JP7299931B2 - Method for producing controlled fertilizer - Google Patents
Method for producing controlled fertilizer Download PDFInfo
- Publication number
- JP7299931B2 JP7299931B2 JP2021007739A JP2021007739A JP7299931B2 JP 7299931 B2 JP7299931 B2 JP 7299931B2 JP 2021007739 A JP2021007739 A JP 2021007739A JP 2021007739 A JP2021007739 A JP 2021007739A JP 7299931 B2 JP7299931 B2 JP 7299931B2
- Authority
- JP
- Japan
- Prior art keywords
- fertilizer
- magnesium sulfate
- granular
- coating
- production method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Glanulating (AREA)
- Fertilizers (AREA)
Description
本発明は、溶出を高度に制御した被覆粒状硫酸苦土肥料を製造する方法に関する。 The present invention relates to a method for producing a coated granular magnesium sulfate fertilizer with highly controlled leaching.
従来より、農業就労者の高年齢化に伴う省力化のニーズから追肥の労力を削減することができる溶出調節型肥料が提案され、様々な形態の商品が実用化されている。その中でも粒状肥料の表面に有機系樹脂による被膜を施すことで内部成分の溶出を制御した被覆粒状肥料が最も汎用的に普及し、主流となっている。被覆材料となる有機系樹脂は熱可塑性樹脂又は熱硬化性樹脂が広く使われている。 Conventionally, in order to meet the labor-saving needs associated with the aging of agricultural workers, elution-controlled fertilizers capable of reducing the labor for additional fertilization have been proposed, and various forms of commercial products have been put to practical use. Among them, coated granular fertilizers, in which the elution of internal components is controlled by coating the surface of granular fertilizers with an organic resin, have become the most widely used and mainstream. Thermoplastic resins or thermosetting resins are widely used as organic resins used as coating materials.
熱可塑性樹脂を使用する例としては、特許文献1に示すようにオレフィン系樹脂とエチレン-酢酸ビニル共重合体との混合物を主成分とする被覆材料で被覆した肥料があり、被覆方法は噴流層装置により流動状態にした粒状肥料を予熱し、そこへ有機溶剤に溶解した樹脂を噴霧しつつ熱風で瞬時に乾燥させ、被膜を形成する手法が用いられる。 As an example of using a thermoplastic resin, there is a fertilizer coated with a coating material mainly composed of a mixture of an olefin resin and an ethylene-vinyl acetate copolymer, as shown in Patent Document 1, and the coating method is a spouted bed. A method is used in which a granular fertilizer is preheated in a fluidized state using a device, and a resin dissolved in an organic solvent is sprayed onto the fertilizer and instantly dried with hot air to form a film.
一方、熱硬化性樹脂を使用する例としては、特許文献2に示すようにウレタン樹脂を主成分とする被覆材料で被覆した肥料があり、被覆方法は糖衣機、コンクリートミキサーといった回転装置により転動状態にした粒状肥料を予熱し、そこへ未硬化のウレタン樹脂を添加、熱硬化を保温しながら繰り返し、被膜を形成する手法が用いられる。 On the other hand, as an example of using a thermosetting resin, there is a fertilizer coated with a coating material mainly composed of urethane resin as shown in Patent Document 2. A method is used in which the granular fertilizer is preheated, uncured urethane resin is added, and heat curing is repeated while maintaining heat to form a coating.
前記ウレタン樹脂を主成分とする被覆材料で被覆した肥料については、その効率的な製造方法について種々検討がなされており、例えば特許文献3に示すように、被膜形成の際に未硬化熱硬化樹脂原料とワックス等の疎水性物質を併用することでポリウレタン被膜の疎水性を高め、水の透過性を低下させることで、より少ない樹脂量で溶出を制御することが可能となることが知られている。 Regarding fertilizers coated with a coating material containing urethane resin as a main component, various studies have been made on efficient production methods thereof. For example, as shown in Patent Document 3, uncured thermosetting resin It is known that the combined use of a raw material and a hydrophobic substance such as wax increases the hydrophobicity of the polyurethane film and reduces the water permeability, making it possible to control elution with a smaller amount of resin. there is
被覆粒状肥料の被覆対象となる肥料としては粒状尿素が最も多く使われている。その理由としては、その窒素成分の高さに対し比較的安価であり、一般的な窒素、リン酸、加里を含む化成肥料とのバルクブレンド肥料として高成分な肥料を製造しやすい点、窒素成分は追肥を行わずに適正な時期に作物へ供給されなかった場合の生育及び収量への悪影響が最も大きいため、肥効調節型肥料を利用する価値が高い点が挙げられる。 Granular urea is most commonly used as a fertilizer to be coated with coated granular fertilizer. The reason for this is that it is relatively inexpensive for its high nitrogen content, and it is easy to manufacture a high-component fertilizer as a bulk blend fertilizer with general chemical fertilizers containing nitrogen, phosphoric acid, and potassium. Since the adverse effect on growth and yield is the greatest when it is not supplied to crops at the appropriate time without additional fertilization, the use of controlled-release fertilizers is highly valued.
一方で追肥としての利用価値が高い肥料として硫酸苦土肥料がある。硫酸苦土肥料は水溶性のマグネシウムを主成分として含むために速効的に肥料効果が得られる反面、熔成りん肥といったクエン酸溶解性のマグネシウムを主成分とする資材と比較して流亡しやすい性質も持つため、作物への肥料効果を最大限に高めるためには適正な時期に施すことが重要となる。例えば水稲栽培においては幼穂形成期前に追肥で施用することで、稲の同化作用を促進し、根張りの強化、登熟歩合の向上、倒伏軽減といった効果が表れ、収量性の向上につながることが知られている。 On the other hand, there is magnesium sulfate fertilizer as a fertilizer with high utility value as top dressing. Magnesium sulfate fertilizer contains water-soluble magnesium as the main component, so it can be quickly effective as a fertilizer, but it is more likely to be washed away than materials such as molten fertilizing, which have citric acid-soluble magnesium as the main component. Because of its properties, it is important to apply it at the right time to maximize its fertilizing effect on crops. For example, in paddy rice cultivation, applying additional fertilizer before the young panicle formation stage promotes the assimilation of rice plants, strengthens root growth, improves the ripening rate, and reduces lodging, leading to improved yields. It has been known.
一般に市販されている硫酸苦土肥料は製法から2種類に大別され、海水から製塩する際に副製される硫酸マグネシウムから得られる苦土含有量として25%程度の物と、橄欖岩、蛇紋岩といった含マグネシウム鉱物の粉砕品と硫酸を反応させることで得られる苦土含有量として14~17%程度の物がある。それぞれの硫酸苦土肥料は含有する硫酸マグネシウムの含水塩の組成や副成分に違いがあり、前者は含有する苦土分のほとんどを硫酸マグネシウム・7水和物として含み、副成分をほとんど含まないのに対し、後者は硫酸マグネシウム・1水和物を主成分とし、硫酸マグネシウム・6水和物、硫酸マグネシウム・7水和物、更に副成分としてケイ素、鉄、カルシウム、ホウ素等植物の生育に有用な元素を含む。 Magnesium sulfate fertilizers that are generally commercially available are roughly divided into two types according to the manufacturing method: one with a magnesium content of about 25% obtained from magnesium sulfate, which is a by-product when salt is made from seawater, and one with a magnesium content of about 25%. Magnesium content of about 14 to 17% is obtained by reacting crushed magnesium-containing minerals such as rocks with sulfuric acid. Each magnesium sulfate fertilizer differs in the composition and subcomponents of the hydrated salt of magnesium sulfate contained. On the other hand, the latter contains magnesium sulfate monohydrate as the main ingredient, magnesium sulfate hexahydrate, magnesium sulfate heptahydrate, and additional ingredients such as silicon, iron, calcium, boron, etc. Contains useful elements.
