JP7295728B2 - LASER BEAM SCANNING DEVICE AND LASER BEAM SCANNING METHOD - Google Patents

LASER BEAM SCANNING DEVICE AND LASER BEAM SCANNING METHOD Download PDF

Info

Publication number
JP7295728B2
JP7295728B2 JP2019128924A JP2019128924A JP7295728B2 JP 7295728 B2 JP7295728 B2 JP 7295728B2 JP 2019128924 A JP2019128924 A JP 2019128924A JP 2019128924 A JP2019128924 A JP 2019128924A JP 7295728 B2 JP7295728 B2 JP 7295728B2
Authority
JP
Japan
Prior art keywords
light
optical element
laser beam
diffractive optical
beam scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019128924A
Other languages
Japanese (ja)
Other versions
JP2021015170A (en
Inventor
宗範 川村
勇一 赤毛
尊 坂本
宗一 岡
生剛 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Advanced Technology Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Advanced Technology Corp
Priority to JP2019128924A priority Critical patent/JP7295728B2/en
Publication of JP2021015170A publication Critical patent/JP2021015170A/en
Application granted granted Critical
Publication of JP7295728B2 publication Critical patent/JP7295728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Laser Beam Processing (AREA)

Description

本願発明は、金属等の加工や塗料の除去等を行うためにレーザー光を走査するレーザー光走査装置に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser beam scanning device for scanning a laser beam in order to process metal or the like, remove paint, or the like.

レーザー加工装置は、金属や樹脂などの切断、溶接、印字など幅広く用いられており、最近では屋外で金属の錆を取り除く、いわゆる除錆や、金属に塗装された塗料を取り除くなど、構造物の保守用途へと利用範囲が拡大している。例えば、除錆作業にレーザー加工装置を用いれば、騒音の抑制、金属の細かな凹凸部の除錆や飛散物の回収が容易になるなどの利点がある(特許文献1、非特許文献1、2参照)。 Laser processing equipment is widely used for cutting, welding, printing, etc. of metals and resins.Recently, it is used to remove rust from metals outdoors, so-called rust removal, and to remove paints on metals. The scope of use is expanding to include maintenance applications. For example, if a laser processing apparatus is used for rust removal work, there are advantages such as noise suppression, rust removal of fine uneven parts of metal and easy collection of scattered objects (Patent Document 1, Non-Patent Document 1, 2).

除錆用途のレーザー加工装置はレーザー光源と加工用のヘッドから構成されており、ヘッド内のプリズムなどの光学部品を高速で回転させる機構により、除錆対象物上でレーザー光を、円形を例として2次元走査するなど、除錆に最適な条件を実現するためのエネルギー密度や走査範囲、走査速度などが最適化されているほか、単位時間あたりの除錆作業が完了する面積を大きくするための工夫がなされている(特許文献1参照)。 A laser processing device for rust removal consists of a laser light source and a processing head. A mechanism that rotates optical parts such as prisms in the head at high speed emits a laser beam on the object to be rust removed, for example a circular shape. In addition to optimizing the energy density, scanning range, scanning speed, etc. to realize the optimum conditions for rust removal, such as two-dimensional scanning as a has been devised (see Patent Document 1).

特許第5574354号公報Japanese Patent No. 5574354 特開2018-21930号公報Japanese Unexamined Patent Application Publication No. 2018-21930

「レーザークリーニング工法 可搬型レーザーによる塗膜及びサビの除去工法」、静岡県交通基板部技術管理課、新技術・新工法情報データベース、登録番号1624,[平成30年8月23日検索]、インターネット<URL:http://www2.pref.shizuoka.jp/all/new_technique.nsf/7BFBD8898312FB56492581930029788E/$FILE/1624gaiyou.pdf>"Laser cleaning method, method of removing coating and rust by portable laser", Shizuoka Prefecture Transportation Board Department Technology Management Division, New Technology and New Construction Method Information Database, Registration No. 1624, [Searched on August 23, 2018], Internet <URL:http://www2.pref.shizuoka.jp/all/new_technique.nsf/7BFBD8898312FB56492581930029788E/$FILE/1624gaiyou.pdf> Koichiro Nakamura, Jun Miyazu, Yuzo Sasaki, Tadayuki Imai, Masahiro Sasaura, and Kazuo Fujiura, "Space-charge-controlled electro-optic effect: Optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction", Journal of Applied Physics 104, 013105 _2008_Koichiro Nakamura, Jun Miyazu, Yuzo Sasaki, Tadayuki Imai, Masahiro Sasaura, and Kazuo Fujiura, "Space-charge-controlled-optic effect: Optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction", Journal of Applied Physics 104, 013105 _2008_

ここで、除錆作業に限らずレーザー光を2次元走査して金属等を加工するレーザー加工装置においても、同様に光学部品を回転させたり、あるいはミラー数枚を高速に動作させて2次元走査を行っており、この2次元走査を行うためには、特許文献2に示すように、少なくとも2つの機械駆動機構が必要となるのが一般的である。ビーム走査を行う次元が複数必要な場合、ビーム走査を行う装置の機械駆動機構を構成する構成部品が多くなるという問題がある。 Here, not only in the rust removal work, but also in a laser processing apparatus that processes metal or the like by two-dimensional scanning of a laser beam, similarly, optical parts are rotated or several mirrors are operated at high speed to perform two-dimensional scanning. In order to perform this two-dimensional scanning, at least two mechanical drive mechanisms are generally required, as shown in US Pat. When multiple dimensions are required for beam scanning, there is a problem of increasing the number of components that make up the mechanical drive mechanism of the apparatus for beam scanning.

