JP7292003B2 - Electrolytic capacitor and its manufacturing method - Google Patents

Electrolytic capacitor and its manufacturing method Download PDF

Info

Publication number
JP7292003B2
JP7292003B2 JP2017193056A JP2017193056A JP7292003B2 JP 7292003 B2 JP7292003 B2 JP 7292003B2 JP 2017193056 A JP2017193056 A JP 2017193056A JP 2017193056 A JP2017193056 A JP 2017193056A JP 7292003 B2 JP7292003 B2 JP 7292003B2
Authority
JP
Japan
Prior art keywords
anode foil
foil
dividing
winding
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017193056A
Other languages
Japanese (ja)
Other versions
JP2019067961A (en
Inventor
博光 半谷
拓海 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2017193056A priority Critical patent/JP7292003B2/en
Publication of JP2019067961A publication Critical patent/JP2019067961A/en
Application granted granted Critical
Publication of JP7292003B2 publication Critical patent/JP7292003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、陽極箔及び陰極箔がセパレータを介して巻回され、電解液が含浸された電解コンデンサ及びこの製造方法に関する。 TECHNICAL FIELD The present invention relates to an electrolytic capacitor in which an anode foil and a cathode foil are wound with a separator interposed therebetween and impregnated with an electrolytic solution , and a manufacturing method thereof .

電解コンデンサは、陽極の誘電体皮膜を対向電極と密着させるべく、電解質で空隙を埋めて成り、電解質が液体である非固体電解コンデンサ、電解質として液体と固体を備えたハイブリッド形電解コンデンサ、電極双方に誘電体皮膜を形成した両極性電解コンデンサが含まれる。このコンデンサ素子は、アルミニウムなどの弁金属箔に誘電体皮膜を形成した陽極箔と、同種または他の金属の箔によりなる陰極箔とを対向させ、陽極箔と陰極箔との間にセパレータを介在させて構成されている。そして、コンデンサ素子には電解液が含浸している。 Electrolytic capacitors consist of non-solid electrolytic capacitors in which the electrolyte is a liquid, hybrid electrolytic capacitors with liquid and solid electrolytes, and both electrodes. includes bipolar electrolytic capacitors with dielectric films. In this capacitor element, an anode foil formed by forming a dielectric film on a valve metal foil such as aluminum is opposed to a cathode foil made of the same or other metal, and a separator is interposed between the anode foil and the cathode foil. Let it be composed. The capacitor element is impregnated with an electrolytic solution.

電解液は、エチレングリコ-ルやγ-ブチロラクトンを溶媒とし、1,6-デカンジカルボン酸、1,7-オクタンジカルボン酸、アゼライン酸等のカルボン酸又はその塩等を溶質として含有する。この電解液は誘電体皮膜に直接接触して真の陰極として作用するとともに、誘電体皮膜の修復作用を有する。しかしながら、電解液や修復時に発生した水素ガス等が時間経過とともに電解コンデンサの外部へ抜けてしまう蒸発揮散が起こる。そのため、電解コンデンサはドライアップに向けて経時的に静電容量が低下し、また経時的に損失角の正接(tanδ)が上昇し、ついには寿命を迎える。 The electrolytic solution uses ethylene glycol or γ-butyrolactone as a solvent and contains carboxylic acids such as 1,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid and azelaic acid or salts thereof as solutes. This electrolytic solution comes into direct contact with the dielectric film and acts as a true cathode, and also has the effect of repairing the dielectric film. However, the electrolytic solution and the hydrogen gas generated during repairing escape from the electrolytic capacitor over time, causing vaporization and evaporation. As a result, the capacitance of the electrolytic capacitor decreases over time toward dry-up, and the tangent (tan δ) of the loss angle increases over time, finally reaching the end of its life.

そこで、コンデンサ素子は有底の外装ケースに収容され、外装ケースの開口を封口体で封止することで、コンデンサ素子に含浸した電解液を密閉し、電解液の蒸発揮散を抑制し、長寿命化を図っている。但し、誘電体酸化皮膜の修復により発生した水素ガスも外装ケース内に閉じ込められることになる。 Therefore, the capacitor element is housed in an exterior case with a bottom, and the opening of the exterior case is sealed with a sealant to seal the electrolytic solution impregnated in the capacitor element, suppress evaporation and evaporation of the electrolytic solution, and extend the life of the capacitor. We are trying to However, the hydrogen gas generated by repairing the dielectric oxide film is also confined within the exterior case.

特開平08-250381号公報JP-A-08-250381

封口体にはブチルゴムやエチレンプロピレンジエンゴム(EPDM)等のエラストマーが用いられる。封口体はエラストマーの種類によってガス透過率が様々である。ガス透過率が低いブチルゴム等を用いると、電解コンデンサの発熱等によって蒸気化した電解液や修復により発生した水素ガス等のガスが外装ケースの内圧を上昇させる。電解コンデンサには規定内圧に達すると開弁する圧力弁が封口体や外装ケースに設けられており、外装ケースの内圧が上昇した場合には弁動作して電解液を周囲の電子回路や電子部品にまき散らしてしまう。 Elastomers such as butyl rubber and ethylene propylene diene rubber (EPDM) are used for the sealing member. The gas permeability of the sealing body varies depending on the type of elastomer. If butyl rubber or the like having a low gas permeability is used, the electrolytic solution vaporized due to the heat generation of the electrolytic capacitor or the like and gas such as hydrogen gas generated by repairing the capacitor will increase the internal pressure of the exterior case. Electrolytic capacitors are equipped with pressure valves that open when the internal pressure reaches a specified level. Scatter it all over.

一方、ガス透過率がブチルゴムと比べて高いエチレンプロピレンジエンゴム等をエラストマーとして用いると、圧力弁が開弁し難くなるが、電解液が徐々に電解コンデンサの外部に蒸発揮散し、ガス透過性の低いエラストマーを用いた場合と比べて経時的な静電容量の低下や経時的なtanδの上昇が激しくなる。 On the other hand, if ethylene propylene diene rubber or the like, which has a higher gas permeability than butyl rubber, is used as the elastomer, the pressure valve will be difficult to open, but the electrolytic solution will gradually evaporate outside the electrolytic capacitor, and the gas permeability will increase. Compared with the case of using a low elastomer, the decrease in capacitance over time and the increase in tan δ over time become more pronounced.

本発明は、上記のような従来技術の問題点を解決するため、性能劣化を抑制しつつ長寿命化した電解コンデンサ及びこの製造方法を提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an electrolytic capacitor having a longer life while suppressing performance deterioration and a method for manufacturing the same, in order to solve the above-described problems of the prior art.

上記目的を達成するため、本発明に係る電解コンデンサは、帯状の陽極箔及び陰極箔がセパレータを介して巻回され、電解液が含浸されて成るコンデンサ素子と、前記コンデンサ素子が収容される外装ケースと、前記コンデンサ素子を収容した前記外装ケースの開口を封止する封口体と、を備え、前記陽極箔は、当該陽極箔の表面に形成された拡面部と、前記拡面部を除いた残部である芯部と、前記拡面部を分断する複数の分断部と、を有し、前記封口体はブチルゴムを含み構成されること、を特徴とする。 To achieve the above object, the present invention provides an electrolytic capacitor comprising: a capacitor element formed by winding strip-shaped anode foil and cathode foil with a separator interposed therebetween and impregnated with an electrolytic solution; and an exterior housing the capacitor element. A case and a sealing member that seals an opening of the exterior case that accommodates the capacitor element, and the anode foil includes a widened surface portion formed on the surface of the anode foil and a remainder excluding the widened surface portion. and a plurality of dividing portions that divide the enlarged surface portion, and the sealing member includes butyl rubber.

前記分断部は、前記箔を完全に横断し、又は部分的に横断するように延在するようにしてもよい。 The breaks may extend completely or partially across the foil.

前記分断部は、平均ピッチが2.1mm以下の間隔を空けて設けられているようにしてもよい。 The dividing portions may be provided at intervals having an average pitch of 2.1 mm or less.

前記分断部は、平均ピッチが1.0mm以下の間隔を空けて設けられているようにしてもよい。 The dividing portions may be provided at intervals having an average pitch of 1.0 mm or less.

前記分断部は、前記箔を平坦にした状態で溝幅が0を含む50μm以下であるようにしてもよい。 The dividing portion may have a groove width of 50 μm or less including 0 when the foil is flattened.

前記分断部は、前記拡面部が割れて成り、前記陽極箔を平坦にした状態で溝幅が実質的に0であるようにしてもよい。 The dividing portion may be formed by cracking the enlarged surface portion, and the groove width may be substantially zero when the anode foil is flattened.

前記拡面部と前記分断部の表面に誘電体皮膜を有するようにしてもよい。また、上記目的を達成するため、本発明の電解コンデンサの製造方法は、帯状の陽極箔を形成する箔形成工程と、前記陽極箔と帯状の陰極箔をセパレータとを介して巻回する巻回工程と、前記巻回工程により得られたコンデンサ素子に電解液を含浸させる含浸工程と、前記コンデンサ素子を封止する封止工程と、を含み、前記箔形成工程は、前記陽極箔の芯部を除いた表面に拡面部を形成する第1の工程と、前記第1の工程以降、前記巻回工程の前に、前記拡面部を分断し、平均ピッチが2.1mm以下の間隔を空けて複数の分断部を設ける第2の工程と、前記第2の工程以降、前記巻回工程の前に、前記拡面部及び前記分断部の内表面に誘電体皮膜を形成する第3の工程と、を有し、前記巻回工程では、前記箔形成工程で形成された前記分断部を率先して開きながら巻回し、前記封止工程は、前記コンデンサ素子を外装ケースに収容して、当該外装ケースの開口を、ブチルゴムを含み構成される封口体で封止する。 A dielectric film may be provided on the surface of the enlarged surface portion and the dividing portion. In order to achieve the above object, the method for manufacturing an electrolytic capacitor of the present invention includes a foil forming step of forming a strip-shaped anode foil, and a winding step of winding the anode foil and the strip-shaped cathode foil with a separator interposed therebetween. an impregnation step of impregnating the capacitor element obtained by the winding step with an electrolytic solution; and a sealing step of sealing the capacitor element, wherein the foil forming step includes a core portion of the anode foil. A first step of forming an enlarged surface portion on the surface excluding the above, and after the first step and before the winding step, the enlarged surface portion is divided and the average pitch is 2.1 mm or less. a second step of providing a plurality of dividing portions; a third step of forming a dielectric film on the inner surfaces of the enlarged surface portions and the dividing portions after the second step and before the winding step; In the winding step, the separated portion formed in the foil forming step is opened and wound, and in the sealing step, the capacitor element is accommodated in an outer case, and the outer case is The opening of is sealed with a sealing body containing butyl rubber.