前記含マグネシウム鉱物の粉砕品と硫酸の反応で得られる硫酸苦土肥料の粒状品の製造方法については、特許文献4に示されるように鉱物粉末と硫酸との反応生成物の品温が60℃以上の時に水を添加し、造粒する方法が製造に必要なエネルギーの少なさや、製造された粒状品の硬度の高さの点から工業的に極めて有利な製造方法である。この製造方法で得られる製品中には反応生成物を冷却後に造粒して得られる粒状品と比較して、硫酸マグネシウム・6水和物及び硫酸マグネシウム・7水和物からなる多水塩硫酸マグネシウムが多く含まれることが知られている(含有比率として硫酸マグネシウム・1水和物1モルに対し、硫酸マグネシウム・6水和物を0.2モル以上)。 Regarding the method for producing the granular product of magnesium sulfate fertilizer obtained by the reaction of the pulverized product of the magnesium-containing mineral and sulfuric acid, as shown in Patent Document 4, the product temperature of the reaction product of the mineral powder and sulfuric acid is 60 ° C. The method of adding water and granulating at the above time is an industrially very advantageous production method from the viewpoint of less energy required for production and high hardness of the produced granular product. Among the products obtained by this manufacturing method, compared with the granular product obtained by granulating the reaction product after cooling, polyhydrate sulfuric acid consisting of magnesium sulfate hexahydrate and magnesium sulfate heptahydrate It is known to contain a large amount of magnesium (the content ratio is 0.2 mol or more of magnesium sulfate hexahydrate per 1 mol of magnesium sulfate monohydrate).
硫酸苦土肥料の樹脂被覆品は海水由来の苦土含有量25%の粒状硫酸苦土肥料に被覆を施した苦土含有量21~23%の物が商品化されている。しかしながら、その流通量は極めて少なく、一般に普及していない。その理由としては現在流通している被覆粒状硫酸苦土肥料は無被覆の物と比較して非常に高価であるために、施用効果により収量が増大しても必ずしも収益の改善につながらないことが挙げられる。 As for the resin-coated magnesium sulfate fertilizer, a product with a magnesium content of 21 to 23%, which is obtained by coating granular magnesium sulfate fertilizer with a magnesium content of 25% derived from seawater, has been commercialized. However, its distribution volume is extremely small, and it is not popular in general. The reason for this is that currently available coated granular magnesium sulfate fertilizers are very expensive compared to uncoated ones, so even if the yield increases due to the effect of application, it does not necessarily lead to an improvement in profits. be done.
被覆粒状硫酸苦土肥料を安価に提供することができていない背景には、硫酸苦土肥料特有の被覆工程における生産性の低さがある。非特許文献1に示されるように、硫酸苦土肥料の主成分である、硫酸マグネシウム・7水和物や硫酸マグネシウム・6水和物といった多水塩硫酸マグネシウムは開放系において50℃以上に加熱すると結晶水の解離と蒸発が起こり、無水塩へ順次変成していくこと知られている。前記特許文献1~3に示される通り、一般的な被覆製造工程においては被覆対象の粒状肥料の予熱が必要であるため、硫酸苦土肥料においてはその際に結晶水の解離と蒸発により吸熱し、目標品温まで昇温するためにより多くの熱エネルギーが必要であった。更に、結晶水の変化に伴って粒子の形状が崩れ、一部が粉化して装置へ固着する問題や、表面の吸油性が増大し、樹脂原料中の疎水性物質(例えば、熱可塑性樹脂原料やそれを溶解している有機溶剤、熱硬化性樹脂原料のポリイソシアネート類、潤滑剤・溶出調整剤としての動植物性油脂類、ワックス類、パラフィン類等)が粒子表面から内部へ取り込まれることで、樹脂原料が均一に被覆されなくなり、結果として形成される被膜に欠陥が生じる問題があった。被膜の欠陥を補うためには被覆工程を繰り返し行うことで被膜を厚くする必要があり、樹脂原料、製造時間ともに増大し、高コスト化が避けられなかった。 The reason why the coated granular magnesium sulfate fertilizer cannot be provided at a low cost is the low productivity in the coating process peculiar to the magnesium sulfate fertilizer. As shown in Non-Patent Document 1, polyhydrate magnesium sulfate such as magnesium sulfate heptahydrate or magnesium sulfate hexahydrate, which is the main component of magnesium sulfate fertilizer, is heated to 50 ° C. or higher in an open system. It is known that the water of crystallization then dissociates and evaporates, transforming it into an anhydrous salt in sequence. As shown in the above Patent Documents 1 to 3, since preheating of the granular fertilizer to be coated is required in a general coating manufacturing process, magnesium sulfate fertilizer absorbs heat by dissociation and evaporation of water of crystallization at that time. , more heat energy was required to raise the temperature to the target product temperature. Furthermore, as the water of crystallization changes, the shape of the particles collapses, and some of them become pulverized and stick to the device. and organic solvents that dissolve it, polyisocyanates as raw materials for thermosetting resins, animal and vegetable oils, waxes, paraffins, etc. as lubricants and elution modifiers) are taken into the inside from the particle surface. However, there is a problem that the resin raw material is not evenly coated, resulting in defects in the formed coating. In order to compensate for defects in the coating, it is necessary to repeat the coating process to thicken the coating.
これらの問題点に関連する先行技術として、特許文献5では被覆工程中の熱処理による肥料成分の揮散、変質を問題視し、常温でポリウレタン硬化反応を利用した被膜形成を行う技術が開示されている。しかしながら、常温での硬化反応速度は非常に遅いため、1回の被覆工程に2時間を要し、実用的なものではなかった。 As a prior art related to these problems, Patent Document 5 discloses a technique of forming a coating film using a polyurethane curing reaction at room temperature, considering volatilization and deterioration of fertilizer components due to heat treatment during the coating process. . However, since the curing reaction speed at room temperature is very slow, one coating process requires two hours, which is not practical.
現在商業的に行われている生産性の高い被覆肥料の製造方法は被覆対象肥料粒子の加熱が必須であるが、多水塩硫酸マグネシウムを含む硫酸苦土肥料においては、加熱することで結晶水に変化が生じ、品温上昇に必要なエネルギーの増大と、被膜の均一性が損なわれることが、生産性を向上させる上での障害となっている。したがって、本発明は粒状硫酸苦土肥料の被覆工程における加熱に伴う結晶水の変化を抑制することでこの問題を解決し、生産性の高い製造方法を提供し、経済的に利用価値の高い被覆粒状硫酸苦土肥料を提供することを目的とする。 The currently commercially available method for producing coated fertilizers with high productivity requires heating of the fertilizer particles to be coated. , an increase in the energy required to raise the temperature of the product and a loss of coating uniformity are obstacles to improving productivity. Therefore, the present invention solves this problem by suppressing the change in water of crystallization due to heating in the coating process of granular magnesium sulfate fertilizer, provides a highly productive production method, and provides a coating with high economic utility value. The object is to provide a granular magnesium sulfate fertilizer.
