JP7299700B2 - Dual inhibition therapy of VEGF-A/VEGFR2 pathway and pharmaceutical composition for use thereof - Google Patents

Dual inhibition therapy of VEGF-A/VEGFR2 pathway and pharmaceutical composition for use thereof Download PDF

Info

Publication number
JP7299700B2
JP7299700B2 JP2018247198A JP2018247198A JP7299700B2 JP 7299700 B2 JP7299700 B2 JP 7299700B2 JP 2018247198 A JP2018247198 A JP 2018247198A JP 2018247198 A JP2018247198 A JP 2018247198A JP 7299700 B2 JP7299700 B2 JP 7299700B2
Authority
JP
Japan
Prior art keywords
vegf
antibody
vegfr2
binds
administration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018247198A
Other languages
Japanese (ja)
Other versions
JP2022043372A (en
Inventor
哲夫 馬島
尊 若槻
啓之 清宮
研成 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japanese Foundation for Cancer Research
Original Assignee
Japanese Foundation for Cancer Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japanese Foundation for Cancer Research filed Critical Japanese Foundation for Cancer Research
Priority to JP2018247198A priority Critical patent/JP7299700B2/en
Priority to PCT/JP2019/051593 priority patent/WO2020138486A1/en
Publication of JP2022043372A publication Critical patent/JP2022043372A/en
Application granted granted Critical
Publication of JP7299700B2 publication Critical patent/JP7299700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

本発明は抗VEGFR2(vascular endothelial growth factor receptor 2、血管内皮増殖因子受容体2)抗体と、抗VEGF-A(vascular endothelial growth factor-A、血管内皮増殖因子)中和抗体を併用する新しい治療方法に関する。 The present invention is a new treatment method that uses an anti-VEGFR2 (vascular endothelial growth factor receptor 2, vascular endothelial growth factor receptor 2) antibody and an anti-VEGF-A (vascular endothelial growth factor-A, vascular endothelial growth factor) neutralizing antibody in combination. Regarding.

がんが増殖、転移する際には、増殖能を維持するための栄養補給経路として血管新生と言われる栄養血管の新生が起こる。血管新生は間質および腫瘍細胞より産生される血管内皮細胞増殖因子(VEGF)とその受容体(VEGFR)が主要な役割を果たしており、血管新生を制御する目的でこれらの分子を標的とする薬剤の開発が広く行われてきた。 When cancer proliferates and metastasizes, the new formation of nutrient blood vessels called angiogenesis occurs as a nutritional supply route for maintaining proliferative ability. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) produced by stroma and tumor cells play a major role in angiogenesis, and drugs that target these molecules for the purpose of regulating angiogenesis has been widely developed.

VEGFの受容体であるVEGFRは、受容体型チロシンキナーゼの一種でありVEGFR1からVEGFR3の3種のタンパク質が存在する。特に、VEGFR2はVEGFR1と比較してリガンドに対する結合能は弱いものの、チロシンキナーゼ活性は強く、総合的に見て細胞内シグナル伝達に対する寄与が大きく、血管新生の過程に大きく関与していると考えられている。VEGFR2はVEGF-A、C、DおよびEとの結合能を有しており、3種のVEGFRのうち、VEGFによって誘発される腫瘍血管新生と最も密接に関連しているといわれる受容体である。 VEGFR, which is a receptor for VEGF, is a type of receptor tyrosine kinase, and there are three kinds of proteins, VEGFR1 to VEGFR3. In particular, although VEGFR2 has weaker binding ability to ligands than VEGFR1, it has strong tyrosine kinase activity, making a large contribution to intracellular signal transduction overall, and is considered to be greatly involved in the process of angiogenesis. ing. VEGFR2 has the ability to bind to VEGF-A, C, D and E, and is the receptor said to be most closely associated with VEGF-induced tumor angiogenesis among the three VEGFRs. .

がんの増殖、及び転移に関わる血管新生において重要な作用をするVEGFR2に対する抗体医薬品が開発されつつあり、その代表的な抗体医薬品であるラムシルマブ(Ramucirumab、商品名「サイラムザ」、イーライ・リリー社製)は、VEGFR2に対する遺伝子組換えヒト免疫グロブリンG1(IgG1)のヒト型モノクローナル抗体である。 Antibody drugs against VEGFR2, which plays an important role in angiogenesis related to cancer growth and metastasis, are being developed. Ramucirumab, a representative antibody drug, is Ramucirumab (trade name: Cyramza, manufactured by Eli Lilly). ) is a humanized monoclonal antibody of recombinant human immunoglobulin G1 (IgG1 b ) against VEGFR2.

ラムシルマブはVEGFR2に特異的に結合することによって、リガンドであるVEGF-A、VEGF-C、VEGF-Dとの結合を阻害し、VEGFR2とその下流のシグナル伝達系の活性化を阻害する。その結果、血管内皮細胞の増殖、遊走を阻害し、腫瘍血管の新生を阻害して抗腫瘍効果を発揮する。 By specifically binding to VEGFR2, ramucirumab inhibits the binding of ligands VEGF-A, VEGF-C, and VEGF-D, thereby inhibiting the activation of VEGFR2 and its downstream signal transduction system. As a result, it inhibits proliferation and migration of vascular endothelial cells, inhibits tumor angiogenesis, and exerts an antitumor effect.

近年、胃がんにおいても血管新生阻害剤の有用性が示され、ラムシルマブは進行胃がんの2次治療に用いられている。根治切除不能な進行胃がん症例に対しては全身化学療法が施行されているが、その予後は平均1年前後と満足できるものではない。ラムシルマブは、進行胃がんの2次治療において全生存期間の有意な延長を認め、2015年6月に本邦で胃がんにおける承認が得られ、以降、大腸がん、肺がんにおいても広く用いられている。 In recent years, the usefulness of angiogenesis inhibitors has been shown also in gastric cancer, and ramucirumab is used for the second-line treatment of advanced gastric cancer. Although systemic chemotherapy has been administered to patients with unresectable advanced gastric cancer, the prognosis is not satisfactory, with an average prognosis of around 1 year. Ramucirumab significantly prolongs overall survival in the second-line treatment of advanced gastric cancer, was approved for gastric cancer in Japan in June 2015, and has since been widely used for colorectal cancer and lung cancer.

ヒト抗VEGFR2抗体であるラムシルマブは、胃がん2次治療症例を対象としたGlobal第三相試験であるRAINBOW試験において、パクリタキセルとの併用において全生存期間の有意な延長が示され、本邦においても標準治療となっている(mOS(median overall survival、全生存期間中央値):9.6カ月vs7.4カ月、HR(Hazard Ratio、ハザード比)0.81 95%CI0.68-0.96、p=0.017)(非特許文献1)。しかしながらその治療効果は十分ではなく、先のRAINBOW試験の日本人におけるサブセット解析では、2次治療におけるラムシルマブ/パクリタキセル併用療法の奏効率は約40%、生存期間中央値は11.4カ月前後であった(非特許文献2)。 Ramucirumab, a human anti-VEGFR2 antibody, was shown to significantly prolong overall survival when used in combination with paclitaxel in the RAINBOW study, a global phase III study targeting second-line gastric cancer patients, and is also the standard treatment in Japan. (mOS (median overall survival, median overall survival): 9.6 months vs. 7.4 months, HR (Hazard Ratio) 0.81 95% CI 0.68-0.96, p = 0.017) (Non-Patent Document 1). However, the therapeutic effect was not sufficient, and according to a subset analysis of Japanese subjects in the previous RAINBOW study, the response rate of ramucirumab/paclitaxel combination therapy in second-line therapy was about 40%, and the median survival time was around 11.4 months. (Non-Patent Document 2).

