JP7295559B2 - Chitosan-based composite composition and method for producing chitosan-based composite - Google Patents

Chitosan-based composite composition and method for producing chitosan-based composite Download PDF

Info

Publication number
JP7295559B2
JP7295559B2 JP2019104022A JP2019104022A JP7295559B2 JP 7295559 B2 JP7295559 B2 JP 7295559B2 JP 2019104022 A JP2019104022 A JP 2019104022A JP 2019104022 A JP2019104022 A JP 2019104022A JP 7295559 B2 JP7295559 B2 JP 7295559B2
Authority
JP
Japan
Prior art keywords
chitosan
solution
film
based composite
chitin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019104022A
Other languages
Japanese (ja)
Other versions
JP2020196823A (en
JP2020196823A5 (en
Inventor
広治 網代
幸一 入倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Institute of Science and Technology NUC
Original Assignee
Nara Institute of Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nara Institute of Science and Technology NUC filed Critical Nara Institute of Science and Technology NUC
Priority to JP2019104022A priority Critical patent/JP7295559B2/en
Publication of JP2020196823A publication Critical patent/JP2020196823A/en
Publication of JP2020196823A5 publication Critical patent/JP2020196823A5/ja
Application granted granted Critical
Publication of JP7295559B2 publication Critical patent/JP7295559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、キチン・キトサン系複合体組成物及びキチン・キトサン系複合体の製造方法に関する。 TECHNICAL FIELD The present invention relates to a chitin/chitosan-based composite composition and a method for producing a chitin/chitosan-based composite.

キチン及びキトサンはエビやカニ等の甲殻類から得られる多糖類であり、生体親和性や抗菌性を有することが知られている。そのため、従来よりキチン・キトサンは、再生医療の足場材料、創傷被覆材料等、医療素材としての利用が検討されている。しかし、キチン・キトサンを単独で利用した素材は柔軟性に欠けるため、脆いという欠点がある。 Chitin and chitosan are polysaccharides obtained from crustaceans such as shrimp and crab, and are known to have biocompatibility and antibacterial properties. Therefore, the use of chitin/chitosan as a medical material, such as a scaffold material for regenerative medicine and a wound dressing material, has been studied. However, the material using chitin/chitosan alone lacks flexibility and is therefore brittle.

そこで、キチン・キトサンを他の化合物と組み合わせて化学的に複合化した複合化材料の開発が進められている(例えば特許文献1)が、これまで開発されている複合化材料では、縫合糸や創傷被覆材のように、しなやかさが求められる医療素材の材料に利用するには伸縮性や弾力性が低く、改善が必要であった。 Therefore, the development of composite materials in which chitin/chitosan is chemically combined with other compounds is being developed (for example, Patent Document 1). In order to use it for medical materials that require flexibility, such as wound dressings, it has low stretchability and elasticity, and needs to be improved.

特開2005-281425号公報Japanese Patent Application Laid-Open No. 2005-281425

本発明が解決しようとする課題は、柔軟性に加え、伸縮性及び弾力性に富んだキチン・キトサン系複合体を得ることである。 The problem to be solved by the present invention is to obtain a chitin/chitosan-based composite which is excellent in stretchability and elasticity in addition to flexibility.

上記課題を解決するために成された本発明の第1態様は、
キチン、キトサン、キチン誘導体、及びキトサン誘導体からなる群から選択される少なくとも一つの多糖と、
トリメチレンカーボネート及びトリメチレンカーボネート誘導体の少なくとも一つから成るトリメチレンカーボネート系ポリマーと
を含む、キチン・キトサン系複合体組成物である。
The first aspect of the present invention, which has been made to solve the above problems,
at least one polysaccharide selected from the group consisting of chitin, chitosan, chitin derivatives, and chitosan derivatives;
and a trimethylene carbonate-based polymer comprising at least one of trimethylene carbonate and a trimethylene carbonate derivative.

上記キチン・キトサン系複合体組成物を溶媒に溶解して溶液又は懸濁液にし、加熱して溶媒を除去することにより、キチン・キトサン系複合体が得られる。該複合体では、トリメチレンカーボネート系ポリマーとキチン・キトサン又はキチン・キトサン誘導体が化学的に結合するのではなく、トリメチレンカーボネート系ポリマーにより形成される網目構造中にキチン・キトサン又はキチン・キトサン誘導体からなる鎖状構造が入り込んだ状態となる。したがって、トリメチレンカーボネート系ポリマーの有する優れた伸縮性、弾力性と、キチン・キトサンの特性(抗菌性、生体親和性)を兼ね備えた複合体を得ることができる。しかも、トリメチレンカーボネート系ポリマーは生体適合性に優れていることから、前記キチン・キトサン系複合体は、医療素材として有用である。また、前記複合体はキチン・キトサンに由来する抗菌性を備えることから、医療素材はもちろん、介護用品や乳幼児用品等の素材にも用いることができる。 The chitin/chitosan-based composite is obtained by dissolving the chitin/chitosan-based composite composition in a solvent to form a solution or suspension, and heating to remove the solvent. In the complex, the trimethylene carbonate-based polymer and chitin/chitosan or chitin/chitosan derivative are not chemically bonded, but chitin/chitosan or chitin/chitosan derivative is contained in the network structure formed by the trimethylene carbonate-based polymer. It becomes a state in which a chain structure consisting of Therefore, it is possible to obtain a composite having both the excellent stretchability and elasticity of the trimethylene carbonate-based polymer and the properties of chitin/chitosan (antibacterial properties and biocompatibility). Moreover, since the trimethylene carbonate-based polymer is excellent in biocompatibility, the chitin-chitosan-based composite is useful as a medical material. In addition, since the composite has antibacterial properties derived from chitin and chitosan, it can be used not only as a medical material but also as a material for nursing care products, infant products, and the like.