本発明者らは、硫酸苦土肥料成分中の結晶水の変化が生じ始める50℃より低温域で未硬化熱硬化性樹脂を添加し、被膜形成を行うことで、その後50℃以上の高温域に加熱した際の結晶水の解離や蒸発が抑制されることを見出し、その知見に基づいて更に検討を加えることで本発明を完成させるに至った。 The present inventors added an uncured thermosetting resin at a temperature lower than 50°C where the water of crystallization in the magnesium sulfate fertilizer component begins to change, and formed a coating film, and after that, a high temperature region of 50°C or higher. The present inventors have found that the dissociation and evaporation of water of crystallization are suppressed when heated to 200 rpm, and have completed the present invention by further studies based on this finding.
すなわち、本発明は以下の内容を包含するものである。
(1)粒状硫酸苦土肥料の表面に被覆膜が形成された被覆粒状硫酸苦土肥料の製造方法であって、粒状硫酸苦土肥料に融点50℃未満の疎水性物質及び熱硬化性樹脂原料を50℃未満で添加後、肥料表面温度が常温から70℃を超えない範囲において、前記融点50℃未満の疎水性物質及び熱硬化性樹脂による一次被覆を施した後、更にその上から疎水性物質及び熱硬化性樹脂による二次被覆を施す被覆粒状硫酸苦土肥料の製造方法。
(2)前記粒状硫酸苦土肥料が含マグネシウム鉱物の粉砕品と硫酸を反応させた生成物を造粒することで得られる粒状硫酸苦土肥料である前記(1)に記載の製造方法。
(3)前記粒状硫酸苦土肥料における硫酸マグネシウム含水塩の比率が、硫酸マグネシウム・1水和物1モルに対し、硫酸マグネシウム・6水和物0.2モル以上である前記(2)に記載の製造方法。
(4)前記熱硬化性樹脂がポリイソシアネート化合物及びポリオール化合物を粒状肥料表面上で反応させることで得られるウレタン樹脂である前記(1)~(3)のいずれかに記載の製造方法。
(5)前記一次被覆工程における融点50℃未満の疎水性物質が植物性油脂から選ばれる1又は2以上の物質である前記(1)~(4)のいずれかに記載の製造方法。
(6)前記二次被覆工程における疎水性物質がワックス類から選ばれる1又は2以上の物質である前記(1)~(5)のいずれかに記載の製造方法。
(7)前記一次及び二次被覆工程において、転動状態の粒状硫酸苦土肥料に疎水性物質を添加した後、(i)熱硬化性樹脂原料を添加する工程、及び(ii)転動状態を維持し、熱硬化反応により被膜形成する工程を含み、かつ前記(i)及び(ii)の工程を計2回以上繰り返す前記(1)~(6)のいずれかに記載の製造方法。
That is, the present invention includes the following contents.
(1) A method for producing a coated granular magnesium sulfate fertilizer in which a coating film is formed on the surface of the granular magnesium sulfate fertilizer, comprising: After adding the raw material at less than 50 ° C., the surface temperature of the fertilizer is in the range of room temperature to 70 ° C. After applying a primary coating with the above-mentioned hydrophobic substance and thermosetting resin having a melting point of less than 50 ° C., further hydrophobic from above. A process for producing a coated granular magnesium sulfate fertilizer with a secondary coating of a curable material and a thermosetting resin.
(2) The production method according to (1) above, wherein the granular magnesium sulfate fertilizer is obtained by granulating a product obtained by reacting a pulverized magnesium-containing mineral with sulfuric acid.
(3) The ratio of magnesium sulfate hydrate in the granular magnesium sulfate fertilizer is 0.2 mol or more of magnesium sulfate hexahydrate per 1 mol of magnesium sulfate monohydrate. manufacturing method.
(4) The production method according to any one of (1) to (3) above, wherein the thermosetting resin is a urethane resin obtained by reacting a polyisocyanate compound and a polyol compound on the surface of the granular fertilizer.
(5) The production method according to any one of (1) to (4) above, wherein the hydrophobic substance having a melting point of less than 50°C in the primary coating step is one or more substances selected from vegetable oils and fats.
(6) The production method according to any one of (1) to (5) above, wherein the hydrophobic substance in the secondary coating step is one or more substances selected from waxes.
(7) In the primary and secondary coating steps, after adding a hydrophobic substance to the granular magnesium sulfate fertilizer in a rolling state, (i) a step of adding a thermosetting resin raw material, and (ii) in a rolling state. The production method according to any one of the above (1) to (6), which includes the step of forming a film by a thermosetting reaction, and repeating the steps of (i) and (ii) two or more times in total.
本発明における一次被覆工程により、硫酸苦土肥料に含まれる多水塩硫酸マグネシウム中の結晶水の加熱による変化により生じる問題を抑えることで、溶出制御を目的とした二次被覆工程を常法に従った生産性の高い温度帯で実施することができる。該二次被覆工程においては高い溶出制御性能を付与できる疎水性物質を添加することができ、なおかつ被膜の均一性も一次被覆を施さなかった場合より高くなるため、被膜の薄膜化が可能となり、結果として経済的に利用価値の高い被覆粒状硫酸苦土肥料を提供することが可能となる。 By the primary coating step of the present invention, by suppressing the problem caused by heating the crystal water in the polyhydrate magnesium sulfate contained in the magnesium sulfate fertilizer, the secondary coating step for the purpose of elution control can be carried out in a conventional manner. Therefore, it can be carried out in a temperature zone with high productivity. In the secondary coating step, a hydrophobic substance capable of imparting high elution control performance can be added, and the uniformity of the coating is higher than when the primary coating is not applied, making it possible to make the coating thinner. As a result, it is possible to provide a coated granular magnesium sulfate fertilizer that is economically highly useful.
本発明の製造方法では、硫酸苦土肥料成分中の結晶水の加熱による変化(解離及び蒸発)を防ぐ目的の一次被覆を効率的に実施することが重要となる。一次被覆は熱硬化性樹脂原料を1回のみ添加、熱硬化することによる被覆であっても効果が得られるが、複数回実施し被膜を積層することでより密閉性の高い被膜が得られ、より高い効果が得られる。1回に添加する樹脂量は被覆対象肥料の形状や粒径分布によって適宜調整されるものであるが、被覆対象肥料に対し、熱硬化性樹脂原料が通常0.1~1重量%の範囲であり、好ましくは0.3~0.7重量%の範囲である。0.1重量%より少ない場合は樹脂量不足により被膜が不均一となり、1重量%より多い場合は熱硬化の際に粒子同士の粘着が強くなり、被膜の欠損を生じることがある。被膜の積層回数は多いほど密閉性は高まるが、使用樹脂量や製造時間の増大につながるため、生産性の向上を目的とする本発明の趣旨から2~10回の範囲が好ましい。 In the production method of the present invention, it is important to efficiently perform the primary coating for the purpose of preventing the change (dissociation and evaporation) of the water of crystallization in the magnesium sulfate fertilizer component due to heating. The primary coating can be effective even if the thermosetting resin raw material is added only once and the coating is thermally cured. Higher effect can be obtained. The amount of resin to be added at one time is appropriately adjusted depending on the shape and particle size distribution of the fertilizer to be coated. Yes, preferably in the range of 0.3 to 0.7% by weight. If it is less than 0.1% by weight, the coating will be uneven due to the lack of the resin amount, and if it is more than 1% by weight, the adhesion between the particles will become strong during thermosetting, which may cause defects in the coating. The greater the number of times the coating is laminated, the higher the hermeticity, but this leads to an increase in the amount of resin used and the production time. Therefore, the range of 2 to 10 times is preferable from the purpose of the present invention, which aims to improve productivity.