本発明によれば、誘電体皮膜の修復時に発生する水素ガスが分断部の存在により少なくなるので、ガス透過性の低いブチルゴムを封口体のエラストマーとして用いても開弁に至るような内圧上昇が起りにくく、またガス透過性の低いブチルゴムであれば電解液の外部への蒸発揮散が抑制され、これにより性能劣化の抑制と長寿命化が両立できる。 According to the present invention, hydrogen gas generated during restoration of the dielectric film is reduced due to the presence of the dividing portion. Therefore, even if butyl rubber, which has low gas permeability, is used as the elastomer for the sealing member, the internal pressure does not rise enough to open the valve. Butyl rubber, which is less likely to occur and has low gas permeability, suppresses vaporization and evaporation of the electrolytic solution to the outside, thereby achieving both suppression of performance deterioration and extension of service life.

電解コンデンサの模式図である。1 is a schematic diagram of an electrolytic capacitor; FIG. 陽極箔の構造を示し、(a)は長手方向に沿った切断図であり、(b)は上面図である。The structure of the anode foil is shown, (a) is a cut view along the longitudinal direction, and (b) is a top view. 巻回された陽極箔の状態を示す模式図であり、(a)は分断部を有する陽極箔、(b)は分断部が未形成の陽極箔を示す。FIG. 2 is a schematic diagram showing the state of wound anode foils, where (a) shows an anode foil having a split portion, and (b) shows an anode foil without a split portion. (a)は分断部の内表面に形成された誘電体皮膜を示し、(b)は巻回によって発生したクラックの表面に形成された誘電体皮膜を示す。(a) shows the dielectric film formed on the inner surface of the split portion, and (b) shows the dielectric film formed on the surface of cracks generated by winding. 実施例1に係る、本実施形態の分断部を備えた陽極箔の長手方向に沿った断面写真である。4 is a photograph of a cross-section along the longitudinal direction of the anode foil provided with the dividing portion of the present embodiment, according to Example 1. FIG. 実施例1に係る、本実施形態の分断部を備えた陽極箔の表面を示す写真であり、写真長辺方向が陽極箔の幅方向であり、写真短辺方向が陽極箔の長手方向である。4 is a photograph showing the surface of the anode foil having the dividing portion of the present embodiment according to Example 1, wherein the long side direction of the photograph is the width direction of the anode foil, and the short side direction of the photograph is the longitudinal direction of the anode foil. . 比較例1に係る陽極箔の長手方向に沿った断面写真である。4 is a cross-sectional photograph along the longitudinal direction of the anode foil according to Comparative Example 1. FIG. 実施例1乃至5及び比較例1のエリクセン試験の結果を示すグラフである。4 is a graph showing the results of Erichsen tests of Examples 1 to 5 and Comparative Example 1. FIG. 実施例1及び比較例1を巻回したコンデンサ素子の写真である。1 is a photograph of a capacitor element in which Example 1 and Comparative Example 1 are wound. 実施例6及び比較例2の電解コンデンサのエージング処理において流した電流を経過時間毎に示したグラフである。10 is a graph showing the current flowed for each elapsed time during the aging treatment of the electrolytic capacitors of Example 6 and Comparative Example 2. FIG. 実施例7、比較例3及び4の電解コンデンサのtanδの時間経過を示すグラフである。10 is a graph showing the tan δ of the electrolytic capacitors of Example 7 and Comparative Examples 3 and 4 over time. 実施例7、比較例3及び4の電解コンデンサの重量変化の時間経過を示すグラフである。10 is a graph showing changes in weight over time of electrolytic capacitors of Example 7 and Comparative Examples 3 and 4. FIG.

以下、本発明に係る電解コンデンサの実施形態について詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものでない。 BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of an electrolytic capacitor according to the present invention will be described in detail below. In addition, this invention is not limited to embodiment described below.

(電解コンデンサ)
図1に示す電解コンデンサは、静電容量により電荷の蓄電及び放電を行う受動素子である。この電解コンデンサは、円筒状のコンデンサ素子10を有底筒状の外装ケース20に軸を一致させて収容した上で、外装ケース20の開口部を封口体30で封口して成る。
(Electrolytic capacitor)
The electrolytic capacitor shown in FIG. 1 is a passive element that stores and discharges electric charge by means of electrostatic capacitance. This electrolytic capacitor is constructed by accommodating a cylindrical capacitor element 10 in a bottomed cylindrical exterior case 20 with its axis aligned, and then sealing the opening of the exterior case 20 with a sealing member 30 .

コンデンサ素子10は、陽極箔1と陰極箔11とをセパレータ12を介して対向させて巻回し、電解液が含浸して成る。セパレータ12は、その一端が陽極箔1及び陰極箔11の一端よりも飛び出すように重ね合わせておく。そして、飛び出したセパレータ12を先に巻き始めて巻芯部を作成し、続けて其の巻芯部を巻軸にして、陽極箔1及び陰極箔11とセパレータ12の層を巻回していく。陽極箔1と陰極箔11にはステッチ、コールドウェルド、超音波溶接又はレーザー溶接などによって引出端子13が接続され、引出端子13は封口体30を貫通して外装ケース20の外部に引き出される。 A capacitor element 10 is formed by winding an anode foil 1 and a cathode foil 11 facing each other with a separator 12 interposed therebetween and impregnating them with an electrolytic solution. The separator 12 is superimposed so that one end of the separator 12 protrudes from one end of the anode foil 1 and the cathode foil 11 . Then, the protruded separator 12 is first wound to form a winding core, and then the anode foil 1, the cathode foil 11, and the separator 12 are wound using the winding core as a winding shaft. A lead-out terminal 13 is connected to the anode foil 1 and the cathode foil 11 by stitching, cold welding, ultrasonic welding, laser welding, or the like, and the lead-out terminal 13 penetrates the sealing member 30 and is drawn out of the exterior case 20 .

外装ケース20とコンデンサ素子10との隙間には絶縁樹脂が充填され、コンデンサ素子10は外装ケース20に固定されてもよい。また外装ケース20の胴部開口側は胴回りがカシメ加工によって絞られ、封口体30の側面に食い込み、或いは封口体30の上面周縁に張り出し、封口体30と外装ケース20との密着性は高められている。この封口体30は、電解液の蒸発揮散を抑制する。 A gap between exterior case 20 and capacitor element 10 may be filled with insulating resin, and capacitor element 10 may be fixed to exterior case 20 . In addition, the waist opening side of the exterior case 20 is narrowed by caulking, and bites into the side surface of the sealing body 30 or protrudes to the periphery of the upper surface of the sealing body 30, and the adhesion between the sealing body 30 and the exterior case 20 is enhanced. ing. This sealing member 30 suppresses the evaporative evaporation of the electrolytic solution.

外装ケース20にコンデンサ素子10を収納して封口体30で開口を閉じた後は、電解コンデンサを通電させることでエージング処理し、巻回等の製造工程中に発生した誘電体皮膜5の欠陥を電解液によって修復する。 After the capacitor element 10 is housed in the outer case 20 and the opening is closed with the sealing member 30, the electrolytic capacitor is energized to perform aging treatment, and defects in the dielectric film 5 generated during the manufacturing process such as winding are removed. Repair by electrolyte.

(電極箔)
陽極箔1及び陰極箔11は、アルミニウム、タンタル、チタン、ニオブ及び酸化ニオブ等の弁金属を材料とする帯状の薄箔である。弁金属の地金が延伸され、又は薄板の両表面に粉体が焼結され、陽極箔1及び陰極箔11は箔体形状となる。図2に示すように、陽極箔1は、厚み方向中心の芯部2を残して両面に拡面部3が形成され、拡面部3の一方又は両方に複数の分断部4が形成される。誘電体皮膜5は拡面部3と分断部4の表面に形成される。
(electrode foil)
The anode foil 1 and the cathode foil 11 are strip-shaped thin foils made of valve metals such as aluminum, tantalum, titanium, niobium and niobium oxide. The base metal of the valve metal is stretched, or the powder is sintered on both surfaces of the thin plate, and the anode foil 1 and the cathode foil 11 are formed into a foil shape. As shown in FIG. 2, the anode foil 1 is formed with enlarged surface portions 3 on both sides, leaving a core portion 2 at the center in the thickness direction, and a plurality of dividing portions 4 are formed on one or both of the enlarged surface portions 3 . Dielectric film 5 is formed on the surfaces of enlarged surface portion 3 and dividing portion 4 .

尚、陰極箔11にも拡面部3を形成し、また誘電体皮膜5を形成し、更に分断部4を形成してもよいが、柔軟性と延伸性を失わない程度に拡面化され、又は拡面化せずにプレーンのままとすることが好ましい。 Incidentally, the cathode foil 11 may also be formed with the enlarged surface portion 3, formed with the dielectric film 5, and further formed with the dividing portion 4. Alternatively, it is preferable to leave the plane as it is without widening the surface.