上記キチン・キトサン系複合体組成物に含まれる多糖は一種類でもよく複数種類でもよい。また、同様に、上記キチン・キトサン系複合体組成物に含まれるトリメチレンカーボネート系ポリマーは一種類でもよく複数種類でもよい。 The polysaccharide contained in the chitin/chitosan-based composite composition may be of one type or plural types. Similarly, the trimethylene carbonate-based polymer contained in the chitin/chitosan-based composite composition may be of one type or a plurality of types.

上記キチン・キトサン系複合体組成物から得られる複合体の物性(弾力性、伸縮性等)は、キチン・キトサン系複合体組成物における、多糖とトリメチレンカーボネート系ポリマーの比率によって決まる。言い換えると、該比率を調整することにより、用途に応じた適宜の物性の複合体を得ることができる。 The physical properties (elasticity, stretchability, etc.) of the composite obtained from the chitin/chitosan composite composition are determined by the ratio of the polysaccharide to the trimethylene carbonate polymer in the chitin/chitosan composite composition. In other words, by adjusting the ratio, it is possible to obtain a composite with appropriate physical properties according to the application.

また、本発明の第2態様は、キチン・キトサン系複合体を製造する方法であって、
キチン、キトサン、キチン誘導体、及びキトサン誘導体からなる群から選択される少なくとも一つの多糖と、トリメチレンカーボネート及びトリメチレンカーボネート誘導体の少なくとも一つから成るトリメチレンカーボネート系ポリマーとを溶媒中で混合して溶液又は懸濁液を形成し、前記溶液又は前記懸濁液を加熱して該溶液又は該懸濁液から溶媒を除去することを特徴とする。
A second aspect of the present invention is a method for producing a chitin/chitosan-based composite,
At least one polysaccharide selected from the group consisting of chitin, chitosan, chitin derivatives, and chitosan derivatives, and a trimethylene carbonate-based polymer comprising at least one of trimethylene carbonate and trimethylene carbonate derivatives are mixed in a solvent. It is characterized by forming a solution or suspension and heating said solution or said suspension to remove solvent from said solution or said suspension.

上記製造方法においては、前記溶媒にグリセロールを含めることで、溶液又は懸濁液を加熱して溶媒を除去するときに気泡の発生を抑えることができる。これにより、キチン・キトサン系複合体の透明度が上がる。また、引張強度の改善を図ることができる。 In the above production method, by including glycerol in the solvent, it is possible to suppress the generation of air bubbles when the solution or suspension is heated to remove the solvent. This increases the transparency of the chitin-chitosan composite. Moreover, improvement of tensile strength can be aimed at.

また、上記製造方法においては、前記多糖を正に帯電させ、前記トリメチレンカーボネート系ポリマーを負に帯電させて、両者を前記溶媒中で混合することが好ましい。このようにすることで、溶媒中で多糖とポリマーを効率よく混合することができる。 Moreover, in the above production method, it is preferable that the polysaccharide is positively charged and the trimethylene carbonate-based polymer is negatively charged, and both are mixed in the solvent. By doing so, the polysaccharide and the polymer can be efficiently mixed in the solvent.

この場合、前記多糖を正に帯電させる方法としては、前記多糖を4級アミノ化する方法が挙げられる。また、前記トリメチレンカーボネート系ポリマーを負に帯電させる方法としては、該ポリマーにカルボン酸を導入する方法が挙げられる。 In this case, the method of positively charging the polysaccharide includes a method of quaternary amination of the polysaccharide. Moreover, as a method of negatively charging the trimethylene carbonate-based polymer, a method of introducing a carboxylic acid into the polymer can be mentioned.

本発明によれば、キチン・キトサン又はキチン・キトサン誘導体に、トリメチレンカーボネート系ポリマーを組み合わせたため、柔軟性、伸縮性、及び弾力性に富んだキチン・キトサン系複合体を得ることができる。また、キチン・キトサン、キチン・キトサン誘導体は抗菌性、生体適合性に優れ、トリメチレンカーボネート系ポリマーは生体適合性に優れることから、本発明に係る前記キチン・キトサン系複合体は、医療素材として有用であり、特に優れた伸縮性、優れた弾力性が求められる縫合糸や創傷被覆材に有用である。 According to the present invention, a chitin-chitosan or chitin-chitosan derivative is combined with a trimethylene carbonate-based polymer, so that a chitin-chitosan-based composite having excellent flexibility, stretchability, and elasticity can be obtained. Chitin/chitosan and chitin/chitosan derivatives are excellent in antibacterial properties and biocompatibility, and trimethylene carbonate-based polymers are excellent in biocompatibility. It is particularly useful for sutures and wound dressings that require excellent stretchability and elasticity.