本願発明は、このような課題に鑑みてなされたものであり、ビーム走査を行うための構成部品が少なく、レーザー光による加工作業等における作業効率を上げることが可能なレーザー光走査装置を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such problems, and provides a laser beam scanning device that has a small number of components for performing beam scanning and that is capable of improving work efficiency in processing operations using laser beams. for the purpose.

上記課題を解決するために、本願発明のレーザー光走査装置は、光源から放射されたレーザー光から平行光を生成する光学系と、前記光学系からの平行光に対して1次元の偏向を行う光偏向器と、前記光偏向器からの偏向光を回折する回折光学素子とを備え、前記回折光学素子は、前記回折光学素子に対向する所定の平面上に回折光が結像され、前記偏向光の入射位置に応じて、前記回折光が結像される、前記所定の平面上の位置が異なるように構成され、加工対象物における前記所定の平面上に、複数の直線の回折像を一定の間隔で結像するように構成され、前記加工対象物の所定の長方形の範囲が所定の温度分布となるように、前記複数の直線の回折像の間で、前記複数の直線の回折像からの熱拡散により、前記加工対象物の温度を上昇させる。 In order to solve the above problems, the laser beam scanning device of the present invention includes an optical system that generates parallel light from a laser beam emitted from a light source, and one-dimensionally deflects the parallel light from the optical system. an optical deflector; and a diffractive optical element that diffracts the light deflected from the optical deflector. The position on the predetermined plane where the diffracted light is imaged differs according to the incident position of the light, and a plurality of linear diffraction images are formed on the predetermined plane of the object to be processed. between the plurality of straight-line diffraction images, from the plurality of straight-line diffraction images so that a predetermined rectangular range of the object to be processed has a predetermined temperature distribution. increases the temperature of the workpiece due to thermal diffusion of the

上記課題を解決するために、本願発明のレーザー光走査方法は、光偏向器と回折光学素子とを備えたレーザー光走査装置におけるレーザー光走査方法であって、光源から放射されたレーザー光から平行光を生成するステップと、前記平行光に対して1次元の偏向を行うステップと、前記偏向された偏向光を回折するステップとを含み、前記回折するステップでは、前記回折光学素子に対向する所定の平面上に回折光が結像され、前記回折光学素子における前記偏向光の入射位置に応じて、前記回折光が結像される前記所定の平面上の位置が異なるように前記偏向光が回折され、加工対象物における前記所定の平面上に、複数の直線の回折像を一定の間隔で結像するように構成され、前記加工対象物の所定の長方形の範囲が所定の温度分布となるように、前記複数の直線の回折像の間で、前記複数の直線の回折像からの熱拡散により、前記加工対象物の温度を上昇させる。 In order to solve the above problems, the laser beam scanning method of the present invention is a laser beam scanning method in a laser beam scanning device having an optical deflector and a diffractive optical element. generating light; one-dimensionally deflecting the collimated light; and diffracting the deflected polarized light, wherein the diffracting comprises: and the polarized light is diffracted so that the position on the predetermined plane on which the diffracted light is imaged differs according to the incident position of the polarized light on the diffractive optical element. and configured to form a plurality of linear diffraction images at regular intervals on the predetermined plane of the object to be processed so that a predetermined rectangular range of the object to be processed has a predetermined temperature distribution. Second, the temperature of the object to be processed is increased by heat diffusion from the plurality of linear diffraction images between the plurality of linear diffraction images .

本願発明によれば、ビーム走査を行うための構成部品が少なく、レーザー光による加工作業等における作業効率を上げることが可能なレーザー光走査装置を提供することができる。 According to the present invention, it is possible to provide a laser beam scanning device that has a small number of components for performing beam scanning and that is capable of improving work efficiency in processing work using laser beams and the like.

図1Aは、本願発明のレーザー光走査装置(透過型)の構成例を示す図である。FIG. 1A is a diagram showing a configuration example of a laser beam scanning device (transmissive type) according to the present invention. 図1Bは、本願発明のレーザー光走査装置(反射型)の構成例を示す図である。FIG. 1B is a diagram showing a configuration example of a laser beam scanning device (reflective type) according to the present invention. 図2は、入射光の光強度分布及びプロファイルの一例を示す図である。FIG. 2 is a diagram showing an example of the light intensity distribution and profile of incident light. 図3Aは、本願発明の実施形態に係る透過型の回折光学素子を説明するための図である。FIG. 3A is a diagram for explaining a transmissive diffractive optical element according to an embodiment of the present invention. 図3Bは、本願発明の実施形態に係る反射型の回折光学素子を説明するための図である。FIG. 3B is a diagram for explaining a reflective diffractive optical element according to an embodiment of the present invention. 図4Aは、本願発明の第1の実施の形態に係るレーザー光走査装置の構成例を示す図である。FIG. 4A is a diagram showing a configuration example of a laser beam scanning device according to the first embodiment of the present invention. 図4Bは、本願発明の第1の実施の形態に係る光偏向器の動作例を示す図である。4B is a diagram showing an operation example of the optical deflector according to the first embodiment of the present invention; FIG. 図5Aは、本願発明の第2の実施の形態に係るレーザー光走査装置の構成例を示す図である。FIG. 5A is a diagram showing a configuration example of a laser beam scanning device according to a second embodiment of the present invention. 図5Bは、本願発明の第2の実施の形態に係る光偏向器の動作例を示す図である。FIG. 5B is a diagram showing an operation example of the optical deflector according to the second embodiment of the present invention. 図6Aは、本願発明の第3の実施の形態に係るレーザー光走査装置の構成例を示す図である。FIG. 6A is a diagram showing a configuration example of a laser beam scanning device according to a third embodiment of the present invention. 図6Bは、本願発明の第3の実施の形態に係る光偏向器の動作例を示す図である。FIG. 6B is a diagram showing an operation example of the optical deflector according to the third embodiment of the present invention; 図6Cは、本願発明の第3の実施の形態に係るビーム形成の一例を示す図である。FIG. 6C is a diagram showing an example of beam forming according to the third embodiment of the present invention. 図6Dは、本願発明の第3の実施の形態に係るビーム形成の他の例を示す図である。FIG. 6D is a diagram showing another example of beam forming according to the third embodiment of the present invention.