拡面部3は多孔質構造を有する。電極箔の表面から厚み中心に向けて掘り下げられて整列したトンネル状のピット、海綿状のピット、又は密集した粉体間の空隙により成る。電極箔の厚み中心には、柔軟性と延伸性に富む、弁金属の地金である芯部2が残る。この拡面部3は、直流エッチング又は交流エッチングにより形成され、若しくは芯部2に金属粒子等を蒸着又は焼結することにより形成される。拡面部3及び芯部2の厚みは特に限定されないが、陽極箔1については、拡面部3の厚みが両面合わせて40~200μm、芯部2の厚みが8~60μmの範囲が好ましい。 The enlarged surface portion 3 has a porous structure. It consists of aligned tunnel-like pits, spongy pits, or gaps between dense particles that are dug down from the surface of the electrode foil toward the center of its thickness. At the center of the thickness of the electrode foil, there remains a core portion 2 which is the base metal of the valve metal and which is rich in flexibility and stretchability. The expanded surface portion 3 is formed by direct current etching or alternating current etching, or by depositing or sintering metal particles or the like on the core portion 2 . The thicknesses of the enlarged surface portion 3 and the core portion 2 are not particularly limited, but the thickness of the enlarged surface portion 3 on both sides of the anode foil 1 is preferably in the range of 40 to 200 μm, and the thickness of the core portion 2 is preferably in the range of 8 to 60 μm.

分断部4は、陽極箔1の表面から芯部2に向けて深さを有する溝である。この分断部4は、芯部2を完全に分断するまでに至らなければ良く、芯部2に至らない深さ、最深部がちょうど芯部2に到達する深さ、及び最深部が芯部2に食い込む深さの何れであってもよい。また、全ての分断部4の深さが統一されている必要はない。 The dividing portion 4 is a groove having a depth from the surface of the anode foil 1 toward the core portion 2 . The dividing portion 4 should not reach the point where the core portion 2 is completely divided. It can be any depth that penetrates into. In addition, it is not necessary that the depths of all the dividing portions 4 are uniform.

この分断部4は、陽極箔1の帯長手方向に対して直交する幅方向に形成される。分断部4は、陽極箔1を完全に横断し、又は部分的に横断するように延びる。すなわち、ある分断部4は、陽極箔1の一方の長辺から延びて他方の長辺に至る。また、ある分断部4は、陽極箔1の一方の長辺から箔中心線未満又は箔中心線を超えて延び、他方の長辺には至らない。また、ある分断部4は、陽極箔1の他方の長辺から箔中心線未満又は箔中心線を超えて延び、一方の長辺には至らない。幅手方向に沿って形成されている分断部4同士が繋がっていてもよい。全ての分断部4の延びる向き及び長さが統一されている必要はない。 The dividing portion 4 is formed in the width direction orthogonal to the strip longitudinal direction of the anode foil 1 . The dividing portion 4 extends across the anode foil 1 completely or partially. That is, a part 4 extends from one long side of anode foil 1 to reach the other long side. Moreover, a parting portion 4 extends from one long side of the anode foil 1 to less than or beyond the foil center line and does not reach the other long side. Moreover, a parting portion 4 extends from the other long side of the anode foil 1 to less than or beyond the foil center line and does not reach one long side. The dividing portions 4 formed along the width direction may be connected to each other. It is not necessary that all of the dividing portions 4 extend in the same direction and have the same length.

分断部4の溝幅は、陽極箔1を湾曲させずに平坦にならした際、0を含む50μm以下である。分断部4の溝幅は、陽極箔1の長手方向に沿った長さであり、陽極箔1の表層付近で計測される。分断部4の溝幅が50μm以下であれば、陽極箔1の柔軟性及び延伸性を損なうことなく、誘電体皮膜5の表面積減少に伴う、電解コンデンサの静電容量の大きな低下を抑止できる。 The groove width of the dividing portion 4 is 50 μm or less, including 0, when the anode foil 1 is flattened without being curved. The groove width of the dividing portion 4 is the length along the longitudinal direction of the anode foil 1 and is measured near the surface layer of the anode foil 1 . If the groove width of the dividing portion 4 is 50 μm or less, a large decrease in the capacitance of the electrolytic capacitor due to a decrease in the surface area of the dielectric film 5 can be suppressed without impairing the flexibility and stretchability of the anode foil 1 .

また、分断部4は、巻回時に率先して開くことで曲げ応力を分散させ、微細なクラックの発生を抑制し、また芯部2をも破壊するクラックの発生を阻止する。但し、分断部4の数が少ないと、曲げによる引張り応力に負けて微細なクラックが生じ、更には分断部4から芯部2をも破壊するクラックが生じやすくなる。そこで、分断部4は、陽極箔1の帯長手方向において、10mmの範囲当たり、4箇所以上設けられている。隣接する分断部4の間隔は、平均ピッチが2.1mm以下であればよく、より望ましくは平均ピッチが1.0mm以下である。平均ピッチが2.1mm以下であれば、分断部4が未形成の陽極箔1と比べて、エリクセン値が大きくなる。 In addition, the dividing portion 4 is opened at the time of winding to disperse the bending stress, suppress the generation of fine cracks, and prevent the generation of cracks that destroy the core portion 2 as well. However, if the number of the divided portions 4 is small, fine cracks are generated due to the tensile stress due to bending, and cracks that destroy the core portion 2 are also likely to occur from the divided portions 4 . Therefore, the dividing portions 4 are provided at four or more points per range of 10 mm in the strip longitudinal direction of the anode foil 1 . The interval between the adjacent dividing portions 4 should have an average pitch of 2.1 mm or less, and more preferably an average pitch of 1.0 mm or less. When the average pitch is 2.1 mm or less, the Erichsen value becomes larger than that of the anode foil 1 in which the divided portions 4 are not formed.

尚、平均ピッチは、陽極箔1の長手方向に沿った断面を数箇所任意に選択し、各断面写真から任意で選択した連続する4本の分断部4の間隔の平均値を各々算出し、更に各平均値の平均値を取って算出した。分断部4の間隔は、陽極箔1の表面付近を計測して得た。 The average pitch is obtained by arbitrarily selecting several cross sections along the longitudinal direction of the anode foil 1, and calculating the average value of the intervals between four continuous divided portions 4 arbitrarily selected from each cross section photograph, Furthermore, it was calculated by taking the average value of each average value. The interval between the divided portions 4 was obtained by measuring the vicinity of the surface of the anode foil 1 .

分断部4は、陽極箔1の長手方向に沿って均一な平均ピッチや単位範囲内の数で形成されてもよい。また、陽極箔1が巻回された際の、当該分断部4が形成される箇所における曲率を加味して、平均ピッチや単位範囲内の数を変更することもできる。曲率が小さくなればなるほど、すなわち巻回されたときに外周側になればなるほど、曲げ応力は小さくなり、クラックの発生の虞が低減するからである。 The dividing portions 4 may be formed with a uniform average pitch or a number within a unit range along the longitudinal direction of the anode foil 1 . Also, the average pitch and the number within the unit range can be changed in consideration of the curvature at the portion where the divided portion 4 is formed when the anode foil 1 is wound. This is because the smaller the curvature, that is, the closer the coil is to the outer peripheral side when wound, the smaller the bending stress and the less likely cracks will occur.

この分断部4は、拡面部3をひび割れさせ、拡面部3を裂き、陽極箔1の厚み方向に沿って拡面部3に切り込みを入れ、拡面部3を切り欠き、又は陽極箔1の厚み方向に沿って拡面部3を掘り込むことにより形成される。従って、分断部4の実態の例は、割れ目、裂け目、切り込み、切り欠き又は掘り込みである。但し、拡面部3を分断していれば、分断部4の態様は特に限られない。分断部4を割れ、裂き、又は切り込みにより形成した場合、分断部4の溝幅は実質的に0となる。実質的に0とは、陽極箔1を湾曲させずに平坦にならした際、分断部4の界面が少なくとも部分的に接している状態をいう。 The dividing portion 4 cracks the enlarged surface portion 3, splits the enlarged surface portion 3, cuts the enlarged surface portion 3 along the thickness direction of the anode foil 1, notches the enlarged surface portion 3, or cuts the enlarged surface portion 3 in the thickness direction of the anode foil 1. It is formed by digging the enlarged surface portion 3 along the . Accordingly, examples of the substance of the dividing portion 4 are cracks, fissures, cuts, cutouts or indentations. However, the mode of the dividing portion 4 is not particularly limited as long as the enlarged surface portion 3 is divided. When the split portion 4 is formed by cracking, tearing, or cutting, the groove width of the split portion 4 is substantially zero. The term "substantially 0" refers to a state in which the interfaces of the divided portions 4 are at least partially in contact with each other when the anode foil 1 is flattened without being curved.

このような分断部4は、例えば、丸棒へ電極箔を押し付けることで、ひび割れにより形成される。丸棒を利用する形成方法では、陽極箔1の芯部2が長手方向に伸び、その結果芯部2の厚みが薄くなる。しかしながら、分断部4の溝幅を50μm以下とすることで、芯部2の厚みが薄くなり難く、陽極箔1の柔軟性及び延伸性は向上する。この点においても、分断部4の溝幅を50μm以下とすることが好ましい。 Such a dividing portion 4 is formed by cracking, for example, by pressing electrode foil against a round bar. In the forming method using a round bar, the core portion 2 of the anode foil 1 extends in the longitudinal direction, and as a result, the thickness of the core portion 2 becomes thin. However, by setting the groove width of the dividing portion 4 to 50 μm or less, the thickness of the core portion 2 is less likely to be reduced, and the flexibility and stretchability of the anode foil 1 are improved. Also in this point, it is preferable to set the groove width of the dividing portion 4 to 50 μm or less.

分断部4は、巻軸への陽極箔1の巻き始め部分にのみ形成されてもよい。陽極箔1の巻き始め部分は曲率が大きく、クラックが発生しやすい。また、分断部4が位置する箇所における巻回半径に比例させて、平均ピッチを大きく取ったり、当該半径に反比例させて、単位範囲内の数を減少させるようにしてもよい。分断部4の数が減れば減るほど、静電容量への影響が低減する。 The parting portion 4 may be formed only at the beginning of the winding of the anode foil 1 around the winding shaft. The winding start portion of the anode foil 1 has a large curvature and cracks are likely to occur. Also, the average pitch may be increased in proportion to the winding radius at the location where the dividing portion 4 is located, or the number within the unit range may be reduced in inverse proportion to the radius. As the number of dividing portions 4 is reduced, the influence on capacitance is reduced.