本発明の実施例1に係るキチン・キトサン系複合体(フィルム)を製造する手順を示す図。BRIEF DESCRIPTION OF THE DRAWINGS The figure which shows the procedure which manufactures the chitin chitosan type|system|group composite (film) which concerns on Example 1 of this invention. キトサン及びキトサン誘導体である4級アミノ化キトサン、N,N,N-トリメチルキトサンの化学構造、並びに合成条件を示す図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the chemical structures of chitosan, quaternary aminated chitosan and N,N,N-trimethylchitosan, which are chitosan derivatives, and synthetic conditions. キトサン(a)及びキトサン誘導体である4級アミノ化キトサン(b)、N,N,N-トリメチルキトサン(c)のH-NMRスペクトル。 3 H-NMR spectra of chitosan (a), quaternary aminated chitosan (b) and N,N,N-trimethylchitosan (c), which are chitosan derivatives. ポリトリメチレンカーボネート及びその誘導体であるポリMBC並びにTMCとMBCの共重合体の合成経路及び合成条件を示す図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing synthesis routes and synthesis conditions for polytrimethylene carbonate, its derivative polyMBC, and a copolymer of TMC and MBC. 製造例1の溶液(A)及び溶液(C)からフィルムを得るまでの一工程の概略図、フィルムの外観写真、及びフィルムの内部構造の模式図。1 is a schematic diagram of one step of obtaining a film from solution (A) and solution (C) of Production Example 1, an external photograph of the film, and a schematic diagram of the internal structure of the film. FIG. 溶液(A)~(C)から得られたフィルムのFT-IRスペクトル(a)、溶液(A)及び(C)から得られたフィルムの引張試験による応力-歪み曲線(b)。FT-IR spectra (a) of films obtained from solutions (A) to (C), stress-strain curves (b) from tensile tests of films obtained from solutions (A) and (C). 製造例2の溶液(D)及び溶液(E)からフィルムを得るまでの一工程の概略図、及びフィルムの外観写真。1 is a schematic diagram of one step of obtaining a film from the solution (D) and the solution (E) of Production Example 2, and an appearance photograph of the film. 溶液(D)及び(E)から得られたフィルムのFT-IR(フーリエ変換赤外分光光度計)スペクトル(a)、溶液(D)及び(E)から得られたフィルムの引張試験による応力-歪み曲線(b)。FT-IR (Fourier transform infrared spectrophotometer) spectra (a) of films obtained from solutions (D) and (E), stress from tensile tests of films obtained from solutions (D) and (E) - Distortion curve (b). 製造例3の溶液(F)~(H)からフィルムを得るまでの一工程の概略図、フィルムの外観写真、及びフィルムの内部構造の模式図。Schematic diagram of one step from solutions (F) to (H) of Production Example 3 to obtain a film, photograph of external appearance of the film, and schematic diagram of the internal structure of the film. 溶液(F)~(H)から得られたフィルムのFT-IR(フーリエ変換赤外分光光度計)スペクトル(a)、溶液(F)~(H)から得られたフィルムの引張試験による応力-歪み曲線(b)。FT-IR (Fourier transform infrared spectrophotometer) spectrum (a) of films obtained from solutions (F) to (H), stress by tensile test of films obtained from solutions (F) to (H) - Distortion curve (b). 本発明の実施例2に係るキチン・キトサン系複合体(フィルム)を製造する手順を示す図。FIG. 2 shows a procedure for producing a chitin/chitosan-based composite (film) according to Example 2 of the present invention. 手順(4)において40℃で加熱して得られたフィルムの外観写真(a)、及び25℃で加熱して得られたフィルムの外観写真(b)。Appearance photograph (a) of the film obtained by heating at 40 degreeC in procedure (4), and appearance photograph (b) of the film obtained by heating at 25 degreeC. 本発明の実施例3に係るキチン・キトサン系複合体であるフィルムの外観写真図であって、CS、PTMC、グリセロールの混合比(CS:PTMC:グリセロール)が90:0:10(a)、75:25:0(b)、67.5:22.5:10(c)、60:20:20(d)のときの写真。FIG. 10 is a photograph of the external appearance of a film that is a chitin/chitosan-based composite according to Example 3 of the present invention, wherein the mixing ratio of CS, PTMC, and glycerol (CS:PTMC:glycerol) is 90:0:10 (a); Photographs taken at 75:25:0 (b), 67.5:22.5:10 (c), and 60:20:20 (d). 実施例3で得られた4種類のフィルムの引張試験による応力-歪み曲線。Stress-strain curves obtained by tensile tests of four types of films obtained in Example 3. 実施例3で得られた4種類のフィルムの圧縮試験による応力-歪み曲線。Stress-strain curves by compression test of four types of films obtained in Example 3. CS-g-PTMC複合体の概略的な合成経路を示す図。A diagram showing a schematic synthetic pathway of the CS-g-PTMC complex. 図16の合成経路における中間生成物のH-NMRスペクトル。 3 H-NMR spectra of intermediate products in the synthetic route of FIG.

以下、本発明に係るキチン・キトサン系複合体組成物及びキチン・キトサン系複合体の製造方法について実施例を挙げて説明する。 EXAMPLES The chitin/chitosan-based composite composition and the method for producing the chitin/chitosan-based composite according to the present invention will be described below with reference to examples.

[実施例1]
1.キチン・キトサン系複合体の製造
図1は、本発明の実施例1に係るキチン・キトサン系複合体の製造方法の手順を概略的に示す図である。この実施例では、キチン・キトサン系複合体から成るフィルムを製造することとする。
[Example 1]
1. 1. Production of chitin/chitosan-based composite FIG. 1 is a diagram schematically showing the procedure of the method for producing a chitin/chitosan-based composite according to Example 1 of the present invention. In this example, a film composed of a chitin/chitosan composite is produced.