以下、本願発明の実施の形態について図面を用いて説明する。本願発明は、多くの異なる態様で実施することが可能であり、以下に説明する本願発明の実施の形態に限定されるものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. The present invention may be embodied in many different forms and should not be construed as limited to the embodiments of the invention set forth below.

<レーザー光走査装置の構成>
図1A、図1Bを用いて、本願発明の実施の形態に係るレーザー光走査装置の構成を説明する。レーザー光走査装置10は、光源30から出射され、光ファイバ31により伝搬されたレーザー光を処理対象の表面に照射するためのヘッド部20とを備え、ヘッド部20は、平行光生成光学系21、光偏向器23および透過型回折光学素子25(図1A)、あるいは反射型回折光学素子26(図1B)とを備える。
<Configuration of Laser Beam Scanning Device>
A configuration of a laser beam scanning device according to an embodiment of the present invention will be described with reference to FIGS. 1A and 1B. The laser beam scanning device 10 includes a head unit 20 for irradiating the surface of the object to be processed with a laser beam emitted from a light source 30 and propagated through an optical fiber 31. The head unit 20 includes a parallel light generating optical system 21. , an optical deflector 23 and a transmissive diffractive optical element 25 (FIG. 1A) or a reflective diffractive optical element 26 (FIG. 1B).

光源30から放射されたレーザー光は、光ファイバ31により伝搬され、ヘッド部20に入射し、平行光生成光学系21により平行光22とされる。平行光22は、光偏向器23により偏向され、偏向光24は、透過型回折光学素子25または反射型回折光学素子26により回折され、回折光27が処理対象の表面に結像される。 Laser light emitted from the light source 30 is propagated through the optical fiber 31 , enters the head section 20 , and is converted into parallel light 22 by the parallel light generation optical system 21 . The parallel light 22 is deflected by an optical deflector 23, the polarized light 24 is diffracted by a transmissive diffractive optical element 25 or a reflective diffractive optical element 26, and the diffracted light 27 is imaged on the surface to be processed.

光偏向器23により偏向された平行光22は、透過型回折光学素子25を通過し、または反射型回折素子26で反射され、所望の光強度分布つまり回折像40に成形される。透過型回折光学素子25、または反射型回折光学素子26によって回折光27の結像位置を変化させることにより所望の走査を行い、回折像40により処理対象物の表面に所定の加工等を施すことができる。 The parallel light 22 deflected by the optical deflector 23 passes through the transmissive diffractive optical element 25 or is reflected by the reflective diffractive element 26 to form a desired light intensity distribution, that is, a diffraction image 40 . Desired scanning is performed by changing the imaging position of the diffracted light 27 by the transmissive diffractive optical element 25 or the reflective diffractive optical element 26, and the surface of the object to be processed is subjected to predetermined processing or the like by means of the diffraction image 40. can be done.

<回折光学素子>
回折光学素子とは、回折光学素子に入射したレーザー光を、所定の形状の光強度分布に成形することができる光学素子である。図2のような光の強度分布、プロファイルを有するレーザー光を回折することで、四角形等の所定の形状の光強度分布をもつ回折像40を成形することができる。回折光学素子としては、図3Aのように、入射した偏向光24が透過して結像する透過型回折光学素子25と、図3Bのように、入射した偏向光24が反射して結像する反射型回折光学素子26がある。本願発明の実施の形態では、これらの透過型、反射型回折光学素子のいずれも用いることができる。これらの回折光学素子25、26は、ヘッド部20への脱着が可能であり、レーザー光走査装置の用途に応じて回折光学素子を交換することで所望の光強度分布をもつ回折像40を得ることができる。
<Diffractive optical element>
A diffractive optical element is an optical element that can shape a laser beam incident on the diffractive optical element into a light intensity distribution of a predetermined shape. By diffracting the laser beam having the light intensity distribution and profile as shown in FIG. 2, the diffraction image 40 having the light intensity distribution in a predetermined shape such as a square can be formed. As the diffractive optical element, as shown in FIG. 3A, a transmissive diffractive optical element 25 that transmits the incident polarized light 24 and forms an image, and as shown in FIG. 3B, the incident polarized light 24 is reflected and forms an image. There is a reflective diffractive optical element 26 . In the embodiment of the present invention, both of these transmissive and reflective diffractive optical elements can be used. These diffractive optical elements 25 and 26 can be attached to and detached from the head unit 20, and a diffractive image 40 having a desired light intensity distribution can be obtained by exchanging the diffractive optical elements according to the application of the laser beam scanning device. be able to.