この分断部4は、両面の拡面部3に各々形成されることが望ましいが、巻回時の陽極箔1の延びの観点から、少なくとも、陽極箔1の巻回時に箔外側になって引張り応力を受ける拡面部3に形成されるとよい。 It is desirable that the split portions 4 are formed on the enlarged surface portions 3 on both sides, but from the viewpoint of the elongation of the anode foil 1 during winding, at least the split portions 4 should be formed on the outer side of the foil when the anode foil 1 is wound. is preferably formed on the enlarged surface portion 3 that receives the

誘電体皮膜5は、電解コンデンサの誘電体となる層であり、陽極箔1がアルミニウム製であれば拡面部3と分断部4を酸化させた酸化アルミニウム層である。この誘電体皮膜5は、拡面部3の表面と分断部4の内表面に形成される。分断部4の内表面とは、溝の内側壁及び溝の底面の全部若しくは一部である。 Dielectric film 5 is a layer that serves as a dielectric of an electrolytic capacitor, and if anode foil 1 is made of aluminum, it is an aluminum oxide layer obtained by oxidizing enlarged surface portion 3 and dividing portion 4 . This dielectric film 5 is formed on the surface of the enlarged surface portion 3 and the inner surface of the dividing portion 4 . The inner surface of the dividing portion 4 is all or part of the inner wall of the groove and the bottom surface of the groove.

この誘電体皮膜5は、拡面部3と分断部4の形成後の化成処理により形成される。化成処理では、誘電体皮膜形成ステップの後、所謂減極処理ステップを経て再び誘電体皮膜形成ステップを繰り返す。化成処理では、これら一連のステップを1巡又は2巡以上繰り返す。減極処理ステップは、熱処理ステップ、リン酸処理ステップ又は両方を含む。 This dielectric film 5 is formed by chemical conversion treatment after forming the enlarged surface portion 3 and the dividing portion 4 . In the chemical conversion treatment, after the step of forming a dielectric film, the step of forming a dielectric film is repeated through a so-called depolarization step. In chemical conversion treatment, these series of steps are repeated once or twice or more. The depolarization step includes a heat treatment step, a phosphating step, or both.

まず、誘電体皮膜形成ステップでは誘電体皮膜5を形成する。この誘電体皮膜形成ステップでは、弁金属や酸化物の溶解性が低く、電気抵抗が低い化成液を用いる。この化成液内で電極箔に電圧が印加される。化成液は、リン酸、クエン酸、アジピン酸、ホウ酸又はこれらの塩を含む水溶液であり、ハロゲンイオン不在の溶液が望ましい。具体的な化成液としては、リン酸二水素アンモニウム、クエン酸アンモニウム、アジピン酸アンモニウム、ホウ酸アンモニウム、有機酸アンモニア等が挙げられる。好ましくは、リン酸二水素アンモニウムを用いる。 First, the dielectric film 5 is formed in the dielectric film forming step. In this dielectric film forming step, a conversion solution having low solubility of valve metals and oxides and low electric resistance is used. A voltage is applied to the electrode foil in this anodizing solution. The conversion solution is an aqueous solution containing phosphoric acid, citric acid, adipic acid, boric acid, or a salt thereof, preferably a halogen ion-free solution. Specific chemical conversion solutions include ammonium dihydrogen phosphate, ammonium citrate, ammonium adipate, ammonium borate, organic acid ammonia, and the like. Preferably, ammonium dihydrogen phosphate is used.

陽極箔1の化成液に対する浸漬及び電圧印加の時間は、5~120分が望ましく、誘電体皮膜5の耐電圧が所望電圧に達し、電流が一定値に落ち着けばよい。化成の電気量を削減するため、誘電体皮膜形成ステップの前に80℃以上の高温の純水に陽極箔1を浸漬し、予めベーマイト皮膜を形成してもよい。 The time for immersing the anode foil 1 in the anodizing solution and applying the voltage is preferably 5 to 120 minutes, and it is sufficient if the withstand voltage of the dielectric film 5 reaches the desired voltage and the current settles to a constant value. In order to reduce the amount of electricity for chemical conversion, the anode foil 1 may be immersed in pure water at a temperature of 80° C. or higher before the step of forming the dielectric film to form a boehmite film in advance.

この誘電体皮膜形成ステップでは、誘電体皮膜5の内部にボイドが孤立している虞がある。そこで、次に熱処理ステップ、リン酸処理ステップ又はこれらの両方を含む減極処理によってボイドを暴露する。 In this dielectric film forming step, voids may be isolated inside the dielectric film 5 . So, the voids are then exposed by a depolarization process that includes a heat treatment step, a phosphating step, or both.

熱処理ステップでは、例えば大気中で450℃以上の温度環境下に晒す。この熱処理ステップでは、陽極箔1の芯部2と誘電体皮膜5の熱膨張率の相違により、誘電体皮膜が伸張させられて表面からボイドに向けた亀裂が入り、またはボイドに封入されていたガスが膨張してボイドが開孔する。これにより、誘電体皮膜内部のボイドが開門し、誘電体皮膜5内部のボイドが表面に暴露される。 In the heat treatment step, for example, the substrate is exposed to a temperature environment of 450° C. or higher in the air. In this heat treatment step, due to the difference in coefficient of thermal expansion between the core portion 2 of the anode foil 1 and the dielectric coating 5, the dielectric coating was stretched and cracked from the surface toward the voids, or was enclosed in the voids. The gas expands and voids open. As a result, the voids inside the dielectric film are opened, and the voids inside the dielectric film 5 are exposed to the surface.

リン酸処理ステップでは、ボイドに通じた亀裂や開孔を拡大する。このリン酸処理ステップでは、リン酸溶液又はリン酸二水素アンモニウム溶液に電極箔を浸漬する。これにより、誘電体皮膜形成ステップにおいて化成液がボイドに浸透し易くなる。そのため、再び誘電体皮膜形成ステップが繰り返されると、ボイドにも化成液が浸透し、ボイドを消失させ、又はボイドの大きさやボイドの数を減少させる。更にリン酸処理ステップでは表面の水和酸化物も除去できる。この化成処理により分断部4の内表面にも誘電体皮膜5が形成されると陽極箔1の安定性が増す。また、分断部4の内表面にも誘電体皮膜5を形成しておくと、誘電体皮膜5を修復するためのエージング処理に必要な電気量(A・s/F)が少なくて済む。 The phosphating step enlarges cracks and pores leading to voids. In this phosphating step, the electrode foil is immersed in a phosphoric acid solution or an ammonium dihydrogen phosphate solution. This makes it easier for the anodizing solution to penetrate into the voids in the dielectric film forming step. Therefore, when the dielectric film forming step is repeated again, the anodizing liquid penetrates into the voids, and the voids disappear or the size of the voids and the number of voids are reduced. In addition, the phosphating step can also remove surface hydrated oxides. When the dielectric film 5 is also formed on the inner surface of the dividing portion 4 by this chemical conversion treatment, the stability of the anode foil 1 is increased. Further, if the dielectric film 5 is also formed on the inner surface of the dividing portion 4, the amount of electricity (A·s/F) required for the aging treatment for repairing the dielectric film 5 can be reduced.

(封口体)
封口体30は、外装ケース20に嵌まる厚みの有る概略円盤である。封口体30には、両面を貫いた貫通穴が中心軸を挟んで等間隔に形成される。これら貫通穴からは一対の引出端子13が引き出される。また封口体30には規定圧力になると開弁する圧力弁が形成されていてもよい。圧力弁は、誘電体皮膜5の修復時に発生する水素ガス等のガスによって内圧が上昇し、規定圧力に達すると開弁する。尚、この圧力弁は外装ケース20に形成されていてもよい。
(sealing body)
The sealing member 30 is a thick disk that fits into the outer case 20 . The sealing member 30 is formed with through-holes penetrating through both sides at regular intervals across the central axis. A pair of lead-out terminals 13 are led out from these through holes. Further, the sealing member 30 may be formed with a pressure valve that opens when the specified pressure is reached. The pressure valve opens when the internal pressure rises due to gas such as hydrogen gas generated when the dielectric film 5 is repaired and reaches a specified pressure. Incidentally, this pressure valve may be formed in the exterior case 20 .

この封口体30はエラストマーを含み構成されている。エラストマーの他、封口体30には硬質基板や樹脂層等が含まれていてもよい。硬質基板は、金属板、合成樹脂板、セラミック板等の硬質材で組成されており、金属板は例えばアルミニウム、アルミニウムやマンガンを含有するアルミニウム合金、又はステンレスから成り、合成樹脂板は例えばフェノール樹脂、エポキシ樹脂又はポリエチレンサルファイド樹脂からなる。樹脂層としては種々の樹脂が使用可能であり、エポキシ樹脂、フッ素樹脂、アクリル樹脂、ポリイミド樹脂、シリコン樹脂、フェノール樹脂、メラミン樹脂、ウレタン樹脂、不飽和ポリエステル樹脂等が挙げられる。 The sealing member 30 is composed of an elastomer. In addition to the elastomer, the sealing member 30 may contain a hard substrate, a resin layer, or the like. The hard substrate is composed of a hard material such as a metal plate, a synthetic resin plate, or a ceramic plate. The metal plate is made of, for example, aluminum, an aluminum alloy containing aluminum or manganese, or stainless steel, and the synthetic resin plate is made of, for example, phenolic resin. , epoxy resin or polyethylene sulfide resin. Various resins can be used for the resin layer, including epoxy resins, fluorine resins, acrylic resins, polyimide resins, silicon resins, phenol resins, melamine resins, urethane resins, unsaturated polyester resins, and the like.