手順(1):水又はN,N-ジメチルホルムアミド(DMF)が収容された容器に、キトサン(CS)又はCS誘導体と、ポリトリメチレンカーボネート(PTMC)又はPTMC誘導体とから成る組成物を加え、混合して溶液又は混濁液(以下、まとめて「溶液」ということとする。)を得る。
手順(2):手順(1)で得られた溶液を直径50mmのテフロン皿に所定量入れる。
手順(3):テフロン皿を1-2日間、40℃-80℃に加熱して、溶液中の溶媒を除去する。
手順(4):続いて減圧下でテフロン皿を40℃-80℃に加熱し、さらに、溶液中の溶媒を除去する。
手順(5):テフロン皿からフィルムを剥がす。
Procedure (1): adding a composition comprising chitosan (CS) or a CS derivative and polytrimethylene carbonate (PTMC) or a PTMC derivative to a container containing water or N,N-dimethylformamide (DMF), By mixing, a solution or turbid liquid (hereinafter collectively referred to as "solution") is obtained.
Procedure (2): Put a predetermined amount of the solution obtained in Procedure (1) into a Teflon dish with a diameter of 50 mm.
Step (3): Heat the Teflon dish to 40°C-80°C for 1-2 days to remove the solvent in the solution.
Step (4): Subsequently, the Teflon dish is heated to 40°C-80°C under reduced pressure, and the solvent in the solution is removed.
Step (5): Peel off the film from the Teflon dish.

CS誘導体としては4級アミノ化キトサン(QCS)、又はN,N,N-トリメチルキトサン(TMCS)を用いることができる。図2にCS、QCS及びTMCSの構造式を示す。また、CSからQCS及びTMCSを合成する条件を示す。具体的には、QCSは、CSにグリシジルトリメチルアンモニウムクロリドと0.5%酢酸を添加し、一晩放置することにより得た。また、TMCSは、CSにヨウ化ナトリウム(NaI)、ヨードメタン(CH3I)、15%水酸化ナトリウム、N-メチル-2-ピロリドン(NMP)を添加し、室温で4日間放置することにより得た。 As a CS derivative, quaternary aminated chitosan (QCS) or N,N,N-trimethylchitosan (TMCS) can be used. FIG. 2 shows the structural formulas of CS, QCS and TMCS. Also, conditions for synthesizing QCS and TMCS from CS are shown. Specifically, QCS was obtained by adding glycidyltrimethylammonium chloride and 0.5% acetic acid to CS and leaving overnight. TMCS was obtained by adding sodium iodide (NaI), iodomethane (CH3I), 15% sodium hydroxide, and N-methyl-2-pyrrolidone (NMP) to CS and allowing to stand at room temperature for 4 days.

得られたQCS及びTMCSの物性値を以下の表1に示す。また、図3の(a)~(c)はそれぞれCS、QCS、TMCSのH-NMRスペクトルである。

Figure 0007295559000001
The physical property values of the obtained QCS and TMCS are shown in Table 1 below. Also, (a) to (c) of FIG. 3 are 3 H-NMR spectra of CS, QCS and TMCS, respectively.
Figure 0007295559000001

また、PTMC誘導体としては、ポリMBC(5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one)並びにTMCとMBCの共重合体を用いることができる。図4に、ポリTMC及びポリMBC並びにTMCとMBCの共重合体の合成経路、及び各過程における合成条件を示す。また、これらポリMBC並びにTMCとMBCの共重合体の物性値を以下の表2に示す。 As the PTMC derivative, polyMBC (5 -methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one) and a copolymer of TMC and MBC can be used. FIG. 4 shows synthetic routes of poly-TMC, poly-MBC, and copolymers of TMC and MBC, and synthetic conditions in each process. Table 2 below shows the physical properties of these polyMBCs and copolymers of TMC and MBC.

なお、図1において、手順(2)、(3)、(4)に掲載した写真は、それぞれ、CSとPTMCから成る組成物と水を混合して得られた溶液、該溶液を加熱している途中でテフロン皿から取り外した複合体、溶液の加熱が終了した時点のテフロン皿の内部の様子を示している。手順(3)及び(4)の写真から分かるように、加熱の途中では複合体は白濁色であったが、加熱終了時の複合体は略透明であった。 In FIG. 1, the photographs shown in steps (2), (3), and (4) are respectively a solution obtained by mixing a composition consisting of CS and PTMC and water, and a solution obtained by heating the solution. The composite removed from the Teflon dish while it was being heated, and the state of the inside of the Teflon dish when the heating of the solution was completed. As can be seen from the photographs of steps (3) and (4), the composite had a cloudy color during heating, but was substantially transparent at the end of heating.

上記手順(1)~(5)によって実際にフィルムを製造した例について説明する
<製造例1>
1v/v%の酢酸:40mLとCS:0.4gとから成る溶液(A)、1v/v%の酢酸:40mLとポリMBC:0.4gとから成る溶液(B)、1v/v%の酢酸:20mLとCS:0.2gとポリMBC:0.2gとから成る溶液(C)を調製し(手順(1))、手順(2)~(5)によってフィルムを製造した。溶液(A)及び溶液(C)からフィルムを得るまでの一工程を示す図、フィルムの外観写真及びフィルムの内部構造の模式図を図5に示す。
図5の外観写真は、透明度の確認のため、文字と絵が描かれた紙の上にフィルムを載置して撮影したものである。図5の外観写真から分かるように、溶液(A)、(C)から得られたフィルムはいずれも透明度が高く、フィルムを通して文字及び絵を確認することができた。
An example of actually producing a film by the above procedures (1) to (5) will be described .
<Production Example 1>
Solution (A) consisting of 40 mL of 1 v/v % acetic acid and 0.4 g of CS, solution (B) consisting of 40 mL of 1 v/v % acetic acid and 0.4 g of polyMBC, 1 v/v % acetic acid: A solution (C) consisting of 20 mL, 0.2 g of CS and 0.2 g of polyMBC was prepared (procedure (1)) and films were produced by procedures (2)-(5). FIG. 5 shows a diagram showing one process of obtaining a film from solution (A) and solution (C), a photograph of the appearance of the film, and a schematic diagram of the internal structure of the film.
The exterior photograph of FIG. 5 was taken by placing the film on paper on which characters and pictures were drawn in order to confirm the transparency. As can be seen from the photograph of appearance in FIG. 5, the films obtained from solutions (A) and (C) both had high transparency, and characters and pictures could be confirmed through the films.