本発明における一次被覆工程の好ましい手順は、まず転動状態にした粒状肥料に疎水性物質を添加し、粒子表面に均一に分散させた後、熱硬化性樹脂原料を添加する。この工程は結晶水の変化が生じない50℃未満の温度であれば任意の温度で行うことができ、常温で行うことも可能である。そして転動状態を維持したまま加熱を開始し、適宜昇温速度を調節し、50℃未満の温度において熱硬化反応が生じたことを確認する。熱硬化反応の確認は転動中の粒子の流動性が熱硬化性樹脂のゲル化により一時的に下がり、その後の硬化反応の進行により再び流動性が回復することを目視で観察することで確認することができる。この状態で一次被覆工程を終えて二次被覆工程へ移行することもできるが、被膜を積層する場合は1回目の被覆を終えた転動状態の粒子に樹脂原料を添加、転動を維持、熱硬化する工程を繰り返し行うことで実施することができる。その際の品温は必ずしも50℃未満の温度を維持する必要はなく、50℃を超えて70℃以内の範囲で昇温しながら実施することが可能である。 A preferable procedure of the primary coating step in the present invention is to first add a hydrophobic substance to a tumbling granular fertilizer, disperse it uniformly on the particle surface, and then add a thermosetting resin raw material. This step can be carried out at any temperature below 50° C. at which the water of crystallization does not change, and can also be carried out at room temperature. Then, while maintaining the tumbling state, heating is started, the rate of temperature increase is appropriately adjusted, and it is confirmed that a thermosetting reaction has occurred at a temperature of less than 50°C. Confirmation of the thermosetting reaction is confirmed by visual observation that the fluidity of the rolling particles temporarily drops due to the gelation of the thermosetting resin, and then the fluidity recovers as the curing reaction progresses. can do. In this state, the primary coating step can be finished and the secondary coating step can be performed. It can be implemented by repeating the step of thermosetting. The product temperature at that time does not necessarily need to be maintained at a temperature of less than 50°C, and it is possible to carry out while raising the temperature in the range of over 50°C and within 70°C.
続く二次被覆工程は、一次被覆を施した肥料粒子に溶出抑制効果の高い被膜を形成し、溶出をコントロールすることを目的とする被覆工程である。二次被覆工程は、肥料粒子を被覆温度まで予熱する工程、疎水性物質を添加し、粒子表面に均一に分散させる工程、熱硬化性樹脂原料を添加し、温度を維持し、熱硬化させる工程からなり、熱硬化性樹脂原料の添加、熱硬化の工程を繰り返し行うことで最終的な製品の被膜の厚さを調節し、任意の溶出速度の製品を得ることができる。二次被覆工程時の肥料粒子表面温度は通常60℃~90℃の範囲で行うことができ、中でも70℃~80℃の範囲が熱硬化反応の速度や製造の安定性の面から好ましい。二次被覆工程における1回に添加する樹脂量は一次被覆工程と同様、被覆対象肥料に対し、熱硬化性樹脂原料が通常0.1~1重量%の範囲で、好ましくは0.3~0.7重量%の範囲である。被膜の積層回数は目的の溶出を示す厚さになるまで任意の回数繰り返すことができるが、一般的には2~40回の範囲である。 The subsequent secondary coating step is a coating step for the purpose of controlling the elution by forming a coating having a high elution-suppressing effect on the primary-coated fertilizer particles. The secondary coating process includes a process of preheating the fertilizer particles to the coating temperature, a process of adding a hydrophobic substance and uniformly dispersing it on the particle surface, and a process of adding a thermosetting resin raw material, maintaining the temperature, and heat curing. By repeating the process of adding the thermosetting resin raw material and thermosetting, the thickness of the film of the final product can be adjusted, and a product with an arbitrary dissolution rate can be obtained. The surface temperature of the fertilizer particles during the secondary coating process can usually be in the range of 60° C. to 90° C., and a range of 70° C. to 80° C. is preferable from the viewpoint of the thermosetting reaction speed and production stability. The amount of resin added at one time in the secondary coating process is the same as in the primary coating process, with respect to the fertilizer to be coated, the thermosetting resin raw material is usually in the range of 0.1 to 1% by weight, preferably 0.3 to 0. .7% by weight. The coating can be laminated any number of times until the desired elution thickness is obtained, but generally it is in the range of 2 to 40 times.
一次被覆工程、二次被覆工程において使用される疎水性物質は転動中の肥料粒子間の付着や肥料粒子と転動装置壁面の付着を防ぐ潤滑剤としての役割と、樹脂膜の構造の間に入り込み、膜の疎水性を変化させ溶出をコントロールする役割を持つ。すなわち、一次被覆工程においては該付着により起因する被膜不良を防ぎ、被膜の密閉性を高める効果があり、二次被覆工程においては被膜の均一性を高めるとともに膜の疎水性を高めることで少量の樹脂量で効率的に溶出を制御する効果がある。一次被覆工程及び二次被覆工程における疎水性物質の添加量は被覆対象肥料に対し、通常0.1~2重量%の範囲で、好ましくは0.2~1重量%の範囲である。また、疎水性物質は各被覆工程の1回目の熱硬化性樹脂原料の添加の前に一度に全量添加するか、もしくは分割して複数回に分けて添加することができる。 The hydrophobic substance used in the primary coating process and the secondary coating process plays a role as a lubricant that prevents adhesion between fertilizer particles during rolling and adhesion between the fertilizer particles and the wall surface of the rolling device, and also between the structure of the resin film. It plays a role in controlling elution by entering and changing the hydrophobicity of the membrane. That is, in the primary coating process, it has the effect of preventing coating defects caused by the adhesion and improving the sealing property of the coating, and in the secondary coating process, it improves the uniformity of the coating and increases the hydrophobicity of the membrane, so that a small amount of There is an effect of controlling elution efficiently by the amount of resin. The amount of the hydrophobic substance added in the primary coating process and the secondary coating process is usually in the range of 0.1 to 2% by weight, preferably in the range of 0.2 to 1% by weight, based on the fertilizer to be coated. Also, the hydrophobic substance can be added all at once before the first addition of the thermosetting resin raw material in each coating step, or can be divided and added in multiple batches.
一次被覆工程において使用される疎水性物質は、50℃未満の温度で潤滑剤として転動中の粒子表面全体に均一に広げる必要があるため、動植物性油脂、脂肪酸、ワックス、炭化水素、シリコーン等に分類される物質の内、融点が50℃未満である物質が該当する。具体例としては、動物性油脂として牛脂、豚脂、鶏脂、馬脂、魚油、バター;植物性油脂としてパーム油、大豆油、菜種油、ひまわり油、パーム核油、綿実油、ピーナッツオイル、オリーブオイル、ヤシ油、コーン油、ごま油、アマニ油、紅花油、米油、えごま油;脂肪酸としてカプリン酸、ラウリン酸、オレイン酸、リノール酸、リノレン酸、エルカ酸;ワックスとして一部の低融点のパラフィンワックス;炭化水素として流動パラフィン;シリコーンとしてジメチルポリシロキサン等のシリコーンオイル、等が挙げられ、これらから選ばれる1つ又は2つ以上の混合物を使用することができる。これらの疎水性物質の中でも菜種油等の植物性油脂が特に好ましい。 Hydrophobic substances used in the primary coating process need to spread evenly over the entire surface of rolling particles as a lubricant at a temperature of less than 50°C. Substances with a melting point of less than 50°C fall under this category. Specific examples include beef tallow, lard, chicken fat, horse fat, fish oil, and butter as animal oils; palm oil, soybean oil, rapeseed oil, sunflower oil, palm kernel oil, cottonseed oil, peanut oil, and olive oil as vegetable oils. , coconut oil, corn oil, sesame oil, linseed oil, safflower oil, rice oil, perilla oil; capric acid, lauric acid, oleic acid, linoleic acid, linolenic acid, erucic acid as fatty acids; some low-melting paraffins as waxes Wax; hydrocarbons such as liquid paraffin; silicones such as silicone oils such as dimethylpolysiloxane; Among these hydrophobic substances, vegetable oils such as rapeseed oil are particularly preferred.