封口体30にはガス透過性の低いエラストマーが用いられ、例えば架橋又は未架橋のブチルゴムが主に含まれる。ブチルゴムには塩素化ブチルゴム及び臭素化ブチルゴムが含まれる。その他、このエラストマー34には、ブチルゴム(イソブチレンイソプレンゴム)を主材として、イソプレンゴム、シリコーンゴム、エチレンプロピレンジエンゴム(EPDM)、フッ素ゴム(FKM)又はスチレンブタジエンゴム(SBR)を含有させてもよい。架橋剤としてはアルキルフェノールホルムアルデヒド樹脂、過酸化物、キノイド及びイオウ等を用いることができる。充填剤としてはマイカやタルク、焼成クレー、含水ケイ素、無水ケイ素、カーボンブラック等を用いることができる。 An elastomer with low gas permeability is used for the sealing member 30, and for example, crosslinked or uncrosslinked butyl rubber is mainly included. Butyl rubber includes chlorinated butyl rubber and brominated butyl rubber. In addition, the elastomer 34 may contain butyl rubber (isobutylene isoprene rubber) as a main material and may contain isoprene rubber, silicone rubber, ethylene propylene diene rubber (EPDM), fluororubber (FKM) or styrene butadiene rubber (SBR). good. Alkylphenol-formaldehyde resins, peroxides, quinoids, sulfur and the like can be used as cross-linking agents. As a filler, mica, talc, calcined clay, hydrated silicon, anhydrous silicon, carbon black and the like can be used.

(巻回状態)
図3(a)は、分断部4を形成した後に誘電体皮膜5を形成する化成処理を行った電解コンデンサにおいて巻回された陽極箔1の状態を示す模式図であり、(b)は分断部4が形成されていない電解コンデンサにおいて巻回された陽極箔の状態を示す模式図である。
(Wound state)
FIG. 3(a) is a schematic diagram showing the state of the anode foil 1 wound in an electrolytic capacitor which has been subjected to a chemical conversion treatment for forming the dielectric film 5 after forming the dividing portion 4, and FIG. 4 is a schematic diagram showing the state of the wound anode foil in the electrolytic capacitor in which the portion 4 is not formed; FIG.

図3(a)に示すように、分断部4が形成された陽極箔1では、巻回時に分断部4が率先して開くため、誘電体皮膜5の伸張が緩和され、引張り応力が小さくなる。そのため、陽極箔1に微細なクラック6が発生することが抑制される。また、複数の分断部4が曲げ応力を分担して引き受け、各分断部4に曲げ応力が分散する。そのため、芯部2の破壊に至るような応力集中が抑止され、芯部2の破壊は免れ、陽極箔1は折れ曲がらずに滑らかに湾曲して巻回される。 As shown in FIG. 3(a), in the anode foil 1 in which the divided portions 4 are formed, the divided portions 4 are opened at the time of winding, so that the extension of the dielectric film 5 is relaxed and the tensile stress is reduced. . Therefore, the occurrence of fine cracks 6 in anode foil 1 is suppressed. In addition, the bending stress is shared and received by the plurality of dividing portions 4, and the bending stress is distributed to each dividing portion 4. - 特許庁Therefore, concentration of stress that would lead to breakage of core 2 is suppressed, breakage of core 2 is avoided, and anode foil 1 is smoothly curved and wound without bending.

一方、図3(b)に示すように、分断部4が形成されていない陽極箔では、柔軟性及び伸縮性が低下した誘電体皮膜5が巻回時に伸張させられるため、柔軟性及び伸縮性が低下した誘電体皮膜5に引張り応力による微細なクラック6が多数発生する。また、最悪の場合には、そのクラック6のうちの応力集中箇所で、芯部2をも破壊するクラック6が発生する。 On the other hand, as shown in FIG. 3B, in the anode foil in which the dividing portion 4 is not formed, the dielectric film 5 with reduced flexibility and stretchability is stretched during winding. A large number of fine cracks 6 due to tensile stress are generated in the dielectric film 5 in which the stress has decreased. Moreover, in the worst case, a crack 6 that destroys the core portion 2 also occurs at a portion of the crack 6 where stress is concentrated.

また、図4(a)は分断部4を形成した後に化成処理を行った電解コンデンサにおける分断部4の拡大図であり、図4(b)は分断部4が形成されていない電解コンデンサにおける誘電体皮膜5の拡大図である。 Moreover, FIG. 4(a) is an enlarged view of the dividing portion 4 in the electrolytic capacitor which was subjected to the chemical conversion treatment after forming the dividing portion 4, and FIG. 4 is an enlarged view of the body membrane 5; FIG.

図4(a)に示すように、分断部4が形成された後に減極処理を伴う化成処理が施された陽極箔1では、分断部4の内表面にも誘電体皮膜5が形成されている。また、分断部4の内表面に形成された誘電体皮膜5内のボイド7は、減極処理によって消失或いは減少している。一方、図4(b)に示すように、分断部4が形成されていない陽極箔では、巻回により発生したクラック6の内表面にエージング処理による誘電体皮膜5が形成されてはいる。しかしながら、エージング処理では減極処理ができないために、クラック6の内表面に形成された誘電体皮膜5にはボイド7が残存していると考えられる。 As shown in FIG. 4( a ), in the anode foil 1 that has been subjected to chemical conversion treatment accompanied by depolarization treatment after the division 4 is formed, the dielectric film 5 is also formed on the inner surface of the division 4 . there is Also, the voids 7 in the dielectric film 5 formed on the inner surface of the dividing portion 4 are eliminated or reduced by the depolarization treatment. On the other hand, as shown in FIG. 4(b), in the anode foil in which the dividing portion 4 is not formed, a dielectric film 5 is formed by aging treatment on the inner surface of the crack 6 generated by winding. However, it is considered that voids 7 remain in the dielectric film 5 formed on the inner surface of the crack 6 because the depolarization treatment cannot be performed by the aging treatment.

そのため、推測ではあるが、陽極箔に分断部4が形成されていない場合、電解コンデンサの使用に伴う欠陥が発生し易くなっている。そうすると、分断部4が形成されていない陽極箔は電解液により多くの修復を要し、水素ガスの発生量は多くなる。一方、分断部4が形成された陽極箔1は微細なクラック6が起り難くなっている。また分断部4の内表面にも減極処理を伴う化成処理によって誘電体皮膜5が形成されている。従って、分断部4が形成された陽極箔1を備える電解コンデンサは、分断部4が未形成の場合と比べて使用に伴う欠陥が生じにくい。そのため、電解コンデンサからの水素ガス発生量は抑制される。 Therefore, although it is speculation, if the anode foil is not formed with the dividing portion 4, defects associated with the use of the electrolytic capacitor are more likely to occur. As a result, the anode foil in which the dividing portion 4 is not formed needs to be repaired more by the electrolytic solution, and the amount of hydrogen gas generated increases. On the other hand, fine cracks 6 are less likely to occur in anode foil 1 in which divided portions 4 are formed. A dielectric film 5 is also formed on the inner surface of the dividing portion 4 by chemical conversion treatment accompanied by depolarization treatment. Therefore, the electrolytic capacitor including the anode foil 1 in which the dividing portion 4 is formed is less likely to have defects due to use as compared with the case where the dividing portion 4 is not formed. Therefore, the amount of hydrogen gas generated from the electrolytic capacitor is suppressed.

そうすると、この電解コンデンサは、水素ガス発生量が抑制されており、またガス透過性の低いブチルゴムを封口体30のエラストマーに用いているので、圧力弁が開弁し難く、電解液も蒸発揮散し難く、長寿命化と時間経過による性能劣化の抑制が両立される。また、この電解コンデンサでは、クラック6が生じにくく、滑らかに湾曲した良好な巻回が可能となる。そのため、密に巻回されたコンデンサ素子10を外装ケース20に収容でき、体積当たりの静電容量が向上し、または小型で大容量の電解コンデンサが実現できる。 Then, in this electrolytic capacitor, the amount of hydrogen gas generated is suppressed, and since butyl rubber with low gas permeability is used for the elastomer of the sealing member 30, the pressure valve is difficult to open, and the electrolytic solution evaporates and evaporates. It is difficult to achieve both long life and suppression of performance deterioration over time. Further, in this electrolytic capacitor, cracks 6 are less likely to occur, and smooth curved winding is possible. Therefore, the densely wound capacitor element 10 can be accommodated in the exterior case 20, the capacitance per unit volume can be improved, or a small-sized large-capacity electrolytic capacitor can be realized.

(実施例1)
この実施形態を示す陽極箔1を次のように作成した。まず、基材として厚みが110μm、幅が10mm、長さが55mm、純度99.9重量%以上のアルミニウム箔を用いた。そして、このアルミニウム箔の両面に拡面部3を形成した。具体的には、アルミニウム箔を、液温25℃及び約8重量%の塩酸を主たる電解質とする酸性水溶液に浸し、エッチング処理を行った。エッチング処理では、交流10Hz及び電流密度0.14A/cmの電流を基材に約20分間印加し、アルミニウム箔の両面を拡面化した。
(Example 1)
Anode foil 1 showing this embodiment was produced as follows. First, an aluminum foil having a thickness of 110 μm, a width of 10 mm, a length of 55 mm and a purity of 99.9% by weight or more was used as a base material. Then, enlarged surface portions 3 were formed on both surfaces of this aluminum foil. Specifically, the aluminum foil was immersed in an acidic aqueous solution having a liquid temperature of 25° C. and about 8% by weight of hydrochloric acid as a main electrolyte, and was subjected to an etching treatment. In the etching treatment, a current of 10 Hz alternating current and a current density of 0.14 A/cm 2 was applied to the substrate for about 20 minutes to expand both sides of the aluminum foil.

エッチング処理後、両面がエッチング処理されたアルミニウム箔に分断部4を形成した。分断部4は、アルミニウム箔の帯長手方向と直交して発生させた。具体的には、物理的な処理方法として、φ0.5mmの丸棒に対し、当該丸棒とアルミニウム箔の接触する領域の広さを示すラップ角を180度として、アルミニウム箔を押し付けて分断部4を形成した。更に、分断部4の形成後、化成処理を行い、拡面部3と分断部4の表面に誘電体皮膜5を形成した。 After the etching process, the dividing part 4 was formed in the aluminum foil whose both surfaces were etched. The dividing portion 4 was generated perpendicular to the longitudinal direction of the aluminum foil strip. Specifically, as a physical treatment method, for a round bar of φ0.5 mm, the wrap angle indicating the size of the contact area between the round bar and the aluminum foil is set to 180 degrees, and the aluminum foil is pressed to cut the part. 4 was formed. Further, after forming the dividing portion 4 , chemical conversion treatment was performed to form a dielectric film 5 on the surfaces of the enlarged surface portion 3 and the dividing portion 4 .