<第1の実施の形態>
円や輪の形状の光強度分布を持つ光を加工対象物に照射する場合において、従来のビーム走査方法を用いる場合、2次元の偏向動作を行うために2つの機械駆動を用いた光偏向器が必要であった。これに対して、本実施の形態では、図4Aに示すように、1つの機械駆動を用いた1次元の偏向動作を行う光偏向器23と所定の加工が施された回折光学素子25とを組み合わせて、従来の2次元のビーム走査と同等のビーム走査を実現する。光偏向器23としてはビームの1次元の偏向動作ができるものであれば、どのような機械駆動機構を使用しても構わない。
<First embodiment>
In the case of irradiating the workpiece with light having a light intensity distribution in the shape of a circle or ring, when using the conventional beam scanning method, an optical deflector that uses two mechanical drives to perform a two-dimensional deflection operation. was necessary. On the other hand, in the present embodiment, as shown in FIG. 4A, an optical deflector 23 that performs a one-dimensional deflection operation using one mechanical drive and a diffractive optical element 25 that has undergone a predetermined processing are combined. In combination, beam scanning equivalent to conventional two-dimensional beam scanning is realized. Any mechanical driving mechanism may be used as the optical deflector 23 as long as it can deflect the beam one-dimensionally.

図4Aの回折光学素子25は、光偏向器23のビーム走査方向に沿って、複数の区間に分割されており、それぞれの区間における回折像40の結像位置が異なるように、区間毎に異なる微細構造が施されている。図4Aでは、前記回折光学素子に対向する所定の平面上、例えば、光偏向器23から回折光学素子25に向かう軸に垂直な平面上に、回折光が結像されるように構成されている。 The diffractive optical element 25 in FIG. 4A is divided into a plurality of sections along the beam scanning direction of the optical deflector 23, and the imaging position of the diffraction image 40 in each section is different for each section. Microstructured. In FIG. 4A, the diffracted light is imaged on a predetermined plane facing the diffractive optical element, for example, on a plane perpendicular to the axis from the optical deflector 23 to the diffractive optical element 25. .

この回折光が結像される平面は、上記の例に限られず、所望のビーム走査の形状等に応じて、回折光学素子に所定の加工を施すことにより、前記回折光学素子に対向する所定の平面上に回折光を結像することができる。本実施の形態によれば、1次元の偏向動作を行う光偏向器と所定の加工が施された回折光学素子とを組み合わせて、回折光学素子に対向する所定の平面上の所望の位置に回折光を結像する2次元ビーム走査が可能となる。 The plane on which the image of the diffracted light is formed is not limited to the above example, and a predetermined plane facing the diffractive optical element can be obtained by subjecting the diffractive optical element to a predetermined processing according to the desired beam scanning shape and the like. Diffracted light can be imaged on a plane. According to this embodiment, an optical deflector that performs a one-dimensional deflection operation and a diffractive optical element processed in a predetermined manner are combined to diffract light to a desired position on a predetermined plane facing the diffractive optical element. Two-dimensional beam scanning for imaging light becomes possible.

回折光学素子25は、複数の区間のそれぞれにおける回折像40の結像位置が異なるように、区間毎に異なる微細構造が施されているので、偏向された偏向光24の回折光学素子25における入射位置を時間的に変化させることで、光偏向器23の1次元のビームの偏向動作により、所望の位置に回折像を結像させて所望の形状のビーム走査を行うことができる。 Since the diffractive optical element 25 has a different microstructure for each section so that the imaging position of the diffraction image 40 differs for each of the plurality of sections, the incident light beam 24 that has been deflected on the diffractive optical element 25 By changing the position with time, the one-dimensional beam deflection operation of the optical deflector 23 makes it possible to form a diffraction image at a desired position and scan the beam in a desired shape.

図4Bは、光偏向器23の偏向動作の一例であり、偏向されたビームの回折光学素子25における入射位置(A~D)の時間的な変化を示したものである。図4Bでは、時刻0において、偏向されたビームは、区間Aに照射される。時間の経過と共に図4Aの右方向にビームが走査されて各区間を通過する際に円弧を描きながら回折像40の結像位置が変化し、位相がπ/2になったときには偏向光24は区間Bに照射され、図4Aの右側の半円の走査が終了する。 FIG. 4B shows an example of the deflection operation of the optical deflector 23, showing temporal changes in the incident positions (A to D) of the deflected beams on the diffractive optical element 25. FIG. In FIG. 4B, at time 0, the deflected beam illuminates segment A. In FIG. As time elapses, the beam is scanned in the right direction in FIG. Interval B is illuminated and the scanning of the right semicircle in FIG. 4A ends.