図6(a)は、溶液(A)~(C)から得られたフィルムのFT-IR(フーリエ変換赤外分光光度計)スペクトル、(b)は溶液(A)及び(C)から得られたフィルムの引張試験による応力-歪みカーブである。
図6(a)から分かるように、溶液(C)から得られたフィルムのFT-IRスペクトルは、溶液(A)及び(B)のそれぞれから得られたフィルムのFT-IRスペクトルを足し合わせたような形状であった。
また、図6(b)から、溶液(A)から得られたフィルムに比べると、溶液(C)から得られたフィルムは、引き延ばすためには強い力を加える必要があり、伸縮性が低く、弾性変形し難いことが分かった。
FIG. 6(a) is the FT-IR (Fourier transform infrared spectrophotometer) spectrum of the films obtained from solutions (A) to (C), and (b) is obtained from solutions (A) and (C). It is a stress-strain curve obtained by a tensile test of the film.
As can be seen from FIG. 6(a), the FT-IR spectrum of the film obtained from solution (C) is the sum of the FT-IR spectra of the films obtained from each of solutions (A) and (B). It had a similar shape.
Moreover, from FIG. 6(b), compared with the film obtained from the solution (A), the film obtained from the solution (C) needs to be stretched by applying a strong force and has low stretchability. It turned out that it is hard to elastically deform.

<製造例2>
水:20mLとQCS:0.4gから成る溶液(D)、水:20mLと15%の水酸化ナトリウム:1mLとQCS:0.2gとTMC(7)-MBC(3):0.2gとから成る溶液(E)とを用い、手順(2)~(5)によってフィルムを製造した。溶液(D)及び溶液(E)からフィルムを得るまでの一工程を示す図、及びフィルムの外観写真を図7に示す。図7の外観写真から分かるように、溶液(D)から得られたフィルムは透明度が高く、フィルムを通して文字及び絵を確認することができた。一方、溶液(E)から得られたフィルムは、丸く縮んだ状態であり、透明度も低かった。
<Production Example 2>
Solution (D) consisting of 20 mL of water and 0.4 g of QCS, solution (D) of 20 mL of water, 1 mL of 15% sodium hydroxide, 0.2 g of QCS and 0.2 g of TMC (7)-MBC (3) ( E) was used to produce a film according to procedures (2) to (5). FIG. 7 shows a diagram showing one process of obtaining a film from the solution (D) and the solution (E), and a photograph of the appearance of the film. As can be seen from the appearance photograph of FIG. 7, the film obtained from the solution (D) had high transparency, and characters and pictures could be confirmed through the film. On the other hand, the film obtained from the solution (E) was in a round and shrunk state and had low transparency.

図8(a)は、溶液(D)及び(E)から得られたフィルムのFT-IR(フーリエ変換赤外分光光度計)スペクトル、(b)は溶液(D)及び(E)から得られたフィルムの引張試験による応力-歪み曲線である。 FIG. 8(a) shows the FT-IR (Fourier transform infrared spectrophotometer) spectra of the films obtained from the solutions (D) and (E), and (b) shows the spectra obtained from the solutions (D) and (E). It is a stress-strain curve obtained by a tensile test of the film.

<製造例3>
N,N-ジメチルホルムアミド(DMF):20mLとTMCS:0.4gとから成る溶液(F)と、DMF:20mLとTMCS:0.2gとPTMC:0.2gとから成る溶液(G)と、DMF:20mLとTMCS:0.2gとTMC(7)-MBC(3):0.2gとから成る溶液(H)とを用い、手順(2)~(5)によってフィルムを製造した。
フィルムを得るまでの一工程を示す図、フィルムの外観写真及びフィルムの内部構造の模式図を図9に示す。図9の外観写真から分かるように、溶液(F)から得られたフィルムは、該フィルムを通して文字及び絵を確認することができる程度の透明度を有していたが、丸く固まった状態であった。一方、溶液(G)及び(H)からは、フィルム状の複合体は得られなかった。
図10(a)は、溶液(F)~(H)から得られたフィルムのFT-IR(フーリエ変換赤外分光光度計)スペクトル、(b)は溶液(F)~(H)から得られたフィルムの引張試験による応力-歪みカーブである。
<Production Example 3>
Solution (F) consisting of 20 mL of N,N-dimethylformamide (DMF) and 0.4 g of TMCS, solution (G) consisting of 20 mL of DMF, 0.2 g of TMCS and 0.2 g of PTMC, and 20 mL of DMF and a solution (H) consisting of 0.2 g of TMCS and 0.2 g of TMC(7)-MBC(3) to prepare a film according to procedures (2)-(5).
FIG. 9 shows a diagram showing one process until the film is obtained, a photograph of the appearance of the film, and a schematic diagram of the internal structure of the film. As can be seen from the appearance photograph of FIG. 9, the film obtained from the solution (F) had transparency to the extent that letters and pictures could be confirmed through the film, but was in a round and hardened state. . On the other hand, no film-like composite was obtained from the solutions (G) and (H).
FIG. 10(a) is the FT-IR (Fourier transform infrared spectrophotometer) spectrum of the film obtained from the solutions (F) to (H), and (b) is the solution obtained from the solutions (F) to (H). It is a stress-strain curve obtained by a tensile test of the film.