この結果、図5及び図6に示すように、実施例1の陽極箔1は、誘電体皮膜5を有する拡面部3が芯部2の両面に各々厚さ36μmで存在し、厚さ38μmの芯部2が残った。分断部4の溝幅は10μmであった。丸棒の押し付けによって、分断部4は割れにより形成され、分断部4の平均ピッチは70μmで、分断部4の10mm範囲当たりの個数は143個であった。 As a result, as shown in FIGS. 5 and 6, in the anode foil 1 of Example 1, the expanded surface portions 3 having the dielectric film 5 are present on both sides of the core portion 2 with a thickness of 36 μm, respectively, and the thickness is 38 μm. A core part 2 remained. The groove width of the dividing portion 4 was 10 μm. The divided portions 4 were formed by cracking due to the pressing of the round bar, the average pitch of the divided portions 4 was 70 μm, and the number of divided portions 4 per 10 mm range was 143.

(実施例2)
実施例1と同一の基材を用い、実施例1と同一のエッチング処理及び化成処理を行った。分断部4の形成処理については、φ6mmの丸棒を用いた他は同一条件である。エッチング処理、分断部4の形成処理、及び化成処理の順番も実施例1と同じく、この順番で行った。
(Example 2)
Using the same substrate as in Example 1, the same etching treatment and chemical conversion treatment as in Example 1 were performed. The conditions for forming the dividing portion 4 are the same except that a round bar of φ6 mm is used. The order of the etching treatment, the forming treatment of the dividing portion 4, and the chemical conversion treatment was the same as in Example 1.

この結果、実施例2の陽極箔1は、実施例1と同一の芯部2、拡面部3及び誘電体皮膜5の厚さを備えていた。分断部4は割れにより形成され、分断部4の平均ピッチは220μmで、分断部4の10mm範囲当たりの個数は45個であった。 As a result, the anode foil 1 of Example 2 had the same thicknesses of the core portion 2, the enlarged surface portion 3, and the dielectric film 5 as those of Example 1. The divided portions 4 were formed by cracking, the average pitch of the divided portions 4 was 220 μm, and the number of divided portions 4 per 10 mm range was 45.

(実施例3)
実施例1及び2と同一の基材を用い、実施例1と同一のエッチング処理及び化成処理を行った。分断部4の形成処理についてφ13mmの丸棒を用いた他は、実施例1及び2と同一条件である。この結果、実施例3の陽極箔1は、分断部4において、割れにより形成されている他、分断部4の平均ピッチは950μmで、10mm範囲当たりの個数は10個であった。
(Example 3)
Using the same base material as in Examples 1 and 2, the same etching treatment and chemical conversion treatment as in Example 1 were performed. The conditions were the same as in Examples 1 and 2, except that a round bar of φ13 mm was used for forming the dividing portion 4 . As a result, the anode foil 1 of Example 3 was formed by cracks at the dividing portions 4, and the average pitch of the dividing portions 4 was 950 μm, and the number of pieces per 10 mm range was 10 pieces.

(実施例4)
実施例1乃至3と同一の基材を用い、実施例1乃至3と同一のエッチング処理及び化成処理を行った。分断部4の形成処理についてφ16mmの丸棒を用いた他は、実施例1乃至3と同一条件である。この結果、実施例4の陽極箔1は、分断部4において、割れにより形成されている他、分断部4の平均ピッチは2100μmで、10mm範囲当たりの個数は4個であった。
(Example 4)
Using the same substrate as in Examples 1 to 3, the same etching treatment and chemical conversion treatment as in Examples 1 to 3 were performed. The conditions are the same as in Examples 1 to 3, except that a round bar of φ16 mm was used for forming the dividing portion 4 . As a result, the anode foil 1 of Example 4 was formed by cracks at the dividing portions 4, and the average pitch of the dividing portions 4 was 2100 μm, and the number of pieces per 10 mm range was 4.

(参考例)
実施例1乃至4と同一のエッチング処理及び化成処理を行った。分断部4の形成処理についてφ22mmの丸棒を用いた他は、実施例1乃至4と同一条件である。この結果、参考例の陽極箔1は、分断部4において、割れにより形成されている他、分断部4の平均ピッチ3100μmで、10mm範囲当たりの個数は3個であった。
(Reference example)
The same etching treatment and chemical conversion treatment as in Examples 1 to 4 were performed. The conditions are the same as in Examples 1 to 4, except that a round bar of φ22 mm was used for forming the dividing portion 4 . As a result, the anode foil 1 of the reference example was formed by cracks at the divided portions 4, and the average pitch of the divided portions 4 was 3100 μm, and the number of pieces per 10 mm range was 3.

(比較例1)
実施例1乃至4及び参考例と同一の基材を用い、実施例1乃至4及び参考例と同一のエッチング処理及び化成処理を行った。但し、分断部4の形成処理を省いており、分断部4は未形成である。この結果、図7に示すように、実施例1乃至4及び参考例と同じく、比較例1の陽極箔は、芯部2の両面に各々拡面部3を備え、各拡面部3は、誘電体皮膜5を備え、誘電体皮膜5を備えた拡面部3の厚さは各々厚さ36μmとなり、芯部2の厚さは38μmとなっていた。
(Comparative example 1)
Using the same base material as in Examples 1 to 4 and Reference Example , the same etching treatment and chemical conversion treatment as in Examples 1 to 4 and Reference Example were performed. However, the process of forming the dividing portion 4 is omitted, and the dividing portion 4 is not yet formed. As a result, as shown in FIG. 7, the anode foil of Comparative Example 1 was provided with the enlarged surface portions 3 on both sides of the core portion 2 as in Examples 1 to 4 and the Reference Example. The thickness of the expanded surface portion 3 provided with the film 5 and the dielectric film 5 was 36 μm, respectively, and the thickness of the core portion 2 was 38 μm.

(エリクセン試験)
これら実施例1乃至4及び参考例の陽極箔1、及び比較例1の陽極箔に対してエリクセン試験を行った。エリクセン試験では、内径33mmを有するダイスとしわ押えで、実施例1乃至4及び参考例の陽極箔1及び比較例1の陽極箔を10kNで挟み込み、たがね状を有するポンチで押し込んだ。たがね状のポンチは、幅30mmで、先端部が断面視φ4mmの球面である。陽極箔1の帯長手方向に直交させるようにして、ポンチのたがね部位を押し込んだ。ポンチの押し込み速度は0.5mm/minとした。
(Erichsen test)
The Erichsen test was performed on the anode foils 1 of Examples 1 to 4 and Reference Example , and the anode foil of Comparative Example 1. In the Erichsen test, the anode foil 1 of Examples 1 to 4 and Reference Example and the anode foil of Comparative Example 1 were sandwiched at 10 kN with a die having an inner diameter of 33 mm and a wrinkle presser, and were pressed with a chisel-shaped punch. The chisel-shaped punch has a width of 30 mm and a tip end of which is spherical with a diameter of 4 mm in cross section. The chisel portion of the punch was pushed in perpendicular to the longitudinal direction of the strip of the anode foil 1 . The pushing speed of the punch was set to 0.5 mm/min.

このエリクセン試験の結果を図8に示す。図8は、横軸を分断部4の平均ピッチ、縦軸をエリクセン値としたグラフである。図8に示すように、比較例1のエリクセン値が1.4mmであったのに対し、参考例のエリクセン値は1.5mmとなっていた。すなわち、分断部4を設けることで巻回時の曲げ応力が分散し、陽極箔1の柔軟性及び延伸性が向上することがわかる。 The results of this Erichsen test are shown in FIG. FIG. 8 is a graph in which the horizontal axis represents the average pitch of the divided portions 4 and the vertical axis represents the Erichsen value. As shown in FIG. 8, the Erichsen value of Comparative Example 1 was 1.4 mm, while the Erichsen value of Reference Example was 1.5 mm. In other words, it can be seen that the bending stress during winding is dispersed by providing the dividing portion 4, and the flexibility and stretchability of the anode foil 1 are improved.

また、分断部4の平均ピッチを2100μm以下とすると、エリクセン値は1.7mm以上となり、分断部4が未形成であった場合と比べて明確な差が生じた。すなわち、平均ピッチ2100μm以下で分断部4を設けることで巻回時の曲げ応力が良好に分散し、陽極箔1に良好な柔軟性及び延伸性が付与されることがわかる。 Further, when the average pitch of the dividing portions 4 was set to 2100 μm or less, the Erichsen value was 1.7 mm or more, which was a clear difference compared to the case where the dividing portions 4 were not formed. That is, it can be seen that the bending stress at the time of winding is well dispersed by providing the dividing portions 4 at an average pitch of 2100 μm or less, and good flexibility and stretchability are imparted to the anode foil 1 .

特に、分断部4の平均ピッチを950μm以下とすると、エリクセン値は2.0mm以上となり、分断部4が未形成であった場合と比べて飛躍的に優れた結果となった。すなわち、平均ピッチ950μm以下で分断部4を設けることで巻回時の曲げ応力が極めて良好に分散し、陽極箔1に極めて良好な柔軟性及び延伸性が付与されることがわかる。さらには、分断部4の平均ピッチを220μm以下とすると、エリクセン値は2.6mm以上となり、分断部4が未形成であった場合と比べてさらに飛躍的に優れた結果となった。 In particular, when the average pitch of the dividing portions 4 was 950 μm or less, the Erichsen value was 2.0 mm or more, which was significantly superior to the case where the dividing portions 4 were not formed. That is, it can be seen that the bending stress at the time of winding is extremely well dispersed and the anode foil 1 is endowed with extremely good flexibility and stretchability by providing the dividing portions 4 at an average pitch of 950 μm or less. Furthermore, when the average pitch of the dividing portions 4 was set to 220 μm or less, the Erichsen value was 2.6 mm or more, which was significantly superior to the case where the dividing portions 4 were not formed.