その後、ビームは図4Aの左側に走査されていくが、区間Bから区間Cに戻るまでの間ビームの出力を停止し、区間Cを通過した後にビームの出力を再開し、位相が3π/2となって区間Dに到達したときにビームの出力を停止すれば、この時点で図4Aの左側の半円の走査も完了し、輪の形のビーム走査を完了することができる。 After that, the beam is scanned to the left side of FIG. 4A, but the output of the beam is stopped from section B until it returns to section C. After passing section C, the beam output is resumed, and the phase is 3π/2. If the output of the beam is stopped when reaching section D, scanning of the left semicircle in FIG.

ここで、区間Bから区間Cまでの間、区間Dから区間Aまでの間ビームの出力を停止しなければ、左右の半円のそれぞれを2重に走査でき、加工対象物に照射するエネルギーを倍にすることができる。複数回の走査を行うことでそれに応じて照射するエネルギーを増加させることができる。 Here, if the output of the beam is not stopped from section B to section C and from section D to section A, each of the left and right semicircles can be doubly scanned, and the energy to irradiate the object to be processed can be reduced. can be doubled. By performing multiple scans, the applied energy can be increased accordingly.

このように、本実施の形態によれば、1つの機械駆動を用いた光偏向器23と所定の加工が施された回折光学素子との組み合わせにより、光偏向器における1次元のビーム走査によって、2次元走査と同じビーム走査を行うことが可能となり、従来と比較して、光偏向器の機械駆動機構の構成部品を減らすことができる。 As described above, according to the present embodiment, the combination of the optical deflector 23 using one mechanical drive and the diffractive optical element processed in a predetermined manner enables one-dimensional beam scanning in the optical deflector to The same beam scanning as two-dimensional scanning can be performed, and the number of components of the mechanical driving mechanism of the optical deflector can be reduced compared to the conventional art.

<レーザー光走査装置(機械駆動)の具体例>
図4Aの構成において、鏡を機械駆動することによって500Hzでビームを偏向するレーザー光走査装置を作製した。このとき、光偏向器23に入射する光のエネルギー密度は8mJ/mm2であり、使用した透過型回折光学素子25のエネルギー変換効率、すなわち、回折像のエネルギーを入射光のエネルギーで割った値は0.9であった。
<Specific Example of Laser Beam Scanning Device (Mechanical Drive)>
In the configuration of FIG. 4A, a laser beam scanning device was constructed that deflected the beam at 500 Hz by mechanically driving the mirrors. At this time, the energy density of the light incident on the optical deflector 23 is 8 mJ/mm 2 , and the energy conversion efficiency of the transmissive diffractive optical element 25 used, that is, the value obtained by dividing the energy of the diffraction pattern by the energy of the incident light was 0.9.

上記エネルギー変換効率を有し、回折光学素子の入射光と同じエネルギー密度となるように正方形の回折像40を成形可能な透過型回折光学素子25を用い、輪の形のビーム走査を行って金属加工を行った。エネルギー密度を変化させることなく、従来の2次元のビーム走査と同等のビーム走査を実現し、光偏向器の構成部品の減少により、レーザー光走査装置の製造コストを低減させることができた。 A transmission type diffraction optical element 25 having the above energy conversion efficiency and capable of shaping a square diffraction image 40 so as to have the same energy density as the incident light of the diffraction optical element is used, and a ring-shaped beam is scanned to obtain a metal. processed. A beam scanning equivalent to a conventional two-dimensional beam scanning can be achieved without changing the energy density, and the manufacturing cost of the laser beam scanning device can be reduced by reducing the number of components of the optical deflector.

<第2の実施の形態>
第1の実施の形態では、光偏向器23として機械駆動機構を用いたが、機械駆動機構を必要としない電気光学効果を利用した光偏向器23を使用してもよい。電気光学効果を利用した光偏向器23として、ニオブ酸チタン酸カリウム(KTa1-xNbx3:KTN)単結晶を用いたものが挙げられる。KTN単結晶では、非特許文献2に記載されているように、電圧の印加によってレーザー光を偏向することが可能である。
<Second Embodiment>
In the first embodiment, a mechanical drive mechanism is used as the optical deflector 23, but an optical deflector 23 that does not require a mechanical drive mechanism and utilizes an electro-optic effect may be used. As the optical deflector 23 utilizing the electro-optic effect, one using potassium titanate niobate (KTa 1-x Nb x 0 3 :KTN) single crystal can be used. In the KTN single crystal, as described in Non-Patent Document 2, it is possible to deflect laser light by applying a voltage.

電気光学効果を利用した光偏向器23を用いた場合でも、1次元のビーム走査によって、2次元のビーム走査と同等のビーム走査を実現することができる。さらに、KTN単結晶を用いた光偏向器23は、500kHz程度まで高速にビーム走査することが可能であり、機械駆動機構の光偏向器23を用いた場合よりも作業効率を改善することが可能である。 Even when the optical deflector 23 using the electro-optic effect is used, beam scanning equivalent to two-dimensional beam scanning can be achieved by one-dimensional beam scanning. Furthermore, the optical deflector 23 using a KTN single crystal can perform high-speed beam scanning up to about 500 kHz, and can improve work efficiency compared to using the optical deflector 23 with a mechanical drive mechanism. is.