二次被覆工程において使用される疎水性物質は、前記一次被覆工程で使用される疎水性物質に加え、融点50℃以上の疎水性物質も使用することができる。具体例としては、カルナバワックス、蜜蝋、ライスワックス等の天然ワックス、パラフィンワックス、マイクロクリスタリンワックス等の石油ワックス、フィッシャートロプシュワックス、ポリエチレンワックス等の合成ワックス等が挙げられ、これらから選ばれる1つ又は2つ以上の混合物を使用することができる。これらの疎水性物質の中でもパラフィンワックスが特に好ましい。二次被覆工程に用いられる疎水性物質は転動中の肥料粒子全体に均一に拡散させる必要があるため、使用する疎水性物質の融点を上回る温度に加熱し、液体の状態で添加することが好ましく、更に転動中に固化することを防ぐために肥料粒子表面温度を疎水性物質の融点以上の温度に維持することが好ましい。 Hydrophobic substances used in the secondary coating step may be hydrophobic substances having a melting point of 50° C. or higher in addition to the hydrophobic substances used in the primary coating step. Specific examples include natural waxes such as carnauba wax, beeswax and rice wax; petroleum waxes such as paraffin wax and microcrystalline wax; synthetic waxes such as Fischer-Tropsch wax and polyethylene wax; Mixtures of two or more can be used. Among these hydrophobic substances, paraffin wax is particularly preferred. Since the hydrophobic substance used in the secondary coating process must be uniformly dispersed throughout the tumbling fertilizer particles, it can be heated to a temperature above the melting point of the hydrophobic substance used and added in a liquid state. Preferably, the surface temperature of the fertilizer particles is preferably maintained at a temperature equal to or higher than the melting point of the hydrophobic substance in order to prevent solidification during rolling.
本発明に使用される熱硬化性樹脂は公知のものを使用することができる。例えば、ウレタン樹脂、エポキシ樹脂、フェノール樹脂、アルキド樹脂、メラミン樹脂、不飽和ポリエステル樹脂等が挙げられ、これらから選ばれる1つ又は2つ以上の混合物を使用することができる。これらの熱硬化性樹脂の中でもウレタン樹脂が取扱い易く、製品の品質の面からも好ましい。ウレタン樹脂はポリイソシアネート化合物とポリオール化合物を反応して得られる樹脂であり、これらの原料を転動中の肥料粒子に添加することで粒子表面に被膜を形成することが可能である。ポリイソシアネート化合物及びポリオール化合物は同時又は別々に添加することができ、あるいは予め混合した後に添加することでも被膜を形成することができる。ポリイソシアネート化合物については特に制限はなく、例えばトルエンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ポリメチレンポリフェニルポリイソシアネート(ポリメリックMDI)、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート等が挙げられ、必要に応じてこれら混合物を用いることもできる。これらの中でもMDI、ポリメリックMDI等が特に好適に用いられる。ポリオール化合物についても特に制限はなく、例えばポリエーテルポリオール、ポリエステルポリオール、ひまし油、ひまし油の変性物等が挙げられる。また、ポリイソシアネート化合物とポリオール化合物の反応時に触媒を添加し、硬化反応を促進することもでき、製造効率上有用な技術である。触媒としては公知の物を使用することができ、例えばトリエチレンジアミン、N-メチルモルフォリン、N,N-ジメチルモルフォリン、ジアザビシクロウンデセン、2,4,6-トリス(ジメチルアミノメチル)フェノール等のアミン触媒が好適に用いられる。触媒の添加の方法は他の樹脂原料と分けて単独で添加するか、又はポリオール化合物に予め分散させて添加することができる。 A known thermosetting resin can be used in the present invention. Examples thereof include urethane resins, epoxy resins, phenol resins, alkyd resins, melamine resins, unsaturated polyester resins, and the like, and one or a mixture of two or more selected from these can be used. Among these thermosetting resins, urethane resins are easy to handle and are preferable from the standpoint of product quality. A urethane resin is a resin obtained by reacting a polyisocyanate compound and a polyol compound, and by adding these raw materials to tumbling fertilizer particles, it is possible to form a film on the particle surface. The polyisocyanate compound and the polyol compound can be added simultaneously or separately, or can be added after premixing to form a coating. The polyisocyanate compound is not particularly limited, and examples thereof include toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenyl polyisocyanate (polymeric MDI), naphthalene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate and the like. Mixtures of these can also be used as appropriate. Among these, MDI, polymeric MDI and the like are particularly preferably used. The polyol compound is also not particularly limited, and examples thereof include polyether polyol, polyester polyol, castor oil, modified castor oil, and the like. In addition, a catalyst can be added during the reaction between the polyisocyanate compound and the polyol compound to accelerate the curing reaction, which is a useful technique in terms of production efficiency. A known catalyst can be used, such as triethylenediamine, N-methylmorpholine, N,N-dimethylmorpholine, diazabicycloundecene, 2,4,6-tris(dimethylaminomethyl)phenol. An amine catalyst such as is preferably used. As for the method of adding the catalyst, the catalyst may be added separately from other resin raw materials, or may be added after previously being dispersed in a polyol compound.
粒状肥料を転動状態とする装置は特に制限はなく、公知の装置、例えば回転パン、回転ドラム、糖衣機、コンクリートミキサー等を使用することができる。また当該転動装置に付帯して加熱設備を取り付けた物が粒状肥料の品温の制御、更には製品の品質の安定化の面から好ましい。加熱設備に特に制限はなく、公知の設備、例えば重油ボイラーや灯油ヒーターによる熱風を通気する設備や、赤外線ヒーター、遠赤外線ヒーター等を使用することができる。 There is no particular limitation on the device for rolling the granular fertilizer, and known devices such as rotating pans, rotating drums, sugar-coating machines, concrete mixers, and the like can be used. Further, it is preferable to attach a heating device attached to the rolling device from the viewpoint of controlling the temperature of the granular fertilizer and stabilizing the quality of the product. The heating equipment is not particularly limited, and known equipment such as a heavy oil boiler or a kerosene heater for hot air ventilation, an infrared heater, a far infrared heater, or the like can be used.