ラムシルマブは、副作用も少なく胃がんで効果が認められる患者が多い一方で、さほど治療効果が得られない患者もいる。こうした治療上のベネフィットが少ない患者に対しては、ラムシルマブの治療開始前、あるいは治療開始早期に治療効果予測を行うことができれば、治療効果が期待できない患者に対して無駄な治療を行うことなく、代替の治療を行うことができる。また、医薬品の適正使用の観点からもこれを可能とする適切な治療効果予測のバイオマーカーを開発すればメリットが大きい。さらに、ラムシルマブに対する耐性機序が分かれば、新たな治療戦略の開発につながる。そこで、本発明者らはラムシルマブ治療効果と相関のあるバイオマーカーの解析を行った。 Ramucirumab has few side effects and is effective in many patients with gastric cancer, but in some patients it does not show a significant therapeutic effect. For such patients with little therapeutic benefit, if it is possible to predict the therapeutic effect before the start of ramucirumab treatment or at an early stage of treatment, it will be possible to avoid unnecessary treatment for patients for whom the therapeutic effect cannot be expected. Alternative treatments can be given. In addition, from the viewpoint of proper use of pharmaceuticals, it would be advantageous to develop appropriate biomarkers for predicting therapeutic effects that would enable this. Furthermore, understanding the mechanism of resistance to ramucirumab will lead to the development of new therapeutic strategies. Therefore, the present inventors analyzed biomarkers correlated with ramucirumab therapeutic effects.

その結果、ラムシルマブが投与された胃がん症例において、血漿中のVEGF-Aが以下のような挙動を示し、予後と相関することを明らかにした。図1は、2例はラムシルマブ単独投与、他はパクリタキセルとの併用投与を行った患者において、ラムシルマブ投与開始8日後の患者血漿中のVEGF-A値を測定し、PFS(Progression Free Survival、無増悪生存期間)、OSとの相関を解析した結果である。血漿中のVEGF-A濃度とPFS、OSはどちらも負の相関が見られた(図1(A))。また、血漿中のVEGF-A濃度を至適カットオフ値(424pg/ml)により高値群、低値群の2群に分けてPFS、OSを解析したところ、VEGF-A高値群では有意に予後が不良であった(図1(B))。血漿中のVEGF-A濃度とPFS、OSとの負の相関は、パクリタキセル投与においては観察されないことから、ラムシルマブ投与に特徴的な現象と考えられる。ラムシルマブ投与によって、以下の現象が認められる。(1)投与後早期に血漿VEGF-Aは著明に上昇し、このVEGF-A値と生存期間には負の相関が認められる。(2)至適カットオフにより2群に分け高値群と低値群で比較したところ高値群の予後が有意に不良であった。(3)投与後早期のVEGF-Aの上昇は一過性ではなく、増悪時まで高値が維持される(特許文献1、非特許文献3)。 As a result, in gastric cancer cases to which ramucirumab was administered, VEGF-A in plasma exhibited the following behaviors, which correlated with prognosis. In Figure 1, two patients were administered ramucirumab alone, and the others were administered in combination with paclitaxel. survival period) and OS. A negative correlation was observed between plasma VEGF-A concentration, PFS, and OS (Fig. 1(A)). In addition, when the plasma VEGF-A concentration was divided into two groups, a high level group and a low level group, according to the optimal cutoff value (424 pg / ml), PFS and OS were analyzed. was unsatisfactory (Fig. 1(B)). A negative correlation between plasma VEGF-A concentration and PFS and OS was not observed with paclitaxel administration, which is considered to be a phenomenon characteristic of ramucirumab administration. Ramucirumab administration causes the following phenomena. (1) Plasma VEGF-A markedly increased early after administration, and a negative correlation was observed between this VEGF-A level and survival time. (2) When divided into two groups according to the optimal cutoff, the prognosis of the high-value group was significantly poorer than that of the low-value group. (3) The early increase in VEGF-A after administration is not transient, and the high level is maintained until exacerbation (Patent Document 1, Non-Patent Document 3).

上記結果によれば、ラムシルマブ投与によって、血中VEGF-A濃度が上昇する患者群で、ラムシルマブの効果が得られないことから、VEGFの上昇を抑制することによって、奏効が得られる可能性がある。しかしながら、すでに報告されているVEGF、VEGFR双方を抑制する治療法からは望ましい結果が得られていない(非特許文献4~7)。これらの治療法は、具体的にはキナーゼ阻害剤ソラフェニブ(Sorafenib)とVEGFに対するモノクローナル抗体であるベバシズマブ(bevacizumab)によって、VEGFR、VEGF双方を抑制しようという治療法である。しかし、上記報告によれば、ソラフェニブ、ベバシズマブの併用療法はさほど効果を示さない、あるいは、副作用が強く、治療を継続できず、確立した治療法となるには至っていない。 According to the above results, ramucirumab administration does not produce the effect of ramucirumab in a group of patients in whom blood VEGF-A concentration increases, so there is a possibility that a response can be obtained by suppressing the increase in VEGF. . However, the treatments that have already been reported to suppress both VEGF and VEGFR have not yielded desirable results (Non-Patent Documents 4-7). Specifically, these therapies are therapies that attempt to suppress both VEGFR and VEGF using the kinase inhibitor Sorafenib and the monoclonal antibody bevacizumab against VEGF. However, according to the above reports, the combined therapy of sorafenib and bevacizumab does not show much effect, or the side effects are so strong that the treatment cannot be continued, and it has not yet become an established treatment method.