(巻回試験)
実施例1の陽極箔1と比較例1の陽極箔を実際に巻回し、コンデンサ素子10を作成した。巻回した実施例1の陽極箔1と比較例1の陽極箔は、共に、幅が5.6mm、長さが125mmの寸法を有していた。結果を図9に示す。図9は、巻回された実施例1の陽極箔1と比較例1の陽極箔の写真である。図9の(a)に示すように、比較例1の陽極箔を巻回すると、巻芯部付近については各所で多数の折れ曲がりが発生していることがわかる。また、巻芯部から離れて曲率が大きくなった中層付近でも、各所で多数の折れ曲がりが発生していることがわかる。更に、コンデンサ素子の外周面付近でも、一部に折れ曲がりが発生していることがわかる。
(Winding test)
Anode foil 1 of Example 1 and anode foil of Comparative Example 1 were actually wound to form capacitor element 10 . The wound anode foil 1 of Example 1 and the anode foil of Comparative Example 1 both had dimensions of 5.6 mm in width and 125 mm in length. The results are shown in FIG. 9 is a photograph of rolled anode foil 1 of Example 1 and anode foil of Comparative Example 1. FIG. As shown in (a) of FIG. 9, when the anode foil of Comparative Example 1 is wound, it can be seen that many folds occur in various places near the winding core. In addition, it can be seen that a large number of bends occur in various places even near the middle layer where the curvature increases away from the core. Furthermore, it can be seen that bending occurs in part in the vicinity of the outer peripheral surface of the capacitor element.

一方、図9の(b)に示すように、実施例1の陽極箔1を巻回すると、コンデンサ素子10の外周面付近はおろか、巻芯部付近であっても、折れ曲がりが未発生であり、滑らかに湾曲して巻回されていることがわかる。従って、図9の(a)に示すように、同長の陽極箔を巻回したコンデンサ素子の直径は、比較例1において7.36mmにまで広がっているのに対し、図9の(b)に示すように、同長の陽極箔1を巻回したコンデンサ素子10の半径は、実施例1において7.10mmに収まった。 On the other hand, as shown in FIG. 9B, when the anode foil 1 of Example 1 is wound, no bending occurs not only in the vicinity of the outer peripheral surface of the capacitor element 10 but also in the vicinity of the winding core. , is smoothly curved and wound. Therefore, as shown in (a) of FIG. 9, the diameter of the capacitor element wound with the anode foil of the same length is expanded to 7.36 mm in Comparative Example 1, whereas (b) of FIG. , the radius of the capacitor element 10 wound with the same length of the anode foil 1 was within 7.10 mm in the first embodiment.

(実施例6)
誘電体皮膜5が表面に形成された分断部4を有する実施例1の陽極箔1として用いて巻回し、実施例6の電解コンデンサを作製した。実施例6の陽極箔1は、幅が5.6mm、長さが125mmの寸法を有していた。陰極箔11にはアルミニウム箔を用いた。陰極箔11には、拡面部3を形成し、誘電体皮膜5は形成しなかった。セパレータ12にはセルロース繊維を用いた。電解液は、フタル酸アミジニウム塩のγ―ブチロラクトン溶液を用いた。そして、ブチルゴムを用いた封口体30で外装ケース20の開口を封口し、カシメ加工を施した。
(Example 6)
An electrolytic capacitor of Example 6 was produced by using the same as the anode foil 1 of Example 1 having the divided portion 4 on the surface of which the dielectric film 5 was formed and winding. The anode foil 1 of Example 6 had dimensions of 5.6 mm in width and 125 mm in length. Aluminum foil was used for the cathode foil 11 . The cathode foil 11 was formed with the enlarged surface portion 3 and was not formed with the dielectric film 5 . A cellulose fiber was used for the separator 12 . The electrolytic solution used was a γ-butyrolactone solution of amidinium phthalate. Then, the opening of the exterior case 20 was sealed with a sealing member 30 using butyl rubber, and crimping was performed.

(比較例2)
分断部4が未形成の比較例1の陽極箔として用いて巻回し、比較例2の電解コンデンサを作製した。比較例2の電解コンデンサは、陽極箔に分断部4が未形成である点を除き、実施例6の電解コンデンサと同様に作製された。
(Comparative example 2)
An electrolytic capacitor of Comparative Example 2 was produced by winding the foil as the anode foil of Comparative Example 1 in which the dividing portion 4 was not formed. An electrolytic capacitor of Comparative Example 2 was produced in the same manner as the electrolytic capacitor of Example 6, except that the divided portion 4 was not formed on the anode foil.

(エージング評価)
作製された実施例6と比較例2の電解コンデンサをエージング処理し、エージング処理に要した電気量を測定した。エージング処理では、100℃の温度条件にて定格電圧を印加してエージング処理を行った。このエージング処理の間、陽極端子と陰極端子との間に流れた電流変化を測定した。尚、実施例6と比較例2の電解コンデンサに対してエージング処理開始時点で流した電流値は同値である。図10は、エージング処理開始時点の電流値を100%とし、エージング処理開始時点に対する各経過時間の電流値の百分率を示すグラフである。
(Aging evaluation)
The produced electrolytic capacitors of Example 6 and Comparative Example 2 were subjected to aging treatment, and the amount of electricity required for the aging treatment was measured. In the aging treatment, the aging treatment was performed by applying a rated voltage under a temperature condition of 100°C. During this aging process, changes in the current flowing between the anode terminal and the cathode terminal were measured. The values of the electric currents applied to the electrolytic capacitors of Example 6 and Comparative Example 2 at the start of the aging process are the same. FIG. 10 is a graph showing the percentage of the current value at each elapsed time with respect to the starting point of the aging process, assuming that the current value at the starting point of the aging process is 100%.

図10に示すように、実施例1の陽極箔1を用いた実施例6のコンデンサでは、2分に待たずに電流値が減少し始め、3分程度でエージング開始時点の約30%まで電流値が減少した。これに対し、比較例1の陽極箔を用いた比較例2の電解コンデンサでは、2分を超えて3分弱で電流値の減少が見られ、電流値がエージング開始時点の約30%まで減少するのに5分程度かかった。即ち、図10に示すように、実施例6は比較例2と比べて1分以上早く電流値が減少し始め、エージング開始から5分経過までの電流値と時間の積において、誘電体皮膜5が表面に形成された分断部4を陽極箔1に備えると、分断部4が未形成の場合と比べてエージング処理に要する電気量が削減されていることが確認された。 As shown in FIG. 10, in the capacitor of Example 6 using the anode foil 1 of Example 1, the current value began to decrease within 2 minutes, and the current value reached about 30% of the aging start point in about 3 minutes. value decreased. On the other hand, in the electrolytic capacitor of Comparative Example 2 using the anode foil of Comparative Example 1, a decrease in the current value was observed in less than 3 minutes after exceeding 2 minutes, and the current value decreased to about 30% of the time at the start of aging. It took me about 5 minutes. That is, as shown in FIG. 10, in Example 6, the current value began to decrease one minute or more earlier than in Comparative Example 2, and the product of the current value and time from the start of aging until 5 minutes passed was lower than that of the dielectric film 5. It was confirmed that the amount of electricity required for the aging process was reduced when the anode foil 1 was provided with the divided portions 4 formed on the surface thereof, as compared with the case where the divided portions 4 were not formed.

(実施例7)
誘電体皮膜5が表面に形成された分断部4を有する実施例1の陽極箔1として用いて巻回し、実施例7の電解コンデンサを作製した。この電解コンデンサは定格電圧が450Vで静電容量が68μFであった。陰極箔11にはアルミニウム箔を用いた。陰極箔11には、拡面部3を形成し、誘電体皮膜5は形成しなかった。セパレータ12にはセルロース繊維を用いた。そして、ブチルゴムを用いた封口体30で外装ケース20の開口を封口し、カシメ加工を施した。
(Example 7)
An electrolytic capacitor of Example 7 was manufactured by using the same as the anode foil 1 of Example 1 having the divided portion 4 on the surface of which the dielectric film 5 was formed and wound. This electrolytic capacitor had a rated voltage of 450 V and a capacitance of 68 μF. Aluminum foil was used for the cathode foil 11 . The cathode foil 11 was formed with the enlarged surface portion 3 and was not formed with the dielectric film 5 . A cellulose fiber was used for the separator 12 . Then, the opening of the exterior case 20 was sealed with a sealing member 30 using butyl rubber, and crimping was performed.

尚、電解液は、エチレングリコールとポリアルキレングリコールとアゼライン酸と1,7-オクタンジカルボン酸と硼酸とマンニットとジエチルアミンを含む。電解液には、電解液全量に対して73wt%のエチレングリコールと、12wt%のポリアルキレングリコールと、5wt%のアゼライン酸と、3wt%の1,7-オクタンジカルボン酸と、1wt%の硼酸と、2wt%のマンニットと、4wt%のジエチルアミンが添加された。 The electrolytic solution contains ethylene glycol, polyalkylene glycol, azelaic acid, 1,7-octanedicarboxylic acid, boric acid, mannite and diethylamine. The electrolyte contains 73 wt% ethylene glycol, 12 wt% polyalkylene glycol, 5 wt% azelaic acid, 3 wt% 1,7-octanedicarboxylic acid, and 1 wt% boric acid with respect to the total amount of the electrolyte. , 2 wt% mannite and 4 wt% diethylamine were added.