本発明において被覆対象となる粒状硫酸苦土肥料は、肥料登録上の硫酸苦土肥料を含有する肥料の粒状品であれば特に限定されず、製造方法、苦土成分量に関わらず使用することができる。その例としては、海水の製塩過程で副製される硫酸マグネシウムを原料とする硫酸苦土肥料、橄欖岩、蛇紋岩といった含マグネシウム鉱物の粉砕品と硫酸を反応させることで得られる硫酸苦土肥料、水酸化マグネシウム、軽焼マグネシアといった化成品の粉砕品に硫酸を反応させることで得られる硫酸苦土肥料、又はそれらから選ばれた1種類ないし2種類以上を含有する複合肥料の粒状品が挙げられる。造粒の方法についても特に限定されることはなく、公知の造粒装置で造粒した粒状品であり、造粒バインダーの種類や添加の有無についても限定されない。これらの中でも、製造コストの増大を抑えるという目的上、含マグネシウム鉱物の粉砕品と硫酸の反応生成物の品温が60℃以上の時に水のみを添加して造粒する製造方法による物が製造コストや粒硬度の高さから特に好ましい。 The granular magnesium sulfate fertilizer to be coated in the present invention is not particularly limited as long as it is a granular fertilizer containing magnesium sulfate fertilizer registered as a fertilizer, and can be used regardless of the manufacturing method and the amount of magnesium component. can be done. Examples include magnesium sulfate fertilizer, which is made from magnesium sulfate, which is a by-product of the seawater salt production process, and magnesium sulfate fertilizer, which is obtained by reacting crushed magnesium-containing minerals such as peridotite and serpentinite with sulfuric acid. , Magnesium sulfate fertilizer obtained by reacting sulfuric acid with pulverized chemical products such as magnesium hydroxide and light burnt magnesia, and granular composite fertilizers containing one or more selected from them. be done. The method of granulation is not particularly limited, and it is a granular product granulated by a known granulator, and the type of granulation binder and the presence or absence of addition are not limited. Among these, for the purpose of suppressing an increase in manufacturing costs, products are manufactured by a manufacturing method in which only water is added and granulated when the product temperature of the pulverized magnesium-containing mineral and the reaction product of sulfuric acid is 60°C or higher. It is particularly preferable from the viewpoint of cost and grain hardness.
被覆対象となる粒状硫酸苦土肥料の粒径は特に制限はないが、粒径1~5mmの範囲の物が製造上好ましく、更には1.7~4mmの範囲の物が製品を機械散布する際の適用性から特に好ましい。 The grain size of the granular magnesium sulfate fertilizer to be coated is not particularly limited, but a grain size in the range of 1 to 5 mm is preferable for production, and a grain size in the range of 1.7 to 4 mm is suitable for mechanical spraying. It is particularly preferred from the standpoint of practical applicability.
以下、実施例により本発明を詳細に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be described in detail below with reference to Examples, but the scope of the present invention is not limited to these Examples.
(実施例1)
粒状硫酸苦土肥料(エムシー・ファーティコム製、商品名:サンメイト)10kgをコンクリートミキサー(内径480mm)に仕込み、27rpmで回転させ、肥料を転動状態にした。疎水性物質として菜種油(キャノーラ油)を100g、樹脂原料としてポリメリックMDI(住化コベストロウレタン製、商品名:スミジュール44V20L)を47.2g、ポリエーテルポリオール(住化コベストロウレタン製、商品名:スミフェンTM)を52.8g、アミン触媒として2,4,6-トリス(ジメチルアミノメチル)フェノールを1.2g添加し、転動状態を維持しながらヒートガン(石崎電機製作所、商品名:プラジェット PJ-216A)による熱風を通気し、加熱を開始した。加熱開始から8分後、肥料表面温度が約47℃になった時点で一時的に転動状態の肥料粒子の流動性が下がり、ウレタン樹脂の熱硬化反応が確認された。その3分後、流動性が回復したことを確認した後、再びポリメリックMDIを23.6g、ポリエーテルポリオールを26.4g、アミン触媒を0.6g添加し、転動しながら加熱を続け熱硬化させた。肥料表面温度が70℃に達するまでの間に更にもう一度同量のウレタン樹脂原料の添加及び熱硬化を行い、被覆対象肥料に対しウレタン樹脂原料として合計2重量%添加して一次被覆工程を完了した。この時加熱開始から肥料表面温度が70℃に達するまでに35分を要した。続く二次被覆工程においては、まずパラフィンワックス(日本精蝋製、商品名:Paraffin Wax-155、融点:69℃)を60g添加し均一に分散させた後、ポリメリックMDIを23.6g、ポリエーテルポリオールを26.4g、アミン触媒を0.6g添加し、肥料温度を70~75℃に維持しながら熱硬化を行った。該温度条件においては樹脂原料添加完了から3分後に熱硬化反応が概ね完了し次の樹脂原料を添加可能な状態となったことから、肥料温度を維持したまま3分毎に同量の樹脂原料を添加する工程を合計12回繰り返し、被覆対象肥料に対しウレタン樹脂原料として合計6重量%添加し二次被覆工程における樹脂添加を完了した。最後の樹脂添加から肥料温度を70~75℃にした状態で10分間維持し、樹脂を完全に硬化することで被覆粒状硫酸苦土肥料を作成した。
(Example 1)
10 kg of granular magnesium sulfate fertilizer (manufactured by MC Ferticom, trade name: Sunmate) was charged into a concrete mixer (inner diameter: 480 mm) and rotated at 27 rpm to make the fertilizer tumbling. 100 g of rapeseed oil (canola oil) as a hydrophobic substance, 47.2 g of polymeric MDI (manufactured by Sumika Covestro Urethane, trade name: Sumidule 44V20L) as a resin raw material, polyether polyol (manufactured by Sumika Covestro Urethane, trade name) 52.8 g of Sumifene TM) and 1.2 g of 2,4,6-tris(dimethylaminomethyl)phenol as an amine catalyst were added, and a heat gun (Ishizaki Electric Seisakusho, trade name: Plaget PJ-216A) was supplied with hot air, and heating was started. Eight minutes after the start of heating, when the surface temperature of the fertilizer reached about 47° C., the fluidity of the tumbling fertilizer particles temporarily decreased, confirming the thermosetting reaction of the urethane resin. Three minutes later, after confirming that the fluidity had recovered, 23.6 g of polymeric MDI, 26.4 g of polyether polyol, and 0.6 g of amine catalyst were added again, and heating was continued while rolling to heat cure. let me The same amount of urethane resin raw material was added and heat-cured again until the surface temperature of the fertilizer reached 70°C. . At this time, it took 35 minutes from the start of heating until the fertilizer surface temperature reached 70°C. In the subsequent secondary coating step, first, 60 g of paraffin wax (manufactured by Nippon Seiro, trade name: Paraffin Wax-155, melting point: 69 ° C.) was added and uniformly dispersed, then 23.6 g of polymeric MDI, polyether 26.4 g of polyol and 0.6 g of amine catalyst were added, and heat curing was performed while maintaining the fertilizer temperature at 70-75°C. Under these temperature conditions, the thermosetting reaction was almost completed 3 minutes after the addition of the resin raw material, and the next resin raw material could be added. was repeated a total of 12 times, and a total of 6% by weight of the urethane resin raw material was added to the fertilizer to be coated to complete the resin addition in the secondary coating step. After the last resin addition, the fertilizer temperature was maintained at 70-75°C for 10 minutes to fully cure the resin to form a coated granular magnesium sulfate fertilizer.