<レーザー光走査装置の具体例>
図4Aの構成において、電気光学効果を利用するKTN単結晶光偏向器によってビームを500kHzで走査する装置を作製した。このとき、光偏向器23に入射する光のエネルギー密度は8mJ/mm2であり、使用した透過型回折光学素子25のエネルギー変換効率、すなわち、回折像のエネルギーを入射光のエネルギーで割った値は0.9であった。
<Specific example of laser beam scanning device>
In the configuration of FIG. 4A, a device was fabricated in which the beam was scanned at 500 kHz by a KTN single crystal optical deflector utilizing the electro-optic effect. At this time, the energy density of the light incident on the optical deflector 23 is 8 mJ/mm 2 , and the energy conversion efficiency of the transmissive diffractive optical element 25 used, that is, the value obtained by dividing the energy of the diffraction pattern by the energy of the incident light was 0.9.

上記エネルギー変換効率を有し、回折光学素子の入射光と同じエネルギー密度となるように輪形状の回折像40を成形可能な透過型回折光学素子25を用いて、輪の形のビーム走査を行って金属加工を行った。従来の2次元のビーム走査と同等のビーム走査を実現しながら、光偏向器の構成部品の減少によりレーザー光走査装置の製造コストを低減させることができた。さらに、KTN単結晶光偏向器を利用したことにより、機械駆動機構を用いた光偏向器を用いた場合と比較して作業時間を1000分の1程度まで短縮することができた。 Ring-shaped beam scanning is performed using a transmissive diffractive optical element 25 having the energy conversion efficiency described above and capable of forming a ring-shaped diffraction image 40 so as to have the same energy density as the incident light of the diffractive optical element. metal processing. While achieving beam scanning equivalent to conventional two-dimensional beam scanning, the manufacturing cost of the laser beam scanning device can be reduced by reducing the number of components of the optical deflector. Furthermore, by using the KTN single-crystal optical deflector, it was possible to shorten the working time to about 1/1000 compared with the case of using an optical deflector using a mechanical driving mechanism.

<その他の実施の形態>
図5A、5Bは、従来の直線を複数描く走査と同等のビーム走査を、1次元の偏向を行う光偏向器23と、直線の回折像40を成形できる回折光学素子25を組み合わせて実現する構成例を示したものである。図5Bは、光偏向器23の偏向動作の一例であり、偏向されたビームの回折光学素子25における入射位置(A~D)の時間的な変化は、図4Bと同様である。
<Other embodiments>
5A and 5B show a configuration that realizes beam scanning equivalent to conventional scanning that draws a plurality of straight lines by combining an optical deflector 23 that performs one-dimensional deflection and a diffractive optical element 25 that can form a straight diffraction image 40. An example is shown. FIG. 5B shows an example of the deflection operation of the optical deflector 23, and temporal changes in the incident positions (A to D) of the deflected beams on the diffractive optical element 25 are the same as in FIG. 4B.

図6A、6Bは、従来の長方形を描く走査と同等のビーム走査を、1次元の偏向を行う光偏向器23と、直線の回折像40を成形できる回折光学素子25を組み合わせて実現する構成例を示したものである。図6Bは、光偏向器23の偏向動作の一例であり、偏向されたビームの回折光学素子25における入射位置(A~D)の時間的な変化は、図4Bと同様である。 6A and 6B are configuration examples in which beam scanning equivalent to conventional rectangular scanning is realized by combining an optical deflector 23 that performs one-dimensional deflection and a diffraction optical element 25 that can form a linear diffraction image 40. is shown. FIG. 6B shows an example of the deflection operation of the optical deflector 23, and temporal changes in the incident positions (A to D) of the deflected beams on the diffractive optical element 25 are the same as in FIG. 4B.

図6Cに示すように、回折像である直線の間隔が無い状態にすることにより、任意の幅の長方形を描くビーム走査を実現できるが、長方形を描くビーム走査は、直線の回折像の間隔を無くさなくても実現することができる。具体的には、直線の回折像を一定の間隔で結像させて、図6Dのように熱の拡散によって、直線の回折像の間で、加工対象物の温度を上昇させ、加工に十分な温度にさせることにより、任意の幅の長方形を描くビーム走査を実現することができる。 As shown in FIG. 6C, beam scanning that draws a rectangle of any width can be realized by setting the straight lines that are diffraction images to a state in which there is no interval. It can be realized without losing it. Specifically, straight diffraction images are formed at regular intervals, and the temperature of the object to be processed is raised between the straight diffraction images by heat diffusion as shown in FIG. 6D. By setting the temperature, a beam scan that describes a rectangle of arbitrary width can be realized.

本願発明は、金属等の加工や塗料の除去等を行うためにレーザー光を走査するレーザー光走査装置に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used for a laser beam scanning device that scans a laser beam for processing metal or the like, removing paint, or the like.

10…レーザー光走査装置、20…ヘッド部、21…平行光生成光学系、22…平行光、23…光偏向器、24…偏向光、25…透過型回折素子、26…反射型回折素子、27…回折光、30…光源、31…光ファイバ、40…回折像。 DESCRIPTION OF SYMBOLS 10... Laser beam scanning device 20... Head part 21... Parallel light generation optical system 22... Parallel light 23... Optical deflector 24... Deflected light 25... Transmissive diffraction element 26... Reflective diffraction element 27...Diffracted light, 30...Light source, 31...Optical fiber, 40...Diffraction image.

Claims (7)

光源から放射されたレーザー光から平行光を生成する光学系と、
前記光学系からの平行光に対して1次元の偏向を行う光偏向器と、
前記光偏向器からの偏向光を回折する回折光学素子とを備え、
前記回折光学素子は、前記回折光学素子に対向する所定の平面上に回折光が結像され、前記偏向光の入射位置に応じて、前記回折光が結像される前記所定の平面上の位置が異なるように構成され、加工対象物における前記所定の平面上に、複数の直線の回折像を一定の間隔で結像するように構成され、前記加工対象物の所定の長方形の範囲が所定の温度分布となるように、前記複数の直線の回折像の間で、前記複数の直線の回折像からの熱拡散により、前記加工対象物の温度を上昇させる
レーザー光走査装置。
an optical system for generating parallel light from laser light emitted from a light source;
an optical deflector that one-dimensionally deflects parallel light from the optical system;
a diffractive optical element that diffracts the polarized light from the optical deflector;
The diffractive optical element forms an image of the diffracted light on a predetermined plane facing the diffractive optical element, and a position on the predetermined plane on which the diffracted light is imaged according to the incident position of the polarized light. are configured to be different, configured to form a plurality of linear diffraction images at regular intervals on the predetermined plane of the object to be processed, and a predetermined rectangular range of the object to be processed is a predetermined A laser beam scanning device that raises the temperature of the object to be processed by heat diffusion from the plurality of linear diffraction images so as to form a temperature distribution between the plurality of linear diffraction images .
前記回折光学素子は、複数の区分に分割されており、前記複数の区分のそれぞれに照射された光が、それぞれ異なる位置に結像されるように加工されている
請求項1に記載のレーザー光走査装置。
2. The laser beam according to claim 1, wherein the diffractive optical element is divided into a plurality of sections, and processed so that the light irradiated to each of the plurality of sections is imaged at different positions. scanning device.
前記光偏向器は、電気光学効果を利用する光偏向器である
請求項1または2に記載のレーザー光走査装置。
3. The laser beam scanning device according to claim 1, wherein the optical deflector is an optical deflector utilizing an electro-optic effect.
前記電気光学効果を利用する光偏向器は、KTN単結晶を用いた光偏向器である
請求項3に記載のレーザー光走査装置。
4. The laser beam scanning device according to claim 3, wherein the optical deflector utilizing the electro-optic effect is an optical deflector using a KTN single crystal.
前記回折光学素子は、脱着可能に構成されている
請求項1~4のいずれか1項に記載のレーザー光走査装置。
The laser beam scanning device according to any one of claims 1 to 4, wherein the diffractive optical element is detachable.
前記回折光学素子は、結像される回折光のエネルギー密度が、前記回折光学素子に入射するレーザー光のエネルギー密度と等しくなるように構成されている
請求項1~5のいずれか1項に記載のレーザー光走査装置。
6. The diffractive optical element according to any one of claims 1 to 5, wherein the diffractive optical element is configured such that the energy density of the imaged diffracted light is equal to the energy density of the laser light incident on the diffractive optical element. laser beam scanner.
光偏向器と回折光学素子とを備えたレーザー光走査装置におけるレーザー光走査方法であって、
光源から放射されたレーザー光から平行光を生成するステップと、
前記平行光に対して1次元の偏向を行うステップと、
前記偏向された偏向光を回折するステップとを含み、
前記回折するステップでは、前記回折光学素子に対向する所定の平面上に回折光が結像され、前記回折光学素子における前記偏向光の入射位置に応じて、前記回折光が結像される前記所定の平面上の位置が異なるように前記偏向光が回折され、加工対象物における前記所定の平面上に、複数の直線の回折像を一定の間隔で結像するように構成され、前記加工対象物の所定の長方形の範囲が所定の温度分布となるように、前記複数の直線の回折像の間で、前記複数の直線の回折像からの熱拡散により、前記加工対象物の温度を上昇させる
レーザー光走査方法。
A laser beam scanning method in a laser beam scanning device having an optical deflector and a diffractive optical element,
generating collimated light from laser light emitted from a light source;
performing a one-dimensional deflection on the parallel light;
diffracting the deflected polarized light;
In the step of diffracting, the diffracted light is imaged on a predetermined plane facing the diffractive optical element, and the predetermined plane on which the diffracted light is imaged is formed according to the incident position of the polarized light on the diffractive optical element. The polarized light is diffracted so that the positions on the plane of the object are different, and a plurality of straight diffraction images are formed at regular intervals on the predetermined plane of the object to be processed, and the object to be processed Between the plurality of linear diffraction images, heat diffusion from the plurality of linear diffraction images increases the temperature of the object to be processed so that a predetermined rectangular range of the laser has a predetermined temperature distribution. Optical scanning method.
JP2019128924A 2019-07-11 2019-07-11 LASER BEAM SCANNING DEVICE AND LASER BEAM SCANNING METHOD Active JP7295728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019128924A JP7295728B2 (en) 2019-07-11 2019-07-11 LASER BEAM SCANNING DEVICE AND LASER BEAM SCANNING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019128924A JP7295728B2 (en) 2019-07-11 2019-07-11 LASER BEAM SCANNING DEVICE AND LASER BEAM SCANNING METHOD

Publications (2)

Publication Number Publication Date
JP2021015170A JP2021015170A (en) 2021-02-12
JP7295728B2 true JP7295728B2 (en) 2023-06-21

Family

ID=74531438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019128924A Active JP7295728B2 (en) 2019-07-11 2019-07-11 LASER BEAM SCANNING DEVICE AND LASER BEAM SCANNING METHOD