さらに、ラムシルマブ投与後の過剰なVEGF-Aはその後の治療経過に悪影響を与える可能性がある。その理由として過剰なVEGF-AがVEGFR1を介した経路で血管新生・腫瘍増殖をきたすからである。また近年、VEGF-Aは制御性T細胞の増殖・浸潤などを介して腫瘍免疫への抑制効果も報告されており(非特許文献8)、免疫抑制を介した機序により悪影響を及ぼす可能性がある。 Moreover, excess VEGF-A after administration of ramucirumab may adversely affect subsequent treatment course. The reason for this is that excessive VEGF-A induces angiogenesis and tumor growth through a pathway mediated by VEGFR1. In recent years, VEGF-A has also been reported to have a suppressive effect on tumor immunity through the proliferation and infiltration of regulatory T cells (Non-Patent Document 8), and may have an adverse effect through mechanisms mediated by immunosuppression. There is

国際公開第2018/124153号WO2018/124153

Wilke, H. et al.,2014, Lancet Oncol., Vol.15, p.1224-1235.Wilke, H. et al., 2014, Lancet Oncol., Vol.15, p.1224-1235. Shitara, K. et al., 2016, Gastric Cancer,Vol.19(3), pp.927-938, doi: 10.1007/s10120-015-0559-z.Shitara, K. et al., 2016, Gastric Cancer, Vol.19(3), pp.927-938, doi: 10.1007/s10120-015-0559-z. https://meetinglibrary.asco.org/record/156166/abstracthttps://meetinglibrary.asco.org/record/156166/abstract CastellanoD. et al., 2013, Eur. J. Cancer. Vol.49(18), pp.3780-3787.CastellanoD. et al., 2013, Eur. J. Cancer. Vol.49(18), pp.3780-3787. Galanis, E. et al., 2013, Clin. CancerRes., Vol.19(17), pp.4816-4823.Galanis, E. et al., 2013, Clin. CancerRes., Vol.19(17), pp.4816-4823. Lee, J.M., et al., 2010, Br. J. Cancer,Vol.102(3), pp.495-459.Lee, J.M., et al., 2010, Br. J. Cancer, Vol.102(3), pp.495-459. Azad, N.S. et al., 2008, J. Clin.Oncol., Vol.26(22), pp.3709-3714.Azad, N.S. et al., 2008, J. Clin.Oncol., Vol.26(22), pp.3709-3714. Kahn, K.A. and Kerbel, R.S.,2018, Nat. Rev. Clin. Oncol.,Vol.15(5), pp. 310-324.Kahn, K.A. and Kerbel, R.S., 2018, Nat. Rev. Clin. Oncol., Vol.15(5), pp. 310-324.

すでに本発明者らが示しているように、ラムシルマブで代表される抗VEGFR2抗体投与による有効性は治療開始早期に血中のVEGF-A濃度によって見極めることができる。しかし、ラムシルマブ投与による治療の効果が認められない患者群に対し、ラムシルマブ治療を行わないという選択肢はあるものの、効果のある代替の治療法があるわけではない。本発明は、ラムシルマブ投与により有効性が認められない患者群に対し、効果を奏する治療薬、及び治療法を提供することを課題とする。また、抗VEGFR2抗体投与により産生される過剰のVEGF-Aによる治療に対する悪影響を排除する治療薬、及び治療法を提供することを課題とする。 As already shown by the present inventors, the efficacy of administration of an anti-VEGFR2 antibody typified by ramucirumab can be determined from the VEGF-A concentration in the blood at an early stage of treatment. However, for a group of patients who do not respond to treatment with ramucirumab, there is an option of not receiving ramucirumab treatment, but there is no effective alternative treatment. An object of the present invention is to provide a therapeutic drug and a therapeutic method that are effective for a group of patients for whom administration of ramucirumab is not effective. Another object of the present invention is to provide therapeutic agents and therapeutic methods that eliminate the adverse effects of excess VEGF-A produced by anti-VEGFR2 antibody administration on treatment.

本発明は、ラムシルマブをはじめとする抗VEGFR抗体投与によって、治療効果が得られない患者に対して治療効果を改善する新規治療法、治療薬に関する。
(1)血管新生が増悪の原因となる疾患において、抗VEGFR2抗体医薬品と併用する医薬品であって、抗VEGF抗体を有効成分とすることを特徴とする併用薬。
(2)前記抗VEGF抗体が、抗VEGF-A抗体であることを特徴とする(1)記載の併用薬。
(3)前記疾患が腫瘍であることを特徴とする(1)、又は(2)記載の併用薬。
(4)前記腫瘍が胃がん、大腸がん、又は小細胞肺がんであることを特徴とする(3)記載の併用薬。
(5)前記抗VEGFR2抗体医薬品と、同時に、又は個別に用いられることを特徴とする(1)~(4)いずれか1つ記載の併用薬。
(6)前記抗VEGFR2抗体医薬品がラムシルマブであって、前記抗VEGF抗体を有効成分とする併用薬がベバシズマブであることを特徴とする(1)~(5)いずれか1つ記載の併用薬。
(7)抗VEGFR2抗体医薬品と抗VEGF抗体医薬品を併用することにより奏効する患者を検査する方法であって、患者より採取された抗VEGFR2抗体医薬品による治療開始前、及び治療開始後早期の試料中のVEGF-A濃度を測定し、比較することを特徴とする検査方法。
(8)(7)に記載の検査方法であって、前記試料が血液、血漿、又は血清であることを特徴とする検査方法。
(9)抗VEGFR2抗体医薬品と抗VEGF抗体医薬品を併用することにより奏効する患者を検査するキットであって、患者試料中のVEGF-A濃度を測定するための試薬を含むことを特徴とする検査キット。
(10)血管新生が増悪の原因となる疾患に対し、抗VEGFR2抗体医薬品と抗VEGF抗体医薬品を併用投与する治療方法。
(11)(10)に記載の治療方法であって、抗VEGFR2抗体医薬品と抗VEGF抗体医薬品は、同時に、又は個別のタイミングで併用投与する治療方法。
(12)抗VEGFR2抗体医薬品投与前、及び投与後早期に血中VEGF濃度を測定し、抗VEGFR2抗体医薬品投与後、血中VEGF濃度の有意な増加が認められた場合には、抗VEGFR2抗体医薬品と抗VEGF抗体医薬品を併用投与する(10)、又は(11)に記載の治療方法。
TECHNICAL FIELD The present invention relates to novel therapeutic methods and therapeutic agents for improving therapeutic effects on patients for whom therapeutic effects have not been obtained by administration of anti-VEGFR antibodies such as ramucirumab.
(1) A concomitant drug that is used in combination with an anti-VEGFR2 antibody drug for a disease in which angiogenesis is a cause of aggravation, comprising an anti-VEGF antibody as an active ingredient.
(2) The combination drug according to (1), wherein the anti-VEGF antibody is an anti-VEGF-A antibody.
(3) The concomitant drug according to (1) or (2), wherein the disease is a tumor.
(4) The concomitant drug according to (3), wherein the tumor is gastric cancer, colon cancer, or small cell lung cancer.
(5) The concomitant drug according to any one of (1) to (4), which is used simultaneously or separately with the anti-VEGFR2 antibody drug.
(6) The concomitant drug according to any one of (1) to (5), wherein the anti-VEGFR2 antibody drug is ramucirumab and the concomitant drug containing the anti-VEGF antibody as an active ingredient is bevacizumab.
(7) A method for testing patients who respond to the combined use of an anti-VEGFR2 antibody drug and an anti-VEGF antibody drug, wherein the sample collected from the patient before the start of treatment with the anti-VEGFR2 antibody drug and in the early stage after the start of treatment A test method characterized by measuring and comparing the VEGF-A concentrations of
(8) The test method according to (7), wherein the sample is blood, plasma, or serum.
(9) A kit for testing a patient who responds to the combined use of an anti-VEGFR2 antibody drug and an anti-VEGF antibody drug, the test comprising a reagent for measuring the VEGF-A concentration in a patient sample. kit.
(10) A method of treatment comprising combined administration of an anti-VEGFR2 antibody drug and an anti-VEGF antibody drug for diseases exacerbated by angiogenesis.
(11) The treatment method according to (10), wherein the anti-VEGFR2 antibody drug and the anti-VEGF antibody drug are administered in combination at the same time or at separate timings.
(12) Measure blood VEGF concentration before administration of anti-VEGFR2 antibody drug and early after administration, and if significant increase in blood VEGF concentration is observed after administration of anti-VEGFR2 antibody drug, anti-VEGFR2 antibody drug and the anti-VEGF antibody drug are administered in combination (10) or (11).