(比較例1)
粒状硫酸苦土肥料(エムシー・ファーティコム製、商品名:サンメイト)10kgをコンクリートミキサー(内径480mm)に仕込み、27rpmで回転させ、肥料を転動状態にした。そしてヒートガン(石崎電機製作所、商品名:プラジェット PJ-216A)による熱風を通気し、肥料表面温度が70℃になるまで加熱した。この時加熱開始から肥料表面温度が70℃に達するまでに100分を要した。次にパラフィンワックス(日本精蝋製、商品名:Paraffin Wax-155、融点:69℃)を60g添加し均一に分散させた後、ポリメリックMDI(住化コベストロウレタン製、商品名:スミジュール44V20L)を23.6g、ポリエーテルポリオール(住化コベストロウレタン製、商品名:スミフェンTM)を26.4g、アミン触媒(2,4,6-トリス(ジメチルアミノメチル)フェノール)を0.6g添加し、肥料温度を70~75℃に維持しながら熱硬化を行った。肥料温度を維持したまま3分毎に同量の樹脂原料を添加する工程を合計16回繰り返し、被覆対象肥料に対しウレタン樹脂原料として合計8重量%添加し樹脂添加を完了した。最後の樹脂添加から、肥料温度を70~75℃にした状態で10分間維持し、樹脂を完全に硬化することで被覆粒状硫酸苦土肥料を作成した。
(Comparative example 1)
10 kg of granular magnesium sulfate fertilizer (manufactured by MC Ferticom, trade name: Sunmate) was charged into a concrete mixer (inner diameter: 480 mm) and rotated at 27 rpm to make the fertilizer tumbling. Then, hot air from a heat gun (Ishizaki Denki Seisakusho, trade name: PLAJET PJ-216A) was passed through, and the fertilizer was heated until the surface temperature reached 70°C. At this time, it took 100 minutes from the start of heating until the fertilizer surface temperature reached 70°C. Next, 60 g of paraffin wax (manufactured by Nippon Seiro, trade name: Paraffin Wax-155, melting point: 69 ° C.) was added and uniformly dispersed, followed by polymeric MDI (manufactured by Sumika Covestro Urethane, trade name: Sumidule 44V20L). ), 26.4 g of polyether polyol (manufactured by Sumika Covestro Urethane, trade name: Sumifen TM), and 0.6 g of amine catalyst (2,4,6-tris(dimethylaminomethyl)phenol). Then, heat curing was performed while maintaining the fertilizer temperature at 70 to 75°C. The process of adding the same amount of resin material every 3 minutes while maintaining the fertilizer temperature was repeated a total of 16 times, and a total of 8% by weight of urethane resin material was added to the fertilizer to be coated to complete resin addition. From the last resin addition, the fertilizer temperature was maintained at 70-75°C for 10 minutes to fully cure the resin to make coated granular magnesium sulfate fertilizer.
(比較例2)
一次被覆工程において疎水性物質を添加しない以外は実施例1と同様にして、サンプルを作成した。この時、加熱開始から肥料表面温度が70℃に達するまでに32分を要した。
(Comparative example 2)
A sample was prepared in the same manner as in Example 1, except that no hydrophobic substance was added in the primary coating step. At this time, it took 32 minutes from the start of heating until the fertilizer surface temperature reached 70°C.
(実施例2)
粒状硫酸苦土肥料(エムシー・ファーティコム製、商品名:サンメイト)100kgをコンクリートミキサー(内径1000mm)に仕込み、18rpmで回転させ、肥料を転動状態にした。疎水性物質として菜種油(キャノーラ油)を1000g、樹脂原料としてポリメリックMDI(住化コベストロウレタン製、商品名:スミジュール44V20L)を472g、ポリエーテルポリオール(住化コベストロウレタン製、商品名:スミフェンTM)を528g、アミン触媒として2,4,6-トリス(ジメチルアミノメチル)フェノールを12g添加し、転動状態を維持しながら装置外壁にジェットヒーターの熱風を当てることで加熱を開始した。加熱開始から29分後、肥料表面温度が約46℃になった時点で一時的に転動状態の肥料粒子の流動性が下がり、ウレタン樹脂の熱硬化反応が確認された。その5分後、流動性が回復したことを確認した後、再びポリメリックMDIを236g、ポリエーテルポリオールを264g、アミン触媒を6g添加し、転動しながら加熱を続け熱硬化させた。肥料品温が70℃に達するまでの間に更に2回同量のウレタン樹脂原料の添加及び熱硬化を行い、被覆対象肥料に対しウレタン樹脂原料として合計2.5重量%添加して一次被覆工程を完了した。続く二次被覆工程においては、まずパラフィンワックス(日本精蝋製、商品名:Paraffin Wax-155、融点:69℃)を600g添加し均一に分散させた後、ポリメリックMDIを236g、ポリエーテルポリオールを264g、アミン触媒を6g添加し、肥料温度を70~75℃に維持しながら熱硬化を行った。該温度条件においては樹脂原料添加完了から3分後に熱硬化反応が概ね完了し次の樹脂原料を添加可能な状態となったことから、肥料温度を維持したまま3分毎に同量の樹脂原料を添加する工程を合計11回繰り返し、被覆対象肥料に対しウレタン樹脂原料として合計5.5重量%添加し二次被覆工程における樹脂添加を完了した。最後の樹脂添加から肥料温度を70~75℃にした状態で10分間維持し、樹脂を完全に硬化することで被覆粒状硫酸苦土肥料を作成した。
(Example 2)
100 kg of granular magnesium sulfate fertilizer (manufactured by MC Ferticom, trade name: Sunmate) was charged into a concrete mixer (inner diameter: 1000 mm) and rotated at 18 rpm to make the fertilizer tumbling. 1000 g of rapeseed oil (canola oil) as a hydrophobic substance, 472 g of polymeric MDI (manufactured by Sumika Covestro Urethane, trade name: Sumidur 44V20L) as a resin raw material, polyether polyol (manufactured by Sumika Covestro Urethane, trade name: Sumifen) TM) and 12 g of 2,4,6-tris(dimethylaminomethyl)phenol as an amine catalyst were added, and heating was started by applying hot air from a jet heater to the outer wall of the device while maintaining the tumbling state. Twenty-nine minutes after the start of heating, when the surface temperature of the fertilizer reached about 46° C., the fluidity of the tumbling fertilizer particles decreased temporarily, confirming the thermosetting reaction of the urethane resin. Five minutes later, after confirming that the fluidity had recovered, 236 g of polymeric MDI, 264 g of polyether polyol, and 6 g of amine catalyst were added again, and the mixture was heated while rolling to heat cure. The same amount of urethane resin raw material is added and heat-cured twice until the fertilizer product temperature reaches 70 ° C. A total of 2.5% by weight of urethane resin raw material is added to the fertilizer to be coated, and the primary coating process is performed. completed. In the subsequent secondary coating step, first, 600 g of paraffin wax (manufactured by Nippon Seiro, trade name: Paraffin Wax-155, melting point: 69 ° C.) was added and uniformly dispersed, and then 236 g of polymeric MDI and polyether polyol were added. 264 g and 6 g of an amine catalyst were added, and heat curing was performed while maintaining the fertilizer temperature at 70-75°C. Under these temperature conditions, the thermosetting reaction was almost completed 3 minutes after the addition of the resin raw material, and the next resin raw material could be added. was repeated a total of 11 times, and a total of 5.5% by weight of urethane resin raw material was added to the fertilizer to be coated, completing the resin addition in the secondary coating process. The fertilizer temperature was maintained at 70-75° C. for 10 minutes from the last resin addition to fully cure the resin to form a coated granular magnesium sulfate fertilizer.