Country Status (1)

Country Link
JP (1) JP7295728B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114654093A (en) * 2022-03-07 2022-06-24 刘国林 Dynamic parameter big data visual analysis system and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000053365A1 (en) 1999-03-05 2000-09-14 Mitsubishi Denki Kabushiki Kaisha Laser machining apparatus
KR100529303B1 (en) 1998-04-09 2006-01-27 삼성전자주식회사 Optical scanning device of printing machine
JP2008110384A (en) 2006-10-31 2008-05-15 Sumitomo Electric Ind Ltd Porous resin film and its punching method, anisotropic conductive sheet using the resin film, electric inspection method and circuit connection method
JP2009186647A (en) 2008-02-05 2009-08-20 Seiko Epson Corp Illumination device and projector
JP2009300833A (en) 2008-06-16 2009-12-24 Canon Inc Light scanning device and image forming apparatus equipped with the same
JP2015205327A (en) 2014-04-22 2015-11-19 パナソニックIpマネジメント株式会社 Laser welding method and laser welding equipment
JP2016107293A (en) 2014-12-04 2016-06-20 トヨタ自動車株式会社 Welding device
JP2018069310A (en) 2016-11-01 2018-05-10 日本電信電話株式会社 Laser processing apparatus
JP2018520007A (en) 2015-06-19 2018-07-26 アイピージー フォトニクス コーポレーション Laser welding head having dual movable mirrors allowing beam movement, and laser welding system and method using the laser welding head

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2785844B2 (en) * 1991-04-02 1998-08-13 富士通株式会社 Bar code reader
EP0553503A2 (en) * 1992-01-28 1993-08-04 Opticon Sensors Europe B.V. Method of recording holograms for use in optical scanners
JP3282418B2 (en) * 1994-12-26 2002-05-13 松下電器産業株式会社 Processing method and processing apparatus for diffractive optical element
DE19511393B4 (en) * 1995-03-28 2005-08-25 Carl Baasel Lasertechnik Gmbh Apparatus for substrate treatment, in particular for perforating paper
JPH1152284A (en) * 1997-08-05 1999-02-26 Minolta Co Ltd Scanning image observation device and optical element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100529303B1 (en) 1998-04-09 2006-01-27 삼성전자주식회사 Optical scanning device of printing machine
WO2000053365A1 (en) 1999-03-05 2000-09-14 Mitsubishi Denki Kabushiki Kaisha Laser machining apparatus
JP2008110384A (en) 2006-10-31 2008-05-15 Sumitomo Electric Ind Ltd Porous resin film and its punching method, anisotropic conductive sheet using the resin film, electric inspection method and circuit connection method
JP2009186647A (en) 2008-02-05 2009-08-20 Seiko Epson Corp Illumination device and projector
JP2009300833A (en) 2008-06-16 2009-12-24 Canon Inc Light scanning device and image forming apparatus equipped with the same
JP2015205327A (en) 2014-04-22 2015-11-19 パナソニックIpマネジメント株式会社 Laser welding method and laser welding equipment
JP2016107293A (en) 2014-12-04 2016-06-20 トヨタ自動車株式会社 Welding device
JP2018520007A (en) 2015-06-19 2018-07-26 アイピージー フォトニクス コーポレーション Laser welding head having dual movable mirrors allowing beam movement, and laser welding system and method using the laser welding head
JP2018069310A (en) 2016-11-01 2018-05-10 日本電信電話株式会社 Laser processing apparatus

Also Published As

Publication number Publication date
JP2021015170A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
JP6837969B2 (en) Glass cutting system and method using non-diffraction laser beam
JP5094996B2 (en) Laser processing equipment
US8836948B2 (en) High resolution structured illumination microscopy
WO2016075681A1 (en) Acousto-optic deflector with multiple output beams
JP4647965B2 (en) Laser processing method, laser processing apparatus, and structure manufactured thereby
JP7295728B2 (en) LASER BEAM SCANNING DEVICE AND LASER BEAM SCANNING METHOD
Jaeggi et al. Time-optimized laser micro machining by using a new high dynamic and high precision galvo scanner
JP7197012B2 (en) LASER BEAM SCANNING DEVICE AND LASER BEAM SCANNING METHOD
Schille et al. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner
Wlodarczyk et al. Efficient speckle-free laser marking using a spatial light modulator
JP2005161372A (en) Laser machine, structure, optical element and laser machining method
JP5322765B2 (en) Laser processing apparatus and laser processing method
JP6757509B2 (en) Optical processing method
US6570124B2 (en) Laser processing method
Antonov et al. Acousto-Optic Devices Based on Multibeam Diffraction
WO2018211691A1 (en) Laser machining device
TWI485431B (en) Apparatus for homogenizing coherent radiation
JP4350446B2 (en) Electric field generation method, electric field generation device
Hwang et al. One-step fabrication of bi-and quad-directional femtosecond laser-induced periodic surface structures on metal with a depolarizer
KR20010049907A (en) Wavelength transformation apparatus
TW202043849A (en) Device for generating a linear intensity distribution in a working plane
JP5410043B2 (en) Light control device and light control method
JP3076836B2 (en) Laser beam focusing and irradiation equipment
Shao et al. Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator
JP6990958B2 (en) Laser processing equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230609

R150 Certificate of patent or registration of utility model

Ref document number: 7295728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150