以下の表3に、製造例1~3で得られたフィルムの柔軟性の評価結果を示す。

Figure 0007295559000002
Table 3 below shows the evaluation results of the flexibility of the films obtained in Production Examples 1 to 3.
Figure 0007295559000002

[実施例2]
1.キチン・キトサン系複合体の製造
この実施例は、キトサン(CS)とポリトリメチレンカーボネート(PTMC)の混合比率の違い、及び加熱温度の違いによる複合体(フィルム)の外観の違いを調べるために行った。
[Example 2]
1. Production of chitin/chitosan-based composite This example was used to examine the difference in the mixing ratio of chitosan (CS) and polytrimethylene carbonate (PTMC) and the difference in the appearance of the composite (film) due to the difference in heating temperature. gone.

図11に、実施例2に係るキチン・キトサン系複合体の製造方法の手順を概略的に示す。実施例1の製造方法の手順(1)では、CS又はCS誘導体と、PTMC又はPTMC誘導体とからなる組成物を溶媒に加えたのに対して、実施例2の製造方法の手順(1)では、CSを1v/v%び酸性溶液に溶解した溶液とPTMCを1w/w%のテトラヒドロフラン(THF)に溶解した溶液を混合して、溶液を得た。このとき、混合溶液中のCSとPTMCの比(CS:PTMC)が、100:0~25:75となるように、CS溶液及びPTMC溶液の各混合量を調製した。 FIG. 11 schematically shows the procedure of the method for producing a chitin/chitosan-based composite according to Example 2. As shown in FIG. In procedure (1) of the production method of Example 1, a composition comprising CS or a CS derivative and PTMC or a PTMC derivative was added to the solvent, whereas in procedure (1) of the production method of Example 2, , a solution of 1 v/v % of CS in an acidic solution and a solution of 1 w/w % of PTMC in tetrahydrofuran (THF) were mixed to obtain a solution. At this time, the mixed amounts of the CS solution and the PTMC solution were adjusted so that the ratio of CS to PTMC (CS:PTMC) in the mixed solution was 100:0 to 25:75.

また、実施例1の手順(3)及び(4)では、いずれもテフロン皿を40℃-80℃に加熱したが、実施例2の手順(3)ではテフロン皿を25℃又は40℃に加熱し、手順(4)では室温下にテフロン皿を放置した。
以下の式(1)に本実施例で用いたPTMCの構造式を、表4にその物性値を示す。

Figure 0007295559000003
Figure 0007295559000004
In addition, in both procedures (3) and (4) of Example 1, the Teflon dish was heated to 40°C-80°C, but in procedure (3) of Example 2, the Teflon dish was heated to 25°C or 40°C. However, in step (4), the Teflon dish was left at room temperature.
The following formula (1) shows the structural formula of PTMC used in this example, and Table 4 shows its physical properties.
Figure 0007295559000003
Figure 0007295559000004

図12の左側3枚は手順(4)において40℃で加熱したときのフィルムの外観写真、右側4枚は手順(4)において25℃で加熱したときのフィルムの外観写真である。各外観写真に記載されている比は、いずれもCS:PTMCを示している。
これらの外観写真の比較から分かるように、40℃で加熱したときよりも25℃で加熱したときの方が、得られたフィルムの透明度が高かった。これは、低温で加熱した方が混合溶液から溶媒が蒸発する際に気泡の発生が抑えられるためであると思われる。また、複合体に占めるPTMCの割合が大きくなるとフィルムの形状が崩れ、特に25℃で加熱し、PTMCの割合が75%の複合体ではフィルムを形成することができなかった。
The three photographs on the left side of FIG. 12 are photographs of the appearance of the film when heated at 40° C. in procedure (4), and the four photographs on the right side are photographs of the appearance of the film when heated at 25° C. in procedure (4). All the ratios described in each appearance photograph indicate CS:PTMC.
As can be seen from the comparison of these appearance photographs, the transparency of the obtained film was higher when heated at 25°C than when heated at 40°C. This is probably because heating at a lower temperature suppresses the generation of air bubbles when the solvent evaporates from the mixed solution. In addition, when the ratio of PTMC in the composite increased, the shape of the film collapsed. In particular, a composite with a PTMC ratio of 75% heated at 25° C. could not form a film.

[実施例3]
この実施例は、CS溶液とPTMC溶液の混合液にグリセロールを添加して複合体を製造したことによる該複合体の外観及び引張強度の変化を調べたものである。この実施例では、基本的には実施例2に示した製造方法と同様の手順によって複合体(フィルム)を製造したが、本実施例では、実施例2に示した製造方法の手順(1)において、CS溶液にグリセロールを添加した。また手順(3)ではテフロン皿を25℃に加熱した。
[Example 3]
In this example, changes in appearance and tensile strength of composites produced by adding glycerol to a mixed solution of CS solution and PTMC solution were investigated. In this example, the composite (film) was basically produced by the same procedure as the production method shown in Example 2, but in this example, procedure (1) of the production method shown in Example 2 , glycerol was added to the CS solution. Also in procedure (3), the Teflon dish was heated to 25°C.

図13はCS:PTMC:グリセロールの混合比を90:0:10、75:25:0、67.5:22.5:10、60:20:20としたときの、フィルムの外観写真を示している。図13及び実施例2で説明した図12との比較から分かるように、グリセロールを添加することによってフィルムの透明度が高まった。 FIG. 13 shows photographs of the appearance of films when the mixing ratios of CS:PTMC:glycerol were 90:0:10, 75:25:0, 67.5:22.5:10, and 60:20:20. ing. As can be seen from FIG. 13 and a comparison with FIG. 12 described in Example 2, the addition of glycerol increased the transparency of the film.