血漿中のVEGF-A濃度と予後の相関を解析した図。(A)ラムシルマブ投与後8日目の患者血漿中のVEGF-A濃度とPFS(左)、OS(右)の関係を示す図。(B)ラムシルマブ投与8日目の血漿中VEGF-A高値群、低値群のPFS(左)、OS(右)を示す図。FIG. 2 shows an analysis of the correlation between plasma VEGF-A concentration and prognosis. (A) A diagram showing the relationship between VEGF-A concentration in patient plasma and PFS (left) and OS (right) on day 8 after administration of ramucirumab. (B) PFS (left) and OS (right) in plasma VEGF-A high level group and low level group on day 8 of ramucirumab administration. ヒト胃がん細胞におけるVEGF-A産生量を示す図。A diagram showing the amount of VEGF-A produced in human stomach cancer cells. マウス移植腫瘍モデルにおける解析結果を示す図。(A)ラムシルマブのマウス・サロゲート抗体であるDC101抗体投与スケジュールを示す図。(B)DC101抗体投与後の血漿中のマウスVEGF-Aの変化。(C)DC101抗体投与後の血漿中のヒトVEGF-Aの変化。The figure which shows the analysis result in a mouse|mouth transplantation tumor model. (A) Diagram showing the administration schedule of DC101 antibody, a mouse surrogate antibody of ramucirumab. (B) Changes in mouse VEGF-A in plasma after DC101 antibody administration. (C) Changes in human VEGF-A in plasma after DC101 antibody administration. マウス移植腫瘍モデルにおける解析結果を示す図。(A)DC101抗体投与後の血漿中のヒト、あるいはマウスPlGF(Placental Growth factor、胎盤増殖因子)の変化、(B)DC101抗体投与後の血漿中のヒト、あるいはマウスVEGF-Cの変化、(C)DC101抗体投与後の血漿中のヒト、あるいはマウスVEGF-Dの変化。The figure which shows the analysis result in a mouse|mouth transplantation tumor model. (A) Changes in human or mouse PlGF (Placental Growth factor) in plasma after DC101 antibody administration, (B) Changes in human or mouse VEGF-C in plasma after DC101 antibody administration, ( C) Changes in human or mouse VEGF-D in plasma after DC101 antibody administration. マウス移植腫瘍モデルにおける抗VEGFR2抗体(DC101)、抗VEGF-A抗体(mVEGF)併用投与の効果を示す図。(A)抗体投与スケジュールを示す図。(B)各抗体投与による腫瘍容積の変化を示す図。(C)各抗体投与におけるマウスに移植した腫瘍の抗体投与開始後14日目の様子を示す写真。A diagram showing the effect of combined administration of an anti-VEGFR2 antibody (DC101) and an anti-VEGF-A antibody (mVEGF) in a mouse transplanted tumor model. (A) A diagram showing an antibody administration schedule. (B) A diagram showing changes in tumor volume due to administration of each antibody. (C) A photograph showing the appearance of tumors transplanted to mice in each antibody administration 14 days after the start of antibody administration.

図1に示すように、ラムシルマブ投与後、血漿VEGF-Aの上昇がさほど見られない患者群では、ラマシルマブの治療効果が得られることから、上昇したVEGF-Aを中和することによって、奏効が得られる可能性が高いと考えた。前述のように、VEGFRを標的とする小分子医薬を用いた治療はその特有の副作用発症のため治療が妨げられるが、より副作用の少ない抗体医薬を用いて、VEGF、VEGFR双方を抑制することによって効果が得られる可能性があると考えられた。そこで、以下の解析を行った。 As shown in Figure 1, after administration of ramucirumab, in the group of patients in which plasma VEGF-A did not increase significantly, the therapeutic effect of ramucirumab was obtained. I thought it would be possible to get it. As mentioned above, treatment with small-molecule drugs targeting VEGFR is hampered by their inherent side effects. It was thought that it might be effective. Therefore, the following analysis was performed.

以下の実施例で示すように、VEGF、あるいはVEGFRに対する抗体を併用して使用することにより、抗VEGFR抗体単独では効果を奏さない患者群に対しても治療効果を得ることができる。現在、臨床で用いられている抗VEGF-A抗体としては、ベバシズマブ、抗VEGFR2抗体としてはラムシルマブがあるが、これに限らず今後開発される抗VEGFR抗体医薬や抗VEGF抗体医薬を用いることができる。また、VEGF-Aに対するFab断片であるラニビズマブのような抗体断片を有効成分とする医薬を用いることができる。さらに、VEGFR2、及びVEGF-Aの両方を標的とする二重特異性抗体を有効成分とする医薬を用いてもよい。 As shown in the examples below, the combined use of antibodies against VEGF or VEGFR can provide therapeutic effects even in a group of patients in whom anti-VEGFR antibodies alone are ineffective. Anti-VEGF-A antibodies currently in clinical use include bevacizumab, and anti-VEGFR2 antibodies include ramucirumab, but not limited to these, anti-VEGFR antibody drugs and anti-VEGF antibody drugs that will be developed in the future can be used. . Also, a drug containing an antibody fragment as an active ingredient, such as ranibizumab, which is a Fab fragment against VEGF-A, can be used. Furthermore, a drug containing as an active ingredient a bispecific antibody that targets both VEGFR2 and VEGF-A may be used.

本実施例で示す治療薬、治療方法の対象となる疾患は、血管新生が疾患の発症、増悪に関与する疾患である。このような疾患としては腫瘍があるが、特にラムシルマブ投与によって効果があることが認められている胃がん、大腸がん、非小細胞肺がんは代表的な疾患として挙げられる。特にラムシルマブの適応症として承認されている治癒切除不能な進行・再発胃がん、治癒切除不能な進行・再発結腸・直腸がん、治癒切除不能な進行・再発非小細胞肺がんが対象となる疾患として挙げられる。また、上記に限らず、抗VEGFR抗体医薬の効果が認められる疾患であれば、併用薬として抗VEGF抗体医薬を使用することにより、より高い治療効果が得られる可能性がある。 Diseases to which the therapeutic agents and treatment methods shown in this example are applied are diseases in which angiogenesis is involved in the onset and exacerbation of the disease. Tumors are such diseases, and gastric cancer, colon cancer, and non-small cell lung cancer, for which ramucirumab administration has been found to be particularly effective, are typical diseases. Ramucirumab is specifically indicated for unresectable advanced/recurrent gastric cancer, unresectable advanced/recurrent colorectal cancer, and unresectable advanced/recurrent non-small cell lung cancer. be done. In addition, not only the above, but for any disease for which an anti-VEGFR antibody drug is effective, there is a possibility that a higher therapeutic effect can be obtained by using an anti-VEGF antibody drug as a concomitant drug.