(比較例3)
一次被覆工程において疎水性物質を添加せず、一次被覆樹脂添加総量を3.5重量%、二次被覆樹脂添加総量を4.5%とした以外は実施例2と同様にして、サンプルを作成した。
(Comparative Example 3)
A sample was prepared in the same manner as in Example 2 except that no hydrophobic substance was added in the primary coating step, the total amount of primary coating resin added was 3.5% by weight, and the total amount of secondary coating resin added was 4.5%. bottom.
各実施例及び比較例で作成した被覆肥料は水中に浸漬して25℃に保温し、経時的にサンプリングして溶出したマグネシウム量を測定し、溶出率を算出した。また、被覆前の粒状硫酸苦土肥料、並びに各実施例及び比較例で作成したサンプルの水分率を100℃、5時間乾燥後の重量変化から測定した。 The coated fertilizers prepared in Examples and Comparative Examples were immersed in water and kept at 25° C., sampled over time, the amount of eluted magnesium was measured, and the elution rate was calculated. In addition, the moisture content of the granular magnesium sulfate fertilizer before coating and the samples prepared in each example and comparative example was measured from the change in weight after drying at 100° C. for 5 hours.
実施例1~2、及び比較例1~3における実施の概要を表1に、被覆前後の水分の測定結果を表2に、マグネシウム溶出率の推移の結果を表3にまとめた。 Table 1 summarizes the implementation in Examples 1 and 2 and Comparative Examples 1 and 3, Table 2 summarizes the results of moisture measurement before and after coating, and Table 3 summarizes the transition of the magnesium elution rate.
表2に示した水分率の比較の結果、一次被覆を施した実施例1、比較例2は一次被覆を施していない比較例1と比較して水分率の減少が抑えられていることが示された。この結果は被覆温度に達するまでの昇温時間が実施例1で35分、比較例2で32分であったのに対し、比較例1で100分であったことと対応しており、一次被覆により結晶水の蒸発が抑制され、生産性が著しく改善されることを示すものである。また、表3に示したマグネシウム溶出率の推移から、実施例1、2において長期間にわたり安定して溶出していることが分かった。一次被覆工程において疎水性物質を添加しなかった比較例2においては最終的な溶出率は実施例1と同等になるが、前半の溶出が急激であり、肥効の緩効化の目的からすると好ましくない。この結果は一次被覆工程において疎水性物質することで被膜の均一性が向上し、溶出を安定化させる効果があることを示すものである。 As a result of the comparison of the moisture content shown in Table 2, it is shown that Example 1 and Comparative Example 2 in which the primary coating was applied suppressed a decrease in the moisture content in comparison with Comparative Example 1 in which the primary coating was not applied. was done. This result corresponds to the fact that the heating time until reaching the coating temperature was 35 minutes in Example 1 and 32 minutes in Comparative Example 2, whereas it was 100 minutes in Comparative Example 1. This indicates that the coating suppresses the evaporation of the water of crystallization and significantly improves the productivity. Moreover, from the transition of the magnesium elution rate shown in Table 3, it was found that in Examples 1 and 2, the magnesium was stably eluted over a long period of time. In Comparative Example 2, in which no hydrophobic substance was added in the primary coating step, the final elution rate was the same as in Example 1, but the elution was rapid in the first half, and from the purpose of slowing the fertilization effect. I don't like it. This result indicates that the use of a hydrophobic substance in the primary coating step improves the uniformity of the coating and has the effect of stabilizing the elution.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021007739A JP7299931B2 (en) | 2021-01-21 | 2021-01-21 | Method for producing controlled fertilizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021007739A JP7299931B2 (en) | 2021-01-21 | 2021-01-21 | Method for producing controlled fertilizer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022112092A JP2022112092A (en) | 2022-08-02 |
JP7299931B2 true JP7299931B2 (en) | 2023-06-28 |
Family
ID=82656253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021007739A Active JP7299931B2 (en) | 2021-01-21 | 2021-01-21 | Method for producing controlled fertilizer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7299931B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003104787A (en) | 2001-07-18 | 2003-04-09 | Sumitomo Chem Co Ltd | Multilayer-coated granular fertilizer |
JP2005001957A (en) | 2003-06-13 | 2005-01-06 | Sumitomo Chem Co Ltd | Granular coated fertilizer and its manufacturing method |
JP2008056555A (en) | 2006-07-31 | 2008-03-13 | Sumitomo Chemical Co Ltd | Coated granular material coated with urethane resin |
JP2012046381A (en) | 2010-08-27 | 2012-03-08 | Sumitomo Chemical Co Ltd | Method for producing resin-coated granular fertilizer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03164487A (en) * | 1989-11-20 | 1991-07-16 | Dia Chem Kk | Granular magnesia sulfate fertilizer and production thereof |
JPH11347477A (en) * | 1998-06-02 | 1999-12-21 | Asahi Chem Ind Co Ltd | Coating method |
-
2021
- 2021-01-21 JP JP2021007739A patent/JP7299931B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003104787A (en) | 2001-07-18 | 2003-04-09 | Sumitomo Chem Co Ltd | Multilayer-coated granular fertilizer |
JP2005001957A (en) | 2003-06-13 | 2005-01-06 | Sumitomo Chem Co Ltd | Granular coated fertilizer and its manufacturing method |
JP2008056555A (en) | 2006-07-31 | 2008-03-13 | Sumitomo Chemical Co Ltd | Coated granular material coated with urethane resin |
JP2012046381A (en) | 2010-08-27 | 2012-03-08 | Sumitomo Chemical Co Ltd | Method for producing resin-coated granular fertilizer |
Also Published As
Publication number | Publication date |
---|---|
JP2022112092A (en) | 2022-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2310344B1 (en) | Controlled release fertilizer composition | |
US8888887B2 (en) | Cross-linked modified waxes for controlled release fertilizers | |
US7682656B2 (en) | Process and apparatus for producing a coated product | |
CA2618592C (en) | Controlled release fertilizer employing epoxidized fatty acid triglyceride oil as a coating additive | |
US10562827B1 (en) | Polymer coated fertilizer | |
US20210122685A1 (en) | Coated inorganic materials and methods for forming the coated inorganic materials | |
JP5810544B2 (en) | Coated granule and method for producing the coated granule | |
JPH054887A (en) | Composition for coating fertilizer, coated granular fertilizer and their production | |
JP7299931B2 (en) | Method for producing controlled fertilizer | |
JP2011173780A (en) | Method for producing coated water-soluble particulate | |
JP5028848B2 (en) | Method for producing resin-coated granular fertilizer | |
KR102507635B1 (en) | Method for manufacturing coated granular fertilizer, the dissolution rate and the fertilizer releasing time are controlled according to the content of natural wax and natural saturated fat mixed in natural oil | |
JP2005067904A (en) | Coated granular fertilizer and method for manufacturing coated granular fertilizer | |
WO2022131217A1 (en) | Method for manufacturing coated granular fertilizer, and coated granular fertilizer | |
JP2005001957A (en) | Granular coated fertilizer and its manufacturing method | |
JP2003246692A (en) | Method of manufacturing granular coated fertilizer | |
US3077395A (en) | Method of producing granulated fertilizer | |
JP2003104787A (en) | Multilayer-coated granular fertilizer | |
CN102190530A (en) | Coated granular matter | |
JP2012046381A (en) | Method for producing resin-coated granular fertilizer | |
WO2019220350A1 (en) | Coated inorganic materials and methods for forming the coated inorganic materials | |
RO133501A2 (en) | Solid granulated fertilizer based on petroleum sulphur, process for preparing the same and technology for its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230428 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230616 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7299931 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |