に含まないことが好ましい。ここで、「ポリマー溶液が、酸分解性樹脂及び溶剤以外のその他の成分を実質的に含まない。」とは、酸分解性樹脂及び溶剤以外のその他の成分の合計含有量が、ポリマー溶液の全質量に対して、3.0質量%以下であることを意図し、2.0質量%以下が好ましく、1.0質量%以下がより好ましい。
<Polymer solution>
Next, the polymer solution will be explained.
The polymer solution contains an acid-decomposable resin and a solvent.
It is preferable that the polymer solution does not substantially contain a compound (photoacid generator) that generates an acid upon exposure to actinic rays or radiation. Here, "the polymer solution does not substantially contain a photo-acid generator" means that the content of the photo-acid generator is 3.0% by mass or less with respect to the total mass of the polymer solution. , preferably 2.0% by mass or less, more preferably 1.0% by mass or less.
Among others, it is preferable that the polymer solution does not substantially contain other components than the acid-decomposable resin and the solvent. Here, "the polymer solution does not substantially contain components other than the acid-decomposable resin and the solvent" means that the total content of the components other than the acid-decomposable resin and the solvent is equal to that of the polymer solution. It is intended to be 3.0% by mass or less, preferably 2.0% by mass or less, more preferably 1.0% by mass or less, relative to the total mass.

(酸分解性樹脂(樹脂(A)))
上記ポリマー溶液は、酸の作用により分解して極性が増大する樹脂(「酸分解性樹脂」又は「樹脂(A)」)を含む。
酸分解性樹脂は、通常、酸の作用により分解して極性が増大する基(以下、「酸分解性基」ともいう。)を有する繰り返し単位を含む。
本発明のパターン形成方法において、典型的には、現像液としてアルカリ現像液を採用した場合、ポジ型パターンが好適に形成され、現像液として有機系現像液を採用した場合、ネガ型パターンが好適に形成される。
(Acid-decomposable resin (resin (A)))
The polymer solution contains a resin (“acid-decomposable resin” or “resin (A)”) that is decomposed by the action of acid to increase its polarity.
The acid-decomposable resin usually contains a repeating unit having a group that is decomposed by the action of an acid to increase its polarity (hereinafter also referred to as "acid-decomposable group").
In the pattern forming method of the present invention, typically, when an alkaline developer is used as the developer, a positive pattern is preferably formed, and when an organic developer is used as the developer, a negative pattern is preferably formed. formed in

・酸分解性基を有する繰り返し単位
樹脂(A)は、酸分解性基を有する繰り返し単位(以下、「繰り返し単位A」ともいう。)を含むことが好ましい。
酸分解性基は、極性基が酸の作用により分解し脱離する基(脱離基)で保護された構造を含むことが好ましい。
極性基としては、カルボキシ基、フェノール性水酸基、フッ素化アルコール基、スルホン酸基、スルホンアミド基、スルホニルイミド基、(アルキルスルホニル)(アルキルカルボニル)メチレン基、(アルキルスルホニル)(アルキルカルボニル)イミド基、ビス(アルキルカルボニル)メチレン基、ビス(アルキルカルボニル)イミド基、ビス(アルキルスルホニル)メチレン基、ビス(アルキルスルホニル)イミド基、トリス(アルキルカルボニル)メチレン基、及びトリス(アルキルスルホニル)メチレン基等の酸性基(2.38質量%テトラメチルアンモニウムヒドロキシド水溶液中で解離する基)、並びに、アルコール性水酸基等が挙げられる。
•Repeating unit having an acid-decomposable group The resin (A) preferably contains a repeating unit having an acid-decomposable group (hereinafter also referred to as "repeating unit A").
The acid-decomposable group preferably includes a structure in which a polar group is protected by a group that decomposes and leaves by the action of an acid (leaving group).
Polar groups include carboxy groups, phenolic hydroxyl groups, fluorinated alcohol groups, sulfonic acid groups, sulfonamide groups, sulfonylimide groups, (alkylsulfonyl)(alkylcarbonyl)methylene groups, and (alkylsulfonyl)(alkylcarbonyl)imide groups. , bis(alkylcarbonyl)methylene group, bis(alkylcarbonyl)imide group, bis(alkylsulfonyl)methylene group, bis(alkylsulfonyl)imide group, tris(alkylcarbonyl)methylene group, tris(alkylsulfonyl)methylene group, etc. (a group that dissociates in a 2.38% by mass tetramethylammonium hydroxide aqueous solution), an alcoholic hydroxyl group, and the like.

なお、アルコール性水酸基とは、炭化水素基に結合した水酸基であって、芳香環上に直接結合した水酸基(フェノール性水酸基)以外の水酸基をいい、水酸基としてα位がフッ素原子等の電子求引性基で置換された脂肪族アルコール(例えば、ヘキサフルオロイソプロパノール基等)は除く。アルコール性水酸基としては、pKa(酸解離定数)が12~20の水酸基が好ましい。 The alcoholic hydroxyl group is a hydroxyl group bonded to a hydrocarbon group, and refers to a hydroxyl group other than a hydroxyl group directly bonded to an aromatic ring (phenolic hydroxyl group). It excludes aliphatic alcohols substituted with functional groups (eg, hexafluoroisopropanol groups, etc.). As the alcoholic hydroxyl group, a hydroxyl group having a pKa (acid dissociation constant) of 12 to 20 is preferable.

極性基としては、カルボキシ基、フェノール性水酸基、フッ素化アルコール基(好ましくはヘキサフルオロイソプロパノール基)、又はスルホン酸基が好ましい。 The polar group is preferably a carboxy group, a phenolic hydroxyl group, a fluorinated alcohol group (preferably a hexafluoroisopropanol group), or a sulfonic acid group.

酸分解性基として好ましい基は、これらの基の水素原子を酸の作用により脱離する基(脱離基)で置換した基である。
酸の作用により脱離する基(脱離基)としては、例えば、-C(R36)(R37)(R38)、-C(R36)(R37)(OR39)、及び-C(R01)(R02)(OR39)等が挙げられる。
式中、R36~R39は、それぞれ独立に、アルキル基、シクロアルキル基、アリール基、アラルキル基、又はアルケニル基を表す。R36とR37とは、互いに結合して環を形成してもよい。
01及びR02は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、又はアルケニル基を表す。
Preferred groups as acid-decomposable groups are groups in which the hydrogen atoms of these groups are substituted with groups (leaving groups) that leave under the action of acid.
Examples of groups that leave by the action of an acid (leaving groups) include -C(R 36 )(R 37 )(R 38 ), -C(R 36 )(R 37 )(OR 39 ), and - C(R 01 ) (R 02 ) (OR 39 ) and the like.
In the formula, R 36 to R 39 each independently represent an alkyl group, cycloalkyl group, aryl group, aralkyl group or alkenyl group. R 36 and R 37 may combine with each other to form a ring.
R 01 and R 02 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, or an alkenyl group.

36~R39、R01及びR02のアルキル基は、炭素数1~8のアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基、n-ブチル基、sec-ブチル基、へキシル基、及びオクチル基等が挙げられる。
36~R39、R01、及びR02のシクロアルキル基は、単環でも、多環でもよい。単環としては、炭素数3~8のシクロアルキル基が好ましく、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、及びシクロオクチル基等が挙げられる。多環としては、炭素数6~20のシクロアルキル基が好ましく、例えば、アダマンチル基、ノルボルニル基、イソボルニル基、カンファニル基、ジシクロペンチル基、α-ピネル基、トリシクロデカニル基、テトラシクロドデシル基、及びアンドロスタニル基等が挙げられる。なお、シクロアルキル基中の1つ以上の炭素原子が酸素原子等のヘテロ原子によって置換されていてもよい。
36~R39、R01、及びR02のアリール基は、炭素数6~10のアリール基が好ましく、例えば、フェニル基、ナフチル基、及びアントリル基等が挙げられる。
36~R39、R01、及びR02のアラルキル基は、炭素数7~12のアラルキル基が好ましく、例えば、ベンジル基、フェネチル基、及びナフチルメチル基等が挙げられる。
36~R39、R01、及びR02のアルケニル基は、炭素数2~8のアルケニル基が好ましく、例えば、ビニル基、アリル基、ブテニル基、及びシクロへキセニル基等が挙げられる。
36とR37とが互いに結合して形成される環としては、シクロアルキル基(単環又は多環)が好ましい。単環のシクロアルキル基としては、シクロペンチル基、又はシクロヘキシル基等が好ましく、多環のシクロアルキル基としては、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、又はアダマンチル基等が好ましい。
The alkyl groups of R 36 to R 39 , R 01 and R 02 are preferably alkyl groups having 1 to 8 carbon atoms, such as methyl, ethyl, propyl, n-butyl, sec-butyl, hexyl. groups, and octyl groups.
The cycloalkyl groups of R 36 -R 39 , R 01 and R 02 may be monocyclic or polycyclic. The monocyclic ring is preferably a cycloalkyl group having 3 to 8 carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl and the like. The polycyclic ring is preferably a cycloalkyl group having 6 to 20 carbon atoms, such as adamantyl group, norbornyl group, isobornyl group, camphanyl group, dicyclopentyl group, α-pinel group, tricyclodecanyl group, tetracyclododecyl group. , and androstanyl group. One or more carbon atoms in the cycloalkyl group may be substituted with a heteroatom such as an oxygen atom.
The aryl groups of R 36 to R 39 , R 01 and R 02 are preferably aryl groups having 6 to 10 carbon atoms, such as phenyl, naphthyl and anthryl groups.
Aralkyl groups represented by R 36 to R 39 , R 01 and R 02 are preferably aralkyl groups having 7 to 12 carbon atoms, such as benzyl, phenethyl and naphthylmethyl groups.
Alkenyl groups represented by R 36 to R 39 , R 01 and R 02 are preferably alkenyl groups having 2 to 8 carbon atoms, such as vinyl, allyl, butenyl and cyclohexenyl groups.
The ring formed by combining R 36 and R 37 is preferably a cycloalkyl group (monocyclic or polycyclic). The monocyclic cycloalkyl group is preferably a cyclopentyl group, cyclohexyl group, or the like, and the polycyclic cycloalkyl group is preferably a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, an adamantyl group, or the like.

酸分解性基としては、第3級のアルキルエステル基、アセタール基、クミルエステル基、エノールエステル基、又はアセタールエステル基が好ましく、アセタール基又は第3級アルキルエステル基がより好ましい。 The acid-decomposable group is preferably a tertiary alkyl ester group, an acetal group, a cumyl ester group, an enol ester group, or an acetal ester group, more preferably an acetal group or a tertiary alkyl ester group.

樹脂(A)は、繰り返し単位Aとして、下記一般式(AI)で表される繰り返し単位を含むことが好ましい。 Resin (A) preferably contains, as repeating unit A, a repeating unit represented by the following general formula (AI).

Figure 0007301123000001
Figure 0007301123000001

一般式(AI)中、Tは、単結合又は2価の連結基を表す。
Tの2価の連結基としては、アルキレン基、アリーレン基、-COO-Rt-、及び-O-Rt-等が挙げられる。式中、Rtは、アルキレン基、シクロアルキレン基、又はアリーレン基を表す。
Tは、単結合又は-COO-Rt-が好ましい。Rtは、炭素数1~5の鎖状アルキレン基が好ましく、-CH-、-(CH-、又は-(CH-がより好ましい。
Tは、単結合であることがより好ましい。
In general formula (AI), T represents a single bond or a divalent linking group.
Examples of the divalent linking group for T include an alkylene group, an arylene group, -COO-Rt-, and -O-Rt-. In the formula, Rt represents an alkylene group, a cycloalkylene group, or an arylene group.
T is preferably a single bond or -COO-Rt-. Rt is preferably a chain alkylene group having 1 to 5 carbon atoms, more preferably -CH 2 -, -(CH 2 ) 2 -, or -(CH 2 ) 3 -.
More preferably T is a single bond.

一般式(AI)中、Xaは、水素原子、ハロゲン原子、又は1価の有機基を表す。
Xaは、水素原子又はアルキル基であることが好ましい。
Xaのアルキル基は、置換基を有していてもよく、置換基としては、例えば、水酸基及びハロゲン原子(好ましくは、フッ素原子)が挙げられる。
Xaのアルキル基は、炭素数1~4が好ましく、メチル基、エチル基、プロピル基、ヒドロキシメチル基、及びトリフルオロメチル基等が挙げられる。Xaのアルキル基は、メチル基であることが好ましい。
In general formula (AI), Xa 1 represents a hydrogen atom, a halogen atom, or a monovalent organic group.
Xa 1 is preferably a hydrogen atom or an alkyl group.
The alkyl group of Xa 1 may have a substituent, and examples of the substituent include a hydroxyl group and a halogen atom (preferably a fluorine atom).
The alkyl group of Xa 1 preferably has 1 to 4 carbon atoms, and examples thereof include methyl, ethyl, propyl, hydroxymethyl and trifluoromethyl groups. The alkyl group of Xa 1 is preferably a methyl group.

一般式(AI)中、Rx~Rxは、それぞれ独立に、アルキル基又はシクロアルキル基を表す。
Rx~Rxのいずれか2つが結合して環構造を形成してもよく、形成しなくてもよい。
Rx、Rx、及びRxのアルキル基としては、直鎖状であっても、分岐鎖状であってもよく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及びt-ブチル基等が好ましい。アルキル基の炭素数としては、1~10が好ましく、1~5がより好ましく、1~3が更に好ましい。Rx、Rx、及びRxのアルキル基は、炭素間結合の一部が二重結合であってもよい。
Rx、Rx、及びRxのシクロアルキル基は、単環でも多環でもよい。単環のシクロアルキル基としては、シクロペンチル基及びシクロヘキシル基等が挙げられる。多環のシクロアルキル基としては、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及びアダマンチル基等が挙げられる。
In general formula (AI), Rx 1 to Rx 3 each independently represent an alkyl group or a cycloalkyl group.
Any two of Rx 1 to Rx 3 may or may not combine to form a ring structure.
The alkyl groups of Rx 1 , Rx 2 and Rx 3 may be linear or branched, and include methyl, ethyl, n-propyl, isopropyl and n-butyl groups. , isobutyl group, t-butyl group and the like are preferred. The number of carbon atoms in the alkyl group is preferably 1-10, more preferably 1-5, and even more preferably 1-3. Some of the carbon-carbon bonds in the alkyl groups of Rx 1 , Rx 2 and Rx 3 may be double bonds.
The cycloalkyl groups of Rx 1 , Rx 2 and Rx 3 may be monocyclic or polycyclic. A cyclopentyl group, a cyclohexyl group, etc. are mentioned as a monocyclic cycloalkyl group. Polycyclic cycloalkyl groups include norbornyl, tetracyclodecanyl, tetracyclododecanyl, and adamantyl groups.

Rx、Rx、及びRxの2つが結合して形成する環は単環でも多環でもよい。単環の例としては、シクロペンチル環、シクロヘキシル環、シクロヘプチル環、及びシクロオクタン環等の単環のシクロアルカン環が挙げられる。多環の例としては、ノルボルナン環、テトラシクロデカン環、テトラシクロドデカン環、及びアダマンタン環等の多環のシクロアルキル環が挙げられる。なかでも、シクロペンチル環、シクロヘキシル環、又はアダマンタン環が好ましい。
また、Rx、Rx、及びRxの2つが結合して形成する環としては、下記に示す環も好ましい。
The ring formed by combining two of Rx 1 , Rx 2 and Rx 3 may be monocyclic or polycyclic. Examples of monocyclic rings include monocyclic cycloalkane rings such as cyclopentyl ring, cyclohexyl ring, cycloheptyl ring, and cyclooctane ring. Examples of polycyclic rings include polycyclic cycloalkyl rings such as norbornane, tetracyclodecane, tetracyclododecane, and adamantane rings. Among them, a cyclopentyl ring, a cyclohexyl ring, or an adamantane ring is preferable.
As the ring formed by combining two of Rx 1 , Rx 2 and Rx 3 , the rings shown below are also preferable.

Figure 0007301123000002
Figure 0007301123000002

以下に一般式(AI)で表される繰り返し単位に相当するモノマーの具体例を挙げる。下記の具体例は、一般式(AI)におけるXaがメチル基である場合に相当するが、Xaは、水素原子、ハロゲン原子、又は1価の有機基に任意に置換できる。Specific examples of the monomer corresponding to the repeating unit represented by formula (AI) are given below. The following specific examples correspond to the case where Xa 1 in general formula (AI) is a methyl group, and Xa 1 can optionally be substituted with a hydrogen atom, a halogen atom, or a monovalent organic group.

Figure 0007301123000003
Figure 0007301123000003

樹脂(A)は、繰り返し単位Aとして、米国特許出願公開2016/0070167A1号明細書の段落[0336]~[0369]に記載の繰り返し単位を有するのも好ましい。 Resin (A) also preferably has, as repeating unit A, a repeating unit described in paragraphs [0336] to [0369] of US Patent Application Publication No. 2016/0070167A1.

また、樹脂(A)は、繰り返し単位Aとして、米国特許出願公開2016/0070167A1号明細書の段落[0363]~[0364]に記載された酸の作用により分解してアルコール性水酸基を生じる基を含む繰り返し単位を有していてもよい。 In addition, the resin (A) contains, as the repeating unit A, a group that is decomposed by the action of an acid described in paragraphs [0363] to [0364] of US Patent Application Publication No. 2016/0070167A1 to generate an alcoholic hydroxyl group. You may have a repeating unit containing.

樹脂(A)は、繰り返し単位Aを、1種単独で含んでもよく、2種以上を併用して含んでもよい。 The resin (A) may contain the repeating unit A singly or in combination of two or more.

樹脂(A)に含まれる繰り返し単位Aの含有量(繰り返し単位Aが複数存在する場合はその合計)は、樹脂(A)の全繰り返し単位に対して、10~90モル%が好ましく、20~80モル%がより好ましく、30~80モル%が更に好ましく、35~80モル%が特に好ましい。 The content of the repeating unit A contained in the resin (A) (the total if there are multiple repeating units A) is preferably 10 to 90 mol%, preferably 20 to 90 mol%, based on the total repeating units of the resin (A). 80 mol % is more preferred, 30 to 80 mol % is even more preferred, and 35 to 80 mol % is particularly preferred.

・ラクトン構造、スルトン構造、及びカーボネート構造からなる群から選択される少なくとも1種を有する繰り返し単位
樹脂(A)は、ラクトン構造、スルトン構造、及びカーボネート構造からなる群から選択される構造を含むことが好ましく、具体的には、ラクトン構造、スルトン構造、及びカーボネート構造からなる群から選択される少なくとも1種を有する繰り返し単位(以下、「繰り返し単位B」ともいう。)を含むことがより好ましい。
樹脂(A)としては、なかでも、形成されるパターンのブリッジ欠陥がより抑制される点で、スルトン構造及びカーボネート構造の1種以上を含むことが好ましく、繰り返し単位Bとして、スルトン構造を有する繰り返し単位及びカーボネート構造を有する繰り返し単位の少なくとも一方を含むことがより好ましい。
- A repeating unit having at least one selected from the group consisting of a lactone structure, a sultone structure, and a carbonate structure. The resin (A) contains a structure selected from the group consisting of a lactone structure, a sultone structure, and a carbonate structure. Specifically, it is more preferable to include a repeating unit (hereinafter also referred to as “repeating unit B”) having at least one selected from the group consisting of a lactone structure, a sultone structure, and a carbonate structure.
Among others, the resin (A) preferably contains one or more of a sultone structure and a carbonate structure in terms of further suppressing bridging defects in the formed pattern. It is more preferable to include at least one of a unit and a repeating unit having a carbonate structure.

ラクトン構造又はスルトン構造としては、ラクトン環又はスルトン環を有していればよく、5~7員環のラクトン環を有するラクトン構造又は5~7員環のスルトン環を有するスルトン構造が好ましい。
ビシクロ構造又はスピロ構造を形成する形で5~7員環ラクトン環に他の環が縮環しているラクトン構造も好ましい。ビシクロ構造又はスピロ構造を形成する形で5~7員環スルトン環に他の環が縮環しているスルトン構造も好ましい。
The lactone structure or sultone structure may have a lactone ring or a sultone ring, and a lactone structure having a 5- to 7-membered lactone ring or a sultone structure having a 5- to 7-membered sultone ring is preferred.
A lactone structure in which a 5- to 7-membered lactone ring is condensed with another ring to form a bicyclo structure or a spiro structure is also preferred. A sultone structure in which a 5- to 7-membered sultone ring is condensed with another ring to form a bicyclo structure or a spiro structure is also preferred.

なかでも、樹脂(A)は、下記一般式(LC1-1)~(LC1-22)のいずれかで表されるラクトン構造、又は下記一般式(SL1-1)~(SL1-3)のいずれかで表されるスルトン構造を有する繰り返し単位を含むことが好ましい。また、ラクトン構造又はスルトン構造が主鎖に直接結合していてもよい。
なかでも、一般式(LC1-1)、一般式(LC1-4)、一般式(LC1-5)、一般式(LC1-8)、一般式(LC1-16)、一般式(LC1-21)、若しくは、一般式(LC1-22)で表されるラクトン構造、又は一般式(SL1-1)で表されるスルトン構造が好ましい。
Among them, the resin (A) has a lactone structure represented by any of the following general formulas (LC1-1) to (LC1-22), or any of the following general formulas (SL1-1) to (SL1-3). It preferably contains a repeating unit having a sultone structure represented by Also, the lactone structure or sultone structure may be directly bonded to the main chain.
Among them, general formula (LC1-1), general formula (LC1-4), general formula (LC1-5), general formula (LC1-8), general formula (LC1-16), general formula (LC1-21) Alternatively, a lactone structure represented by general formula (LC1-22) or a sultone structure represented by general formula (SL1-1) is preferred.

Figure 0007301123000004
Figure 0007301123000004

ラクトン構造又はスルトン構造は、置換基(Rb)を有していても、有していなくてもよい。置換基(Rb)としては、炭素数1~8のアルキル基、炭素数4~7のシクロアルキル基、炭素数1~8のアルコキシ基、炭素数2~8のアルコキシカルボニル基、カルボキシ基、ハロゲン原子、水酸基、又はシアノ基等が好ましく、炭素数1~4のアルキル基、又はシアノ基がより好ましい。nは、0~4の整数を表す。nが2以上の場合、複数存在する置換基(Rb)は、同一でも異なっていてもよい。また、複数存在する置換基(Rb)同士が結合して環を形成してもよい。The lactone structure or sultone structure may or may not have a substituent (Rb 2 ). The substituent (Rb 2 ) includes an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 4 to 7 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, a carboxy group, A halogen atom, a hydroxyl group, a cyano group, or the like is preferable, and an alkyl group having 1 to 4 carbon atoms or a cyano group is more preferable. n2 represents an integer from 0 to 4; When n 2 is 2 or more, the multiple substituents (Rb 2 ) may be the same or different. Also, a plurality of substituents (Rb 2 ) may be bonded to each other to form a ring.

ラクトン構造又はスルトン構造を有する繰り返し単位としては、下記一般式(III)で表される繰り返し単位が好ましい。 As the repeating unit having a lactone structure or sultone structure, a repeating unit represented by the following general formula (III) is preferable.

Figure 0007301123000005
Figure 0007301123000005

上記一般式(III)中、
Aは、-COO-又は-CONH-を表す。
In the above general formula (III),
A represents -COO- or -CONH-.

nは、-R-Z-で表される構造の繰り返し数であり、0~5の整数を表し、0又は1であることが好ましく、0であることがより好ましい。nが0である場合、(-R-Z-)nは、単結合となる。n is the number of repetitions of the structure represented by -R 0 -Z- and represents an integer of 0 to 5, preferably 0 or 1, more preferably 0; When n is 0, (-R 0 -Z-)n becomes a single bond.

は、アルキレン基、シクロアルキレン基、又はその組み合わせを表す。Rが複数存在する場合、複数存在するRは、それぞれ同一でも異なっていてもよい。
で表されるアルキレン基は、直鎖状及び分岐鎖状のいずれでもよい。また、Rで表されるアルキレン基の炭素数としては、例えば、1~12であり、1~10が好ましく、1~6がより好ましい。
で表されるシクロアルキレン基としては、単環及び多環のいずれであってもよい。また、Rで表されるシクロアルキレン基の炭素数としては、例えば、1~12であり、1~10が好ましく、1~6がより好ましい。Rで表されるシクロアルキレン基を構成するシクロアルカンとしては、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、及びシクロオクタン環等の単環のシクロアルカン環、並びに、ノルボルナン環、テトラシクロデカン環、テトラシクロドデカン環、及びアダマンタン環等の多環のシクロアルカン環が挙げられる。
のアルキレン基又はシクロアルキレン基は置換基を有してもよい。置換基としては特に制限されないが、例えば、炭素数1~8のアルキル基(直鎖状及び分岐鎖状のいずれでもよい。)、炭素数4~7のシクロアルキル基(単環及び多環のいずれでもよい。)、炭素数1~8のアルコキシ基、炭素数2~8のアルコキシカルボニル基、カルボキシ基、ハロゲン原子、水酸基、及びシアノ基等が挙げられる。
R 0 represents an alkylene group, a cycloalkylene group, or a combination thereof. When multiple R 0 are present, the multiple R 0 may be the same or different.
The alkylene group represented by R 0 may be linear or branched. The number of carbon atoms in the alkylene group represented by R 0 is, for example, 1 to 12, preferably 1 to 10, more preferably 1 to 6.
The cycloalkylene group represented by R 0 may be either monocyclic or polycyclic. The number of carbon atoms in the cycloalkylene group represented by R 0 is, for example, 1 to 12, preferably 1 to 10, more preferably 1 to 6. Cycloalkanes constituting the cycloalkylene group represented by R 0 include monocyclic cycloalkane rings such as cyclopentane ring, cyclohexane ring, cycloheptane ring, and cyclooctane ring, norbornane ring, and tetracyclodecane ring. , tetracyclododecane ring, and polycyclic cycloalkane ring such as adamantane ring.
The alkylene group or cycloalkylene group of R 0 may have a substituent. Although the substituent is not particularly limited, for example, an alkyl group having 1 to 8 carbon atoms (either linear or branched), a cycloalkyl group having 4 to 7 carbon atoms (monocyclic and polycyclic any group), an alkoxy group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, a carboxy group, a halogen atom, a hydroxyl group, a cyano group, and the like.

Zは、単結合、-O-、-COO-、-CONH-、-NH-CO-O-、又は-NH-CO-NH-を表す。Zが複数存在する場合、複数存在するZは、それぞれ同一でも異なっていてもよい。
なかでも、Zは、-O-、又は-COO-が好ましく、-COO-がより好ましい。
Z represents a single bond, -O-, -COO-, -CONH-, -NH-CO-O-, or -NH-CO-NH-. When there are multiple Z's, the multiple Z's may be the same or different.
Among them, Z is preferably -O- or -COO-, more preferably -COO-.

は、ラクトン構造又はスルトン構造を有する1価の有機基を表す。
なかでも、一般式(LC1-1)~(LC1-22)で表される構造、及び一般式(SL1-1)~(SL1-3)で表される構造のいずれかにおいて、ラクトン構造又はスルトン構造を構成する炭素原子1つから、水素原子を1つ除いてなる基であることが好ましい。なお、上記水素原子を1つ除かれる炭素原子は、置換基(Rb)を構成する炭素原子ではないことが好ましい。
R8 represents a monovalent organic group having a lactone structure or a sultone structure.
Among them, in any of the structures represented by general formulas (LC1-1) to (LC1-22) and the structures represented by general formulas (SL1-1) to (SL1-3), a lactone structure or a sultone It is preferably a group obtained by removing one hydrogen atom from one carbon atom constituting the structure. The carbon atoms from which one hydrogen atom is removed are preferably not carbon atoms constituting the substituent (Rb 2 ).

は、水素原子、ハロゲン原子、又は1価の有機基(好ましくはメチル基)を表す。
で表される有機基としては、例えば、炭素数1~8のアルキル基(直鎖状及び分岐鎖状のいずれでもよい。)が挙げられ、メチル基が好ましい。
R7 represents a hydrogen atom, a halogen atom, or a monovalent organic group (preferably a methyl group).
The organic group represented by R 7 includes, for example, an alkyl group having 1 to 8 carbon atoms (either linear or branched), preferably a methyl group.

以下にラクトン構造、及びスルトン構造からなる群から選択される少なくとも1種を有する繰り返し単位に相当するモノマーを例示する。
下記の例示において、ビニル基に結合するメチル基は、水素原子、ハロゲン原子、又は1価の有機基に置き換えられてもよい。
Examples of monomers corresponding to repeating units having at least one selected from the group consisting of lactone structures and sultone structures are shown below.
In the examples below, the methyl group attached to the vinyl group may be replaced with a hydrogen atom, a halogen atom, or a monovalent organic group.

Figure 0007301123000006
Figure 0007301123000006

Figure 0007301123000007
Figure 0007301123000007

樹脂(A)は、カーボネート構造を有する繰り返し単位を有していてもよい。カーボネート構造としては、環状炭酸エステル構造が好ましい。
環状炭酸エステル構造を有する繰り返し単位としては、下記一般式(A-1)で表される繰り返し単位が好ましい。
Resin (A) may have a repeating unit having a carbonate structure. As the carbonate structure, a cyclic carbonate structure is preferred.
As the repeating unit having a cyclic carbonate structure, a repeating unit represented by the following general formula (A-1) is preferable.

Figure 0007301123000008
Figure 0007301123000008

一般式(A-1)中、R は、水素原子、ハロゲン原子、又は1価の有機基を表す。
で表される1価の有機基としては、置換基を有していてもよい炭素数1~6のアルキル基が挙げられ、メチル基が好ましい。置換基としては、ハロゲン原子、及び水酸基等が挙げられる。
nは0以上の整数を表す。
は、置換基を表す。nが2以上の場合、複数存在するR は、それぞれ同一でも異なっていてもよい。置換基としては特に制限されないが、例えば、炭素数1~8のアルキル基(直鎖状及び分岐鎖状のいずれでもよい。)、炭素数4~7のシクロアルキル基(単環及び多環のいずれでもよい。)、炭素数1~8のアルコキシ基、炭素数2~8のアルコキシカルボニル基、カルボキシ基、ハロゲン原子、水酸基、及びシアノ基等が挙げられる。
Aは、単結合又は2価の連結基を表す。
Aで表される2価の連結基としては特に制限されないが、例えば、-CO-、-O-、-S-、-SO-、-SO-、-NH-、アルキレン基(好ましくは炭素数1~6)、シクロアルキレン基(好ましくは炭素数3~15)、アルケニレン基(好ましくは炭素数2~6)、及びこれらの複数を組み合わせた2価の連結基等が挙げられる。これらのなかでも、-CO-及び-O-を含んでいてもよいアルキレン基(好ましくは炭素数1~6)がより好ましい。
Zは、式中の-O-CO-O-で表される基と共に単環又は多環を形成する原子団を表す。Zとしては、式中の-O-CO-O-で表される基と共に単環を形成する原子団が好ましく、上記単環の環員数としては5~6が好ましく、5がより好ましい。
In general formula (A-1), R A 1 represents a hydrogen atom, a halogen atom, or a monovalent organic group.
The monovalent organic group represented by R A 1 includes an optionally substituted alkyl group having 1 to 6 carbon atoms, preferably a methyl group. A halogen atom, a hydroxyl group, etc. are mentioned as a substituent.
n represents an integer of 0 or more.
R A 2 represents a substituent. When n is 2 or more, a plurality of R A 2 may be the same or different. Although the substituent is not particularly limited, for example, an alkyl group having 1 to 8 carbon atoms (either linear or branched), a cycloalkyl group having 4 to 7 carbon atoms (monocyclic and polycyclic any group), an alkoxy group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, a carboxy group, a halogen atom, a hydroxyl group, a cyano group, and the like.
A represents a single bond or a divalent linking group.
The divalent linking group represented by A is not particularly limited, but examples include -CO-, -O-, -S-, -SO-, -SO 2 -, -NH-, alkylene groups (preferably carbon 1 to 6), a cycloalkylene group (preferably having 3 to 15 carbon atoms), an alkenylene group (preferably having 2 to 6 carbon atoms), and a divalent linking group combining a plurality of these. Among these, an alkylene group (preferably having 1 to 6 carbon atoms) which may contain -CO- and -O- is more preferred.
Z represents an atomic group forming a monocyclic or polycyclic ring together with the group represented by -O-CO-O- in the formula. Z is preferably an atomic group forming a monocyclic ring together with the group represented by —O—CO—O— in the formula, and the number of ring members of the monocyclic ring is preferably 5 to 6, more preferably 5.

樹脂(A)は、繰り返し単位Bとして、米国特許出願公開2016/0070167A1号明細書の段落[0370]~[0414]に記載の繰り返し単位を有するのも好ましい。 Resin (A) also preferably has, as repeating unit B, a repeating unit described in paragraphs [0370] to [0414] of US Patent Application Publication No. 2016/0070167A1.

繰り返し単位Bは、1種単独で含んでもよく、2種以上を併用して含んでもよい。 The repeating unit B may be contained singly or in combination of two or more.

樹脂(A)に含まれる繰り返し単位Bの含有量(繰り返し単位Bが複数存在する場合はその合計)は、樹脂(A)中の全繰り返し単位に対して、5~70モル%が好ましく、10~65モル%がより好ましく、20~65モル%が更に好ましく、20~60モル%が特に好ましい。
なかでも、樹脂(A)に含まれるスルトン構造を有する繰り返し単位及びカーボネート構造を有する繰り返し単位の含有量(複数存在する場合はその合計)は、樹脂(A)中の全繰り返し単位に対して、10~65モル%がより好ましく、10~60モル%が更に好ましく、10~55モル%が特に好ましい。
The content of the repeating unit B contained in the resin (A) (the total when there are multiple repeating units B) is preferably 5 to 70 mol%, 10 ~65 mol% is more preferred, 20 to 65 mol% is even more preferred, and 20 to 60 mol% is particularly preferred.
Among them, the content of the repeating unit having a sultone structure and the repeating unit having a carbonate structure contained in the resin (A) (the total content when there are multiple repeating units) is 10 to 65 mol % is more preferred, 10 to 60 mol % is even more preferred, and 10 to 55 mol % is particularly preferred.

・極性基を有する繰り返し単位
樹脂(A)は、極性基を有する繰り返し単位(以下、「繰り返し単位C」ともいう。)を含むことが好ましい。
極性基としては、水酸基、シアノ基、カルボキシ基、及びフッ素化アルコール基(例えば、ヘキサフルオロイソプロパノール基)等が挙げられる。
繰り返し単位Cとしては、極性基で置換された脂環炭化水素構造を有する繰り返し単位が好ましい。極性基で置換された脂環炭化水素構造における、脂環炭化水素構造としては、シクロヘキシル基、アダマンチル基、又はノルボルナン基が好ましい。
• Repeating unit having a polar group The resin (A) preferably contains a repeating unit having a polar group (hereinafter also referred to as "repeating unit C").
Polar groups include hydroxyl groups, cyano groups, carboxy groups, and fluorinated alcohol groups (eg, hexafluoroisopropanol groups).
As the repeating unit C, a repeating unit having an alicyclic hydrocarbon structure substituted with a polar group is preferred. The alicyclic hydrocarbon structure in the alicyclic hydrocarbon structure substituted with a polar group is preferably a cyclohexyl group, an adamantyl group, or a norbornane group.

以下に、繰り返し単位Cに相当するモノマーの具体例を挙げるが、本発明は、これらの具体例に制限されない。 Specific examples of the monomer corresponding to the repeating unit C are shown below, but the present invention is not limited to these specific examples.

Figure 0007301123000009
Figure 0007301123000010
Figure 0007301123000009
Figure 0007301123000010

この他にも、繰り返し単位Cの具体例としては、米国特許出願公開2016/0070167A1号明細書の段落[0415]~[0433]に開示された繰り返し単位が挙げられる。
樹脂(A)は、繰り返し単位Cを、1種単独で有していてよく、2種以上を併用して含んでいてもよい。
In addition, specific examples of repeating unit C include repeating units disclosed in paragraphs [0415] to [0433] of US Patent Application Publication No. 2016/0070167A1.
The resin (A) may contain the repeating unit C singly or in combination of two or more.

樹脂(A)が繰り返し単位Cを含む場合、繰り返し単位Cの含有量(繰り返し単位Cが複数存在する場合はその合計)は、樹脂(A)中の全繰り返し単位に対して、5~60モル%が好ましく、5~30モル%がより好ましく、5~15モル%が更に好ましい。 When the resin (A) contains the repeating unit C, the content of the repeating unit C (the total when there are multiple repeating units C) is 5 to 60 mol with respect to all repeating units in the resin (A). %, more preferably 5 to 30 mol %, even more preferably 5 to 15 mol %.

・酸分解性基及び極性基のいずれも有さない繰り返し単位
樹脂(A)は、更に、酸分解性基及び極性基のいずれも有さない繰り返し単位(以下、「繰り返し単位D」ともいう。)を含んでいてもよい。
繰り返し単位Dは、脂環炭化水素構造を有することが好ましい。繰り返し単位Dとしては、例えば、米国特許出願公開2016/0026083A1号明細書の段落[0236]~[0237]に記載された繰り返し単位が挙げられる。
以下に、繰り返し単位Dに相当するモノマーの好ましい例を以下に示す。
-Repeating unit having neither an acid-decomposable group nor a polar group The resin (A) further includes a repeating unit having neither an acid-decomposable group nor a polar group (hereinafter also referred to as "repeating unit D". ) may be included.
The repeating unit D preferably has an alicyclic hydrocarbon structure. Examples of the repeating unit D include repeating units described in paragraphs [0236] to [0237] of US Patent Application Publication No. 2016/0026083A1.
Preferred examples of the monomer corresponding to the repeating unit D are shown below.

Figure 0007301123000011
Figure 0007301123000011

この他にも、繰り返し単位Dの具体例としては、米国特許出願公開2016/0070167A1号明細書の段落[0433]に開示された繰り返し単位が挙げられる。
樹脂(A)は、繰り返し単位Dを、1種単独で含んでいてもよく、2種以上を併用して含んでいてもよい。
樹脂(A)が繰り返し単位Dを含む場合、繰り返し単位Dの含有量(繰り返し単位Dが複数存在する場合はその合計)は、樹脂(A)中の全繰り返し単位に対して、5~40モル%が好ましく、5~30モル%がより好ましく、5~25モル%が更に好ましく、5~15モル%が特に好ましい。
In addition, specific examples of the repeating unit D include repeating units disclosed in paragraph [0433] of US Patent Application Publication No. 2016/0070167A1.
The resin (A) may contain the repeating unit D singly or in combination of two or more.
When the resin (A) contains the repeating unit D, the content of the repeating unit D (the total when there are multiple repeating units D) is 5 to 40 mol with respect to all repeating units in the resin (A). %, more preferably 5 to 30 mol %, still more preferably 5 to 25 mol %, particularly preferably 5 to 15 mol %.

なお、樹脂(A)は、その他の繰り返し単位として、上記の繰り返し単位以外に、ドライエッチング耐性、標準現像液適性、基板密着性、レジストプロファイル、又は更にレジストの一般的な必要な特性である解像力、耐熱性、及び感度等を調節する目的で様々な繰り返し単位を有していてもよい。
このような繰り返し単位としては、所定の単量体に相当する繰り返し単位が挙げられるが、これらに制限されない。
In addition to the above-described repeating units, the resin (A) may include, as other repeating units, dry etching resistance, standard developer suitability, substrate adhesion, resist profile, or resolution, which is a generally required property of a resist. It may have various repeating units for the purpose of adjusting , heat resistance, sensitivity, and the like.
Such repeating units include, but are not limited to, repeating units corresponding to a given monomer.

所定の単量体としては、例えばアクリル酸エステル類、メタクリル酸エステル類、アクリルアミド類、メタクリルアミド類、アリル化合物、ビニルエーテル類、及びビニルエステル類等から選ばれる付加重合性不飽和結合を1個有する化合物等が挙げられる。
その他にも、上記種々の繰り返し単位に相当する単量体と共重合可能である付加重合性の不飽和化合物を用いてもよい。
樹脂(A)において、各繰り返し単位の含有モル比は、種々の性能を調節するために適宜設定される。
The predetermined monomer has one addition-polymerizable unsaturated bond selected from, for example, acrylic acid esters, methacrylic acid esters, acrylamides, methacrylamides, allyl compounds, vinyl ethers, and vinyl esters. compounds and the like.
In addition, addition-polymerizable unsaturated compounds that are copolymerizable with the monomers corresponding to the above-mentioned various repeating units may be used.
In the resin (A), the content molar ratio of each repeating unit is appropriately set in order to adjust various performances.

上記樹脂(A)は、アクリル酸エステル及びメタクリル酸エステルの少なくとも一方から誘導される繰り返し単位を含むことが好ましい。酸分解性樹脂である樹脂(A)がアクリル酸エステル及びメタクリル酸エステルの少なくとも一方から誘導される繰り返し単位を含む構造である場合、その製造過程に生じる副生成物に超分子量体及びゲル成分が多く含まれ得る。このため、酸分解性樹脂である樹脂(A)がアクリル酸エステル及びメタクリル酸エステルの少なくとも一方から誘導される繰り返し単位を含む構造である場合、本発明の製造方法による効果をより優れた程度で享受できる。 The resin (A) preferably contains a repeating unit derived from at least one of acrylic acid ester and methacrylic acid ester. When the resin (A), which is an acid-decomposable resin, has a structure containing repeating units derived from at least one of an acrylic acid ester and a methacrylic acid ester, by-products produced during the production process include supermolecular weights and gel components. can contain many. Therefore, when the resin (A), which is an acid-decomposable resin, has a structure containing a repeating unit derived from at least one of an acrylic acid ester and a methacrylic acid ester, the effect of the production method of the present invention is more excellent. can enjoy

上記ポリマー溶液がArF露光用であるとき、ArF光の透過性の観点から、樹脂(A)中の全繰り返し単位に対して、芳香族基を有する繰り返し単位が15モル%以下であることが好ましく、10モル%以下であることがより好ましい。 When the polymer solution is used for ArF exposure, the repeating unit having an aromatic group preferably accounts for 15 mol% or less of all repeating units in the resin (A), from the viewpoint of ArF light transmission. , 10 mol % or less.

上記ポリマー溶液がArF露光用であるとき、樹脂(A)は、繰り返し単位の全てが(メタ)アクリレート系繰り返し単位で構成されることが好ましい。つまり、樹脂(A)は、アクリル酸エステル及びメタクリル酸エステルの少なくとも一方から誘導される繰り返し単位からなる樹脂であることが好ましい。この場合、繰り返し単位の全てがメタクリレート系繰り返し単位であるもの、繰り返し単位の全てがアクリレート系繰り返し単位であるもの、繰り返し単位の全てがメタクリレート系繰り返し単位とアクリレート系繰り返し単位とによるもののいずれのものでも使用できるが、アクリレート系繰り返し単位が樹脂(A)の全繰り返し単位に対して50モル%以下であることが好ましい。 When the polymer solution is for ArF exposure, the resin (A) preferably comprises (meth)acrylate repeating units in all repeating units. In other words, the resin (A) is preferably a resin composed of repeating units derived from at least one of acrylic acid ester and methacrylic acid ester. In this case, all repeating units may be methacrylate repeating units, all repeating units may be acrylate repeating units, or all repeating units may be methacrylate repeating units and acrylate repeating units. Although it can be used, it is preferable that the acrylate-based repeating unit is 50 mol % or less based on the total repeating units of the resin (A).

上記ポリマー溶液がKrF露光用、EB露光用、又はEUV露光用であるとき、樹脂(A)は芳香族炭化水素環基を有する繰り返し単位を有することが好ましく、フェノール性水酸基を有する繰り返し単位、又はフェノール性水酸基が酸の作用により分解して脱離する脱離基で保護された構造(酸分解性基)を有する繰り返し単位を含むことがより好ましい。フェノール性水酸基を含む繰り返し単位としては、ヒドロキシスチレン繰り返し単位、及びヒドロキシスチレン(メタ)アクリレート繰り返し単位等が挙げられる。
上記ポリマー溶液がKrF露光用、EB露光用、又はEUV露光用であるとき、樹脂(A)に含まれる芳香族炭化水素環基を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対して、30モル%以上が好ましい。なお、上限は特に制限されないが、例えば100モル%以下である。なかでも、30~100モル%が好ましく、40~100モル%がより好ましく、50~100モル%が更に好ましい。
When the polymer solution is for KrF exposure, EB exposure, or EUV exposure, the resin (A) preferably has a repeating unit having an aromatic hydrocarbon ring group, a repeating unit having a phenolic hydroxyl group, or It is more preferable to include a repeating unit having a structure (acid-decomposable group) in which a phenolic hydroxyl group is protected by a leaving group that decomposes and leaves under the action of an acid. Repeating units containing a phenolic hydroxyl group include hydroxystyrene repeating units and hydroxystyrene (meth)acrylate repeating units.
When the polymer solution is for KrF exposure, EB exposure, or EUV exposure, the content of repeating units having an aromatic hydrocarbon ring group contained in resin (A) is 30 mol % or more is preferable with respect to the unit. Although the upper limit is not particularly limited, it is, for example, 100 mol % or less. Among them, 30 to 100 mol % is preferable, 40 to 100 mol % is more preferable, and 50 to 100 mol % is even more preferable.

なお、樹脂(A)としては、例えば、国際公開第2017/057253等に記載のものも適宜使用できる。 In addition, as resin (A), the thing of international publication 2017/057253 etc. can also be used suitably, for example.

樹脂(A)の重量平均分子量は、1,000~200,000が好ましく、2,000~20,000がより好ましく、3,000~20,000が更に好ましい。分散度(Mw/Mn)は、通常1.0~3.0であり、1.0~2.6が好ましく、1.0~2.0がより好ましく、1.1~2.0が更に好ましい。 The weight average molecular weight of the resin (A) is preferably 1,000 to 200,000, more preferably 2,000 to 20,000, even more preferably 3,000 to 20,000. The dispersity (Mw/Mn) is usually 1.0 to 3.0, preferably 1.0 to 2.6, more preferably 1.0 to 2.0, further preferably 1.1 to 2.0. preferable.

(溶剤)
上記ポリマー溶液は、溶剤を含む。
上記溶剤としては、公知のレジスト溶剤を適宜使用できる。例えば、米国特許出願公開2016/0070167A1号明細書の段落[0665]~[0670]、米国特許出願公開2015/0004544A1号明細書の段落[0210]~[0235]、米国特許出願公開2016/0237190A1号明細書の段落[0424]~[0426]、及び米国特許出願公開2016/0274458A1号明細書の段落[0357]~[0366]に開示された公知の溶剤を好適に使用できる。
溶剤としては、例えば、アルキレングリコールモノアルキルエーテルカルボキシレート、アルキレングリコールモノアルキルエーテル、乳酸アルキルエステル、アルコキシプロピオン酸アルキル、環状ラクトン(好ましくは炭素数4~10)、環を有してもよいモノケトン化合物(好ましくは炭素数4~10)、アルキレンカーボネート、アルコキシ酢酸アルキル、及びピルビン酸アルキル等の有機溶剤が挙げられ、アルキレングリコールモノアルキルエーテルカルボキシレートが好ましく、プロピレングリコールモノメチルエーテルアセテートがより好ましい。
また、有機溶剤としては、1種単独で使用しても、2種以上を併用してもよいが、1種単独で使用することが好ましい。なお、2種以上の有機溶剤を併用した混合溶剤とする場合、構造中に水酸基を有する溶剤と、水酸基を有さない溶剤とを混合した混合溶剤が好ましい。
(solvent)
The polymer solution contains a solvent.
As the solvent, a known resist solvent can be appropriately used. For example, paragraphs [0665]-[0670] of US Patent Application Publication No. 2016/0070167A1, paragraphs [0210]-[0235] of US Patent Application Publication No. 2015/0004544A1, US Patent Application Publication No. 2016/0237190A1 Known solvents disclosed in paragraphs [0424] to [0426] of the specification and paragraphs [0357] to [0366] of US Patent Application Publication No. 2016/0274458A1 can be suitably used.
Examples of the solvent include alkylene glycol monoalkyl ether carboxylate, alkylene glycol monoalkyl ether, alkyl lactate, alkyl alkoxypropionate, cyclic lactone (preferably having 4 to 10 carbon atoms), monoketone compound which may have a ring. (preferably having 4 to 10 carbon atoms), alkylene carbonates, alkyl alkoxyacetates, and alkyl pyruvates. Preferred are alkylene glycol monoalkyl ether carboxylates, and more preferred is propylene glycol monomethyl ether acetate.
As the organic solvent, one kind may be used alone, or two or more kinds may be used in combination, but it is preferable to use one kind alone. When using a mixed solvent in which two or more organic solvents are used in combination, a mixed solvent obtained by mixing a solvent having a hydroxyl group in its structure with a solvent having no hydroxyl group is preferable.

上記ポリマー溶液の固形分濃度は、1.0~50質量%が好ましく、2.0~40質量%がより好ましく、5.0~30質量%が更に好ましい。なお、固形分濃度とは、ポリマー溶液の総質量に対する、溶剤を除く成分の質量の質量百分率である。 The solid content concentration of the polymer solution is preferably 1.0 to 50% by mass, more preferably 2.0 to 40% by mass, and even more preferably 5.0 to 30% by mass. The solid content concentration is the mass percentage of the mass of the components excluding the solvent with respect to the total mass of the polymer solution.

〔工程B〕
工程Bは、上記工程Aを経たポリマー溶液に、活性光線又は放射線の照射によって酸を発生する化合物(光酸発生剤)を加えて、感活性光線性又は感放射線性樹脂組成物(以下「レジスト組成物」ともいう。)を調整する工程である。
以下において、まず、工程Bを経て得られる感活性光線性又は感放射線性樹脂組成物について説明する。
[Step B]
In step B, a compound (photoacid generator) that generates an acid upon exposure to actinic rays or radiation is added to the polymer solution that has undergone step A to form an actinic ray-sensitive or radiation-sensitive resin composition (hereinafter referred to as "resist (also referred to as "composition").
First, the actinic ray-sensitive or radiation-sensitive resin composition obtained through the step B will be described below.

<酸分解性樹脂(樹脂(A))>
レジスト組成物は、上述したポリマー溶液に由来する酸分解性樹脂(樹脂(A))を含む。なお、酸分解性樹脂(樹脂(A))としては、既述のとおりである。
<Acid-decomposable resin (resin (A))>
The resist composition contains an acid-decomposable resin (resin (A)) derived from the polymer solution described above. The acid-decomposable resin (resin (A)) is as described above.

樹脂(A)は、1種単独で使用してもよいし、2種以上を併用してもよい。
レジスト組成物中、樹脂(A)の含有量は、全固形分中に対して、一般的に20.0質量%以上の場合が多く、40.0質量%以上が好ましく、60.0質量%以上がより好ましく、70.0質量%以上が更に好ましい。上限は特に制限されないが、99.5質量%以下が好ましく、99.0質量%以下がより好ましく、97.0質量%以下が更に好ましい。固形分とは、組成物中の溶剤を除いた成分を意図し、溶剤以外の成分であれば液状成分であっても固形分とみなす。
Resin (A) may be used individually by 1 type, and may use 2 or more types together.
In the resist composition, the content of the resin (A) is generally 20.0% by mass or more, preferably 40.0% by mass or more, and 60.0% by mass, based on the total solid content. The above is more preferable, and 70.0% by mass or more is even more preferable. Although the upper limit is not particularly limited, it is preferably 99.5% by mass or less, more preferably 99.0% by mass or less, and even more preferably 97.0% by mass or less. The solid content means the components excluding the solvent in the composition, and components other than the solvent are regarded as the solid content even if they are liquid components.

<光酸発生剤(B)>
レジスト組成物は、活性光線又は放射線の照射により酸を発生する化合物(以下、「光酸発生剤(B)」ともいう。)を含む。
なお、ここでいう光酸発生剤(B)は、樹脂成分の脱保護反応(酸分解性樹脂の脱保護反応)を起こすため、又は樹脂成分の架橋反応を生起させるために通常用いられる酸発生剤が該当する。
光酸発生剤(B)としては、活性光線又は放射線の照射により有機酸を発生する化合物が好ましい。例えば、スルホニウム塩化合物、ヨードニウム塩化合物、ジアゾニウム塩化合物、ホスホニウム塩化合物、イミドスルホネート化合物、オキシムスルホネート化合物、ジアゾジスルホン化合物、ジスルホン化合物、及びo-ニトロベンジルスルホネート化合物が挙げられる。
<Photoacid generator (B)>
The resist composition contains a compound that generates an acid upon exposure to actinic rays or radiation (hereinafter also referred to as "photoacid generator (B)").
The photoacid generator (B) referred to here is an acid-generating agent normally used for deprotecting a resin component (deprotecting reaction for an acid-decomposable resin) or for causing a cross-linking reaction of a resin component. drug.
As the photoacid generator (B), a compound that generates an organic acid upon exposure to actinic rays or radiation is preferred. Examples include sulfonium salt compounds, iodonium salt compounds, diazonium salt compounds, phosphonium salt compounds, imidosulfonate compounds, oximesulfonate compounds, diazodisulfone compounds, disulfone compounds, and o-nitrobenzylsulfonate compounds.

光酸発生剤(B)としては、活性光線又は放射線の照射により酸を発生する公知の化合物を、単独又はそれらの混合物として適宜選択して使用できる。例えば、米国特許出願公開2016/0070167A1号明細書の段落[0125]~[0319]、米国特許出願公開2015/0004544A1号明細書の段落[0086]~[0094]、及び、米国特許出願公開2016/0237190A1号明細書の段落[0323]~[0402]に開示された公知の化合物を光酸発生剤(B)として好適に使用できる。 As the photoacid generator (B), a known compound that generates an acid upon exposure to actinic rays or radiation can be appropriately selected and used either singly or as a mixture thereof. For example, paragraphs [0125]-[0319] of US Patent Application Publication No. 2016/0070167A1, paragraphs [0086]-[0094] of US Patent Application Publication No. 2015/0004544A1, and US Patent Application Publication No. 2016/ The known compounds disclosed in paragraphs [0323] to [0402] of 0237190A1 can be suitably used as the photoacid generator (B).

光酸発生剤(B)としては、例えば、下記一般式(ZI)、一般式(ZII)、又は一般式(ZIII)で表される化合物が好ましい。 As the photoacid generator (B), for example, compounds represented by the following general formula (ZI), general formula (ZII), or general formula (ZIII) are preferred.

Figure 0007301123000012
Figure 0007301123000012

上記一般式(ZI)において、
201、R202及びR203は、各々独立に、有機基を表す。
201、R202及びR203としての有機基の炭素数は、一般的に1~30であり、1~20が好ましい。
また、R201~R203のうち2つが結合して環構造を形成してもよく、環内に酸素原子、硫黄原子、エステル結合、アミド結合、又はカルボニル基を含んでいてもよい。R201~R203の内の2つが結合して形成する基としては、アルキレン基(例えば、ブチレン基、及びペンチレン基等)、及び-CH-CH-O-CH-CH-が挙げられる。
は、アニオンを表す。
In the above general formula (ZI),
R 201 , R 202 and R 203 each independently represent an organic group.
The number of carbon atoms in the organic group as R 201 , R 202 and R 203 is generally 1-30, preferably 1-20.
Also, two of R 201 to R 203 may combine to form a ring structure, and the ring may contain an oxygen atom, a sulfur atom, an ester bond, an amide bond, or a carbonyl group. Groups formed by combining two of R 201 to R 203 include an alkylene group (e.g., butylene group, pentylene group, etc.) and —CH 2 —CH 2 —O—CH 2 —CH 2 —. mentioned.
Z represents an anion.

一般式(ZI)におけるカチオンの好適な態様としては、後述する化合物(ZI-1)、化合物(ZI-2)、化合物(ZI-3)、及び化合物(ZI-4)における対応する基が挙げられる。
なお、光酸発生剤(B)は、一般式(ZI)で表される構造を複数有する化合物であってもよい。例えば、一般式(ZI)で表される化合物のR201~R203の少なくとも1つと、一般式(ZI)で表されるもうひとつの化合物のR201~R203の少なくとも一つとが、単結合又は連結基を介して結合した構造を有する化合物であってもよい。
Preferred embodiments of the cation in general formula (ZI) include corresponding groups in compound (ZI-1), compound (ZI-2), compound (ZI-3), and compound (ZI-4) described below. be done.
The photoacid generator (B) may be a compound having a plurality of structures represented by general formula (ZI). For example, at least one of R 201 to R 203 of the compound represented by general formula (ZI) and at least one of R 201 to R 203 of another compound represented by general formula (ZI) are single bonds. Alternatively, it may be a compound having a structure bonded via a linking group.

まず、化合物(ZI-1)について説明する。
化合物(ZI-1)は、上記一般式(ZI)のR201~R203の少なくとも1つがアリール基である、アリールスルホニウム化合物、すなわち、アリールスルホニウムをカチオンとする化合物である。
アリールスルホニウム化合物は、R201~R203の全てがアリール基でもよいし、R201~R203の一部がアリール基であり、残りがアルキル基又はシクロアルキル基であってもよい。
アリールスルホニウム化合物としては、例えば、トリアリールスルホニウム化合物、ジアリールアルキルスルホニウム化合物、アリールジアルキルスルホニウム化合物、ジアリールシクロアルキルスルホニウム化合物、及びアリールジシクロアルキルスルホニウム化合物が挙げられる。
First, compound (ZI-1) will be described.
Compound (ZI-1) is an arylsulfonium compound in which at least one of R 201 to R 203 in general formula (ZI) is an aryl group, that is, a compound having an arylsulfonium cation.
In the arylsulfonium compound, all of R 201 to R 203 may be aryl groups, or part of R 201 to R 203 may be aryl groups and the rest may be alkyl groups or cycloalkyl groups.
Arylsulfonium compounds include, for example, triarylsulfonium compounds, diarylalkylsulfonium compounds, aryldialkylsulfonium compounds, diarylcycloalkylsulfonium compounds, and aryldicycloalkylsulfonium compounds.

アリールスルホニウム化合物に含まれるアリール基としては、フェニル基、又はナフチル基が好ましく、フェニル基がより好ましい。アリール基は、酸素原子、窒素原子、又は硫黄原子等を有する複素環構造を有するアリール基であってもよい。複素環構造としては、ピロール残基、フラン残基、チオフェン残基、インドール残基、ベンゾフラン残基、及びベンゾチオフェン残基等が挙げられる。アリールスルホニウム化合物が2つ以上のアリール基を有する場合に、2つ以上あるアリール基は同一であっても異なっていてもよい。
アリールスルホニウム化合物が必要に応じて有しているアルキル基又はシクロアルキル基は、炭素数1~15の直鎖状アルキル基、炭素数3~15の分岐鎖状アルキル基、又は炭素数3~15のシクロアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、シクロプロピル基、シクロブチル基、及びシクロヘキシル基等が挙げられる。
The aryl group contained in the arylsulfonium compound is preferably a phenyl group or a naphthyl group, more preferably a phenyl group. The aryl group may be an aryl group having a heterocyclic structure having an oxygen atom, a nitrogen atom, a sulfur atom, or the like. Heterocyclic structures include pyrrole residues, furan residues, thiophene residues, indole residues, benzofuran residues, benzothiophene residues, and the like. When the arylsulfonium compound has two or more aryl groups, the two or more aryl groups may be the same or different.
The alkyl group or cycloalkyl group optionally possessed by the arylsulfonium compound is a linear alkyl group having 1 to 15 carbon atoms, a branched alkyl group having 3 to 15 carbon atoms, or 3 to 15 carbon atoms. is preferred, and examples thereof include methyl, ethyl, propyl, n-butyl, sec-butyl, t-butyl, cyclopropyl, cyclobutyl and cyclohexyl groups.

201~R203で表されるアリール基、アルキル基、及びシクロアルキル基は、各々独立に、アルキル基(例えば炭素数1~15)、シクロアルキル基(例えば炭素数3~15)、アリール基(例えば炭素数6~14)、アルコキシ基(例えば炭素数1~15)、ハロゲン原子、水酸基、又はフェニルチオ基を置換基として有してもよい。The aryl group, alkyl group, and cycloalkyl group represented by R 201 to R 203 are each independently an alkyl group (eg, 1 to 15 carbon atoms), a cycloalkyl group (eg, 3 to 15 carbon atoms), an aryl group. (for example, 6 to 14 carbon atoms), an alkoxy group (for example, 1 to 15 carbon atoms), a halogen atom, a hydroxyl group, or a phenylthio group as a substituent.

次に、化合物(ZI-2)について説明する。
化合物(ZI-2)は、式(ZI)におけるR201~R203が、各々独立に、芳香環を有さない有機基を表す化合物である。ここで芳香環とは、ヘテロ原子を含む芳香族環も包含する。
201~R203としての芳香環を有さない有機基は、一般的に炭素数1~30であり、炭素数1~20が好ましい。
201~R203は、各々独立に、アルキル基、シクロアルキル基、アリル基、又はビニル基が好ましく、直鎖状又は分岐鎖状の2-オキソアルキル基、2-オキソシクロアルキル基、又はアルコキシカルボニルメチル基がより好ましく、直鎖状又は分岐鎖状の2-オキソアルキル基が更に好ましい。
Next, compound (ZI-2) will be described.
Compound (ZI-2) is a compound in which R 201 to R 203 in formula (ZI) each independently represents an organic group having no aromatic ring. Here, the aromatic ring also includes an aromatic ring containing a heteroatom.
The organic group having no aromatic ring as R 201 to R 203 generally has 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms.
R 201 to R 203 are each independently preferably an alkyl group, a cycloalkyl group, an allyl group or a vinyl group, and a linear or branched 2-oxoalkyl group, 2-oxocycloalkyl group or alkoxy A carbonylmethyl group is more preferred, and a linear or branched 2-oxoalkyl group is even more preferred.

201~R203のアルキル基及びシクロアルキル基としては、炭素数1~10の直鎖状アルキル基又は炭素数3~10の分岐鎖状アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、及びペンチル基)、又は、炭素数3~10のシクロアルキル基(例えばシクロペンチル基、シクロヘキシル基、及びノルボルニル基)が好ましい。
201~R203は、ハロゲン原子、アルコキシ基(例えば炭素数1~5)、水酸基、シアノ基、又はニトロ基によって更に置換されていてもよい。
The alkyl group and cycloalkyl group represented by R 201 to R 203 include linear alkyl groups having 1 to 10 carbon atoms or branched alkyl groups having 3 to 10 carbon atoms (e.g., methyl, ethyl, propyl, butyl group and pentyl group), or a cycloalkyl group having 3 to 10 carbon atoms (eg, cyclopentyl group, cyclohexyl group and norbornyl group) are preferred.
R 201 to R 203 may be further substituted with a halogen atom, an alkoxy group (eg, 1-5 carbon atoms), a hydroxyl group, a cyano group, or a nitro group.

次に、化合物(ZI-3)について説明する。
化合物(ZI-3)は、下記一般式(ZI-3)で表され、フェナシルスルフォニウム塩構造を有する化合物である。
Next, compound (ZI-3) will be described.
Compound (ZI-3) is a compound represented by the following general formula (ZI-3) and having a phenacylsulfonium salt structure.

Figure 0007301123000013
Figure 0007301123000013

一般式(ZI-3)中、
1c~R5cは、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アルキルカルボニルオキシ基、シクロアルキルカルボニルオキシ基、ハロゲン原子、水酸基、ニトロ基、アルキルチオ基又はアリールチオ基を表す。
6c及びR7cは、各々独立に、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基又はアリール基を表す。
及びRは、各々独立に、アルキル基、シクロアルキル基、2-オキソアルキル基、2-オキソシクロアルキル基、アルコキシカルボニルアルキル基、アリル基又はビニル基を表す。
In general formula (ZI-3),
R 1c to R 5c each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, an alkylcarbonyloxy group, a cycloalkylcarbonyloxy group, a halogen atom, or a hydroxyl group , represents a nitro group, an alkylthio group or an arylthio group.
R6c and R7c each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group or an aryl group.
R x and R y each independently represent an alkyl group, cycloalkyl group, 2-oxoalkyl group, 2-oxocycloalkyl group, alkoxycarbonylalkyl group, allyl group or vinyl group.

1c~R5c中のいずれか2つ以上、R5cとR6c、R6cとR7c、R5cとR、及びRとRは、各々結合して環構造を形成してもよく、この環構造は、各々独立に酸素原子、硫黄原子、ケトン基、エステル結合、又はアミド結合を含んでいてもよい。
上記環構造としては、芳香族又は非芳香族の炭化水素環、芳香族又は非芳香族の複素環、及びこれらの環が2つ以上組み合わされてなる多環縮合環が挙げられる。環構造としては、3~10員環が挙げられ、4~8員環が好ましく、5又は6員環がより好ましい。
Any two or more of R 1c to R 5c , R 5c and R 6c , R 6c and R 7c , R 5c and R x , and R x and R y may each combine to form a ring structure. This ring structure may each independently contain an oxygen atom, a sulfur atom, a ketone group, an ester bond, or an amide bond.
Examples of the ring structure include aromatic or non-aromatic hydrocarbon rings, aromatic or non-aromatic heterocyclic rings, and polycyclic condensed rings in which two or more of these rings are combined. The ring structure includes a 3- to 10-membered ring, preferably a 4- to 8-membered ring, and more preferably a 5- or 6-membered ring.

1c~R5c中のいずれか2つ以上、R6cとR7c、及びRとRが結合して形成する基としては、ブチレン基、及びペンチレン基等が挙げられる。
5cとR6c、及びR5cとRが結合して形成する基としては、単結合又はアルキレン基が好ましい。アルキレン基としては、メチレン基、及びエチレン基等が挙げられる。
Zcは、アニオンを表す。
Groups formed by bonding two or more of R 1c to R 5c , R 6c and R 7c , and R x and R y include a butylene group and a pentylene group.
The group formed by combining R 5c and R 6c and R 5c and R x is preferably a single bond or an alkylene group. The alkylene group includes a methylene group, an ethylene group, and the like.
Zc- represents an anion.

次に、化合物(ZI-4)について説明する。
化合物(ZI-4)は、下記一般式(ZI-4)で表される。
Next, compound (ZI-4) will be described.
Compound (ZI-4) is represented by the following general formula (ZI-4).

Figure 0007301123000014
Figure 0007301123000014

一般式(ZI-4)中、
lは0~2の整数を表す。
rは0~8の整数を表す。
13は、水素原子、フッ素原子、水酸基、アルキル基、シクロアルキル基、アルコキシ基、アルコキシカルボニル基、又はシクロアルキル基を有する基を表す。これらの基は置換基を有してもよい。
14は、水酸基、アルキル基、シクロアルキル基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、アルキルスルホニル基、シクロアルキルスルホニル基、又はシクロアルキル基を有する基を表す。これらの基は置換基を有してもよい。R14は、複数存在する場合は各々独立して、水酸基等の上記基を表す。
15は、各々独立して、アルキル基、シクロアルキル基、又はナフチル基を表す。これらの基は置換基を有してもよい。2つのR15が互いに結合して環を形成してもよい。2つのR15が互いに結合して環を形成するとき、環骨格内に、酸素原子、又は窒素原子等のヘテロ原子を含んでもよい。一態様において、2つのR15がアルキレン基であり、互いに結合して環構造を形成することが好ましい。
は、アニオンを表す。
In general formula (ZI-4),
l represents an integer of 0 to 2;
r represents an integer of 0 to 8;
R13 represents a group having a hydrogen atom, a fluorine atom, a hydroxyl group, an alkyl group, a cycloalkyl group, an alkoxy group, an alkoxycarbonyl group, or a cycloalkyl group. These groups may have a substituent.
R 14 represents a group having a hydroxyl group, an alkyl group, a cycloalkyl group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, an alkylsulfonyl group, a cycloalkylsulfonyl group, or a cycloalkyl group. These groups may have a substituent. R 14 each independently represent the above groups such as a hydroxyl group when there are more than one.
Each R 15 independently represents an alkyl group, a cycloalkyl group, or a naphthyl group. These groups may have a substituent. Two R 15 may be joined together to form a ring. When two R 15 are combined to form a ring, the ring skeleton may contain a heteroatom such as an oxygen atom or a nitrogen atom. In one aspect, two R 15 are alkylene groups, preferably joined together to form a ring structure.
Z represents an anion.

一般式(ZI-4)において、R13、R14及びR15で表されるアルキル基は、直鎖状又は分岐鎖状である。アルキル基の炭素数は、1~10が好ましい。アルキル基としては、メチル基、エチル基、n-ブチル基、又はt-ブチル基が好ましい。In general formula (ZI-4), the alkyl groups represented by R 13 , R 14 and R 15 are linear or branched. The number of carbon atoms in the alkyl group is preferably 1-10. The alkyl group is preferably a methyl group, an ethyl group, an n-butyl group, or a t-butyl group.

次に、一般式(ZII)、及び(ZIII)について説明する。
一般式(ZII)、及び(ZIII)中、R204~R207は、各々独立に、アリール基、アルキル基又はシクロアルキル基を表す。
204~R207で表されるアリール基としては、フェニル基、又はナフチル基が好ましく、フェニル基がより好ましい。R204~R207で表されるアリール基は、酸素原子、窒素原子、又は硫黄原子等を有する複素環構造を有するアリール基であってもよい。複素環構造を有するアリール基の骨格としては、例えば、ピロール、フラン、チオフェン、インドール、ベンゾフラン、及びベンゾチオフェン等が挙げられる。
204~R207で表されるアルキル基及びシクロアルキル基としては、炭素数1~10の直鎖状アルキル基、炭素数3~10の分岐鎖状アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、及びペンチル基等)、又は、炭素数3~10のシクロアルキル基(例えばシクロペンチル基、シクロヘキシル基、及びノルボルニル基等)が好ましい。
Next, general formulas (ZII) and (ZIII) will be described.
In general formulas (ZII) and (ZIII), R 204 to R 207 each independently represent an aryl group, an alkyl group or a cycloalkyl group.
The aryl group represented by R 204 to R 207 is preferably a phenyl group or a naphthyl group, more preferably a phenyl group. The aryl group represented by R 204 to R 207 may be an aryl group having a heterocyclic structure containing an oxygen atom, a nitrogen atom, a sulfur atom, or the like. Skeletons of aryl groups having a heterocyclic structure include, for example, pyrrole, furan, thiophene, indole, benzofuran, and benzothiophene.
Alkyl groups and cycloalkyl groups represented by R 204 to R 207 include linear alkyl groups having 1 to 10 carbon atoms and branched alkyl groups having 3 to 10 carbon atoms (eg, methyl group, ethyl group, propyl group, butyl group, pentyl group, etc.) or a cycloalkyl group having 3 to 10 carbon atoms (eg, cyclopentyl group, cyclohexyl group, norbornyl group, etc.) is preferable.

204~R207で表されるアリール基、アルキル基、及びシクロアルキル基は、各々独立に、置換基を有していてもよい。R204~R207で表されるアリール基、アルキル基、及びシクロアルキル基が有していてもよい置換基としては、例えば、アルキル基(例えば炭素数1~15)、シクロアルキル基(例えば炭素数3~15)、アリール基(例えば炭素数6~15)、アルコキシ基(例えば炭素数1~15)、ハロゲン原子、水酸基、及びフェニルチオ基等が挙げられる。
は、アニオンを表す。
The aryl group, alkyl group and cycloalkyl group represented by R 204 to R 207 may each independently have a substituent. Examples of substituents that the aryl group, alkyl group and cycloalkyl group represented by R 204 to R 207 may have include an alkyl group (eg, 1 to 15 carbon atoms) and a cycloalkyl group (eg, carbon 3 to 15), aryl groups (eg, 6 to 15 carbon atoms), alkoxy groups (eg, 1 to 15 carbon atoms), halogen atoms, hydroxyl groups, and phenylthio groups.
Z represents an anion.

一般式(ZI)におけるZ、一般式(ZII)におけるZ、一般式(ZI-3)におけるZc、及び一般式(ZI-4)におけるZとしては、下記一般式(3)で表されるアニオンが好ましい。Z - in general formula (ZI), Z - in general formula (ZII ), Zc - in general formula (ZI-3), and Z - in general formula (ZI-4) are represented by the following general formula (3) The anions represented are preferred.

Figure 0007301123000015
Figure 0007301123000015

一般式(3)中、
oは、1~3の整数を表す。pは、0~10の整数を表す。qは、0~10の整数を表す。
In general formula (3),
o represents an integer of 1 to 3; p represents an integer from 0 to 10; q represents an integer from 0 to 10;

Xfは、フッ素原子、又は少なくとも1つのフッ素原子で置換されたアルキル基を表す。このアルキル基の炭素数は、1~10が好ましく、1~4がより好ましい。また、少なくとも1つのフッ素原子で置換されたアルキル基としては、パーフルオロアルキル基が好ましい。
Xfは、フッ素原子又は炭素数1~4のパーフルオロアルキル基であることが好ましく、フッ素原子又はCFであることがより好ましい。特に、双方のXfがフッ素原子であることが更に好ましい。
Xf represents a fluorine atom or an alkyl group substituted with at least one fluorine atom. The number of carbon atoms in this alkyl group is preferably 1-10, more preferably 1-4. A perfluoroalkyl group is preferable as the alkyl group substituted with at least one fluorine atom.
Xf is preferably a fluorine atom or a C 1-4 perfluoroalkyl group, more preferably a fluorine atom or CF 3 . In particular, it is more preferable that both Xf are fluorine atoms.

及びRは、各々独立に、水素原子、フッ素原子、アルキル基、又は少なくとも一つのフッ素原子で置換されたアルキル基を表す。R及びRが複数存在する場合、R及びRは、それぞれ同一でも異なっていてもよい。
及びRで表されるアルキル基は、置換基を有していてもよく、炭素数1~4が好ましい。R及びRは、好ましくは水素原子である。
少なくとも一つのフッ素原子で置換されたアルキル基の具体例及び好適な態様は一般式(3)中のXfの具体例及び好適な態様と同じである。
R4 and R5 each independently represent a hydrogen atom, a fluorine atom, an alkyl group, or an alkyl group substituted with at least one fluorine atom. When multiple R 4 and R 5 are present, each of R 4 and R 5 may be the same or different.
The alkyl groups represented by R 4 and R 5 may have substituents and preferably have 1 to 4 carbon atoms. R 4 and R 5 are preferably hydrogen atoms.
Specific examples and preferred aspects of the alkyl group substituted with at least one fluorine atom are the same as the specific examples and preferred aspects of Xf in general formula (3).

Lは、2価の連結基を表す。Lが複数存在する場合、Lは、それぞれ同一でも異なっていてもよい。
2価の連結基としては、例えば、-COO-(-C(=O)-O-)、-OCO-、-CONH-、-NHCO-、-CO-、-O-、-S-、-SO-、-SO-、アルキレン基(好ましくは炭素数1~6)、シクロアルキレン基(好ましくは炭素数3~15)、アルケニレン基(好ましくは炭素数2~6)、及びこれらの複数を組み合わせた2価の連結基等が挙げられる。これらの中でも、-COO-、-OCO-、-CONH-、-NHCO-、-CO-、-O-、-SO-、-COO-アルキレン基-、-OCO-アルキレン基-、-CONH-アルキレン基-、又は-NHCO-アルキレン基-が好ましく、-COO-、-OCO-、-CONH-、-SO-、-COO-アルキレン基-、又は-OCO-アルキレン基-がより好ましい。
L represents a divalent linking group. When there are multiple L's, each L may be the same or different.
Examples of divalent linking groups include -COO-(-C(=O)-O-), -OCO-, -CONH-, -NHCO-, -CO-, -O-, -S-, - SO—, —SO 2 —, an alkylene group (preferably having 1 to 6 carbon atoms), a cycloalkylene group (preferably having 3 to 15 carbon atoms), an alkenylene group (preferably having 2 to 6 carbon atoms), and a plurality of these A combined divalent linking group and the like can be mentioned. Among these, -COO-, -OCO-, -CONH-, -NHCO-, -CO-, -O-, -SO 2 -, -COO-alkylene group-, -OCO-alkylene group-, -CONH- An alkylene group - or -NHCO-alkylene group- is preferred, and -COO-, -OCO-, -CONH-, -SO 2 -, -COO-alkylene group- or -OCO-alkylene group- is more preferred.

Wは、環状構造を含む有機基を表す。これらの中でも、環状の有機基であることが好ましい。
環状の有機基としては、例えば、脂環基、アリール基、及び複素環基が挙げられる。
脂環基は、単環式であってもよく、多環式であってもよい。単環式の脂環基としては、例えば、シクロペンチル基、シクロヘキシル基、及びシクロオクチル基等の単環のシクロアルキル基が挙げられる。多環式の脂環基としては、例えば、ノルボルニル基、トリシクロデカニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及びアダマンチル基等の多環のシクロアルキル基が挙げられる。中でも、ノルボルニル基、トリシクロデカニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及びアダマンチル基等の炭素数7以上の嵩高い構造を有する脂環基が好ましい。
W represents an organic group containing a cyclic structure. Among these, a cyclic organic group is preferable.
Cyclic organic groups include, for example, alicyclic groups, aryl groups, and heterocyclic groups.
Alicyclic groups may be monocyclic or polycyclic. Monocyclic alicyclic groups include, for example, monocyclic cycloalkyl groups such as a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group. Examples of polycyclic alicyclic groups include polycyclic cycloalkyl groups such as norbornyl, tricyclodecanyl, tetracyclodecanyl, tetracyclododecanyl, and adamantyl groups. Among them, alicyclic groups having a bulky structure with 7 or more carbon atoms, such as norbornyl, tricyclodecanyl, tetracyclodecanyl, tetracyclododecanyl, and adamantyl groups, are preferred.