治療薬投与のタイミングは、同時でも良いし、各治療薬の半減期等を考慮して別々のスケジュールで個別に投与することも可能である。 The therapeutic agents may be administered at the same time, or they may be administered separately according to separate schedules in consideration of the half-life of each therapeutic agent.

ラムシルマブはパクリタキセルとの併用投与が標準治療であるが、他の抗体医薬と併用して投与することはない。抗体医薬として、抗VEGFR抗体医薬のみを投与した場合には効果を示さないが、抗VEGF抗体医薬を併用することによって効果を奏する患者群は、抗VEGFR抗体投与後、早期に血中VEGF-Aの上昇が見られる患者群である。したがって、現在標準治療となっているラムシルマブとパクリタキセルとの併用投与に加えて、ベバシズマブの併用投与を行えば良い。 Concomitant administration of ramucirumab with paclitaxel is the standard treatment, but it is not administered in combination with other antibody drugs. As an antibody drug, it does not show an effect when administered alone with an anti-VEGFR antibody drug, but in a group of patients who are effective by using an anti-VEGF antibody drug in combination, after anti-VEGFR antibody administration, early blood VEGF-A This is a group of patients in which an increase in Therefore, in addition to the current standard treatment of ramucirumab and paclitaxel, bevacizumab should be administered in combination.

あるいは、標準治療であるパクリタキセルと抗VEGFR抗体医薬治療後、早期に血中VEGF-A濃度を測定し、高値であれば抗VEGF抗体医薬を併用薬として用い、低値であれば抗体医薬としては抗VEGFR抗体医薬単独投与による治療を行えば良い。 Alternatively, after the standard treatment of paclitaxel and anti-VEGFR antibody drug treatment, the blood VEGF-A concentration is measured early, and if the value is high, an anti-VEGF antibody drug is used as a concomitant drug, and if the value is low, it is used as an antibody drug. Treatment by administration of an anti-VEGFR antibody drug alone may be performed.

血中のVEGF-A濃度は、ここでは8日目に測定しているが、抗VEGFR2抗体投与開始後、早期であれば良く、概ね4日目から10日目の試料を測定すればよい。また、試料としては、血漿、血液、血清を使用することができる。血液、血漿、血清であれば、切除不能な進行・再発がんであっても患者から試料を得て検査を行うことができるだけではなく、患者の身体的負担も少なくてすむ。 Here, the blood VEGF-A concentration is measured on the 8th day, but it may be measured as early as the 4th to 10th day after the start of administration of the anti-VEGFR2 antibody. Moreover, plasma, blood, and serum can be used as the sample. With blood, plasma, and serum, not only can samples be obtained from patients for unresectable, advanced or recurrent cancers, but the physical burden on patients can be reduced.

また、以下の実施例で示すように、抗VEGFR抗体投与に対して効果が少ない場合であっても、抗VEGF-A抗体を併用して投与することにより顕著な効果が得られることが明らかとなった。2つの抗体の作用機序を考えると、抗VEGF-A抗体投与に対して効果が得られない患者に対して、抗VEGFR抗体を併用して投与することによって効果が得られる可能性がある。 In addition, as shown in the examples below, even when anti-VEGFR antibody administration is less effective, administration in combination with anti-VEGF-A antibody is clearly effective. became. Considering the mechanisms of action of the two antibodies, it is possible that combined administration of an anti-VEGFR antibody may be effective for patients who are ineffective to anti-VEGF-A antibody administration.

[実施例]
本発明者らは、ラムシルマブ投与後に上昇した過剰なVEGF-Aがその後の生存期間に悪影響を及ぼし、この過剰なVEGF-Aを中和する事で治療効果の改善が得られるのではないかと考えた。しかしながら、上述のように、キナーゼ阻害剤であるソラフェニブによってVEGFRの活性化を抑制し、ベバシズマブによってVEGFのVEGFRへの結合を阻害する治療法は、リガンド、受容体の双方を抑制する治療法であり、ある程度の効果は得られているものの、毒性が強くなり併用療法は断念されている。さらに、リガンド、及びレセプターを同時に抗体医薬によって抑制することによって治療を行った例はない。
[Example]
The present inventors considered that the excess VEGF-A increased after administration of ramucirumab adversely affects the subsequent survival period, and that neutralization of this excess VEGF-A may improve the therapeutic effect. rice field. However, as described above, a therapy that suppresses VEGFR activation with the kinase inhibitor sorafenib and inhibits the binding of VEGF to VEGFR with bevacizumab is a therapy that suppresses both ligands and receptors. , Although some effects have been obtained, combination therapy has been abandoned due to increased toxicity. Furthermore, there are no examples of treatment by suppressing ligands and receptors simultaneously with antibody drugs.

そこで抗体製剤によるVEGF-A/VEGFR2双方を抑制することによって治療効果が得られるか解析を行った。最初に、ヌードマウスにヒト胃がん細胞株を接種し、抗VEGFR抗体に対してヒト胃がん患者と同様の反応を示すモデルマウスの構築を行った。 Therefore, an analysis was conducted to see if therapeutic effects could be obtained by suppressing both VEGF-A/VEGFR2 with antibody preparations. First, nude mice were inoculated with human gastric cancer cell lines to construct model mice that exhibit the same reaction as human gastric cancer patients to anti-VEGFR antibodies.

(1)マウスモデルの確立
疾患モデルとして、抗VEGFR抗体投与後に、VEGF-Aの上昇が観察されるモデルを作製する必要がある。マウスにヒト腫瘍細胞を移植してモデルを構築するにあたり、移植する腫瘍細胞に十分なVEGF-A分泌能があることが望ましい。まず、移植する腫瘍細胞を決定するために、ヒト胃がん細胞株のVEGF-A量をELISAにより測定した(図2)。
(1) Establishment of mouse model As a disease model, it is necessary to prepare a model in which an increase in VEGF-A is observed after anti-VEGFR antibody administration. When constructing a model by transplanting human tumor cells into mice, it is desirable that the tumor cells to be transplanted have sufficient VEGF-A secretion ability. First, in order to determine the tumor cells to be transplanted, the amount of VEGF-A in human gastric cancer cell lines was measured by ELISA (Fig. 2).

ヒト胃がん細胞St4、MKN1、MKN7、MKN28、MKN45、MKN74(St4は医用細胞資源センター・細胞バンク、他の細胞は、JCRB細胞バンクより入手。)を用いて解析を行った。 Analysis was performed using human gastric cancer cells St4, MKN1, MKN7, MKN28, MKN45, and MKN74 (St4 was obtained from the Japan Medical Cell Resource Center/Cell Bank, and other cells were obtained from the JCRB Cell Bank).