図14、図15は、それぞれ図13の(a)~(d)に示すフィルムの引張試験による応力-歪み曲線、圧縮試験による応力-歪み曲線である。これらの図より、グリセロールの添加量が最も多かったフィルム(d)は、その他のフィルムに比べると小さい力で大きく伸縮することが分かった。 14 and 15 are stress-strain curves obtained by tensile tests and stress-strain curves obtained by compression tests of the films shown in (a) to (d) of FIG. 13, respectively. From these figures, it was found that the film (d), which had the largest amount of glycerol added, stretched greatly with a small force compared to the other films.

図16は、グリセロールが添加された複合体(CS-g-PTMC複合体)の概略的な合成経路を示す。また、以下の表5は、図16に示す合成経路における中間生成物であるPTMC-Allyl及びPTMC-Epoxyの物性値、図17はH-NMRスペクトルである。

Figure 0007295559000005
FIG. 16 shows a schematic synthetic pathway for glycerol-added conjugates (CS-g-PTMC conjugates). Table 5 below shows physical properties of PTMC-Allyl and PTMC-Epoxy, which are intermediate products in the synthetic route shown in FIG. 16, and FIG. 17 shows 3 H-NMR spectra.
Figure 0007295559000005

Claims (5)

トサン及びN,N,N-トリメチルキトサンの少なくとも一つの多糖と、
ポリTMC(トリメチレンカーボネート)、ポリMBC(5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one)、及びTMCとMBCの共重合体からなる群から選択される少なくとも一つのトリメチレンカーボネート系ポリマーと、
又は、
4級アミノ化キトサンから成る多糖と、
TMC及びMBCの組成比が7:3であるTMCとMBCの共重合体から成るトリメチレンカーボネート系ポリマーと、
を含む、キトサン系複合体組成物。
at least one polysaccharide of chitosan and N,N,N-trimethylchitosan ;
At least one trimethylene selected from the group consisting of polyTMC (trimethylene carbonate), polyMBC (5-methyl-5-benzyloxybenzylcarbonyl-1,3-dioxan-2-one), and copolymers of TMC and MBC a carbonate-based polymer;
or
a polysaccharide consisting of quaternary aminated chitosan;
a trimethylene carbonate-based polymer composed of a copolymer of TMC and MBC having a composition ratio of TMC and MBC of 7:3;
A chitosan- based composite composition comprising:
トサン及びN,N,N-トリメチルキトサンの少なくとも一つの多糖と、ポリTMC(トリメチレンカーボネート)、ポリMBC(5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one)、及びTMCとMBCの共重合体からなる群から選択される少なくとも一つのトリメチレンカーボネート系ポリマーと、又は、4級アミノ化キトサンから成る多糖と、TMC及びMBCの組成比が7:3であるTMCとMBCの共重合体から成るトリメチレンカーボネート系ポリマーとを溶媒中で混合して溶液又は懸濁液を形成し、前記溶液又は前記懸濁液を加熱して該溶液又は該懸濁液から溶媒を除去することによりキトサン系複合体を製造する、キトサン系複合体の製造方法。 At least one polysaccharide of chitosan and N,N,N-trimethylchitosan , polyTMC (trimethylene carbonate), polyMBC (5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one), and TMC at least one trimethylene carbonate-based polymer selected from the group consisting of copolymers of and MBC; in a solvent to form a solution or suspension, and heating the solution or suspension to remove the solvent from the solution or suspension A method for producing a chitosan -based composite , comprising: 前記溶媒がグリセロールを含むことを特徴とする請求項2に記載のキトサン系複合体の製造方法。 3. The method for producing a chitosan -based composite according to claim 2, wherein the solvent contains glycerol. 請求項2又は3に記載の製造方法において、
N,N,N-トリメチルキトサンから成る多糖と、ポリMBC(5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one)及びTMCとMBCの共重合体の少なくとも一つのトリメチレンカーボネート系ポリマーと、又は、4級アミノ化キトサンから成る多糖と、TMC及びMBCの組成比が7:3であるTMCとMBCの共重合体から成るトリメチレンカーボネート系ポリマーとを前記溶媒中で混合することを特徴とするキトサン系複合体の製造方法。
In the manufacturing method according to claim 2 or 3,
Polysaccharide consisting of N,N,N-trimethylchitosan and at least one trimethylene carbonate system of polyMBC (5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one) and copolymer of TMC and MBC Mixing a polymer, or a polysaccharide composed of quaternary aminated chitosan, and a trimethylene carbonate-based polymer composed of a copolymer of TMC and MBC in which the composition ratio of TMC and MBC is 7:3 in the solvent. A method for producing a chitosan- based composite, characterized by:
請求項2~4のいずれかに記載の製造方法において、 In the production method according to any one of claims 2 to 4,
前記溶媒が極性溶媒であることを特徴とするキトサン系複合体の製造方法。 A method for producing a chitosan-based composite, wherein the solvent is a polar solvent.
JP2019104022A 2019-06-03 2019-06-03 Chitosan-based composite composition and method for producing chitosan-based composite Active JP7295559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019104022A JP7295559B2 (en) 2019-06-03 2019-06-03 Chitosan-based composite composition and method for producing chitosan-based composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019104022A JP7295559B2 (en) 2019-06-03 2019-06-03 Chitosan-based composite composition and method for producing chitosan-based composite

Publications (3)

Publication Number Publication Date
JP2020196823A JP2020196823A (en) 2020-12-10
JP2020196823A5 JP2020196823A5 (en) 2022-05-23
JP7295559B2 true JP7295559B2 (en) 2023-06-21

Family

ID=73647803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019104022A Active JP7295559B2 (en) 2019-06-03 2019-06-03 Chitosan-based composite composition and method for producing chitosan-based composite

Country Status (1)