アリール基は、単環式であってもよく、多環式であってもよい。このアリール基としては、例えば、フェニル基、ナフチル基、フェナントリル基、及びアントリル基が挙げられる。
複素環基は、単環式であってもよく、多環式であってもよい。多環式の方がより酸の拡散を抑制可能である。また、複素環基は、芳香族性を有していてもよいし、芳香族性を有していなくてもよい。芳香族性を有している複素環としては、例えば、フラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、ジベンゾチオフェン環、及びピリジン環が挙げられる。芳香族性を有していない複素環としては、例えば、テトラヒドロピラン環、ラクトン環、スルトン環、及びデカヒドロイソキノリン環が挙げられる。ラクトン環及びスルトン環の例としては、前述の樹脂において例示したラクトン構造及びスルトン構造が挙げられる。複素環基における複素環としては、フラン環、チオフェン環、ピリジン環、又はデカヒドロイソキノリン環が特に好ましい。
Aryl groups may be monocyclic or polycyclic. The aryl group includes, for example, phenyl group, naphthyl group, phenanthryl group, and anthryl group.
A heterocyclic group may be monocyclic or polycyclic. The polycyclic type can further suppress acid diffusion. Moreover, the heterocyclic group may or may not have aromaticity. Heterocyclic rings having aromaticity include, for example, furan ring, thiophene ring, benzofuran ring, benzothiophene ring, dibenzofuran ring, dibenzothiophene ring, and pyridine ring. Non-aromatic heterocycles include, for example, a tetrahydropyran ring, a lactone ring, a sultone ring, and a decahydroisoquinoline ring. Examples of the lactone ring and sultone ring include the lactone structure and sultone structure exemplified in the resins described above. The heterocyclic ring in the heterocyclic group is particularly preferably a furan ring, a thiophene ring, a pyridine ring, or a decahydroisoquinoline ring.

上記環状の有機基は、置換基を有していてもよい。この置換基としては、例えば、アルキル基(直鎖状及び分岐鎖状のいずれであってもよく、炭素数1~12が好ましい)、シクロアルキル基(単環、多環、及び、スピロ環のいずれであってもよく、炭素数3~20が好ましい)、アリール基(炭素数6~14が好ましい)、水酸基、アルコキシ基、エステル基、アミド基、ウレタン基、ウレイド基、チオエーテル基、スルホンアミド基、及びスルホン酸エステル基が挙げられる。なお、環状の有機基を構成する炭素(環形成に寄与する炭素)はカルボニル炭素であってもよい。 The cyclic organic group may have a substituent. Examples of this substituent include alkyl groups (either linear or branched, preferably having 1 to 12 carbon atoms), cycloalkyl groups (monocyclic, polycyclic, and spirocyclic). any group, preferably having 3 to 20 carbon atoms), aryl group (preferably having 6 to 14 carbon atoms), hydroxyl group, alkoxy group, ester group, amide group, urethane group, ureido group, thioether group, sulfonamide groups, and sulfonate ester groups. In addition, carbonyl carbon may be sufficient as carbon (carbon which contributes to ring formation) which comprises a cyclic|annular organic group.

一般式(3)で表されるアニオンとしては、SO -CF-CH-OCO-(L)q’-W、SO -CF-CHF-CH-OCO-(L)q’-W、SO -CF-COO-(L)q’-W、SO -CF-CF-CH-CH-(L)q-W、又は、SO -CF-CH(CF)-OCO-(L)q’-Wが好ましい。ここで、L、q及びWは、一般式(3)と同様である。q’は、0~10の整数を表す。Examples of anions represented by the general formula (3) include SO 3 —CF 2 —CH 2 —OCO-(L)q′-W, SO 3 —CF 2 —CHF—CH 2 —OCO-(L) q′-W, SO 3 —CF 2 —COO-(L)q′-W, SO 3 —CF 2 —CF 2 —CH 2 —CH 2 —(L)qW, or SO 3 -CF 2 -CH(CF 3 )-OCO-(L)q'-W is preferred. Here, L, q and W are the same as in general formula (3). q' represents an integer from 0 to 10;

一態様において、一般式(ZI)におけるZ、一般式(ZII)におけるZ、一般式(ZI-3)におけるZc、及び一般式(ZI-4)におけるZとしては、下記の一般式(4)で表されるアニオンも好ましい。In one embodiment, Z - in general formula (ZI), Z - in general formula (ZII), Zc - in general formula (ZI-3), and Z - in general formula (ZI-4) are the following general Anions of formula (4) are also preferred.

Figure 0007301123000016
Figure 0007301123000016

一般式(4)中、
B1及びXB2は、各々独立に、水素原子、又はフッ素原子を有さない1価の有機基を表す。XB1及びXB2は、水素原子であることが好ましい。
B3及びXB4は、各々独立に、水素原子、又は1価の有機基を表す。XB3及びXB4の少なくとも一方がフッ素原子又はフッ素原子を有する1価の有機基であることが好ましく、XB3及びXB4の両方がフッ素原子又はフッ素原子を有する1価の有機基であることがより好ましい。XB3及びXB4の両方が、フッ素で置換されたアルキル基であることが更に好ましい。
L、q及びWは、一般式(3)と同様である。
In general formula (4),
X B1 and X B2 each independently represent a hydrogen atom or a monovalent organic group having no fluorine atom. X B1 and X B2 are preferably hydrogen atoms.
X B3 and X B4 each independently represent a hydrogen atom or a monovalent organic group. At least one of X B3 and X B4 is preferably a fluorine atom or a monovalent organic group having a fluorine atom, and both X B3 and X B4 are a fluorine atom or a monovalent organic group having a fluorine atom is more preferred. More preferably, both X B3 and X B4 are fluorine-substituted alkyl groups.
L, q and W are the same as in general formula (3).

一般式(ZI)におけるZ、一般式(ZII)におけるZ、一般式(ZI-3)におけるZc、及び一般式(ZI-4)におけるZとしては、下記一般式(5)で表されるアニオンが好ましい。Z - in general formula (ZI), Z - in general formula (ZII ), Zc - in general formula (ZI-3), and Z - in general formula (ZI-4) are represented by the following general formula (5) The anions represented are preferred.

Figure 0007301123000017
Figure 0007301123000017

一般式(5)において、Xaは、各々独立に、フッ素原子、又は、少なくとも一つのフッ素原子で置換されたアルキル基を表す。Xbは、各々独立に、水素原子、又はフッ素原子を有さない有機基を表す。o、p、q、R、R、L、及びWの定義及び好ましい態様は、一般式(3)と同様である。In general formula (5), each Xa independently represents a fluorine atom or an alkyl group substituted with at least one fluorine atom. Each Xb independently represents a hydrogen atom or an organic group having no fluorine atom. The definitions and preferred embodiments of o, p, q, R 4 , R 5 , L, and W are the same as in general formula (3).

一般式(ZI)におけるZ、一般式(ZII)におけるZ、一般式(ZI-3)におけるZc、及び一般式(ZI-4)におけるZは、ベンゼンスルホン酸アニオンであってもよく、分岐鎖状アルキル基又はシクロアルキル基によって置換されたベンゼンスルホン酸アニオンであることが好ましい。Z - in general formula (ZI), Z - in general formula (ZII), Zc - in general formula (ZI-3), and Z - in general formula (ZI-4) are benzenesulfonate anions. Often preferred is a benzenesulfonate anion substituted by a branched alkyl group or a cycloalkyl group.

一般式(ZI)におけるZ、一般式(ZII)におけるZ、一般式(ZI-3)におけるZc、及び一般式(ZI-4)におけるZとしては、下記の一般式(SA1)で表される芳香族スルホン酸アニオンも好ましい。Z - in general formula (ZI), Z - in general formula (ZII ), Zc - in general formula (ZI-3), and Z - in general formula (ZI-4) are represented by the following general formula (SA1) An aromatic sulfonate anion represented by is also preferred.

Figure 0007301123000018
Figure 0007301123000018

式(SA1)中、
Arは、アリール基を表し、スルホン酸アニオン及び-(D-B)基以外の置換基を更に有していてもよい。更に有してもよい置換基としては、フッ素原子及び水酸基等が挙げられる。
In formula (SA1),
Ar represents an aryl group and may further have a substituent other than the sulfonate anion and -(D-B) group. Substituents which may be further included include a fluorine atom and a hydroxyl group.

nは、0以上の整数を表す。nとしては、1~4が好ましく、2~3がより好ましく、3が更に好ましい。 n represents an integer of 0 or more. n is preferably 1 to 4, more preferably 2 to 3, and still more preferably 3.

Dは、単結合又は2価の連結基を表す。2価の連結基としては、エーテル基、チオエーテル基、カルボニル基、スルホキシド基、スルホン基、スルホン酸エステル基、エステル基、及び、これらの2種以上の組み合わせからなる基等が挙げられる。 D represents a single bond or a divalent linking group. Examples of divalent linking groups include ether groups, thioether groups, carbonyl groups, sulfoxide groups, sulfone groups, sulfonate ester groups, ester groups, and groups consisting of combinations of two or more thereof.

Bは、炭化水素基を表す。 B represents a hydrocarbon group.

Dは単結合であり、Bは脂肪族炭化水素構造であることが好ましい。Bは、イソプロピル基又はシクロヘキシル基がより好ましい。 D is preferably a single bond and B is an aliphatic hydrocarbon structure. B is more preferably an isopropyl group or a cyclohexyl group.

一般式(ZI)におけるスルホニウムカチオン、及び一般式(ZII)におけるヨードニウムカチオンの好ましい例を以下に示す。 Preferred examples of the sulfonium cation in general formula (ZI) and the iodonium cation in general formula (ZII) are shown below.

Figure 0007301123000019
Figure 0007301123000019

一般式(ZI)におけるアニオンZ、一般式(ZII)におけるアニオンZ、一般式(ZI-3)におけるZc、及び一般式(ZI-4)におけるZの好ましい例を以下に示す。Preferable examples of the anion Z in general formula (ZI), the anion Z in general formula (ZII), Zc in general formula (ZI-3), and Z in general formula (ZI-4) are shown below.

Figure 0007301123000020
Figure 0007301123000020

上記のカチオン及びアニオンを任意に組みわせて光酸発生剤(B)として使用できる。 Any combination of the above cations and anions can be used as the photoacid generator (B).

光酸発生剤(B)は、低分子化合物の形態であってもよく、重合体の一部に組み込まれた形態であってもよい。また、低分子化合物の形態と重合体の一部に組み込まれた形態を併用してもよい。
光酸発生剤(B)は、低分子化合物の形態であることが好ましい。
光酸発生剤(B)が、低分子化合物の形態である場合、分子量は3,000以下が好ましく、2,000以下がより好ましく、1,000以下が更に好ましい。
光酸発生剤(B)が、重合体の一部に組み込まれた形態である場合、前述した樹脂(A)の一部に組み込まれてもよく、樹脂(A)とは異なる樹脂に組み込まれてもよい。
光酸発生剤(B)は、1種単独で使用してもよいし、2種以上を併用してもよい。
レジスト組成物中、光酸発生剤(B)の含有量(複数種存在する場合はその合計)は、組成物の全固形分を基準として、0.1~35.0質量%が好ましく、0.5~25.0質量%がより好ましく、3.0~20.0質量%が更に好ましい。
光酸発生剤として、上記一般式(ZI-3)又は(ZI-4)で表される化合物を含む場合、レジスト組成物中に含まれる光酸発生剤の含有量(複数種存在する場合はその合計)は、組成物の全固形分を基準として、5~35質量%が好ましく、7~30質量%がより好ましい。
The photoacid generator (B) may be in the form of a low-molecular-weight compound, or may be in the form of being incorporated into a part of the polymer. Moreover, the form of a low-molecular-weight compound and the form incorporated into a part of a polymer may be used in combination.
The photoacid generator (B) is preferably in the form of a low molecular weight compound.
When the photoacid generator (B) is in the form of a low-molecular-weight compound, the molecular weight is preferably 3,000 or less, more preferably 2,000 or less, even more preferably 1,000 or less.
When the photoacid generator (B) is in the form of being incorporated into a part of the polymer, it may be incorporated into a part of the resin (A) described above, or may be incorporated into a resin different from the resin (A). may
The photoacid generator (B) may be used alone or in combination of two or more.
In the resist composition, the content of the photoacid generator (B) (the total when multiple types are present) is preferably 0.1 to 35.0% by mass, based on the total solid content of the composition, and 0 .5 to 25.0% by mass is more preferable, and 3.0 to 20.0% by mass is even more preferable.
When the compound represented by the general formula (ZI-3) or (ZI-4) is included as a photoacid generator, the content of the photoacid generator contained in the resist composition (if multiple types are present, The total) is preferably 5 to 35% by mass, more preferably 7 to 30% by mass, based on the total solid content of the composition.

活性光線又は放射線の照射により光酸発生剤(B)が分解して発生する酸の酸解離定数pKaとしては、例えば、-0.01以下であり、-1.00以下であることが好ましく、-1.50以下であることがより好ましく、-2.00以下であることが更に好ましい。pKaの下限値は特に制限されないが、例えば、-5.00以上である。pKaは上述した方法により測定できる。 The acid dissociation constant pKa of the acid generated by decomposition of the photoacid generator (B) upon exposure to actinic rays or radiation is, for example, -0.01 or less, preferably -1.00 or less. -1.50 or less is more preferable, and -2.00 or less is even more preferable. Although the lower limit of pKa is not particularly limited, it is -5.00 or more, for example. pKa can be measured by the method described above.

<酸拡散制御剤(C)>
レジスト組成物は、本発明の効果を妨げない範囲で、酸拡散制御剤を含むことが好ましい。
酸拡散制御剤(C)は、露光時に酸発生剤等から発生する酸をトラップし、余分な発生酸による、未露光部における酸分解性樹脂の反応を抑制するクエンチャーとして作用するものである。酸拡散制御剤(C)としては、例えば、塩基性化合物(CA)、活性光線又は放射線の照射により塩基性が低下又は消失する塩基性化合物(CB)、酸発生剤に対して相対的に弱酸となるオニウム塩(CC)、窒素原子を有し、酸の作用により脱離する基を有する低分子化合物(CD)、又はカチオン部に窒素原子を有するオニウム塩化合物(CE)等を酸拡散制御剤として使用できる。レジスト組成物においては、公知の酸拡散制御剤を適宜使用できる。例えば、米国特許出願公開2016/0070167A1号明細書の段落[0627]~[0664]、米国特許出願公開2015/0004544A1号明細書の段落[0095]~[0187]、米国特許出願公開2016/0237190A1号明細書の段落[0403]~[0423]、及び、米国特許出願公開2016/0274458A1号明細書の段落[0259]~[0328]に開示された公知の化合物を酸拡散制御剤(C)として好適に使用できる。
<Acid diffusion control agent (C)>
The resist composition preferably contains an acid diffusion controller as long as the effects of the present invention are not impaired.
The acid diffusion control agent (C) traps the acid generated from the acid generator or the like during exposure, and acts as a quencher that suppresses the reaction of the acid-decomposable resin in the unexposed area due to excess generated acid. . Examples of the acid diffusion control agent (C) include a basic compound (CA), a basic compound (CB) whose basicity is reduced or lost by irradiation with actinic rays or radiation, and a relatively weak acid with respect to the acid generator. onium salt (CC), a low-molecular-weight compound (CD) that has a nitrogen atom and a group that can be eliminated by the action of an acid, or an onium salt compound (CE) that has a nitrogen atom in the cation portion, etc. to control acid diffusion. Can be used as an agent. A known acid diffusion control agent can be appropriately used in the resist composition. For example, paragraphs [0627] to [0664] of US Patent Application Publication No. 2016/0070167A1, paragraphs [0095] to [0187] of US Patent Application Publication No. 2015/0004544A1, US Patent Application Publication No. 2016/0237190A1. Known compounds disclosed in paragraphs [0403] to [0423] of the specification and paragraphs [0259] to [0328] of US Patent Application Publication No. 2016/0274458A1 are suitable as the acid diffusion control agent (C) can be used for

塩基性化合物(CA)としては、下記式(A)~(E)で示される構造を有する化合物が好ましい。 As the basic compound (CA), compounds having structures represented by the following formulas (A) to (E) are preferred.

Figure 0007301123000021
Figure 0007301123000021

一般式(A)及び(E)中、
200、R201及びR202は、同一でも異なってもよく、各々独立に、水素原子、アルキル基(好ましくは炭素数1~20)、シクロアルキル基(好ましくは炭素数3~20)又はアリール基(炭素数6~20)を表す。R201とR202は、互いに結合して環を形成してもよい。
203、R204、R205及びR206は、同一でも異なってもよく、各々独立に、炭素数1~20のアルキル基を表す。
In general formulas (A) and (E),
R 200 , R 201 and R 202 may be the same or different and each independently represents a hydrogen atom, an alkyl group (preferably having 1 to 20 carbon atoms), a cycloalkyl group (preferably having 3 to 20 carbon atoms) or an aryl represents a group (6 to 20 carbon atoms). R 201 and R 202 may combine with each other to form a ring.
R 203 , R 204 , R 205 and R 206 may be the same or different and each independently represents an alkyl group having 1 to 20 carbon atoms.

一般式(A)及び(E)中のアルキル基は、置換基を有していても無置換であってもよい。
上記アルキル基について、置換基を有するアルキル基としては、炭素数1~20のアミノアルキル基、炭素数1~20のヒドロキシアルキル基、又は炭素数1~20のシアノアルキル基が好ましい。
一般式(A)及び(E)中のアルキル基は、無置換であることがより好ましい。
The alkyl groups in general formulas (A) and (E) may be substituted or unsubstituted.
Regarding the above alkyl group, the substituted alkyl group is preferably an aminoalkyl group having 1 to 20 carbon atoms, a hydroxyalkyl group having 1 to 20 carbon atoms, or a cyanoalkyl group having 1 to 20 carbon atoms.
The alkyl groups in general formulas (A) and (E) are more preferably unsubstituted.

塩基性化合物(CA)としては、グアニジン、アミノピロリジン、ピラゾール、ピラゾリン、ピペラジン、アミノモルホリン、アミノアルキルモルフォリン、又はピペリジン等が好ましく、イミダゾール構造、ジアザビシクロ構造、オニウムヒドロキシド構造、オニウムカルボキシレート構造、トリアルキルアミン構造、アニリン構造若しくはピリジン構造を有する化合物、水酸基及び/若しくはエーテル結合を有するアルキルアミン誘導体、又は、水酸基及び/若しくはエーテル結合を有するアニリン誘導体等がより好ましい。 As the basic compound (CA), guanidine, aminopyrrolidine, pyrazole, pyrazoline, piperazine, aminomorpholine, aminoalkylmorpholine, or piperidine is preferable, and imidazole structure, diazabicyclo structure, onium hydroxide structure, onium carboxylate structure, A compound having a trialkylamine structure, an aniline structure or a pyridine structure, an alkylamine derivative having a hydroxyl group and/or an ether bond, or an aniline derivative having a hydroxyl group and/or an ether bond is more preferred.

活性光線又は放射線の照射により塩基性が低下又は消失する塩基性化合物(CB)(以下、「化合物(CB)」ともいう。)は、プロトンアクセプター性官能基を有し、かつ、活性光線又は放射線の照射により分解して、プロトンアクセプター性が低下、消失、又はプロトンアクセプター性から酸性に変化する化合物である。 A basic compound (CB) whose basicity is reduced or lost by irradiation with actinic rays or radiation (hereinafter also referred to as "compound (CB)") has a proton acceptor functional group, and actinic rays or It is a compound whose proton acceptor property is reduced or lost, or whose proton acceptor property is changed to acidic by being decomposed by irradiation with radiation.

プロトンアクセプター性官能基とは、プロトンと静電的に相互作用し得る基又は電子を有する官能基であって、例えば、環状ポリエーテル等のマクロサイクリック構造を有する官能基、又は、π共役に寄与しない非共有電子対をもった窒素原子を有する官能基を意味する。π共役に寄与しない非共有電子対を有する窒素原子とは、例えば、下記式に示す部分構造を有する窒素原子である。 The proton-accepting functional group is a functional group having electrons or a group capable of electrostatically interacting with protons, for example, a functional group having a macrocyclic structure such as cyclic polyether, or a π-conjugated means a functional group having a nitrogen atom with a lone pair of electrons that does not contribute to A nitrogen atom having a lone pair of electrons that does not contribute to π-conjugation is, for example, a nitrogen atom having a partial structure represented by the following formula.

Figure 0007301123000022
Figure 0007301123000022

プロトンアクセプター性官能基の好ましい部分構造として、例えば、クラウンエーテル構造、アザクラウンエーテル構造、1~3級アミン構造、ピリジン構造、イミダゾール構造、及びピラジン構造等が挙げられる。 Preferred partial structures of proton acceptor functional groups include, for example, crown ether structures, azacrown ether structures, primary to tertiary amine structures, pyridine structures, imidazole structures, and pyrazine structures.

化合物(CB)は、活性光線又は放射線の照射により分解してプロトンアクセプター性が低下若しくは消失し、又はプロトンアクセプター性から酸性に変化した化合物を発生する。ここでプロトンアクセプター性の低下若しくは消失、又はプロトンアクセプター性から酸性への変化とは、プロトンアクセプター性官能基にプロトンが付加することに起因するプロトンアクセプター性の変化であり、具体的には、プロトンアクセプター性官能基を有する化合物(CB)とプロトンとからプロトン付加体が生成するとき、その化学平衡における平衡定数が減少することを意味する。
プロトンアクセプター性は、pH測定を行うことによって確認できる。
The compound (CB) is decomposed by exposure to actinic rays or radiation to reduce or eliminate the proton acceptor property, or to generate a compound whose proton acceptor property is changed to an acidic one. Here, the reduction or disappearance of proton acceptor property, or the change from proton acceptor property to acidity is a change in proton acceptor property due to the addition of protons to the proton acceptor functional group. means that when a proton adduct is produced from the compound (CB) having a proton acceptor functional group and protons, the equilibrium constant in the chemical equilibrium decreases.
Proton acceptor property can be confirmed by performing pH measurement.

活性光線又は放射線の照射により化合物(CB)が分解して発生する化合物の酸解離定数pKaは、pKa<-1を満たすことが好ましく、-13<pKa<-1を満たすことがより好ましく、-13<pKa<-3を満たすことが更に好ましい。 The acid dissociation constant pKa of the compound generated by decomposition of the compound (CB) by irradiation with actinic rays or radiation preferably satisfies pKa<−1, more preferably satisfies −13<pKa<−1, and − More preferably, 13<pKa<-3 is satisfied.

なお、酸解離定数pKaとは、上述した方法により求めることができる。 The acid dissociation constant pKa can be determined by the method described above.

レジスト組成物では、酸発生剤に対して相対的に弱酸となるオニウム塩(CC)を酸拡散制御剤として使用できる。
酸発生剤と、酸発生剤から生じた酸に対して相対的に弱酸である酸を発生するオニウム塩とを混合して用いた場合、活性光線性又は放射線の照射により酸発生剤から生じた酸が未反応の弱酸アニオンを有するオニウム塩と衝突すると、塩交換により弱酸を放出して強酸アニオンを有するオニウム塩を生じる。この過程で強酸がより触媒能の低い弱酸に交換されるため、見かけ上、酸が失活して酸拡散の制御を行うことができる。
Onium salts (CC), which are relatively weak acids relative to acid generators, can be used as acid diffusion control agents in resist compositions.
When an acid generator and an onium salt that generates an acid that is relatively weak acid relative to the acid generated from the acid generator are mixed and used, the acid generated from the acid generator by actinic rays or irradiation of radiation When an acid collides with an onium salt with an unreacted weak acid anion, salt exchange releases the weak acid to yield an onium salt with a strong acid anion. In this process, the strong acid is exchanged for a weak acid with a lower catalytic activity, so that the acid is apparently deactivated and acid diffusion can be controlled.

酸発生剤に対して相対的に弱酸となるオニウム塩としては、下記一般式(d1-1)~(d1-3)で表される化合物が好ましい。 As the onium salt which becomes a relatively weak acid relative to the acid generator, compounds represented by the following general formulas (d1-1) to (d1-3) are preferred.

Figure 0007301123000023
Figure 0007301123000023

式中、R51は置換基を有していてもよい炭化水素基であり、Z2cは置換基を有していてもよい炭素数1~30の炭化水素基(ただし、Sに隣接する炭素にはフッ素原子は置換されていないものとする)であり、R52は有機基であり、Yは直鎖状、分岐鎖状若しくは環状のアルキレン基又はアリーレン基であり、Rfはフッ素原子を含む炭化水素基であり、Mは各々独立に、アンモニウムカチオン、スルホニウムカチオン、又はヨードニウムカチオンである。In the formula, R 51 is an optionally substituted hydrocarbon group, and Z 2c is an optionally substituted hydrocarbon group having 1 to 30 carbon atoms (provided that the carbon is not substituted with a fluorine atom), R 52 is an organic group, Y 3 is a linear, branched or cyclic alkylene group or arylene group, and Rf is a fluorine atom Each M + is independently an ammonium cation, a sulfonium cation, or an iodonium cation.

として表されるスルホニウムカチオン又はヨードニウムカチオンの好ましい例としては、一般式(ZI)で例示したスルホニウムカチオン及び一般式(ZII)で例示したヨードニウムカチオンが挙げられる。Preferred examples of the sulfonium cation or iodonium cation represented by M + include the sulfonium cations exemplified by general formula (ZI) and the iodonium cations exemplified by general formula (ZII).

酸発生剤に対して相対的に弱酸となるオニウム塩(CC)は、カチオン部位とアニオン部位を同一分子内に有し、かつ、該カチオン部位とアニオン部位が共有結合により連結している化合物(以下、「化合物(CCA)」ともいう。)であってもよい。
化合物(CCA)としては、下記一般式(C-1)~(C-3)のいずれかで表される化合物であることが好ましい。
An onium salt (CC), which is a relatively weak acid with respect to an acid generator, is a compound ( Hereinafter, it may also be referred to as a “compound (CCA)”).
The compound (CCA) is preferably a compound represented by any one of the following general formulas (C-1) to (C-3).

Figure 0007301123000024
Figure 0007301123000024

一般式(C-1)~(C-3)中、
、R、及びRは、各々独立に炭素数1以上の置換基を表す。
は、カチオン部位とアニオン部位とを連結する2価の連結基又は単結合を表す。
-Xは、-COO、-SO 、-SO 、及び-N-Rから選択されるアニオン部位を表す。Rは、隣接するN原子との連結部位に、カルボニル基(-C(=O)-)、スルホニル基(-S(=O)-)、及びスルフィニル基(-S(=O)-)のうち少なくとも1つを有する1価の置換基を表す。
、R、R、R、及びLは、互いに結合して環構造を形成してもよい。また、一般式(C-3)において、R~Rのうち2つを合わせて1つの2価の置換基を表し、N原子と2重結合により結合していてもよい。
In general formulas (C-1) to (C-3),
R 1 , R 2 and R 3 each independently represent a substituent having 1 or more carbon atoms.
L 1 represents a divalent linking group or a single bond that links the cation site and the anion site.
—X represents an anionic moiety selected from —COO , —SO 3 , —SO 2 , and —N —R 4 . R 4 has a carbonyl group (-C(=O)-), a sulfonyl group (-S(=O) 2 -), and a sulfinyl group (-S(=O)- ) represents a monovalent substituent having at least one of
R 1 , R 2 , R 3 , R 4 and L 1 may combine with each other to form a ring structure. In general formula (C-3), two of R 1 to R 3 together represent one divalent substituent, which may be bonded to the N atom via a double bond.

~Rにおける炭素数1以上の置換基としては、アルキル基、シクロアルキル基、アリール基、アルキルオキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アルキルアミノカルボニル基、シクロアルキルアミノカルボニル基、及びアリールアミノカルボニル基等が挙げられる。なかでも、アルキル基、シクロアルキル基、又はアリール基が好ましい。Examples of substituents having 1 or more carbon atoms for R 1 to R 3 include an alkyl group, a cycloalkyl group, an aryl group, an alkyloxycarbonyl group, a cycloalkyloxycarbonyl group, an aryloxycarbonyl group, an alkylaminocarbonyl group, and a cycloalkylamino A carbonyl group, an arylaminocarbonyl group, and the like can be mentioned. Among them, an alkyl group, a cycloalkyl group, or an aryl group is preferable.

2価の連結基としてのLは、直鎖若しくは分岐鎖状アルキレン基、シクロアルキレン基、アリーレン基、カルボニル基、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、及びこれらの2種以上を組み合わせてなる基等が挙げられる。Lは、好ましくは、アルキレン基、アリーレン基、エーテル結合、エステル結合、又はこれらの2種以上を組み合わせてなる基である。L 1 as a divalent linking group is a linear or branched alkylene group, a cycloalkylene group, an arylene group, a carbonyl group, an ether bond, an ester bond, an amide bond, a urethane bond, a urea bond, and two of these A group formed by combining the above and the like can be mentioned. L 1 is preferably an alkylene group, an arylene group, an ether bond, an ester bond, or a group formed by combining two or more of these.

窒素原子を有し、酸の作用により脱離する基を有する低分子化合物(CD)(以下、「化合物(CD)」ともいう。)は、酸の作用により脱離する基を窒素原子上に有するアミン誘導体であることが好ましい。
酸の作用により脱離する基としては、アセタール基、カルボネート基、カルバメート基、3級エステル基、3級水酸基、又はヘミアミナールエーテル基が好ましく、カルバメート基、又はヘミアミナールエーテル基がより好ましい。
化合物(CD)の分子量は、100~1000が好ましく、100~700がより好ましく、100~500が更に好ましい。
化合物(CD)は、窒素原子上に保護基を有するカルバメート基を有してもよい。カルバメート基を構成する保護基としては、下記一般式(d-1)で表される。
A low-molecular-weight compound (CD) having a nitrogen atom and a group that leaves under the action of an acid (hereinafter also referred to as "compound (CD)") has a group that leaves under the action of an acid on the nitrogen atom. It is preferably an amine derivative having
The group that leaves by the action of an acid is preferably an acetal group, a carbonate group, a carbamate group, a tertiary ester group, a tertiary hydroxyl group, or a hemiaminal ether group, more preferably a carbamate group or a hemiaminal ether group. .
The molecular weight of the compound (CD) is preferably 100-1000, more preferably 100-700, even more preferably 100-500.
Compound (CD) may have a carbamate group with a protecting group on the nitrogen atom. A protecting group constituting a carbamate group is represented by the following general formula (d-1).

Figure 0007301123000025
Figure 0007301123000025

一般式(d-1)において、
Rbは、各々独立に、水素原子、アルキル基(好ましくは炭素数1~10)、シクロアルキル基(好ましくは炭素数3~30)、アリール基(好ましくは炭素数3~30)、アラルキル基(好ましくは炭素数1~10)、又はアルコキシアルキル基(好ましくは炭素数1~10)を表す。Rbは相互に連結して環を形成していてもよい。
Rbが示すアルキル基、シクロアルキル基、アリール基、及びアラルキル基は、各々独立に水酸基、シアノ基、アミノ基、ピロリジノ基、ピペリジノ基、モルホリノ基、オキソ基等の官能基、アルコキシ基、又はハロゲン原子で置換されていてもよい。Rbが示すアルコキシアルキル基についても同様である。
In general formula (d-1),
Rb each independently represents a hydrogen atom, an alkyl group (preferably having 1 to 10 carbon atoms), a cycloalkyl group (preferably having 3 to 30 carbon atoms), an aryl group (preferably having 3 to 30 carbon atoms), an aralkyl group ( preferably 1 to 10 carbon atoms) or an alkoxyalkyl group (preferably 1 to 10 carbon atoms). Rb's may be linked together to form a ring.
The alkyl group, cycloalkyl group, aryl group and aralkyl group represented by Rb are each independently a hydroxyl group, a cyano group, an amino group, a pyrrolidino group, a piperidino group, a morpholino group, a functional group such as an oxo group, an alkoxy group, or a halogen Atoms may be substituted. The same applies to the alkoxyalkyl group represented by Rb.

Rbとしては、直鎖状若しくは分岐鎖状のアルキル基、シクロアルキル基、又はアリール基が好ましく、直鎖状若しくは分岐鎖状のアルキル基、又はシクロアルキル基がより好ましい。
2つのRbが相互に連結して形成する環としては、脂環式炭化水素、芳香族炭化水素、複素環式炭化水素、及びその誘導体等が挙げられる。
一般式(d-1)で表される基の具体的な構造としては、米国特許公報US2012/0135348A1号明細書の段落[0466]に開示された構造が挙げられるが、これに制限されない。
Rb is preferably a linear or branched alkyl group, cycloalkyl group or aryl group, more preferably a linear or branched alkyl group or cycloalkyl group.
Examples of the ring formed by connecting two Rb's to each other include alicyclic hydrocarbons, aromatic hydrocarbons, heterocyclic hydrocarbons, derivatives thereof, and the like.
Specific structures of the group represented by formula (d-1) include, but are not limited to, structures disclosed in paragraph [0466] of US Patent Publication No. US2012/0135348A1.

化合物(CD)は、下記一般式(6)で表される構造を有することが好ましい。 Compound (CD) preferably has a structure represented by the following general formula (6).

Figure 0007301123000026
Figure 0007301123000026

一般式(6)において、
lは0~2の整数を表し、mは1~3の整数を表し、l+m=3を満たす。
Raは、水素原子、アルキル基、シクロアルキル基、アリール基又はアラルキル基を表す。lが2のとき、2つのRaは同じでも異なっていてもよく、2つのRaは相互に連結して式中の窒素原子と共に複素環を形成していてもよい。この複素環には式中の窒素原子以外のヘテロ原子を含んでいてもよい。
Rbは、上記一般式(d-1)におけるRbと同義であり、好ましい例も同様である。
一般式(6)において、Raとしてのアルキル基、シクロアルキル基、アリール基、及びアラルキル基は、各々独立にRbとしてのアルキル基、シクロアルキル基、アリール基、及びアラルキル基が置換されていてもよい基として前述した基と同様な基で置換されていてもよい。
In general formula (6),
l represents an integer of 0 to 2, m represents an integer of 1 to 3, and satisfies l+m=3.
Ra represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group. When l is 2, the two Ra's may be the same or different, and the two Ra's may be linked together to form a heterocyclic ring together with the nitrogen atom in the formula. This heterocyclic ring may contain a heteroatom other than the nitrogen atom in the formula.
Rb has the same definition as Rb in formula (d-1) above, and preferred examples are also the same.
In the general formula (6), the alkyl group, cycloalkyl group, aryl group and aralkyl group as Ra are each independently substituted with an alkyl group, cycloalkyl group, aryl group and aralkyl group as Rb. It may be substituted with the same groups as the groups described above as good groups.

上記Raのアルキル基、シクロアルキル基、アリール基、及びアラルキル基(これらの基は、上記基で置換されていてもよい)の具体例としては、Rbについて前述した具体例と同様な基が挙げられる。
本発明における特に好ましい化合物(CD)の具体例としては、米国特許出願公開2012/0135348A1号明細書の段落[0475]に開示された化合物が挙げられるが、これに制限されない。
Specific examples of the alkyl group, cycloalkyl group, aryl group, and aralkyl group (these groups may be substituted with the above groups) for Ra include the same groups as the specific examples described above for Rb. be done.
Specific examples of particularly preferred compounds (CD) in the present invention include, but are not limited to, compounds disclosed in paragraph [0475] of US Patent Application Publication No. 2012/0135348A1.

カチオン部に窒素原子を有するオニウム塩化合物(CE)(以下、「化合物(CE)」ともいう。)は、カチオン部に窒素原子を含む塩基性部位を有する化合物であることが好ましい。塩基性部位は、アミノ基であることが好ましく、脂肪族アミノ基であることがより好ましい。塩基性部位中の窒素原子に隣接する原子の全てが、水素原子又は炭素原子であることが更に好ましい。また、塩基性向上の観点から、窒素原子に対して、電子求引性の官能基(カルボニル基、スルホニル基、シアノ基、及びハロゲン原子等)が直結していないことが好ましい。
化合物(CE)の好ましい具体例としては、米国特許出願公開2015/0309408A1号明細書の段落[0203]に開示された化合物が挙げられるが、これに制限されない。
The onium salt compound (CE) having a nitrogen atom in the cation moiety (hereinafter also referred to as "compound (CE)") is preferably a compound having a basic site containing a nitrogen atom in the cation moiety. The basic moiety is preferably an amino group, more preferably an aliphatic amino group. More preferably all of the atoms adjacent to the nitrogen atom in the basic moiety are hydrogen atoms or carbon atoms. Moreover, from the viewpoint of improving basicity, it is preferable that an electron-withdrawing functional group (a carbonyl group, a sulfonyl group, a cyano group, a halogen atom, etc.) is not directly connected to the nitrogen atom.
Preferred specific examples of the compound (CE) include, but are not limited to, compounds disclosed in paragraph [0203] of US Patent Application Publication No. 2015/0309408A1.

酸拡散制御剤(C)の好ましい例を以下に示す。 Preferred examples of the acid diffusion controller (C) are shown below.

Figure 0007301123000027
Figure 0007301123000027

Figure 0007301123000028
Figure 0007301123000028

レジスト組成物において、酸拡散制御剤(C)は1種単独で使用してもよいし、2種以上を併用してもよい。
レジスト組成物中、酸拡散制御剤(C)を含む場合、酸拡散制御剤(C)の含有量(複数種存在する場合はその合計)は、組成物の全固形分を基準として、0.01~10.0質量%が好ましく、0.01~5.0質量%がより好ましい。
In the resist composition, the acid diffusion controller (C) may be used singly or in combination of two or more.
When the resist composition contains the acid diffusion control agent (C), the content of the acid diffusion control agent (C) (when there are multiple types thereof, the total amount) is 0.00% based on the total solid content of the composition. 01 to 10.0% by mass is preferable, and 0.01 to 5.0% by mass is more preferable.

<疎水性樹脂(D)>
レジスト組成物は、疎水性樹脂(D)を含んでいてもよい。なお、疎水性樹脂(D)は、樹脂(A)とは異なる樹脂であることが好ましい。
レジスト組成物が、疎水性樹脂(D)を含むことにより、感活性光線性又は感放射線性膜の表面における静的/動的な接触角を制御できる。これにより、現像特性の改善、アウトガスの抑制、液浸露光における液浸液追随性の向上、及び液浸欠陥の低減等が可能となる。
疎水性樹脂(D)は、レジスト膜の表面に偏在するように設計されることが好ましいが、界面活性剤とは異なり、必ずしも分子内に親水基を有する必要はなく、極性/非極性物質を均一に混合することに寄与しなくてもよい。
<Hydrophobic resin (D)>
The resist composition may contain a hydrophobic resin (D). The hydrophobic resin (D) is preferably a resin different from the resin (A).
By including the hydrophobic resin (D) in the resist composition, the static/dynamic contact angle on the surface of the actinic ray-sensitive or radiation-sensitive film can be controlled. This makes it possible to improve development characteristics, suppress outgassing, improve immersion liquid followability in immersion exposure, reduce immersion defects, and the like.
The hydrophobic resin (D) is preferably designed so as to be unevenly distributed on the surface of the resist film. It does not have to contribute to uniform mixing.

疎水性樹脂(D)は、膜表層への偏在化の観点から、“フッ素原子”、“ケイ素原子”、及び“樹脂の側鎖部分に含有されたCH部分構造”からなる群から選択される少なくとも1種を有する繰り返し単位を有する樹脂であることが好ましい。
疎水性樹脂(D)が、フッ素原子及び/又はケイ素原子を含む場合、疎水性樹脂(D)における上記フッ素原子及び/又はケイ素原子は、樹脂の主鎖中に含まれていてもよく、側鎖中に含まれていてもよい。
The hydrophobic resin (D) is selected from the group consisting of "fluorine atom", "silicon atom", and " CH3 partial structure contained in the side chain portion of the resin" from the viewpoint of uneven distribution on the film surface layer. It is preferable that the resin has a repeating unit having at least one kind of
When the hydrophobic resin (D) contains fluorine atoms and / or silicon atoms, the fluorine atoms and / or silicon atoms in the hydrophobic resin (D) may be contained in the main chain of the resin, It may be contained in a chain.

疎水性樹脂(D)がフッ素原子を含む場合、フッ素原子を有する部分構造として、フッ素原子を有するアルキル基、フッ素原子を有するシクロアルキル基、又はフッ素原子を有するアリール基を有する樹脂であることが好ましい。 When the hydrophobic resin (D) contains a fluorine atom, the partial structure having a fluorine atom may be a resin having an alkyl group having a fluorine atom, a cycloalkyl group having a fluorine atom, or an aryl group having a fluorine atom. preferable.

疎水性樹脂(D)は、下記(x)~(z)の群から選ばれる基を少なくとも1つを有することが好ましい。
(x)酸基
(y)アルカリ現像液の作用により分解してアルカリ現像液に対する溶解度が増大する基(以下、極性変換基ともいう。)
(z)酸の作用により分解する基
The hydrophobic resin (D) preferably has at least one group selected from the group (x) to (z) below.
(x) an acid group; (y) a group that decomposes under the action of an alkaline developer to increase its solubility in the alkaline developer (hereinafter also referred to as a polarity conversion group);
(z) a group that decomposes under the action of an acid

酸基(x)としては、フェノール性水酸基、カルボン酸基、フッ素化アルコール基、スルホン酸基、スルホンアミド基、スルホニルイミド基、(アルキルスルホニル)(アルキルカルボニル)メチレン基、(アルキルスルホニル)(アルキルカルボニル)イミド基、ビス(アルキルカルボニル)メチレン基、ビス(アルキルカルボニル)イミド基、ビス(アルキルスルホニル)メチレン基、ビス(アルキルスルホニル)イミド基、トリス(アルキルカルボニル)メチレン基、及びトリス(アルキルスルホニル)メチレン基等が挙げられる。
酸基としては、フッ素化アルコール基(好ましくはヘキサフルオロイソプロパノール)、スルホンイミド基、又はビス(アルキルカルボニル)メチレン基が好ましい。
The acid group (x) includes phenolic hydroxyl group, carboxylic acid group, fluorinated alcohol group, sulfonic acid group, sulfonamide group, sulfonylimide group, (alkylsulfonyl)(alkylcarbonyl)methylene group, (alkylsulfonyl)(alkyl carbonyl)imide group, bis(alkylcarbonyl)methylene group, bis(alkylcarbonyl)imide group, bis(alkylsulfonyl)methylene group, bis(alkylsulfonyl)imide group, tris(alkylcarbonyl)methylene group, and tris(alkylsulfonyl) ) methylene group and the like.
Preferred acid groups are fluorinated alcohol groups (preferably hexafluoroisopropanol), sulfonimide groups, or bis(alkylcarbonyl)methylene groups.

アルカリ現像液の作用により分解してアルカリ現像液に対する溶解度が増大する基(y)としては、例えば、ラクトン基、カルボン酸エステル基(-COO-)、酸無水物基(-C(O)OC(O)-)、酸イミド基(-NHCONH-)、カルボン酸チオエステル基(-COS-)、炭酸エステル基(-OC(O)O-)、硫酸エステル基(-OSOO-)、及びスルホン酸エステル基(-SOO-)等が挙げられ、ラクトン基又はカルボン酸エステル基(-COO-)が好ましい。
これらの基を含んだ繰り返し単位としては、例えば、樹脂の主鎖にこれらの基が直接結合している繰り返し単位であり、例えば、アクリル酸エステル及びメタクリル酸エステルによる繰り返し単位等が挙げられる。この繰り返し単位は、これらの基が連結基を介して樹脂の主鎖に結合していてもよい。又は、この繰り返し単位は、これらの基を有する重合開始剤又は連鎖移動剤を重合時に用いて、樹脂の末端に導入されていてもよい。
ラクトン基を有する繰り返し単位としては、例えば、先に樹脂(A)の項で説明したラクトン構造を有する繰り返し単位と同様のものが挙げられる。
Examples of the group (y) that decomposes under the action of an alkaline developer to increase the solubility in the alkaline developer include a lactone group, a carboxylic acid ester group (—COO—), an acid anhydride group (—C(O)OC (O)-), an acid imide group (-NHCONH-), a carboxylic acid thioester group (-COS-), a carbonate group (-OC(O)O-), a sulfate group (-OSO 2 O-), and A sulfonic acid ester group (--SO 2 O--) and the like can be mentioned, and a lactone group or a carboxylic acid ester group (--COO--) is preferred.
Repeating units containing these groups are, for example, repeating units in which these groups are directly bonded to the main chain of the resin, and examples thereof include repeating units of acrylic acid esters and methacrylic acid esters. These repeating units may be bonded to the main chain of the resin via a linking group. Alternatively, this repeating unit may be introduced at the end of the resin using a polymerization initiator or chain transfer agent having these groups during polymerization.
Examples of the repeating unit having a lactone group include those similar to the repeating unit having a lactone structure described above in the section of resin (A).

アルカリ現像液の作用により分解してアルカリ現像液に対する溶解度が増大する基(y)を有する繰り返し単位の含有量は、疎水性樹脂(D)中の全繰り返し単位に対して、1~100モル%が好ましく、3~98モル%がより好ましく、5~95モル%が更に好ましい。 The content of the repeating unit having a group (y) that is decomposed by the action of an alkaline developer to increase the solubility in the alkaline developer is 1 to 100 mol% with respect to the total repeating units in the hydrophobic resin (D). is preferred, 3 to 98 mol% is more preferred, and 5 to 95 mol% is even more preferred.

疎水性樹脂(D)における、酸の作用により分解する基(z)を有する繰り返し単位は、樹脂(A)で挙げた酸分解性基を有する繰り返し単位と同様のものが挙げられる。酸の作用により分解する基(z)を有する繰り返し単位は、フッ素原子及びケイ素原子の少なくともいずれかを有していてもよい。酸の作用により分解する基(z)を有する繰り返し単位の含有量は、疎水性樹脂(D)中の全繰り返し単位に対して、1~80モル%が好ましく、10~80モル%がより好ましく、20~60モル%が更に好ましい。
疎水性樹脂(D)は、更に、上述した繰り返し単位とは別の繰り返し単位を有していてもよい。
Examples of the repeating unit having a group (z) decomposable by the action of an acid in the hydrophobic resin (D) are the same as the repeating units having an acid-decomposable group exemplified for the resin (A). A repeating unit having a group (z) decomposable under the action of an acid may have at least one of a fluorine atom and a silicon atom. The content of repeating units having a group (z) decomposable by the action of an acid is preferably 1 to 80 mol%, more preferably 10 to 80 mol%, relative to all repeating units in the hydrophobic resin (D). , 20 to 60 mol % is more preferred.
The hydrophobic resin (D) may further have repeating units other than the repeating units described above.

フッ素原子有する繰り返し単位は、疎水性樹脂(D)中の全繰り返し単位に対して、10~100モル%が好ましく、30~100モル%がより好ましい。また、ケイ素原子を有する繰り返し単位は、疎水性樹脂(D)中の全繰り返し単位に対して、10~100モル%が好ましく、20~100モル%がより好ましい。 The repeating unit having a fluorine atom is preferably 10 to 100 mol %, more preferably 30 to 100 mol %, relative to all repeating units in the hydrophobic resin (D). Also, the repeating unit having a silicon atom is preferably 10 to 100 mol %, more preferably 20 to 100 mol %, relative to all repeating units in the hydrophobic resin (D).

一方、特に疎水性樹脂(D)が側鎖部分にCH部分構造を含む場合においては、疎水性樹脂(D)が、フッ素原子及びケイ素原子を実質的に含まない形態も好ましい。また、疎水性樹脂(D)は、炭素原子、酸素原子、水素原子、窒素原子及び硫黄原子から選ばれる原子のみによって構成された繰り返し単位のみで実質的に構成されることが好ましい。On the other hand, especially when the hydrophobic resin (D) contains a CH 3 partial structure in the side chain portion, it is also preferable that the hydrophobic resin (D) does not substantially contain fluorine atoms and silicon atoms. Moreover, it is preferable that the hydrophobic resin (D) is substantially composed only of repeating units composed only of atoms selected from carbon atoms, oxygen atoms, hydrogen atoms, nitrogen atoms and sulfur atoms.

疎水性樹脂(D)の標準ポリスチレン換算の重量平均分子量は、1,000~100,000が好ましく、1,000~50,000がより好ましい。 The weight average molecular weight of the hydrophobic resin (D) in terms of standard polystyrene is preferably 1,000 to 100,000, more preferably 1,000 to 50,000.

疎水性樹脂(D)に含まれる残存モノマー及び/又はオリゴマー成分の合計含有量は、0.01~5質量%が好ましく、0.01~3質量%がより好ましい。また、分散度(Mw/Mn)は、1~5の範囲が好ましく、より好ましくは1~3の範囲である。 The total content of residual monomers and/or oligomer components contained in the hydrophobic resin (D) is preferably 0.01 to 5% by mass, more preferably 0.01 to 3% by mass. Further, the dispersity (Mw/Mn) is preferably in the range of 1-5, more preferably in the range of 1-3.

疎水性樹脂(D)としては、公知の樹脂を、単独又はそれらの混合物として適宜に選択して使用できる。例えば、米国特許出願公開2015/0168830A1号明細書の段落[0451]~[0704]、及び、米国特許出願公開2016/0274458A1号明細書の段落[0340]~[0356]に開示された公知の樹脂を疎水性樹脂(D)として好適に使用できる。また、米国特許出願公開2016/0237190A1号明細書の段落[0177]~[0258]に開示された繰り返し単位も、疎水性樹脂(D)を構成する繰り返し単位として好ましい。 As the hydrophobic resin (D), known resins can be appropriately selected and used either singly or as a mixture thereof. For example, known resins disclosed in paragraphs [0451] to [0704] of US Patent Application Publication No. 2015/0168830A1 and paragraphs [0340] to [0356] of US Patent Application Publication No. 2016/0274458A1 can be suitably used as the hydrophobic resin (D). Further, repeating units disclosed in paragraphs [0177] to [0258] of US Patent Application Publication No. 2016/0237190A1 are also preferable as repeating units constituting the hydrophobic resin (D).

疎水性樹脂(D)を構成する繰り返し単位に相当するモノマーの好ましい例を以下に示す。 Preferred examples of the monomer corresponding to the repeating unit constituting the hydrophobic resin (D) are shown below.

Figure 0007301123000029
Figure 0007301123000029

Figure 0007301123000030
Figure 0007301123000030

疎水性樹脂(D)は、1種単独で使用してもよいし、2種以上を併用してもよい。
表面エネルギーが異なる2種以上の疎水性樹脂(D)を混合して使用することが、液浸露光における液浸液追随性と現像特性の両立の観点から好ましい。
レジスト組成物中、疎水性樹脂(D)の含有量は、組成物中の全固形分に対し、0.01~20.0質量%が好ましく、0.05~8.0質量%がより好ましい。
The hydrophobic resin (D) may be used alone or in combination of two or more.
It is preferable to use a mixture of two or more kinds of hydrophobic resins (D) having different surface energies from the viewpoint of compatibility between immersion liquid followability and development characteristics in immersion exposure.
The content of the hydrophobic resin (D) in the resist composition is preferably 0.01 to 20.0% by mass, more preferably 0.05 to 8.0% by mass, based on the total solid content in the composition. .

<溶剤(E)>
レジスト組成物は、溶剤を含む。
レジスト組成物が含む溶剤としては、ポリマー溶液により持ち込まれる溶剤だけでなく、工程Bの際に別途添加された溶剤が含まれていてもよい。
レジスト組成物においては、公知のレジスト溶剤を適宜使用できる。例えば、米国特許出願公開2016/0070167A1号明細書の段落[0665]~[0670]、米国特許出願公開2015/0004544A1号明細書の段落[0210]~[0235]、米国特許出願公開2016/0237190A1号明細書の段落[0424]~[0426]、及び、米国特許出願公開2016/0274458A1号明細書の段落[0357]~[0366]に開示された公知の溶剤を好適に使用できる。
レジスト組成物を調製する際に使用できる溶剤としては、例えば、アルキレングリコールモノアルキルエーテルカルボキシレート、アルキレングリコールモノアルキルエーテル、乳酸アルキルエステル、アルコキシプロピオン酸アルキル、環状ラクトン(好ましくは炭素数4~10)、環を有してもよいモノケトン化合物(好ましくは炭素数4~10)、アルキレンカーボネート、アルコキシ酢酸アルキル、及びピルビン酸アルキル等の有機溶剤が挙げられる。
<Solvent (E)>
The resist composition contains a solvent.
The solvent contained in the resist composition may include not only the solvent brought in by the polymer solution, but also the solvent separately added during the step B.
A known resist solvent can be used as appropriate in the resist composition. For example, paragraphs [0665]-[0670] of US Patent Application Publication No. 2016/0070167A1, paragraphs [0210]-[0235] of US Patent Application Publication No. 2015/0004544A1, US Patent Application Publication No. 2016/0237190A1 Known solvents disclosed in paragraphs [0424] to [0426] of the specification and paragraphs [0357] to [0366] of US Patent Application Publication No. 2016/0274458A1 can be suitably used.
Solvents that can be used in preparing the resist composition include, for example, alkylene glycol monoalkyl ether carboxylates, alkylene glycol monoalkyl ethers, alkyl lactate esters, alkyl alkoxypropionates, and cyclic lactones (preferably having 4 to 10 carbon atoms). , monoketone compounds which may have a ring (preferably having 4 to 10 carbon atoms), alkylene carbonates, alkyl alkoxyacetates, and alkyl pyruvates.

有機溶剤として、構造中に水酸基を有する溶剤と、水酸基を有さない溶剤とを混合した混合溶剤を使用してもよい。
水酸基を有する溶剤、及び水酸基を有さない溶剤としては、前述の例示化合物を適宜選択できるが、水酸基を含む溶剤としては、アルキレングリコールモノアルキルエーテル、又は乳酸アルキル等が好ましく、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル(PGEE)、2-ヒドロキシイソ酪酸メチル、又は乳酸エチルがより好ましい。また、水酸基を有さない溶剤としては、アルキレングリコールモノアルキルエーテルアセテート、アルキルアルコキシプロピオネート、環を有していてもよいモノケトン化合物、環状ラクトン、又は酢酸アルキル等が好ましく、これらの中でも、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、エチルエトキシプロピオネート、2-ヘプタノン、γ-ブチロラクトン、シクロヘキサノン、シクロペンタノン又は酢酸ブチルがより好ましく、プロピレングリコールモノメチルエーテルアセテート、γ-ブチロラクトン、エチルエトキシプロピオネート、シクロヘキサノン、シクロペンタノン又は2-ヘプタノンが更に好ましい。水酸基を有さない溶剤としては、プロピレンカーボネートも好ましい。
水酸基を有する溶剤と水酸基を有さない溶剤との混合比(質量比)は、1/99~99/1であり、10/90~90/10が好ましく、20/80~60/40がより好ましい。水酸基を有さない溶剤を50質量%以上含む混合溶剤が、塗布均一性の点で好ましい。
溶剤は、プロピレングリコールモノメチルエーテルアセテートを含むことが好ましく、プロピレングリコールモノメチルエーテルアセテート単独溶剤でもよいし、プロピレングリコールモノメチルエーテルアセテートを含む2種類以上の混合溶剤でもよい。
As the organic solvent, a mixed solvent in which a solvent having a hydroxyl group in its structure and a solvent having no hydroxyl group are mixed may be used.
As the solvent having a hydroxyl group and the solvent not having a hydroxyl group, the aforementioned exemplary compounds can be appropriately selected. As the solvent containing a hydroxyl group, alkylene glycol monoalkyl ether, alkyl lactate, etc. are preferable, and propylene glycol monomethyl ether ( PGME), propylene glycol monoethyl ether (PGEE), methyl 2-hydroxyisobutyrate, or ethyl lactate are more preferred. As the solvent having no hydroxyl group, alkylene glycol monoalkyl ether acetate, alkylalkoxypropionate, monoketone compound which may have a ring, cyclic lactone, or alkyl acetate are preferable. Glycol monomethyl ether acetate (PGMEA), ethyl ethoxy propionate, 2-heptanone, γ-butyrolactone, cyclohexanone, cyclopentanone or butyl acetate are more preferred, propylene glycol monomethyl ether acetate, γ-butyrolactone, ethyl ethoxy propionate, Cyclohexanone, cyclopentanone or 2-heptanone are more preferred. Propylene carbonate is also preferred as the solvent having no hydroxyl group.
The mixing ratio (mass ratio) of the solvent having a hydroxyl group and the solvent having no hydroxyl group is 1/99 to 99/1, preferably 10/90 to 90/10, more preferably 20/80 to 60/40. preferable. A mixed solvent containing 50% by mass or more of a solvent having no hydroxyl group is preferable from the viewpoint of coating uniformity.
The solvent preferably contains propylene glycol monomethyl ether acetate, and may be a single solvent of propylene glycol monomethyl ether acetate or a mixed solvent of two or more kinds containing propylene glycol monomethyl ether acetate.

<界面活性剤(F)>
レジスト組成物は、界面活性剤を含んでいてもよい。界面活性剤を含む場合、フッ素系及び/又はシリコン系界面活性剤(具体的には、フッ素系界面活性剤、シリコン系界面活性剤、又はフッ素原子とケイ素原子との両方を有する界面活性剤)が好ましい。
<Surfactant (F)>
The resist composition may contain a surfactant. When a surfactant is included, a fluorine-based and/or silicon-based surfactant (specifically, a fluorine-based surfactant, a silicon-based surfactant, or a surfactant having both fluorine atoms and silicon atoms) is preferred.

レジスト組成物が界面活性剤を含むことにより、250nm以下、特に220nm以下の露光光源を使用した場合に、良好な感度及び解像度で、密着性及び現像欠陥の少ないパターンを得ることができる。
フッ素系及び/又はシリコン系界面活性剤として、米国特許出願公開第2008/0248425号明細書の段落[0276]に記載の界面活性剤が挙げられる。
また、米国特許出願公開第2008/0248425号明細書の段落[0280]に記載の、フッ素系及び/又はシリコン系界面活性剤以外の他の界面活性剤を使用することもできる。
By including a surfactant in the resist composition, when an exposure light source of 250 nm or less, particularly 220 nm or less is used, a pattern with good adhesion and little development defects can be obtained with good sensitivity and resolution.
Fluorinated and/or silicon-based surfactants include surfactants described in paragraph [0276] of US Patent Application Publication No. 2008/0248425.
Also, other surfactants than the fluorine-based and/or silicon-based surfactants described in paragraph [0280] of US Patent Application Publication No. 2008/0248425 can be used.

これらの界面活性剤は1種単独で用いてもよく、2種以上を併用してもよい。
レジスト組成物が界面活性剤を含む場合、界面活性剤の含有量は、組成物の全固形分に対して、例えば、0.0001~20質量%であり、0.0001~2.0質量%が好ましく、0.0005~1.0質量%がより好ましい。
一方、界面活性剤の含有量が、組成物の全固形分に対して10ppm以上とすることにより、疎水性樹脂(D)の表面偏在性が上がる。それにより、レジスト組成物より形成されるレジスト膜の表面をより疎水的にすることができ、液浸露光時の水追随性が向上する。
These surfactants may be used singly or in combination of two or more.
When the resist composition contains a surfactant, the content of the surfactant is, for example, 0.0001 to 20% by mass, and 0.0001 to 2.0% by mass, based on the total solid content of the composition. is preferred, and 0.0005 to 1.0% by mass is more preferred.
On the other hand, when the content of the surfactant is 10 ppm or more relative to the total solid content of the composition, the uneven surface distribution of the hydrophobic resin (D) is increased. As a result, the surface of the resist film formed from the resist composition can be made more hydrophobic, and the water followability during immersion exposure is improved.

<その他の添加剤>
レジスト組成物は、更に、酸増殖剤、染料、可塑剤、光増感剤、光吸収剤、アルカリ可溶性樹脂、溶解阻止剤、及び、溶解促進剤等の他の添加剤を含んでいてもよい。
<Other additives>
The resist composition may further contain other additives such as acid multipliers, dyes, plasticizers, photosensitizers, light absorbers, alkali-soluble resins, dissolution inhibitors, and dissolution accelerators. .

<調製方法>
レジスト組成物の固形分濃度としては、露光工程に用いられる光源波長がKrF線以外の場合、通常1.0~10質量%が好ましく、2.0~5.7質量%がより好ましく、2.0~5.3質量%が更に好ましい。露光工程に用いられる光源波長がKrF線の場合、通常1.0~50質量%が好ましく、2.0~30質量%がより好ましい。固形分濃度とは、組成物の総質量に対する、溶剤を除く他のレジスト成分の質量の質量百分率である。
<Preparation method>
The solid content concentration of the resist composition is generally preferably 1.0 to 10% by mass, more preferably 2.0 to 5.7% by mass, when the light source wavelength used in the exposure step is other than KrF rays. 0 to 5.3% by mass is more preferable. When the light source wavelength used in the exposure step is KrF rays, the content is generally preferably 1.0 to 50% by mass, more preferably 2.0 to 30% by mass. The solid content concentration is the mass percentage of the mass of other resist components excluding the solvent relative to the total mass of the composition.

なお、レジスト組成物から形成されるレジスト膜の膜厚としては、解像力向上の観点から、露光工程に用いられる光源波長がKrF線以外の場合、90nm以下が好ましく、85nm以下がより好ましく、露光工程に用いられる光源波長がKrF線の場合、1000nm以下が好ましく、800nm以下がより好ましい。レジスト組成物中の固形分濃度を適切な範囲に設定して適度な粘度をもたせ、塗布性又は製膜性を向上させることにより、このような膜厚とすることができる。 In addition, from the viewpoint of improving resolution, the thickness of the resist film formed from the resist composition is preferably 90 nm or less, more preferably 85 nm or less, when the light source wavelength used in the exposure step is other than KrF rays. When the light source wavelength used for is KrF rays, the wavelength is preferably 1000 nm or less, more preferably 800 nm or less. Such a film thickness can be obtained by setting the solid content concentration in the resist composition within an appropriate range to provide an appropriate viscosity, thereby improving coating properties or film-forming properties.

レジスト組成物は、上記の成分を所定の有機溶剤、好ましくは上記混合溶剤に溶解し、これをフィルター濾過した後、所定の支持体(基板)上に塗布して用いる。フィルター濾過に用いるフィルターのポアサイズは0.1μm以下が好ましく、0.05μm以下がより好ましく、0.03μm以下が更に好ましい。また、レジスト組成物の固形分濃度が高い場合(例えば、25質量%以上)は、フィルター濾過に用いるフィルターのポアサイズは3μm以下が好ましく、0.5μm以下がより好ましく、0.3μm以下が更に好ましい。このフィルターは、ポリテトラフロロエチレン製、ポリエチレン製、又はナイロン製のものが好ましい。フィルター濾過においては、例えば日本国特許出願公開第2002-62667号明細書(特開2002-62667)に開示されるように、循環的な濾過を行ってもよく、複数種類のフィルターを直列又は並列に接続して濾過を行ってもよい。また、レジスト組成物を複数回濾過してもよい。更に、フィルター濾過の前後で、レジスト組成物に対して脱気処理等を行ってもよい。 The resist composition is used by dissolving the above components in a given organic solvent, preferably in the above mixed solvent, filtering the solution through a filter, and coating it on a given support (substrate). The pore size of the filter used for filtration is preferably 0.1 µm or less, more preferably 0.05 µm or less, and even more preferably 0.03 µm or less. Further, when the resist composition has a high solid content concentration (for example, 25% by mass or more), the pore size of the filter used for filtering is preferably 3 μm or less, more preferably 0.5 μm or less, and even more preferably 0.3 μm or less. . The filter is preferably made of polytetrafluoroethylene, polyethylene, or nylon. In filter filtration, for example, as disclosed in Japanese Patent Application Publication No. 2002-62667 (JP 2002-62667), cyclic filtration may be performed, and multiple types of filters are connected in series or in parallel. Filtration may be performed by connecting to Also, the resist composition may be filtered multiple times. Furthermore, before and after filtering, the resist composition may be subjected to a degassing treatment or the like.

〔用途〕
本発明の製造方法により得られるレジスト組成物は、活性光線又は放射線の照射により反応して性質が変化するレジスト組成物に該当する。更に詳しくは、本発明の製造方法により得られるレジスト組成物は、IC(Integrated Circuit)等の半導体製造工程、液晶若しくはサーマルヘッド等の回路基板の製造、インプリント用モールド構造体の作製、その他のフォトファブリケーション工程、又は平版印刷版、若しくは酸硬化性組成物の製造に使用されるレジスト組成物に関する。
本発明において形成されるパターンは、エッチング工程、イオンインプランテーション工程、バンプ電極形成工程、再配線形成工程、及びMEMS(Micro Electro Mechanical Systems)等において使用できる。
[Use]
The resist composition obtained by the production method of the present invention corresponds to a resist composition that reacts with exposure to actinic rays or radiation to change its properties. More specifically, the resist composition obtained by the production method of the present invention can be used in semiconductor manufacturing processes such as IC (Integrated Circuit), manufacturing of circuit boards such as liquid crystal or thermal heads, manufacturing of imprint mold structures, and other processes. The present invention relates to a resist composition used in a photofabrication process, or in the production of a lithographic printing plate or an acid-curable composition.
The pattern formed in the present invention can be used in an etching process, an ion implantation process, a bump electrode forming process, a rewiring forming process, MEMS (Micro Electro Mechanical Systems), and the like.

〔パターン形成方法〕
以下、本発明のパターン形成方法について説明する。
本発明のパターン形成方法は、
(i)上述した本発明の製造方法により得られるレジスト組成物によって支持体上にレジスト膜(感活性光線性又は感放射線性膜)を形成する工程(レジスト膜形成工程)と、
(ii)上記レジスト膜を露光する(活性光線又は放射線を照射する)工程(露光工程)と、
(iii)上記露光されたレジスト膜を、現像液を用いて現像する工程(現像工程)と、
を有する。
[Pattern Forming Method]
The pattern forming method of the present invention will be described below.
The pattern forming method of the present invention comprises
(i) a step of forming a resist film (actinic ray-sensitive or radiation-sensitive film) on a support using the resist composition obtained by the production method of the present invention described above (resist film forming step);
(ii) a step of exposing the resist film (irradiating actinic rays or radiation) (exposure step);
(iii) a step of developing the exposed resist film using a developer (development step);
have

本発明のパターン形成方法は、上記(i)~(iii)の工程を含んでいれば特に制限されず、更に下記の工程を有していてもよい。
本発明のパターン形成方法は、(ii)露光工程における露光方法が、液浸露光であってもよい。
本発明のパターン形成方法は、(ii)露光工程の前に、(iv)前加熱(PB:PreBake)工程を含むことが好ましい。
本発明のパターン形成方法は、(ii)露光工程の後、かつ、(iii)現像工程の前に、(v)露光後加熱(PEB:Post Exposure Bake)工程を含むことが好ましい。
本発明のパターン形成方法は、(ii)露光工程を、複数回含んでいてもよい。
本発明のパターン形成方法は、(iv)前加熱工程を、複数回含んでいてもよい。
本発明のパターン形成方法は、(v)露光後加熱工程を、複数回含んでいてもよい。
The pattern forming method of the present invention is not particularly limited as long as it includes the above steps (i) to (iii), and may further include the following steps.
In the pattern forming method of the present invention, the exposure method in the (ii) exposure step may be liquid immersion exposure.
The pattern forming method of the present invention preferably includes (iv) a pre-heating (PB: PreBake) step before the (ii) exposure step.
The pattern forming method of the present invention preferably includes (v) a post exposure bake (PEB) step after (ii) the exposure step and (iii) before the development step.
The pattern forming method of the present invention may include (ii) the exposure step multiple times.
The pattern forming method of the present invention may include (iv) the preheating step multiple times.
The pattern forming method of the present invention may include (v) the post-exposure heating step multiple times.

本発明のパターン形成方法において、上述した(i)成膜工程、(ii)露光工程、及び(iii)現像工程は、一般的に知られている方法により行うことができる。
また、必要に応じて、レジスト膜と支持体との間にレジスト下層膜(例えば、SOG(Spin On Glass)、SOC(Spin On Carbon)、及び、反射防止膜)を形成してもよい。レジスト下層膜を構成する材料としては、公知の有機系又は無機系の材料を適宜用いることができる。
レジスト膜の上層に、保護膜(トップコート)を形成してもよい。保護膜としては、公知の材料を適宜用いることができる。例えば、米国特許出願公開第2007/0178407号明細書、米国特許出願公開第2008/0085466号明細書、米国特許出願公開第2007/0275326号明細書、米国特許出願公開第2016/0299432号明細書、米国特許出願公開第2013/0244438号明細書、国際特許出願公開第2016/157988A号明細書に開示された保護膜形成用組成物を好適に使用できる。保護膜形成用組成物としては、上述した酸拡散制御剤を含むものが好ましい。
上述した疎水性樹脂を含むレジスト膜の上層に保護膜を形成してもよい。
In the pattern forming method of the present invention, the above-described (i) film formation step, (ii) exposure step, and (iii) development step can be performed by generally known methods.
If necessary, a resist underlayer film (for example, SOG (Spin On Glass), SOC (Spin On Carbon), and antireflection film) may be formed between the resist film and the support. As a material constituting the resist underlayer film, a known organic or inorganic material can be appropriately used.
A protective film (top coat) may be formed on the resist film. A known material can be used as appropriate for the protective film. For example, US2007/0178407, US2008/0085466, US2007/0275326, US2016/0299432, The composition for forming a protective film disclosed in US Patent Application Publication No. 2013/0244438 and International Patent Application Publication No. 2016/157988A can be preferably used. As the composition for forming a protective film, a composition containing the acid diffusion control agent described above is preferable.
A protective film may be formed on the resist film containing the hydrophobic resin described above.

支持体は、特に制限されるものではなく、IC等の半導体の製造工程、又は液晶若しくはサーマルヘッド等の回路基板の製造工程のほか、その他のフォトファブリケーションのリソグラフィー工程等で一般的に用いられる基板を用いることができる。支持体の具体例としては、シリコン、SiO、及びSiN等の無機基板等が挙げられる。The support is not particularly limited, and is generally used in the manufacturing process of semiconductors such as ICs, the manufacturing process of circuit boards such as liquid crystals or thermal heads, and the lithography process of other photofabrications. A substrate can be used. Specific examples of the support include inorganic substrates such as silicon, SiO 2 , and SiN.

加熱温度は、(iv)前加熱工程及び(v)露光後加熱工程のいずれにおいても、70~130℃が好ましく、80~130℃がより好ましく、80~120℃が更に好ましい。
加熱時間は、(iv)前加熱工程及び(v)露光後加熱工程のいずれにおいても、30~300秒が好ましく、30~180秒がより好ましく、30~90秒が更に好ましい。
加熱は、露光装置及び現像装置に備わっている手段で行うことができ、ホットプレート等を用いて行ってもよい。
The heating temperature is preferably 70 to 130.degree. C., more preferably 80 to 130.degree. C., even more preferably 80 to 120.degree.
The heating time is preferably 30 to 300 seconds, more preferably 30 to 180 seconds, and even more preferably 30 to 90 seconds in both (iv) the preheating step and (v) the post-exposure heating step.
Heating can be performed by means provided in the exposure device and the development device, and may be performed using a hot plate or the like.

露光工程に用いられる光源波長に制限はないが、例えば、赤外光、可視光、紫外光、遠紫外光、極紫外光(EUV)、X線、及び電子線等が挙げられる。これらの中でも遠紫外光が好ましく、その波長は250nm以下が好ましく、220nm以下がより好ましく、1~200nmが更に好ましい。具体的には、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)、Fエキシマレーザー(157nm)、X線、EUV(13nm)、又は電子線等であり、KrFエキシマレーザー、ArFエキシマレーザー、EUV又は電子線が好ましい。The wavelength of the light source used in the exposure process is not limited, but examples thereof include infrared light, visible light, ultraviolet light, far ultraviolet light, extreme ultraviolet light (EUV), X-rays, and electron beams. Among these, far ultraviolet light is preferred, and its wavelength is preferably 250 nm or less, more preferably 220 nm or less, and still more preferably 1 to 200 nm. Specifically, KrF excimer laser (248 nm), ArF excimer laser (193 nm), F2 excimer laser (157 nm), X-ray, EUV (13 nm), electron beam, etc., KrF excimer laser, ArF excimer laser, EUV or electron beam are preferred.

(iii)現像工程においては、アルカリ現像液であっても、有機溶剤を含む現像液(以下、有機系現像液ともいう。)であってもよい。 (iii) In the developing step, an alkaline developer or a developer containing an organic solvent (hereinafter also referred to as an organic developer) may be used.

アルカリ現像液としては、通常、テトラメチルアンモニウムヒドロキシドに代表される4級アンモニウム塩が用いられるが、これ以外にも無機アルカリ、1~3級アミン、アルコールアミン、及び環状アミン等のアルカリ水溶液も使用可能である。
更に、上記アルカリ現像液は、アルコール類、及び/又は界面活性剤を適当量含んでいてもよい。アルカリ現像液のアルカリ濃度は、通常0.1~20質量%である。アルカリ現像液のpHは、通常10~15である。
アルカリ現像液を用いて現像を行う時間は、通常10~300秒である。
アルカリ現像液のアルカリ濃度、pH、及び現像時間は、形成するパターンに応じて、適宜調整できる。
As the alkaline developer, quaternary ammonium salts such as tetramethylammonium hydroxide are usually used, but in addition to this, alkaline aqueous solutions such as inorganic alkalis, primary to tertiary amines, alcohol amines, and cyclic amines are also used. Available.
Further, the alkaline developer may contain appropriate amounts of alcohols and/or surfactants. The alkali concentration of the alkali developer is usually 0.1 to 20 mass %. The pH of the alkaline developer is usually 10-15.
The time for developing with an alkaline developer is usually 10 to 300 seconds.
The alkali concentration, pH, and development time of the alkali developer can be appropriately adjusted according to the pattern to be formed.

有機系現像液は、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤、及び炭化水素系溶剤からなる群より選択される少なくとも1種の有機溶剤を含む現像液であるのが好ましい。 The organic developer is a developer containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, amide solvents, ether solvents, and hydrocarbon solvents. is preferred.

ケトン系溶剤としては、例えば、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、アセトン、2-ヘプタノン(メチルアミルケトン)、4-ヘプタノン、1-ヘキサノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、及びプロピレンカーボネート等が挙げられる。 Ketone solvents include, for example, 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, acetone, 2-heptanone (methyl amyl ketone), 4-heptanone, 1-hexanone, 2-hexanone, diisobutyl ketone, Cyclohexanone, methylcyclohexanone, phenylacetone, methylethylketone, methylisobutylketone, acetylacetone, acetonylacetone, ionone, diacetonyl alcohol, acetylcarbinol, acetophenone, methylnaphthylketone, isophorone, and propylene carbonate.

エステル系溶剤としては、例えば、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸ペンチル、酢酸イソペンチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル、ブタン酸ブチル、2-ヒドロキシイソ酪酸メチル、酢酸イソアミル、イソ酪酸イソブチル、及びプロピオン酸ブチル等が挙げられる。 Examples of ester solvents include methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, pentyl acetate, isopentyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, and diethylene glycol monoethyl. ether acetate, ethyl-3-ethoxypropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl formate, ethyl formate, butyl formate, propyl formate, ethyl lactate, butyl lactate, propyl lactate, butane butyl acid, methyl 2-hydroxyisobutyrate, isoamyl acetate, isobutyl isobutyrate, butyl propionate and the like.

アルコール系溶剤、アミド系溶剤、エーテル系溶剤、及び炭化水素系溶剤としては、米国特許出願公開2016/0070167A1号明細書の段落[0715]~[0718]に開示された溶剤を使用できる。 As alcohol-based solvents, amide-based solvents, ether-based solvents, and hydrocarbon-based solvents, the solvents disclosed in paragraphs [0715] to [0718] of US Patent Application Publication No. 2016/0070167A1 can be used.

上記の溶剤は、複数混合してもよいし、上記以外の溶剤又は水と混合してもよい。現像液全体としての含水率は、50質量%未満が好ましく、20質量%未満がより好ましく、10質量%未満が更に好ましく、0~5質量%未満が最も好ましく、実質的に水分を含まないことが特に好ましい。
有機系現像液に対する有機溶剤の含有量は、現像液の全量に対して、50~100質量%が好ましく、80~100質量%がより好ましく、90~100質量%が更に好ましく、95~100質量%が特に好ましい。
A plurality of the above solvents may be mixed, or may be mixed with a solvent other than the above or water. The water content of the developer as a whole is preferably less than 50% by mass, more preferably less than 20% by mass, even more preferably less than 10% by mass, most preferably less than 0 to 5% by mass, and substantially free of water. is particularly preferred.
The content of the organic solvent in the organic developer is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, and 95 to 100% by mass, relative to the total amount of the developer. % is particularly preferred.

有機系現像液は、必要に応じて公知の界面活性剤を適当量含んでいてもよい。 The organic developer may contain an appropriate amount of a known surfactant as required.

界面活性剤の含有量は現像液の全量に対して、通常0.001~5質量%であり、0.005~2質量%が好ましく、0.01~0.5質量%がより好ましい。 The content of the surfactant is usually 0.001 to 5% by mass, preferably 0.005 to 2% by mass, more preferably 0.01 to 0.5% by mass, relative to the total amount of the developer.

有機系現像液は、上述した酸拡散制御剤を含んでいてもよい。 The organic developer may contain the acid diffusion control agent described above.