各細胞をサブコンフルエントな条件でシャーレに播種し、3日後にVEGF-A量をヒトVEGF-A測定キット(R&D社)により測定した。培養上清中の細胞10,000個あたりのVEGF-A分泌量を算出した。図2に示すように、解析した細胞の中では、MKN45細胞から分泌されるVEGF-Aが最も多かったことから、MKN45細胞を用いてマウスモデルを構築することとした。 Each cell was seeded in a petri dish under subconfluent conditions, and 3 days later, the amount of VEGF-A was measured using a human VEGF-A assay kit (R&D). The amount of VEGF-A secreted per 10,000 cells in the culture supernatant was calculated. As shown in FIG. 2, among the analyzed cells, VEGF-A secreted from MKN45 cells was the most abundant, so we decided to construct a mouse model using MKN45 cells.

ヌードマウス、CAnN.Cg-Foxn1nu/CrlCrlj(6週齢、メス、日本チャールズリバー株式会社より入手。)に、2,000,000個のヒト胃がん細胞株MKN45を皮下移植し、移植14日後に腫瘍サイズを測定しランダムに群分けした。なお、群分け時の腫瘍容積は80~150mmであった。ラムシルマブのマウス・サロゲート抗体DC101(Bio X Cell社)を投与して、VEGF-A分泌量の測定を行った。なお、MKN45細胞は、DC101抗体によって、腫瘍退縮効果がすでに検討された細胞であることが、サイラムザ添付文書に開示されている。 nude mice, CANN. Cg-Foxn1nu/CrlCrlj (6-week-old, female, obtained from Charles River Japan Inc.) was subcutaneously transplanted with 2,000,000 human gastric cancer cell line MKN45, and 14 days after transplantation, the tumor size was measured and randomized. grouped into The tumor volume at the time of grouping was 80-150 mm 3 . A ramucirumab mouse surrogate antibody DC101 (Bio X Cell) was administered, and VEGF-A secretion was measured. Cyramza's package insert discloses that MKN45 cells are cells in which the tumor regression effect of the DC101 antibody has already been examined.

DC101抗体を5、10、20mg/kgで週2回、2週間腹腔内投与を行った(図3(A))。投与14日目で採血を行い、血漿中のヒト及びマウスVEGF-Aを測定した。測定は、ヒトVEGF-A測定キット、マウスVEGF-A測定キット(いずれもR&D社製)を用いた。なお、ヒトVEGF-A測定キットは、ヒトのVEGF-Aのみ、マウスVEGF-A測定キットはマウスVEGF-Aのみを検出することを事前に確認している。その結果、投与量10、20mg/kgでDC101抗体を投与した場合には、マウスVEGF-Aの誘導が確認された(図3(B))。一方、ヒトVEGF-Aの上昇は見られなかった(図3(C))。 DC101 antibody was intraperitoneally administered twice a week at 5, 10 and 20 mg/kg for 2 weeks (Fig. 3(A)). Blood was collected on day 14 of administration, and human and mouse VEGF-A in plasma was measured. For the measurement, a human VEGF-A measurement kit and a mouse VEGF-A measurement kit (both manufactured by R&D) were used. It was previously confirmed that the human VEGF-A measurement kit detects only human VEGF-A, and the mouse VEGF-A measurement kit detects only mouse VEGF-A. As a result, the induction of mouse VEGF-A was confirmed when DC101 antibody was administered at doses of 10 and 20 mg/kg (FIG. 3(B)). On the other hand, no increase in human VEGF-A was observed (Fig. 3(C)).

なお、図3において、tumor(+)の表記は、胃がん細胞株であるMKN45、またはMKN74を移植したマウスを示す。また、tumor(-)の表記は、コントロールとしてがん細胞株を移植していないマウスにおけるDC101抗体の効果を解析した結果を示している。 In FIG. 3, the notation tumor (+) indicates mice transplanted with MKN45 or MKN74, which are gastric cancer cell lines. In addition, the notation of tumor (-) indicates the result of analysis of the effect of the DC101 antibody in mice not transplanted with cancer cell lines as a control.

次に、血管新生に関係する他の因子PlGF、VEGF-C、VEGF-Dについてもその変動を解析した。VEGF-Aと同様に、DC101抗体投与開始14日目の血漿中のヒト、マウスのPlGF、VEGF-C、VEGF-D量をELISAにより測定を行った(図4)。 Next, changes in other angiogenesis-related factors PlGF, VEGF-C, and VEGF-D were also analyzed. As with VEGF-A, human and mouse PlGF, VEGF-C and VEGF-D levels in plasma on day 14 of DC101 antibody administration were measured by ELISA (FIG. 4).

その結果、PlGFがDC101投与により顕著に増加し、VEGF-C、VEGF-Dについては弱い誘導が見られた。この結果は、ラムシルマブ投与患者血漿の結果と同様であった(特許文献1、非特許文献3)。また、いずれのサイトカインについても、誘導はマウス由来であり、ヒト由来のものは誘導されなかった。 As a result, PlGF was markedly increased by DC101 administration, and VEGF-C and VEGF-D were weakly induced. This result was similar to that of ramucirumab-administered patient plasma (Patent Document 1, Non-Patent Document 3). In addition, all cytokines were induced from mice, and no human-derived ones were induced.

上記示したように、ヌードマウスの皮下にMKN45細胞を移植して構築したマウスにおいて、DC101抗体投与後に産生する血管増殖因子の挙動は、患者にラムシルマブを投与した場合の挙動と非常に似ており、良いモデルであると考えられる。 As shown above, in mice constructed by subcutaneously transplanting MKN45 cells into nude mice, the behavior of vascular growth factors produced after administration of DC101 antibody is very similar to the behavior when ramucirumab is administered to patients. , is considered to be a good model.

(2)抗VEGFR2抗体と抗VEGF-A抗体との併用による効果
胃がん細胞株MKN45を移植したマウスモデルにおいて、DC101抗体投与後に宿主であるマウス由来のVEGF-Aが上昇することが明らかになった。そこで、同マウスモデルにおいて、DC101抗体、抗マウスVEGF-A抗体を併用投与することによる腫瘍抑制効果の解析を行った。
(2) Effect of combined use of anti-VEGFR2 antibody and anti-VEGF-A antibody In a mouse model transplanted with gastric cancer cell line MKN45, it was revealed that VEGF-A derived from the host mouse increased after administration of DC101 antibody. . Therefore, in the same mouse model, the tumor inhibitory effect of combined administration of DC101 antibody and anti-mouse VEGF-A antibody was analyzed.