Country Link
JP (1) JP7295559B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290303A (en) 1999-04-08 2000-10-17 Tsuyakku Kk Deacetylated chitin derivative and its synthesis method
JP2007301213A (en) 2006-05-12 2007-11-22 Nipro Corp Coated stent and its manufacturing method
WO2010001325A2 (en) 2008-06-30 2010-01-07 Silenseed Ltd Methods, compositions and systems for local delivery of drugs
JP2012522098A (en) 2009-03-31 2012-09-20 アルケマ フランス (Bio) -Organic system for ring-opening polymerization of cyclic carbonate to obtain polycarbonate
JP2016116873A (en) 2016-01-20 2016-06-30 東タイ株式会社 Living body absorbency suture thread
WO2017204276A1 (en) 2016-05-26 2017-11-30 株式会社ダイセル Carboxyl group-containing polycarbonate polyol
WO2017216609A1 (en) 2016-06-15 2017-12-21 Tubitak Multifunctional hernia patch
WO2018219987A1 (en) 2017-05-30 2018-12-06 Aqpha Ip B.V. Resorbable biodegradable medical and cosmetic composition comprising poly(1,3-trimethylene carbonate)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4142186A1 (en) * 1991-12-20 1993-06-24 Bayer Ag METHOD FOR FOAMING THERMOPLASTIC POLYCARBONATES
JP3483753B2 (en) * 1997-12-29 2004-01-06 タキロン株式会社 Biodegradable absorbent plastic adhesive
JPH11247067A (en) * 1998-02-27 1999-09-14 Fuji Spinning Co Ltd Process for hydrophilizing polyester-based synthetic fiber product

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290303A (en) 1999-04-08 2000-10-17 Tsuyakku Kk Deacetylated chitin derivative and its synthesis method
JP2007301213A (en) 2006-05-12 2007-11-22 Nipro Corp Coated stent and its manufacturing method
WO2010001325A2 (en) 2008-06-30 2010-01-07 Silenseed Ltd Methods, compositions and systems for local delivery of drugs
JP2012522098A (en) 2009-03-31 2012-09-20 アルケマ フランス (Bio) -Organic system for ring-opening polymerization of cyclic carbonate to obtain polycarbonate
JP2016116873A (en) 2016-01-20 2016-06-30 東タイ株式会社 Living body absorbency suture thread
WO2017204276A1 (en) 2016-05-26 2017-11-30 株式会社ダイセル Carboxyl group-containing polycarbonate polyol
WO2017216609A1 (en) 2016-06-15 2017-12-21 Tubitak Multifunctional hernia patch
JP2019517892A (en) 2016-06-15 2019-06-27 チュビタック (ターキー ビリムセル ヴィ テクノロジク アラスティルマ クルム)Tubitak (Turkiye Bilimsel Ve Teknolojik Arastirma Kurumu) Multifunctional hernia patch
WO2018219987A1 (en) 2017-05-30 2018-12-06 Aqpha Ip B.V. Resorbable biodegradable medical and cosmetic composition comprising poly(1,3-trimethylene carbonate)
JP2020521803A (en) 2017-05-30 2020-07-27 アクファー アイピー ビー.ヴィー.Aqpha Ip B.V. Resorbable biodegradable medical and cosmetic compositions containing poly(1,3-trimethylene carbonate)

Also Published As

Publication number Publication date
JP2020196823A (en) 2020-12-10

Similar Documents

Publication Publication Date Title
Zhuang et al. Preparation of elastic and antibacterial chitosan–citric membranes with high oxygen barrier ability by in situ cross-linking
Wang et al. Alginate/starch blend fibers and their properties for drug controlled release
Sionkowska et al. The influence of UV irradiation on the properties of chitosan films containing keratin
JP2014534294A5 (en)
Horn et al. Influence of collagen addition on the thermal and morphological properties of chitosan/xanthan hydrogels
Liu et al. Effects of glycerides with different molecular structures on the properties of maize starch and its film forming capacity
RU2621114C2 (en) Polysaccharide fibers for wound dressings
JP2012237083A (en) Fiber using aqueous solution containing gelatin and polyhydric alcohol, and dry spinning method of hollow fiber
TWI617600B (en) Film having improved haze
CN110317367A (en) A kind of preparation method of chitosan/aramid nano-fiber laminated film
JP2005163204A (en) Gelatin fiber and its production method
JP7295559B2 (en) Chitosan-based composite composition and method for producing chitosan-based composite
TWI634910B (en) Aqueous composition for preparing hard capsule, method of preparing the aqueous composition, hard capsule prepared by using the aqueous composition, and method of recycling hard capsule scrap
CN105418861B (en) One kind is based on polyaminoacid molecule cross-link hydrogel and preparation method thereof
CN105734713A (en) Preparation method of sericin/polyvinyl alcohol composite nano-fiber
JP5828643B2 (en) Elastic spinning of fiber and hollow fiber using gelatin aqueous solution
WO2023083253A1 (en) Extrudable biodegradable composition materials and extrusion process thereof
CN107759711B (en) Epoxy chitosan quaternary ammonium salt and preparation method thereof
US20160032493A1 (en) Preparation method of polysaccharide fiber
Liu et al. Study on properties and aggregation structures of deacetylated konjac glucomannan/chitosan hydrochloride absorbent blend gel films
JP4566274B2 (en) Chitin slurry and manufacturing method thereof
KR101534290B1 (en) Silk sericin film with good mechanical properties and its preparation method
JPH05239263A (en) Water-containing gel composition
Momose et al. Fabrication of pH-responsive poly (vinyl alcohol)-based microfibers crosslinked with copolymers containing benzoxaborole and carboxy groups
TW201524537A (en) Aqueous composition for hard capsule and hard capsule prepared by using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230602

R150 Certificate of patent or registration of utility model

Ref document number: 7295559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150