現像方法としては、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、又は一定速度で回転している基板上に一定速度で現像液吐出ノズルをスキャンしながら現像液を吐出しつづける方法(ダイナミックディスペンス法)等が挙げられる。 Examples of the developing method include a method of immersing the substrate in a tank filled with a developer for a certain period of time (dip method), a method of raising the developer on the surface of the substrate by surface tension and resting the substrate for a certain period of time (paddle method), and a substrate. A method of spraying the developer onto the surface (spray method), or a method of continuously discharging the developer while scanning the developer discharge nozzle at a constant speed onto the substrate rotating at a constant speed (dynamic dispensing method). be done.

アルカリ水溶液を用いて現像を行う工程(アルカリ現像工程)、及び有機溶剤を含む現像液を用いて現像する工程(有機溶剤現像工程)を組み合わせてもよい。これにより、中間的な露光強度の領域のみを溶解させずにパターン形成が行えるので、より微細なパターンを形成できる。 A step of developing using an alkaline aqueous solution (alkali developing step) and a step of developing using a developer containing an organic solvent (organic solvent developing step) may be combined. As a result, the pattern can be formed without dissolving only the intermediate exposure intensity region, so that a finer pattern can be formed.

(iii)現像工程の後に、リンス液を用いて洗浄する工程(リンス工程)を含むことが好ましい。 (iii) It is preferable to include a step of washing with a rinse solution (rinse step) after the development step.

アルカリ現像液を用いた現像工程の後のリンス工程に用いるリンス液は、例えば純水を使用できる。純水は、界面活性剤を適当量含んでいてもよい。この場合、現像工程又はリンス工程の後に、パターン上に付着している現像液又はリンス液を超臨界流体により除去する処理を追加してもよい。更に、リンス処理又は超臨界流体による処理の後、パターン中に残存する水分を除去するために加熱処理を行ってもよい。 Pure water, for example, can be used as the rinsing solution used in the rinsing step after the developing step using the alkaline developer. The pure water may contain an appropriate amount of surfactant. In this case, after the developing process or the rinsing process, a process of removing the developing solution or rinsing solution adhering to the pattern with a supercritical fluid may be added. Further, after rinsing or supercritical fluid treatment, heat treatment may be performed to remove moisture remaining in the pattern.

有機溶剤を含む現像液を用いた現像工程の後のリンス工程に用いるリンス液は、パターンを溶解しないものであれば特に制限はなく、一般的な有機溶剤を含む溶液を使用できる。リンス液としては、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、及びエーテル系溶剤からなる群より選択される少なくとも1種の有機溶剤を含むリンス液を用いることが好ましい。
炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、及びエーテル系溶剤の具体例としては、有機溶剤を含む現像液において説明したものと同様のものが挙げられる。
この場合のリンス工程に用いるリンス液としては、1価アルコールを含むリンス液がより好ましい。
The rinsing liquid used in the rinsing step after the development step using the developer containing an organic solvent is not particularly limited as long as it does not dissolve the pattern, and a common solution containing an organic solvent can be used. A rinse solution containing at least one organic solvent selected from the group consisting of hydrocarbon-based solvents, ketone-based solvents, ester-based solvents, alcohol-based solvents, amide-based solvents, and ether-based solvents is used as the rinse solution. is preferred.
Specific examples of the hydrocarbon-based solvent, ketone-based solvent, ester-based solvent, alcohol-based solvent, amide-based solvent, and ether-based solvent are the same as those described for the developer containing an organic solvent.
As the rinse solution used in the rinse step in this case, a rinse solution containing a monohydric alcohol is more preferable.

リンス工程で用いられる1価アルコールとしては、直鎖状、分岐鎖状、又は環状の1価アルコールが挙げられる。具体的には、1-ブタノール、2-ブタノール、3-メチル-1-ブタノール、tert―ブチルアルコール、1-ペンタノール、2-ペンタノール、1-ヘキサノール、4-メチル-2-ペンタノール、1-ヘプタノール、1-オクタノール、2-ヘキサノール、シクロペンタノール、2-ヘプタノール、2-オクタノール、3-ヘキサノール、3-ヘプタノール、3-オクタノール、4-オクタノール、及びメチルイソブチルカルビノールが挙げられる。炭素数5以上の1価アルコールとしては、1-ヘキサノール、2-ヘキサノール、4-メチル-2-ペンタノール、1-ペンタノール、3-メチル-1-ブタノール、及びメチルイソブチルカルビノール等が挙げられる。 Monohydric alcohols used in the rinse step include linear, branched, or cyclic monohydric alcohols. Specifically, 1-butanol, 2-butanol, 3-methyl-1-butanol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 1-hexanol, 4-methyl-2-pentanol, 1 -heptanol, 1-octanol, 2-hexanol, cyclopentanol, 2-heptanol, 2-octanol, 3-hexanol, 3-heptanol, 3-octanol, 4-octanol, and methylisobutylcarbinol. Examples of monohydric alcohols having 5 or more carbon atoms include 1-hexanol, 2-hexanol, 4-methyl-2-pentanol, 1-pentanol, 3-methyl-1-butanol, and methylisobutylcarbinol. .

各成分は、複数混合してもよいし、上記以外の有機溶剤と混合して使用してもよい。
リンス液中の含水率は、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましい。含水率を10質量%以下とすることで、良好な現像特性が得られる。
A plurality of each component may be mixed, or may be used by mixing with an organic solvent other than the above.
The water content in the rinse liquid is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 3% by mass or less. By setting the water content to 10% by mass or less, good developing properties can be obtained.

リンス液は、界面活性剤を適当量含んでいてもよい。
リンス工程においては、有機系現像液を用いる現像を行った基板を、有機溶剤を含むリンス液を用いて洗浄処理する。洗浄処理の方法は特に制限されないが、例えば、一定速度で回転している基板上にリンス液を吐出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、又は基板表面にリンス液を噴霧する方法(スプレー法)等が挙げられる。中でも、回転塗布法で洗浄処理を行い、洗浄後に基板を2,000~4,000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。また、リンス工程の後に加熱工程(Post Bake)を含むことも好ましい。この加熱工程によりパターン間及びパターン内部に残留した現像液及びリンス液が除去される。リンス工程の後の加熱工程において、加熱温度は通常40~160℃であり、70~95℃が好ましく、加熱時間は通常10秒~3分であり、30秒~90秒が好ましい。
The rinse liquid may contain an appropriate amount of surfactant.
In the rinsing step, the substrate developed with the organic developer is washed with a rinsing solution containing an organic solvent. The method of the cleaning treatment is not particularly limited, but for example, a method of continuously discharging the rinse solution onto the substrate rotating at a constant speed (rotation coating method), or a method of immersing the substrate in a tank filled with the rinse solution for a certain period of time. method (dip method), or a method of spraying a rinse liquid onto the substrate surface (spray method). Among them, it is preferable that the cleaning treatment is performed by a spin coating method, and after cleaning, the substrate is rotated at a rotation speed of 2,000 to 4,000 rpm to remove the rinse solution from the substrate. It is also preferable to include a heating step (Post Bake) after the rinsing step. This heating process removes the developer and rinse remaining between the patterns and inside the patterns. In the heating step after the rinsing step, the heating temperature is usually 40 to 160°C, preferably 70 to 95°C, and the heating time is usually 10 seconds to 3 minutes, preferably 30 seconds to 90 seconds.

本発明の製造方法により得られるレジスト組成物、及び、本発明のパターン形成方法において使用される各種材料(例えば、現像液、リンス液、反射防止膜形成用組成物、又はトップコート形成用組成物等)は、金属成分、異性体、及び残存モノマー等の不純物を含まないことが好ましい。上記の各種材料に含まれるこれらの不純物の含有量としては、1ppm以下が好ましく、100ppt以下がより好ましく、10ppt以下が更に好ましく、実質的に含まないこと(測定装置の検出限界以下であること)が特に好ましい。 The resist composition obtained by the production method of the present invention, and various materials used in the pattern forming method of the present invention (e.g., developer, rinse, antireflection film-forming composition, or topcoat-forming composition) etc.) preferably does not contain impurities such as metal components, isomers, and residual monomers. The content of these impurities contained in the above various materials is preferably 1 ppm or less, more preferably 100 ppt or less, still more preferably 10 ppt or less, and substantially free (below the detection limit of the measuring device). is particularly preferred.

上記各種材料から金属等の不純物を除去する方法としては、例えば、フィルターを用いた濾過が挙げられる。フィルター孔径としては、ポアサイズ10nm以下が好ましく、5nm以下がより好ましく、3nm以下が更に好ましい。フィルターの材質としては、ポリテトラフロロエチレン製、ポリエチレン製、又はナイロン製のフィルターが好ましい。フィルターは、有機溶剤であらかじめ洗浄したものを用いてもよい。フィルター濾過工程では、複数種類のフィルターを直列又は並列に接続して用いてもよい。複数種類のフィルターを使用する場合は、孔径及び/又は材質が異なるフィルターを組み合わせて使用してもよい。また、各種材料を複数回濾過してもよく、複数回濾過する工程が循環濾過工程であってもよい。フィルターとしては、日本国特許出願公開第2016-201426号明細書(特開2016-201426)に開示されるような溶出物が低減されたものが好ましい。
フィルター濾過のほか、吸着材による不純物の除去を行ってもよく、フィルター濾過と吸着材を組み合わせて使用してもよい。吸着材としては、公知の吸着材を用いることができ、例えば、シリカゲル若しくはゼオライト等の無機系吸着材、又は活性炭等の有機系吸着材を使用できる。金属吸着剤としては、例えば、日本国特許出願公開第2016-206500号明細書(特開2016-206500)に開示されるものが挙げられる。
また、上記各種材料に含まれる金属等の不純物を低減する方法としては、各種材料を構成する原料として金属含有量が少ない原料を選択する、各種材料を構成する原料に対してフィルター濾過を行う、又は装置内をテフロン(登録商標)でライニングする等してコンタミネーションを可能な限り抑制した条件下で蒸留を行う等の方法が挙げられる。レジスト成分の各種材料(樹脂及び光酸発生剤等)を合成する製造設備の全工程にグラスライニングの処理を施すことも、pptオーダーまで金属等の不純物を低減するために好ましい。各種材料を構成する原料に対して行うフィルター濾過における好ましい条件は、上記した条件と同様である。
As a method for removing impurities such as metals from the above various materials, for example, filtration using a filter can be mentioned. The pore size of the filter is preferably 10 nm or less, more preferably 5 nm or less, and even more preferably 3 nm or less. As the material of the filter, a filter made of polytetrafluoroethylene, polyethylene, or nylon is preferable. A filter that has been pre-washed with an organic solvent may be used. In the filter filtration step, multiple types of filters may be connected in series or in parallel for use. When multiple types of filters are used, filters with different pore sizes and/or materials may be used in combination. Further, various materials may be filtered multiple times, and the process of filtering multiple times may be a circulation filtration process. As the filter, those with reduced extractables as disclosed in Japanese Patent Application Publication No. 2016-201426 (JP 2016-201426) are preferable.
In addition to filter filtration, impurities may be removed using an adsorbent, or a combination of filter filtration and adsorbent may be used. As the adsorbent, a known adsorbent can be used. For example, an inorganic adsorbent such as silica gel or zeolite, or an organic adsorbent such as activated carbon can be used. Examples of metal adsorbents include those disclosed in Japanese Patent Application Publication No. 2016-206500 (JP 2016-206500).
In addition, as a method for reducing impurities such as metals contained in the various materials, selecting raw materials with a low metal content as raw materials constituting various materials, performing filter filtration on raw materials constituting various materials, Alternatively, distillation may be performed under conditions in which contamination is suppressed as much as possible by, for example, lining the inside of the apparatus with Teflon (registered trademark). It is also preferable to apply a glass lining treatment to all the processes of manufacturing equipment for synthesizing various materials (resins, photoacid generators, etc.) for resist components, in order to reduce impurities such as metals to the ppt order. Preferable conditions for filter filtration for raw materials constituting various materials are the same as those described above.

上記の各種材料は、不純物の混入を防止するために、米国特許出願公開第2015/0227049号明細書、日本国特許出願公開第2015-123351号明細書(特開2015-123351)、日本国特許出願公開第2017-13804号明細書(特開2017-13804)等に記載された容器に保存されることが好ましい。 In order to prevent contamination of impurities, the above various materials are described in US Patent Application Publication No. 2015/0227049, Japanese Patent Application Publication No. 2015-123351 (JP 2015-123351), Japanese Patent It is preferably stored in a container described in Published Application No. 2017-13804 (Japanese Patent Application Laid-Open No. 2017-13804).

本発明のパターン形成方法により形成されるパターンに、パターンの表面荒れを改善する方法を適用してもよい。パターンの表面荒れを改善する方法としては、例えば、米国特許出願公開第2015/0104957号明細書に開示された、水素を含むガスのプラズマによってパターンを処理する方法が挙げられる。その他にも、日本国特許出願公開第2004-235468号明細書(特開2004-235468)、米国特許出願公開第2010/0020297号明細書、Proc. of SPIE Vol.8328 83280N-1“EUV Resist Curing Technique for LWR Reduction and Etch Selectivity Enhancement”に記載されるような公知の方法を適用してもよい。
また、上記の方法によって形成されたパターンは、例えば日本国特許出願公開第1991-270227号明細書(特開平3-270227)及び米国特許出願公開第2013/0209941号明細書に開示されたスペーサープロセスの芯材(Core)として使用できる。
A method for improving surface roughness of the pattern may be applied to the pattern formed by the pattern forming method of the present invention. As a method of improving the surface roughness of the pattern, for example, there is a method of processing the pattern with hydrogen-containing gas plasma disclosed in US Patent Application Publication No. 2015/0104957. In addition, Japanese Patent Application Publication No. 2004-235468 (Japanese Patent Application Publication No. 2004-235468), US Patent Application Publication No. 2010/0020297, Proc. of SPIE Vol. 8328 83280N-1 “EUV Resist Curing Technique for LWR Reduction and Etch Selectivity Enhancement” may be applied.
In addition, the pattern formed by the above method is, for example, the spacer process disclosed in Japanese Patent Application Publication No. 1991-270227 (JP-A-3-270227) and US Patent Application Publication No. 2013/0209941. can be used as a core of

〔電子デバイスの製造方法〕
また、本発明は、上記したパターン形成方法を含む、電子デバイスの製造方法にも関する。本発明の電子デバイスの製造方法により製造された電子デバイスは、電気電子機器(例えば、家電、OA(Office Automation)関連機器、メディア関連機器、光学用機器、及び通信機器等)に、好適に搭載される。
[Method for producing electronic device]
The present invention also relates to a method of manufacturing an electronic device, including the pattern forming method described above. The electronic device manufactured by the method for manufacturing an electronic device of the present invention is suitably mounted in electrical and electronic equipment (for example, home appliances, OA (Office Automation) related equipment, media related equipment, optical equipment, communication equipment, etc.). be done.

以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 The present invention will be described in more detail below based on examples. Materials, usage amounts, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed to be limited by the examples shown below.

[樹脂(P-AP1)~(P-AP6)、樹脂(P-AN1)~(P-AN6)、及び樹脂(P-KP1)~(P-KP6)の合成、並びに、ポリマー溶液(P-AP1-0)~(P-AP1-6)、ポリマー溶液(P-AN1-0)~(P-AN1-6)、及びポリマー溶液(P-KP1-0)~(P-KP1-6)の調製]
〔樹脂(P-AP1)の合成及びポリマー溶液(P-AP1-0)の調製〕
窒素気流下、プロピレングリコールモノメチルエーテルアセテート、及びプロピレングリコールモノメチルエーテルの混合溶剤をフラスコに入れ、これを80℃に加熱した(溶剤1)。次に、以下に示す樹脂P-AP1の各繰り返し単位に対応するモノマーをそれぞれモル比40/60の割合でプロピレングリコールモノメチルエーテルアセテート及びプロピレングリコールモノメチルエーテルの6/4(質量比)の混合溶剤に溶解し、モノマー溶液を調製した。更に、重合開始剤V-601(和光純薬工業製)を加え、溶解させた溶液を、上記溶剤1に対して6時間かけて滴下した。滴下終了後、更に80℃で2時間反応させた。反応液を放冷後ヘキサン/酢酸エチルに注ぎ、析出した粉体をろ取、乾燥すると、樹脂(P-AP1)が得られた。得られた樹脂(P-AP1)の重量平均分子量は、8,000、分散度(Mw/Mn)は、1.5であった。さらに樹脂(P-AP1)をプロピレングリコールモノメチルエーテルアセテートに溶解し、15質量%のポリマー溶液(P-AP1-0)を得た。
[Synthesis of resins (P-AP1) to (P-AP6), resins (P-AN1) to (P-AN6), and resins (P-KP1) to (P-KP6), and polymer solution (P- AP1-0) ~ (P-AP1-6), polymer solutions (P-AN1-0) ~ (P-AN1-6), and polymer solutions (P-KP1-0) ~ (P-KP1-6) Preparation]
[Synthesis of resin (P-AP1) and preparation of polymer solution (P-AP1-0)]
A mixed solvent of propylene glycol monomethyl ether acetate and propylene glycol monomethyl ether was placed in a flask under a nitrogen stream and heated to 80° C. (solvent 1). Next, a monomer corresponding to each repeating unit of resin P-AP1 shown below was added to a mixed solvent of 6/4 (mass ratio) of propylene glycol monomethyl ether acetate and propylene glycol monomethyl ether at a molar ratio of 40/60. dissolved to prepare a monomer solution. Further, a polymerization initiator V-601 (manufactured by Wako Pure Chemical Industries) was added, and the dissolved solution was added dropwise to the above solvent 1 over 6 hours. After completion of the dropwise addition, the mixture was further reacted at 80° C. for 2 hours. The reaction mixture was allowed to cool, poured into hexane/ethyl acetate, and the precipitated powder was collected by filtration and dried to obtain a resin (P-AP1). The obtained resin (P-AP1) had a weight average molecular weight of 8,000 and a dispersity (Mw/Mn) of 1.5. Furthermore, the resin (P-AP1) was dissolved in propylene glycol monomethyl ether acetate to obtain a 15 mass % polymer solution (P-AP1-0).

Figure 0007301123000031
Figure 0007301123000031

〔樹脂(P-AP2)~(P-AP6)、樹脂(P-AN1)~(P-AN6)、及び樹脂(P-KP1)~(P-KP6)の合成、並びに、ポリマー溶液(P-AP2-0)~(P-AP6-0)、ポリマー溶液(P-AN1-0)~(P-AN6-0)、及びポリマー溶液(P-KP1-0)~(P-KP6-0)の調製〕
上述した〔樹脂(P-AP1)の合成及びポリマー溶液(P-AP1-0)の調製〕に記載の方法に準じて、表1に示す樹脂(P-AP2)~(P-AP6)、樹脂(P-AN1)~(P-AN6)、及び樹脂(P-KP1)~(P-KP6)を合成した。また、得られた各樹脂と表1に記載の溶剤とを表1に記載の固形分濃度となるように混合することで、ポリマー溶液(P-AP2-0)~(P-AP6-0)、ポリマー溶液(P-AN1-0)~(P-AN6-0)、及びポリマー溶液(P-KP1-0)~(P-KP6-0)を調製した。
以下に、樹脂(P-AP2)~(P-KP6)の構造を示す。また、表1に、樹脂(P-AP2)~(P-KP6)の重量平均分子量(Mw)、及び分散度を示す。なお、以下に示す樹脂(P-AP2)~(P-KP6)の各構造において、各繰り返し単位の組成比は、モル比を意図する。
[Synthesis of resins (P-AP2) to (P-AP6), resins (P-AN1) to (P-AN6), and resins (P-KP1) to (P-KP6), and polymer solution (P- AP2-0) ~ (P-AP6-0), polymer solutions (P-AN1-0) ~ (P-AN6-0), and polymer solutions (P-KP1-0) ~ (P-KP6-0) Preparation]
Resins (P-AP2) to (P-AP6) shown in Table 1, resin (P-AN1) to (P-AN6) and resins (P-KP1) to (P-KP6) were synthesized. Further, by mixing each resin obtained and the solvent described in Table 1 so that the solid content concentration described in Table 1 is obtained, polymer solutions (P-AP2-0) to (P-AP6-0) , polymer solutions (P-AN1-0) to (P-AN6-0), and polymer solutions (P-KP1-0) to (P-KP6-0) were prepared.
Structures of resins (P-AP2) to (P-KP6) are shown below. Table 1 also shows the weight average molecular weights (Mw) and dispersities of the resins (P-AP2) to (P-KP6). In each structure of resins (P-AP2) to (P-KP6) shown below, the composition ratio of each repeating unit is meant to be a molar ratio.

Figure 0007301123000032
Figure 0007301123000032

Figure 0007301123000033
Figure 0007301123000033

Figure 0007301123000034
Figure 0007301123000034

Figure 0007301123000035
Figure 0007301123000035

[レジスト組成物の調製]
〔工程A(ポリマー溶液のろ過工程)〕
得られたポリマー溶液(P-AP1-0)~(P-KP6-0)に対して、以下に示す手順により、工程A(ポリマー溶液のろ過工程)を実施し、ポリマー溶液(P-AP1-1)~(P-KP6-1)を得た。
[Preparation of resist composition]
[Step A (filtering step of polymer solution)]
The resulting polymer solutions (P-AP1-0) to (P-KP6-0) are subjected to step A (polymer solution filtration step) according to the procedure shown below to obtain a polymer solution (P-AP1- 1) ~ (P-KP6-1) were obtained.

<精製例1:ポリマー溶液(P-AP1-1)の調製>
まず、ナイロン膜の第一のフィルタ(Pall製ウルチプリーツ・P-ナイロン、孔径0.02μm)からなるろ過設備を準備した。
次いで、調製したポリマー溶液(P-AP1-0)を、22℃の環境下、線速度132L/(hr・m)の条件にて、第一のフィルタに通液させることで、ポリマー溶液(P-AP1-1)を得た。なお、精製例1は、工程Aが上述した工程Xを1回含む形態に該当する。
<Purification Example 1: Preparation of polymer solution (P-AP1-1)>
First, a filtration facility comprising a first nylon membrane filter (Pall Ultipleated P-nylon, pore size 0.02 μm) was prepared.
Next, the prepared polymer solution (P-AP1-0) is passed through the first filter under the conditions of a linear velocity of 132 L/(hr·m 2 ) in an environment of 22° C. to obtain a polymer solution ( P-AP1-1) was obtained. Purification Example 1 corresponds to a form in which the step A includes the above-described step X once.

<精製例2:ポリマー溶液(P-AP1-2)の調製>
まず、ナイロン膜の第一のフィルタ(Pall製ウルチプリーツ・P-ナイロン、孔径0.02μm)と、ポリエチレン膜の第二のフィルタ(Entegris製 Microgard Plus、孔径0.005μm)とを、直列に繋いだろ過設備を準備した。
次いで、調製したポリマー溶液(P-AP1-0)を、22℃の環境下、線速度132L/(hr・m)の条件にて、第一のフィルタから第二のフィルタの順に通液させることで、ポリマー溶液(P-AP1-2)を得た。なお、精製例2は、工程Aが上述した工程Xを2回以上含む形態に該当し、具体的には上述した工程(2)に該当する。第一のフィルタは、上述したフィルタX1に該当し、第二のフィルタは、上述したフィルタX2に該当する。
<Purification Example 2: Preparation of polymer solution (P-AP1-2)>
First, a first nylon membrane filter (Pall Ultipleated P-nylon, pore size 0.02 μm) and a polyethylene membrane second filter (Entegris Microgard Plus, pore size 0.005 μm) were connected in series. Prepare the filtration equipment.
Next, the prepared polymer solution (P-AP1-0) is passed through the first and second filters in order under the conditions of a linear velocity of 132 L/(hr·m 2 ) in an environment of 22°C. Thus, a polymer solution (P-AP1-2) was obtained. Purification Example 2 corresponds to a form in which the step A includes the above-described step X two or more times, and specifically corresponds to the above-described step (2). The first filter corresponds to the filter X1 described above, and the second filter corresponds to the filter X2 described above.

<精製例3:ポリマー溶液(P-AP1-3)の調製>
まず、ナイロン膜の第一のフィルタ(Pall製ウルチプリーツ・P-ナイロン、孔径0.02μm)と、ポリエチレン膜の第二のフィルタ(Entegris製Microgard Plus、孔径0.005μm)とを、直列に繋いだろ過設備を準備した。
次いで、調製したポリマー溶液(P-AP1-0)を、22℃の環境下、線速度132L/(hr・m)の条件にて、第一のフィルタから第二のフィルタの順で5回通液を繰り返すことで、ポリマー溶液(P-AP1-3)を得た。なお、精製例3は、工程Aが上述した工程Xを2回以上含む形態に該当し、具体的には上述した工程(2)に該当する。第一のフィルタは、上述したフィルタX1に該当し、第二のフィルタは、上述したフィルタX2に該当する。
<Purification Example 3: Preparation of polymer solution (P-AP1-3)>
First, a first nylon membrane filter (Pall Ultipleated P-nylon, pore size 0.02 μm) and a polyethylene membrane second filter (Entegris Microgard Plus, pore size 0.005 μm) were connected in series. Prepare the filtration equipment.
Next, the prepared polymer solution (P-AP1-0) was applied to the first filter to the second filter five times in that order under the conditions of 22° C. and a linear velocity of 132 L/(hr·m 2 ). By repeating the liquid passage, a polymer solution (P-AP1-3) was obtained. Purification Example 3 corresponds to a form in which the step A includes the above-described step X two or more times, and specifically corresponds to the above-described step (2). The first filter corresponds to the filter X1 described above, and the second filter corresponds to the filter X2 described above.