上記と同様にして、ヌードマウスにMKN45細胞を皮下移植し、14日後に腫瘍サイズを測定し、80~150mmのものを群分けした。DC101抗体単独投与(n=3、10mg/kg)、マウスVEGF-A中和抗体である2G11-2A05抗体単独投与(n=2、5mg/kg)、DC101抗体(10mg/kg)及び2G11-2A05抗体(5mg/kg)併用投与(n=3)を、週2回、2週間の腹腔内投与を行い、腫瘍サイズ、マウス体重を経時的に測定した(図5(A))。また、コントロールとしては、溶媒のみを投与した(n=3)。 Nude mice were subcutaneously implanted with MKN45 cells in the same manner as above, and 14 days later the tumor size was measured and grouped between 80 and 150 mm 3 . DC101 antibody alone (n = 3, 10 mg / kg), mouse VEGF-A neutralizing antibody 2G11-2A05 antibody alone (n = 2, 5 mg / kg), DC101 antibody (10 mg / kg) and 2G11-2A05 Antibody (5 mg/kg) combined administration (n=3) was intraperitoneally administered twice a week for 2 weeks, and tumor size and mouse body weight were measured over time (Fig. 5(A)). As a control, only the solvent was administered (n=3).

DC101抗体(10mg/kg)単独投与群、及びマウスVEGF-A中和抗体2G11-2A05(5mg/kg)単独投与群において、弱い腫瘍増殖抑制効果が見られた。一方、DC101抗体(10mg/kg)と2G11-2A05抗体(5mg/kg)併用群では統計的に有意な腫瘍抑制効果が認められた(図5(B))。また、肉眼観察による腫瘍の様子においても、併用群では明らかな腫瘍の退縮が観察された(図5(C))。 A weak tumor growth inhibitory effect was observed in the DC101 antibody (10 mg/kg) single administration group and the mouse VEGF-A neutralizing antibody 2G11-2A05 (5 mg/kg) single administration group. On the other hand, a statistically significant tumor inhibitory effect was observed in the DC101 antibody (10 mg/kg) and 2G11-2A05 antibody (5 mg/kg) combination group (FIG. 5(B)). In addition, in the appearance of the tumor by macroscopic observation, clear tumor regression was observed in the combination group (Fig. 5(C)).

ベバシズマブは、重篤な副作用が起きることが比較的少ないことから、併用することによっても毒性が軽微であると考えられる。実際に、マウスモデルのおいても重篤な副作用は観察されなかった。 Bevacizumab is considered to be minimally toxic even when used in combination, as serious side effects are relatively rare. In fact, no serious side effects were observed in the mouse model either.

以上、マウスモデルを用いた前臨床試験において、抗マウスVEGF-A中和抗体と抗マウスVEGFR2抗体であるDC101の併用療法は、それぞれ単剤療法と比べ有意な腫瘍縮小効果が認められた。 As described above, in preclinical studies using mouse models, combination therapy with an anti-mouse VEGF-A neutralizing antibody and an anti-mouse VEGFR2 antibody, DC101, was found to have a significant tumor reduction effect compared to monotherapy.

上記の結果から、実臨床で治療に用いる場合には、ラムシルマブに限らず、作用機序が同様であると考えられるVEGFR2を標的とする抗体医薬品を広く適用することができると考えられる。また、抗VEGF抗体についても、既存の抗体であるベバシズマブだけではなく、同様の作用機序を示す抗体であればどのような抗体医薬品を用いてもよい。 Based on the above results, it is considered that antibody drugs targeting VEGFR2, which are thought to have the same mechanism of action, can be widely applied not only to ramucirumab when used for treatment in clinical practice. As for the anti-VEGF antibody, not only the existing antibody bevacizumab but also any antibody drug that exhibits a similar mechanism of action may be used.

上記実施例で示した、抗VEGFR抗体、抗VEGF-A中和抗体を併用する治療法、すなわちVEGF-A/VEGFR2経路のdual inhibition療法は、抗VEGFR抗体投与後早期に血液中のVEGF-Aが著明に上昇する患者群、あるいはVEGF-A値が至適カットオフにより2群に分けた場合の高値群に対して奏効を示す。しかし、VEGF-A/VEGFR2経路のdual inhibition療法は、重篤な副作用を示さないと考えられることから、抗VEGFR抗体投与による患者のVEGF-A値の上昇を検討せずに最初から併用投与を行ってもよい。 As shown in the above examples, the combination therapy of anti-VEGFR antibody and anti-VEGF-A neutralizing antibody, that is, dual inhibition therapy of the VEGF-A/VEGFR2 pathway, anti-VEGF-A in blood early after administration of anti-VEGFR antibody It shows efficacy in patients with markedly elevated VEGF-A levels, or high VEGF-A levels when divided into two groups according to the optimal cutoff. However, since dual inhibition therapy of the VEGF-A/VEGFR2 pathway is not considered to have serious side effects, it is recommended to start concomitant administration from the beginning without examining the increase in VEGF-A levels in patients due to anti-VEGFR antibody administration. you can go

本発明により抗VEGFR2抗体医薬品、具体的にはラムシルマブ投与に奏効を示さなかった患者に対しても、有効な治療法を提供することができることから、治癒切除不能・再発胃がんに対して有効な治療法を提供することができる。 Since the present invention can provide an effective treatment method even for patients who did not respond to anti-VEGFR2 antibody drugs, specifically ramucirumab administration, it is an effective treatment for unresectable and recurrent gastric cancer. can provide the law.

また、本実施例で示したように、リガンド、レセプターを同時に抗体医薬によって、抑制し治療効果を得るligand-receptor dual blockade療法は、今まで試みられた治療法ではなく、全く新しい発想の治療法である。 In addition, as shown in this example, the ligand-receptor dual blockade therapy, which obtains a therapeutic effect by suppressing the ligand and receptor simultaneously with an antibody drug, is not a therapeutic method that has been tried so far, but a completely new therapeutic method. is.

Claims (6)

VEGFR2と結合し活性化を抑制する抗VEGFR2抗体治療開始後早期のVEGF-A濃度が高値の患者が対象とされる血管新生が増悪の原因となる胃がん、大腸がん、又は小細胞肺がんの治療において、
VEGFR2と結合し活性化を抑制する抗VEGFR2抗体医薬品と併用する医薬組成物であって、
VEGF-Aに結合し中和する抗VEGF-A抗体を有効成分とすることを特徴とする医薬組成物
Treatment of gastric cancer, colon cancer, or small cell lung cancer in which neovascularization causes exacerbation, targeting patients with high VEGF-A concentration early after starting anti-VEGF-A antibody therapy that binds to VEGFR2 and suppresses its activation in
A pharmaceutical composition to be used in combination with an anti-VEGFR2 antibody drug that binds to VEGFR2 and suppresses its activation ,
A pharmaceutical composition comprising an anti-VEGF-A antibody that binds to and neutralizes VEGF-A as an active ingredient.
前記抗VEGFR2抗体医薬品と、
同時に、又は個別に用いられることを特徴とする請求項1記載の医薬組成物
the anti-VEGFR2 antibody pharmaceutical,
2. A pharmaceutical composition according to claim 1, used simultaneously or separately.
前記抗VEGFR2抗体医薬品がラムシルマブであって、
前記抗VEGF-A抗体を有効成分とする併用薬がベバシズマブであることを特徴とする請求項1、又は2記載の医薬組成物
wherein the anti-VEGFR2 antibody drug is ramucirumab,
3. The pharmaceutical composition according to claim 1, wherein the concomitant drug containing the anti-VEGF-A antibody as an active ingredient is bevacizumab.
VEGFR2と結合し活性化を抑制する抗VEGFR2抗体医薬品とVEGF-Aに結合し中和する抗VEGF-A抗体医薬品を併用することにより奏効する胃がん、大腸がん、又は小細胞肺がん患者を判定するためにデータを取得する方法であって、
患者より採取されたVEGFR2と結合し活性化を抑制する抗VEGFR2抗体医薬品による治療開始前、及び治療開始後早期の試料中のVEGF-A濃度を測定し、
比較することを特徴とするデータの取得方法
Determine gastric cancer, colorectal cancer, or small cell lung cancer patients who respond to combined use of an anti-VEGFR2 antibody drug that binds to VEGFR2 and suppresses its activation and an anti-VEGF-A antibody drug that binds to and neutralizes VEGF-A A method of obtaining data for
Before starting treatment with an anti-VEGFR2 antibody drug that binds to and suppresses activation of VEGFR2 collected from the patient, and measuring the VEGF-A concentration in the sample early after the start of treatment,
A method of obtaining data characterized by comparing.
請求項4に記載のデータの取得方法であって、
前記試料が血液、血漿、又は血清であることを特徴とするデータの取得方法
A data acquisition method according to claim 4 ,
A data acquisition method, wherein the sample is blood, plasma, or serum.
VEGFR2と結合し活性化を抑制する抗VEGFR2抗体医薬品とVEGF-Aに結合し中和する抗VEGF-A抗体医薬品を併用することにより奏効する胃がん、大腸がん、又は小細胞肺がん患者を検査するキットであって、
患者試料中のVEGF-A濃度を測定するための試薬を含むことを特徴とする検査キット。
Examination of gastric cancer, colorectal cancer, or small cell lung cancer patients who respond to combined use of an anti-VEGFR2 antibody drug that binds to VEGFR2 and suppresses its activation and an anti-VEGF-A antibody drug that binds to and neutralizes VEGF-A. is a kit,
A test kit comprising reagents for measuring VEGF-A concentration in a patient sample.
JP2018247198A 2018-12-28 2018-12-28 Dual inhibition therapy of VEGF-A/VEGFR2 pathway and pharmaceutical composition for use thereof Active JP7299700B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018247198A JP7299700B2 (en) 2018-12-28 2018-12-28 Dual inhibition therapy of VEGF-A/VEGFR2 pathway and pharmaceutical composition for use thereof
PCT/JP2019/051593 WO2020138486A1 (en) 2018-12-28 2019-12-27 Vegf-a/vegfr2 pathway dual inhibition treatment, and pharmaceutical composition used for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018247198A JP7299700B2 (en) 2018-12-28 2018-12-28 Dual inhibition therapy of VEGF-A/VEGFR2 pathway and pharmaceutical composition for use thereof

Publications (2)

Publication Number Publication Date
JP2022043372A JP2022043372A (en) 2022-03-16
JP7299700B2 true JP7299700B2 (en) 2023-06-28

Family

ID=71127172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018247198A Active JP7299700B2 (en) 2018-12-28 2018-12-28 Dual inhibition therapy of VEGF-A/VEGFR2 pathway and pharmaceutical composition for use thereof

Country Status (2)

Country Link
JP (1) JP7299700B2 (en)
WO (1) WO2020138486A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538972A (en) 2007-08-20 2010-12-16 ブリストル−マイヤーズ スクイブ カンパニー Use of a VEGFR-2 inhibitor for the treatment of metastatic cancer
WO2018124153A1 (en) 2016-12-28 2018-07-05 公益財団法人がん研究会 Biomarker for predicting therapeutic effect of anti-vegfr-2 antibody drug, screening method, and screening kit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538972A (en) 2007-08-20 2010-12-16 ブリストル−マイヤーズ スクイブ カンパニー Use of a VEGFR-2 inhibitor for the treatment of metastatic cancer
WO2018124153A1 (en) 2016-12-28 2018-07-05 公益財団法人がん研究会 Biomarker for predicting therapeutic effect of anti-vegfr-2 antibody drug, screening method, and screening kit

Also Published As

Publication number Publication date
JP2022043372A (en) 2022-03-16
WO2020138486A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
AU2018241099B2 (en) Antibodies and vaccines for use in treating ROR1 cancers and inhibiting metastasis
Maroun et al. The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance
Liu et al. Tumor-derived vascular endothelial growth factor (VEGF)-a facilitates tumor metastasis through the VEGF-VEGFR1 signaling pathway
Wang et al. Caveolin-1, a stress-related oncotarget, in drug resistance
Muñoz et al. The substance P/neurokinin-1 receptor system in lung cancer: focus on the antitumor action of neurokinin-1 receptor antagonists
BR112019025188A2 (en) ACTIVABLE ANTI-PDL1 ANTIBODIES AND METHODS OF USE OF THE SAME
CN108623686A (en) Anti- OX40 antibody and application thereof
CN108623685A (en) Anti- OX40 antibody and application thereof
CN103562226A (en) Use of inhibitors of EGFR-family receptors in the treatment of hormone refractory breast cancers
Laurenzana et al. EGFR/uPAR interaction as druggable target to overcome vemurafenib acquired resistance in melanoma cells
CN108135933A (en) Protein 2 and cancer containing motile sperm structural domain
US20230088070A1 (en) Use of il-1beta binding antibodies
BR112020013144A2 (en) COMBINATION THERAPY WITH ANTI-IL-8 ANTIBODIES AND ANTI-PD-1 ANTIBODIES FOR CANCER TREATMENT
Zhou et al. The bispecific antibody HB-32, blockade of both VEGF and DLL4 shows potent anti-angiogenic activity in vitro and anti-tumor activity in breast cancer xenograft models
Zandberg et al. Window studies in squamous cell carcinoma of the head and neck: values and limits
JP7299700B2 (en) Dual inhibition therapy of VEGF-A/VEGFR2 pathway and pharmaceutical composition for use thereof
Flaherty et al. Her-2 targeted therapy: beyond breast cancer and trastuzumab
EP3440111B1 (en) Anti-vegfr-1 antibodies and uses thereof
TW201716439A (en) HER3 antibodies
Machiels et al. New advances in targeted therapies for squamous cell carcinoma of the head and neck
BR112021010703A2 (en) USE OF AN ANTI-HUMAN TIM-3 ANTIBODY FOR THE TREATMENT OF CANCER AND USE OF A PHARMACEUTICAL COMPOSITION COMPRISING AN ANTI-HUMAN TIM-3 ANTIBODY FOR THE TREATMENT OF CANCER
Dokmanovic et al. Trastuzumab-resistance and breast cancer
TW202333728A (en) Drug composition of spiro aryl phosphine oxide and anti-VEGF antibody
Berger Effects of therapeutic antibodies and ubiquitination on dimerization and down-regulation of EGF receptor and ErbB2

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230616

R150 Certificate of patent or registration of utility model

Ref document number: 7299700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150