<精製例4~21>
使用するポリマー溶液、フィルタ、線速度、及び温度以外は同様の方法により、表2に示すポリマー溶液((P-AP1-4)~(P-KP6-1))を得た。
なお、表2中、精製例4の「PTFE」は、ポリテトラフルオロエチレンを意図する。具体的には、Entegris製の「TorrentoX」である。
<Purification Examples 4 to 21>
Polymer solutions ((P-AP1-4) to (P-KP6-1)) shown in Table 2 were obtained in the same manner except for the polymer solution used, filter, linear velocity and temperature.
In Table 2, "PTFE" in Purification Example 4 means polytetrafluoroethylene. Specifically, it is “TorrentoX” manufactured by Entegris.

Figure 0007301123000036
Figure 0007301123000036

〔ポリマー溶液中の特定金属原子の含有量の測定〕
上述した〔工程A(ポリマー溶液のろ過工程)〕で得られたポリマー溶液(P-AP1-0)~(P-KP6-1)、並びに、上述した〔工程A(ポリマー溶液のろ過工程)〕を実施していないポリマー溶液(P-AP1-0)、(P-AP2-0)、及び(P-AP3-0)について、溶液中の特定金属原子の合計含有量(質量ppb)を測定した。
具体的には、アジレントテクノロジー社製のICP-MS、Agilent-7500csを用いて、Na、K、Ca、Fe、Cu、Mg、Mn、Al、Li、Cr、Ni、Sn、Zn、Ag、As、Au、Ba、Cd、Co、Pb、V、W、Zr、及びMoの各金属原子の合計含有量を測定し、得られた数値から、溶液の全質量に対する特定金属原子の含有量(質量ppb)を求めた。測定結果を表3に示す。
[Measurement of specific metal atom content in polymer solution]
Polymer solutions (P-AP1-0) to (P-KP6-1) obtained in [Step A (filtering step of polymer solution)] described above, and [Step A (filtering step of polymer solution)] described above For the polymer solutions (P-AP1-0), (P-AP2-0), and (P-AP3-0) in which the .
Specifically, using ICP-MS, Agilent-7500cs manufactured by Agilent Technologies, Na, K, Ca, Fe, Cu, Mg, Mn, Al, Li, Cr, Ni, Sn, Zn, Ag, As , Au, Ba, Cd, Co, Pb, V, W, Zr, and Mo. ppb) were obtained. Table 3 shows the measurement results.

Figure 0007301123000037
Figure 0007301123000037

表3の結果から、酸分解性樹脂がカーボネート構造及びスルトン構造の1種以上を含む場合、工程Aにおける特定金属不純物の低減効果がより優れていることが明らかである。 From the results in Table 3, it is clear that when the acid-decomposable resin contains one or more of a carbonate structure and a sultone structure, the effect of reducing specific metal impurities in step A is superior.

〔工程B(レジスト組成物の調製)〕
<レジスト組成物R-1~R-21、RC-1~RC-3の調製>
まず、ナイロン膜の第一のフィルタ(孔径;0.01μm)と、ポリエチレン膜の第二のフィルタ(孔径;0.002μm)と、ポリエチレン膜の第三のフィルタ(孔径;0.002μm)とをこの順に直列に繋いだろ過設備を準備した。
次いで、下記表4に示す配合で各成分を混合し、得られた混合液を上記ろ過設備に通液させることで、表4に示す全固形分濃度のレジスト組成物(R-1~R-21、RC-1~RC-3)を得た。
[Step B (preparation of resist composition)]
<Preparation of resist compositions R-1 to R-21 and RC-1 to RC-3>
First, a nylon membrane first filter (pore size: 0.01 μm), a polyethylene membrane second filter (pore size: 0.002 μm), and a polyethylene membrane third filter (pore size: 0.002 μm) were separated. Filtration facilities connected in series in this order were prepared.
Next, each component was mixed according to the formulation shown in Table 4 below, and the resulting mixed solution was passed through the filtration equipment to obtain a resist composition (R-1 to R- 21, RC-1 to RC-3).

Figure 0007301123000038
Figure 0007301123000038

以下に表4で使用される各成分の構造を示す。 The structure of each component used in Table 4 is shown below.

(光酸発生剤)

Figure 0007301123000039
(Photoacid generator)
Figure 0007301123000039

(塩基性化合物)

Figure 0007301123000040
(basic compound)
Figure 0007301123000040

(添加剤)

Figure 0007301123000041
(Additive)
Figure 0007301123000041

A-3: メガファックR-41(DIC株製)(フッ素系) A-3: Megafac R-41 (manufactured by DIC Corporation) (fluorine-based)

(溶剤)
SL-1: プロピレングリコールモノメチルエーテルアセテート(PGMEA)
SL-2: プロピレングリコールモノメチルエーテル(PGME)
SL-3:γ-BL(GBL)
SL-4:シクロヘキサノン
(solvent)
SL-1: Propylene glycol monomethyl ether acetate (PGMEA)
SL-2: Propylene glycol monomethyl ether (PGME)
SL-3: γ-BL (GBL)
SL-4: Cyclohexanone

[パターン形成(ArF露光、ポジ現像)及び評価]
〔実施例AP-1~AP-9、比較例AP-1〕
シリコンウエハー上に有機反射防止膜形成用組成物ARC29SR(日産化学社製)を塗布し、205℃で、60秒間ベークを行い、膜厚95nmの反射防止膜を形成した。その上にレジスト組成物R-1~R-9及びRC-1を各々塗布し、90℃で、60秒間ベークを行い、膜厚85nmのレジスト膜を形成した。得られたウェハをArFエキシマレーザー液浸スキャナー(ASML社製 XT1700i、NA1.20、Dipole、アウターシグマ0.981、インナーシグマ0.895、Y偏向)を用い、6%透過率のハーフトーン露光マスク(ライン/スペース=1/1)を介して、パターン露光を行った。液浸液としては純水を使用した。その後100℃で、60秒間加熱した後、テトラメチルアンモニウム水溶液(2.38質量%)で30秒間パドルして現像(ポジ型現像)することにより、ピッチ130nm、線幅65nmのパターンを得た。得られたレジストパターン上の欠陥を、AMAT社製のUvision5で欠陥検査し、ブリッジ欠陥の個数(個/cm)を計測した。結果を表5に示す。
[Pattern formation (ArF exposure, positive development) and evaluation]
[Examples AP-1 to AP-9, Comparative Example AP-1]
An organic antireflection film-forming composition ARC29SR (manufactured by Nissan Chemical Industries, Ltd.) was applied onto a silicon wafer and baked at 205° C. for 60 seconds to form an antireflection film with a thickness of 95 nm. Each of resist compositions R-1 to R-9 and RC-1 was applied thereon and baked at 90° C. for 60 seconds to form a resist film having a thickness of 85 nm. Using an ArF excimer laser immersion scanner (manufactured by ASML, XT1700i, NA 1.20, Dipole, outer sigma 0.981, inner sigma 0.895, Y deflection), the obtained wafer was a halftone exposure mask with a transmittance of 6%. Pattern exposure was performed via (line/space=1/1). Pure water was used as the immersion liquid. Then, after heating at 100° C. for 60 seconds, a pattern with a pitch of 130 nm and a line width of 65 nm was obtained by puddle development (positive development) with an aqueous tetramethylammonium solution (2.38 mass %) for 30 seconds. Defects on the obtained resist pattern were inspected by Uvision 5 manufactured by AMAT, and the number of bridge defects (pieces/cm 2 ) was measured. Table 5 shows the results.

Figure 0007301123000042
Figure 0007301123000042

表5の結果から、実施例の製造方法により得られるレジスト組成物を用いた場合、現像後のパターン上に発生するブリッジ欠陥を抑制できる(ブリッジ欠陥の発生数が少ない)ことが明らかである。
また、実施例AP-1~AP-9の実施例の対比から、レジスト組成物中に含まれる酸分解性樹脂がカーボネート構造及びスルトン構造の1種以上を含む場合、現像後のパターン上に発生するブリッジ欠陥をより抑制できることが明らかである(実施例AP-1~AP-7と、実施例AP-8及び実施例AP-9との対比)。
一方で、比較例の製造方法により得られるレジスト組成物を用いた場合、現像後のパターン上に発生するブリッジ欠陥が抑制できていない。
From the results in Table 5, it is clear that when the resist composition obtained by the manufacturing method of the example is used, bridge defects occurring on the pattern after development can be suppressed (the number of bridge defects occurring is small).
Further, from a comparison of Examples AP-1 to AP-9, when the acid-decomposable resin contained in the resist composition contains one or more of a carbonate structure and a sultone structure, it occurs on the pattern after development. (Comparison between Examples AP-1 to AP-7 and Examples AP-8 and AP-9).
On the other hand, when the resist composition obtained by the manufacturing method of the comparative example is used, the bridging defect occurring on the pattern after development cannot be suppressed.

[パターン形成(ArF露光、ネガ現像)及び評価]
〔実施例AN-1~AN-6、比較例AN-1〕
シリコンウエハー上に有機反射防止膜形成用組成物ARC29SR(日産化学社製)を塗布し、205℃で、60秒間ベークを行い、膜厚95nmの反射防止膜を形成した。その上にレジスト組成物R-10~R-15及びRC-2を塗布し、90℃で、60秒間ベークを行い、膜厚85nmのレジスト膜を形成した。得られたウェハをArFエキシマレーザー液浸スキャナー(ASML社製 XT1700i、NA1.20、Dipole、アウターシグマ0.981、インナーシグマ0.895、Y偏向)を用い、6%透過率のハーフトーン露光マスク(ライン/スペース=1/1)を介して、パターン露光を行った。液浸液としては純水を使用した。その後100℃で、60秒間加熱した後、酢酸ブチルで60秒間パドルして現像(ネガ型現像)することにより、ピッチ130nm、線幅65nmのパターンを得た。得られたレジストパターン上の欠陥を、AMAT社製のUvision5で欠陥検査し、ブリッジ欠陥の個数(個/cm)を計測した。結果を表6に示す。
[Pattern formation (ArF exposure, negative development) and evaluation]
[Examples AN-1 to AN-6, Comparative Example AN-1]
An organic antireflection film-forming composition ARC29SR (manufactured by Nissan Chemical Industries, Ltd.) was applied onto a silicon wafer and baked at 205° C. for 60 seconds to form an antireflection film with a thickness of 95 nm. Resist compositions R-10 to R-15 and RC-2 were applied thereon and baked at 90° C. for 60 seconds to form a resist film having a thickness of 85 nm. Using an ArF excimer laser immersion scanner (manufactured by ASML, XT1700i, NA 1.20, Dipole, outer sigma 0.981, inner sigma 0.895, Y deflection), the obtained wafer was a halftone exposure mask with a transmittance of 6%. Pattern exposure was performed via (line/space=1/1). Pure water was used as the immersion liquid. Then, after heating at 100° C. for 60 seconds, development (negative development) was performed by puddling with butyl acetate for 60 seconds to obtain a pattern with a pitch of 130 nm and a line width of 65 nm. Defects on the obtained resist pattern were inspected by Uvision 5 manufactured by AMAT, and the number of bridge defects (pieces/cm 2 ) was measured. Table 6 shows the results.

Figure 0007301123000043
Figure 0007301123000043

表6の結果から、実施例の製造方法により得られるレジスト組成物を用いた場合、現像後のパターン上に発生するブリッジ欠陥を抑制できる(ブリッジ欠陥の発生数が少ない)ことが明らかである。
また、実施例AN-1~AN-6の実施例の対比から、レジスト組成物中に含まれる酸分解性樹脂がカーボネート構造及びスルトン構造の1種以上を含む場合、現像後のパターン上に発生するブリッジ欠陥をより抑制できることが明らかである(実施例AN-1~AN-4と、実施例AN-5及び実施例AN-6との対比)。
一方で、比較例の製造方法により得られるレジスト組成物を用いた場合、現像後のパターン上に発生するブリッジ欠陥が抑制できていない。
From the results in Table 6, it is clear that when the resist composition obtained by the manufacturing method of the example is used, bridge defects occurring on the pattern after development can be suppressed (the number of bridge defects occurring is small).
Further, from a comparison of Examples AN-1 to AN-6, when the acid-decomposable resin contained in the resist composition contains one or more of a carbonate structure and a sultone structure, it occurs on the pattern after development. (Comparison between Examples AN-1 to AN-4 and Examples AN-5 and AN-6).
On the other hand, when the resist composition obtained by the manufacturing method of the comparative example is used, the bridging defect occurring on the pattern after development cannot be suppressed.

[パターン形成(KrF露光、ポジ現像)及び評価]
〔実施例KP-1~KP-6、比較例KP-1〕
シリコンウエハー上に有機反射防止膜形成用組成物DUV42(ブリューワーサイエンス社製)を塗布し、205℃で、60秒間ベークを行い、膜厚64nmの反射防止膜を形成した。その上にレジスト組成物R-16~21、RC-3を塗布し130℃で、60秒間ベークを行い、膜厚600nmのレジスト膜を形成した。得られたウェハをKrFエキシマレーザー(ASML社製 PASS、NA0.7、Dipole、アウターシグマ0.8、インナーシグマ0.7)を用い、バイナリーの露光マスク(ライン/スペース=1/1)を介して、パターン露光を行った。その後130℃で、60秒間加熱した後、テトラメチルアンモニウム水溶液(2.38質量%)で60秒間パドルして現像(ポジ現像)することにより、ピッチ400nm、線幅200nmのパターンを得た。得られたレジストパターン上の欠陥を、KLA社製の2360で欠陥検査し、ブリッジ欠陥の個数(個/cm)を計測した。
[Pattern formation (KrF exposure, positive development) and evaluation]
[Examples KP-1 to KP-6, Comparative Example KP-1]
An organic antireflection film forming composition DUV42 (manufactured by Brewer Science) was applied onto a silicon wafer and baked at 205° C. for 60 seconds to form an antireflection film with a thickness of 64 nm. Resist compositions R-16 to 21 and RC-3 were applied thereon and baked at 130° C. for 60 seconds to form a resist film having a thickness of 600 nm. The resulting wafer was exposed through a binary exposure mask (line/space=1/1) using a KrF excimer laser (ASML PASS, NA 0.7, Dipole, outer sigma 0.8, inner sigma 0.7). Then, pattern exposure was performed. Then, after heating at 130° C. for 60 seconds, a pattern with a pitch of 400 nm and a line width of 200 nm was obtained by puddle development (positive development) with an aqueous tetramethylammonium solution (2.38 mass %) for 60 seconds. Defects on the obtained resist pattern were inspected with 2360 manufactured by KLA, and the number of bridge defects (pieces/cm 2 ) was measured.

Figure 0007301123000044
Figure 0007301123000044

表7の結果から、実施例の製造方法により得られるレジスト組成物を用いた場合、現像後のパターン上に発生するブリッジ欠陥を抑制できる(ブリッジ欠陥の発生数が少ない)ことが明らかである。
また、実施例KP-1~KP-6の実施例の対比から、レジスト組成物中に含まれる酸分解性樹脂がカーボネート構造及びスルトン構造の1種以上を含む場合、現像後のパターン上に発生するブリッジ欠陥をより抑制できることが明らかである(実施例KP-1~KP-2と、実施例KP-3~KP-6との対比)。
一方で、比較例の製造方法により得られるレジスト組成物を用いた場合、現像後のパターン上に発生するブリッジ欠陥が抑制できていない。
From the results in Table 7, it is clear that when the resist composition obtained by the manufacturing method of the example is used, bridge defects occurring on the pattern after development can be suppressed (the number of bridge defects occurring is small).
Further, from a comparison of Examples KP-1 to KP-6, when the acid-decomposable resin contained in the resist composition contains one or more of a carbonate structure and a sultone structure, it occurs on the pattern after development. It is clear that the bridging defects that occur can be further suppressed (comparison between Examples KP-1 and KP-2 and Examples KP-3 and KP-6).
On the other hand, when the resist composition obtained by the manufacturing method of the comparative example is used, the bridging defect occurring on the pattern after development cannot be suppressed.

Claims (6)

半導体装置製造工程で使用される感活性光線性又は感放射線性樹脂組成物の製造方法であって、
酸の作用により分解して極性が増大する樹脂と、溶剤と、を含むポリマー溶液を精製する工程Aと、
前記工程Aを経たポリマー溶液に、活性光線又は放射線の照射によって酸を発生する化合物を加えて、感活性光線性又は感放射線性樹脂組成物を調製する工程Bと、を含み、
前記工程Aが、前記ポリマー溶液をフィルタXに通過させてろ過する工程Xを含み、
前記酸の作用により分解して極性が増大する樹脂が、カーボネート構造及びスルトン構造の1種以上を含み、
前記フィルタXの差圧が、0.3MPa以下であ
前記工程Xが、前記ポリマー溶液をフィルタX1に通過させてろ過する工程X1と、前記工程X1を経たポリマー溶液をフィルタX2に通過させてろ過する工程X2とからなり、
前記フィルタX1がポリアミド樹脂膜であり、前記フィルタX2が孔径が0.01μm以下のポリオレフィン樹脂及び孔径が0.01μm以下のフッ素樹脂膜からなる群から選ばれ、前記フィルタX2の孔径よりも前記フィルタX1の孔径の方が大きく、
前記フィルタX1及び前記フィルタX2の差圧が、いずれも0.3MPa以下である、感活性光線性又は感放射線性樹脂組成物の製造方法。
A method for producing an actinic ray-sensitive or radiation-sensitive resin composition used in a semiconductor device manufacturing process,
A step A of purifying a polymer solution containing a resin that is decomposed by the action of an acid to increase its polarity and a solvent;
A step B of adding a compound that generates an acid upon exposure to actinic rays or radiation to the polymer solution that has undergone step A to prepare an actinic ray-sensitive or radiation-sensitive resin composition,
The step A comprises a step X of filtering the polymer solution through a filter X,
The resin that is decomposed by the action of an acid to increase its polarity contains one or more of a carbonate structure and a sultone structure,
The differential pressure of the filter X is 0.3 MPa or less,
The step X comprises a step X1 of filtering the polymer solution through a filter X1 and a step X2 of filtering the polymer solution after the step X1 through a filter X2,
The filter X1 is a polyamide resin membrane, and the filter X2 is selected from the group consisting of a polyolefin resin having a pore size of 0.01 μm or less and a fluororesin membrane having a pore size of 0.01 μm or less, and the pore size of the filter is larger than that of the filter X2. The pore size of X1 is larger,
A method for producing an actinic ray-sensitive or radiation-sensitive resin composition , wherein the pressure difference between the filter X1 and the filter X2 is 0.3 MPa or less .
前記工程Aにおける前記ポリマー溶液が、前記酸の作用により分解して極性が増大する樹脂及び前記溶剤以外のその他の成分を実質的に含まない、請求項1に記載の感活性光線性又は感放射線性樹脂組成物の製造方法。 2. The actinic ray-sensitive or radiation-sensitive according to claim 1, wherein the polymer solution in the step A does not substantially contain components other than the solvent and the resin that is decomposed by the action of the acid to increase the polarity. a method for producing a flexible resin composition. 前記工程Xが、15~25℃の温度環境下にて実施される、請求項1又は2に記載の感活性光線性又は感放射線性樹脂組成物の製造方法。 The method for producing an actinic ray-sensitive or radiation-sensitive resin composition according to claim 1 or 2, wherein the step X is carried out in a temperature environment of 15 to 25°C. 前記酸の作用により分解して極性が増大する樹脂が、アクリル酸エステル及びメタクリル酸エステルの少なくとも一方から誘導される繰り返し単位を含む樹脂を含む、請求項1~のいずれか1項に記載の感活性光線性又は感放射線性樹脂組成物の製造方法。 4. The resin according to any one of claims 1 to 3 , wherein the resin that is decomposed by the action of an acid to increase its polarity includes a resin containing a repeating unit derived from at least one of an acrylic acid ester and a methacrylic acid ester. A method for producing an actinic ray-sensitive or radiation-sensitive resin composition. 請求項1~のいずれか1項に記載の感活性光線性又は感放射線性樹脂組成物の製造方法により製造された感活性光線性又は感放射線性樹脂組成物を用いて、支持体上にレジスト膜を形成する工程と、
前記レジスト膜を露光する工程と、
前記露光されたレジスト膜を、現像液を用いて現像する工程と、を有する、パターン形成方法。
Using the actinic ray- or radiation-sensitive resin composition produced by the method for producing an actinic ray- or radiation-sensitive resin composition according to any one of claims 1 to 4 , a step of forming a resist film;
exposing the resist film;
and developing the exposed resist film using a developer.
請求項に記載のパターン形成方法を含む、電子デバイスの製造方法。 A method for manufacturing an electronic device, comprising the pattern forming method according to claim 5 .
JP2021511395A 2019-03-29 2020-03-17 Actinic ray-sensitive or radiation-sensitive resin composition production method, pattern formation method, electronic device production method Active JP7301123B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019068817 2019-03-29
JP2019068817 2019-03-29
PCT/JP2020/011635 WO2020203246A1 (en) 2019-03-29 2020-03-17 Method for producing active light sensitive or radiation sensitive resin composition, pattern forming method, and method for producing electronic device

Publications (2)

Publication Number Publication Date
JPWO2020203246A1 JPWO2020203246A1 (en) 2021-12-23
JP7301123B2 true JP7301123B2 (en) 2023-06-30

Family

ID=72668823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021511395A Active JP7301123B2 (en) 2019-03-29 2020-03-17 Actinic ray-sensitive or radiation-sensitive resin composition production method, pattern formation method, electronic device production method

Country Status (2)

Country Link
JP (1) JP7301123B2 (en)
WO (1) WO2020203246A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151765A1 (en) 2014-03-31 2015-10-08 富士フイルム株式会社 Method for manufacturing actinic light sensitive or radiation sensitive resin compostion, and actinic light sensitive or radiation sensitive resin compostion
JP2016089064A (en) 2014-11-06 2016-05-23 三菱レイヨン株式会社 Purification method and production method of polymer for semiconductor lithography, production method of resist composition, and manufacturing method of patterned substrate
JP2016206500A (en) 2015-04-24 2016-12-08 信越化学工業株式会社 Production method of composition for forming coating film for lithography and pattern formation method
JP2017169626A (en) 2016-03-18 2017-09-28 有限会社Medical・Link pillow
WO2018084302A1 (en) 2016-11-07 2018-05-11 富士フイルム株式会社 Processing fluid and pattern formation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6761462B2 (en) * 2016-03-30 2020-09-23 富士フイルム株式会社 Actinic light-sensitive or radiation-sensitive resin composition, pattern forming method, and manufacturing method of electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151765A1 (en) 2014-03-31 2015-10-08 富士フイルム株式会社 Method for manufacturing actinic light sensitive or radiation sensitive resin compostion, and actinic light sensitive or radiation sensitive resin compostion
JP2016089064A (en) 2014-11-06 2016-05-23 三菱レイヨン株式会社 Purification method and production method of polymer for semiconductor lithography, production method of resist composition, and manufacturing method of patterned substrate
JP2016206500A (en) 2015-04-24 2016-12-08 信越化学工業株式会社 Production method of composition for forming coating film for lithography and pattern formation method
JP2017169626A (en) 2016-03-18 2017-09-28 有限会社Medical・Link pillow
WO2018084302A1 (en) 2016-11-07 2018-05-11 富士フイルム株式会社 Processing fluid and pattern formation method

Also Published As

Publication number Publication date
WO2020203246A1 (en) 2020-10-08
JPWO2020203246A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
JP6997803B2 (en) Sensitive ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, electronic device manufacturing method, compound
JP6818600B2 (en) Actinic light-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, manufacturing method of electronic device
JP7212029B2 (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, electronic device manufacturing method
JP7053625B2 (en) Actinic cheilitis or radiation-sensitive resin composition, resist film, pattern forming method, manufacturing method of electronic device
JP2023016886A (en) Photosensitive resin composition, production method therefor, resist film, pattern formation method, and method for producing electronic device
WO2019216118A1 (en) Resist composition, resist film, pattern forming method, and electronic device production method
JP6979514B2 (en) A method for producing a sensitive light-sensitive or radiation-sensitive resin composition, a sensitive light-sensitive or radiation-sensitive film, a pattern forming method, and an electronic device.
JP2023090803A (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern formation method, and electronic device manufacturing method
JP7336018B2 (en) Pattern forming method, electronic device manufacturing method, and actinic ray- or radiation-sensitive resin composition
JP6846151B2 (en) Sensitive light-sensitive or radiation-sensitive resin composition, sensitive light-sensitive or radiation-sensitive film, pattern forming method, and method for manufacturing an electronic device.
JP7191981B2 (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, and electronic device manufacturing method
JP7124094B2 (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, electronic device manufacturing method
JP2022125078A (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern formation method, and method for manufacturing electronic device
JP7239611B2 (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, electronic device manufacturing method
JP7240416B2 (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, and electronic device manufacturing method
JP7084995B2 (en) Sensitive ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, electronic device manufacturing method, resin
JP7125470B2 (en) Actinic ray- or radiation-sensitive resin composition, actinic ray- or radiation-sensitive film, pattern forming method, electronic device manufacturing method
JP6967655B2 (en) A method for producing a sensitive light-sensitive or radiation-sensitive resin composition, a sensitive light-sensitive or radiation-sensitive film, a pattern forming method, and an electronic device.
JP7301123B2 (en) Actinic ray-sensitive or radiation-sensitive resin composition production method, pattern formation method, electronic device production method
KR20230022969A (en) Actinic ray-sensitive or radiation-sensitive resin composition, actinic ray-sensitive or radiation-sensitive film, pattern formation method, electronic device manufacturing method, and compound
JP7178487B2 (en) Actinic ray-sensitive or radiation-sensitive resin composition production method, pattern formation method, electronic device production method
JP7125476B2 (en) Actinic ray- or radiation-sensitive resin composition, actinic ray- or radiation-sensitive film, pattern forming method, and electronic device manufacturing method
JP6967661B2 (en) A method for producing a sensitive light-sensitive or radiation-sensitive resin composition, a sensitive light-sensitive or radiation-sensitive film, a pattern forming method, and an electronic device.
WO2019167570A1 (en) Actinic-light-sensitive or radiation-sensitive resin composition, resist film, pattern formation method, and method for manufacturing electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230620

R150 Certificate of patent or registration of utility model

Ref document number: 7301123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150