(比較例3)
誘電体皮膜5が表面に形成された分断部4を備える実施例1の陽極箔1として用いて巻回し、比較例3の電解コンデンサを作製した。この電解コンデンサは、エチレンプロピレンジエンゴム(EPDM)を用いた封口体30で外装ケース20の開口を封口し、カシメ加工を施した。比較例3の電解コンデンサは、封口体30がEPDMである点を除き、陽極箔1に分断部4が形成されている点を含め、実施例7の電解コンデンサと同様に作製された。
(Comparative Example 3)
An electrolytic capacitor of Comparative Example 3 was manufactured by using the anode foil 1 of Example 1 having the dividing portion 4 with the dielectric film 5 formed on the surface and winding it. In this electrolytic capacitor, the opening of the exterior case 20 was sealed with a sealing body 30 using ethylene propylene diene rubber (EPDM), and crimping was performed. The electrolytic capacitor of Comparative Example 3 was manufactured in the same manner as the electrolytic capacitor of Example 7, including the fact that the anode foil 1 was formed with the dividing portion 4, except that the sealant 30 was made of EPDM.

(比較例4)
分断部4が未形成の比較例1の陽極箔として用いて巻回し、比較例4の電解コンデンサを作製した。比較例4の電解コンデンサは、陽極箔に分断部4が未形成である点を除き、封口体30がブチルゴムである点を含め、実施例7の電解コンデンサと同様に作製された。
(Comparative Example 4)
An electrolytic capacitor of Comparative Example 4 was produced by winding the foil as the anode foil of Comparative Example 1 in which the dividing portion 4 was not formed. The electrolytic capacitor of Comparative Example 4 was produced in the same manner as the electrolytic capacitor of Example 7, except that the anode foil did not have the dividing portion 4 and that the sealant 30 was made of butyl rubber.

(電解液揮散評価)
実施例7及び比較例3及び4の電解コンデンサのtanδの変化、重量変化及び開弁時間を測定した。各電解コンデンサには、125℃の温度環境下で最大6000時間の間、定格電圧を印加し続けた。その結果を下記表1、図11及び図12に示す。表1中においては、封口ゴムの種別及び分断部4の有無別に初期のtanδと5000時間経過後のtanδと開弁時間を示した。図11には、tanδと経過時間との関係を示した。図12には、電解コンデンサの重量変化と経過時間の関係を示した。
(Evaluation of electrolyte volatilization)
Changes in tan δ, weight changes, and valve opening times of the electrolytic capacitors of Example 7 and Comparative Examples 3 and 4 were measured. A rated voltage was continuously applied to each electrolytic capacitor for a maximum of 6000 hours under a temperature environment of 125°C. The results are shown in Table 1 below, FIGS. 11 and 12. Table 1 shows the initial tan δ, the tan δ after 5000 hours, and the valve opening time according to the type of sealing rubber and the presence or absence of the dividing portion 4 . FIG. 11 shows the relationship between tan δ and elapsed time. FIG. 12 shows the relationship between weight change and elapsed time of the electrolytic capacitor.

Figure 0007292003000001
Figure 0007292003000001

表1に示すように、分断部4が形成された陽極箔1を用いた実施例7と比較例3の電解コンデンサは、5000時間経過しても開弁することはなかったが、比較例4の電解コンデンサは、5000時間で開弁してしまった。即ち、分断部4が陽極箔1に形成されていると、ガス透過性の低いブチルゴムを封口体30に用いても、ガス透過性の高いEPDMを封口体30に用いることと同等に、圧力弁32が開弁することなく、長寿命化が達成された。また、比較例4の電解コンデンサは6000時間におけるtanδが測定できなかった。これは5000時間で開弁して電解液が蒸発揮散し、電解コンデンサとして機能しなかったためだと考えられる。 As shown in Table 1, the electrolytic capacitors of Example 7 and Comparative Example 3 using the anode foil 1 in which the dividing portion 4 was formed did not open even after 5000 hours. The electrolytic capacitor of has opened after 5000 hours. That is, when the dividing portion 4 is formed in the anode foil 1, even if butyl rubber with low gas permeability is used for the sealing member 30, the pressure valve is equivalent to using EPDM with high gas permeability for the sealing member 30. 32 did not open, and extended service life was achieved. In addition, tan δ at 6000 hours could not be measured for the electrolytic capacitor of Comparative Example 4. This is considered to be because the valve opened at 5000 hours, the electrolyte vaporized, and the capacitor did not function as an electrolytic capacitor.

また、表1、図11及び図12に示すように、分断部4が形成された陽極箔1を用い、ブチルゴムを封口体30に用いた実施例7の電解コンデンサは、分断部4が形成された陽極箔1を用いている点は共通するが、EPDMを封口体30に用いた比較例3の電解コンデンサと比べて、tanδが上昇し難く、5000時間経過後も良好な範囲に収まった。 Further, as shown in Table 1, FIG. 11 and FIG. 12, the electrolytic capacitor of Example 7 using the anode foil 1 in which the dividing portion 4 was formed and using butyl rubber for the sealing member 30 did not have the dividing portion 4. Compared to the electrolytic capacitor of Comparative Example 3 in which EPDM was used as the sealing member 30, the tan δ was less likely to increase and remained within a favorable range even after 5000 hours.

以上を総合すると、分断部4を形成した陽極箔1によりガス発生量が抑えられるため、ガス透過性の低いブチルゴムを封口体30として用いることが可能となり、ガス透過性の低いブチルゴムを封口体30として用いることができると、電解液の蒸散揮発が抑制され、これにより電解コンデンサの性能劣化抑制と長寿命化の両立が図られることが確認された。 Summarizing the above, since the amount of gas generated is suppressed by the anode foil 1 in which the dividing portion 4 is formed, it becomes possible to use butyl rubber with low gas permeability as the sealing member 30. It has been confirmed that when it can be used as the evaporator, evaporation and volatilization of the electrolytic solution is suppressed, thereby achieving both suppression of performance deterioration and extension of the life of the electrolytic capacitor.

1 陽極箔
2 芯部
3 拡面部
4 分断部
5 誘電体皮膜
6 クラック
7 ボイド
10 コンデンサ素子
11 陰極箔
12 セパレータ
13 引出端子
20 外装ケース
30 封口体
1 Anode foil 2 Core 3 Enlarged surface 4 Separation 5 Dielectric film 6 Crack 7 Void 10 Capacitor element 11 Cathode foil 12 Separator 13 Lead terminal 20 Exterior case 30 Sealing body

Claims (8)

帯状の陽極箔及び陰極箔がセパレータを介して巻回され、電解液が含浸されて成るコンデンサ素子と、
前記コンデンサ素子が収容される外装ケースと、
前記コンデンサ素子を収容した前記外装ケースの開口を封止する封口体と、
を備え、
前記陽極箔は、
当該陽極箔の表面に形成された拡面部と、
前記拡面部を除いた残部である芯部と、
前記拡面部を分断し、平均ピッチが2.1mm以下の間隔を空けて設けられている複数の分断部と、
前記巻回前に前記分断部の内表面に形成された誘電体皮膜と、
を有し、
前記コンデンサ素子は、前記巻回時に率先して開く前記分断部を有する前記陽極箔を用いて前記巻回して成り、
前記封口体はブチルゴムを含み構成されること、
を特徴とする電解コンデンサ。
a capacitor element comprising strip-shaped anode foil and cathode foil wound with a separator interposed therebetween and impregnated with an electrolytic solution;
an exterior case in which the capacitor element is housed;
a sealing body that seals the opening of the exterior case that accommodates the capacitor element;
with
The anode foil is
an enlarged surface portion formed on the surface of the anode foil;
a core portion which is the remaining portion excluding the enlarged surface portion;
a plurality of dividing portions that divide the enlarged surface portion and are provided at intervals with an average pitch of 2.1 mm or less;
a dielectric film formed on the inner surface of the dividing portion before the winding;
has
The capacitor element is formed by winding the anode foil having the divided portion that opens at the time of winding,
wherein the sealing body contains butyl rubber;
An electrolytic capacitor characterized by:
前記分断部は、
前記陽極箔を完全に横断し、又は部分的に横断するように延在すること、
を特徴とする請求項1記載の電解コンデンサ。
The dividing part is
extending completely or partially across the anode foil;
The electrolytic capacitor according to claim 1, characterized by:
前記分断部は、
平均ピッチが220μm以下の間隔を空けて設けられていること、
を特徴とする請求項1又は2記載の電解コンデンサ。
The dividing part is
provided with an average pitch of 220 μm or less,
3. The electrolytic capacitor according to claim 1 or 2, characterized by:
前記分断部は、
平均ピッチが1.0mm以下の間隔を空けて設けられていること、
を特徴とする請求項1又は2記載の電解コンデンサ。
The dividing part is
Provided with an average pitch of 1.0 mm or less,
3. The electrolytic capacitor according to claim 1 or 2, characterized by:
前記分断部は、前記陽極箔を平坦にした状態で溝幅が0を含む50μm以下であること、
を特徴とする請求項1乃至4の何れかに記載の電解コンデンサ。
The dividing portion has a groove width of 50 μm or less, including 0, when the anode foil is flattened;
5. The electrolytic capacitor according to any one of claims 1 to 4, characterized by:
前記分断部は、前記拡面部が割れて成り、前記陽極箔を平坦にした状態で溝幅が実質的に0であること、
を特徴とする請求項1乃至4の何れかに記載の電解コンデンサ。
the dividing portion is formed by cracking the enlarged surface portion, and the groove width is substantially zero when the anode foil is flattened;
5. The electrolytic capacitor according to any one of claims 1 to 4, characterized by:
前記拡面部と前記分断部の表面に誘電体皮膜を有すること、
を特徴とする請求項1乃至6の何れかに記載の電解コンデンサ。
Having a dielectric film on the surface of the enlarged surface portion and the dividing portion;
7. The electrolytic capacitor according to any one of claims 1 to 6, characterized by:
帯状の陽極箔を形成する箔形成工程と、
前記陽極箔と帯状の陰極箔をセパレータとを介して巻回する巻回工程と、
前記巻回工程により得られたコンデンサ素子に電解液を含浸させる含浸工程と、
前記コンデンサ素子を封止する封止工程と、
を含み、
前記箔形成工程は、
前記陽極箔の芯部を除いた表面に拡面部を形成する第1の工程と、
前記第1の工程以降、前記巻回工程の前に、前記拡面部を分断し、平均ピッチが2.1mm以下の間隔を空けて複数の分断部を設ける第2の工程と、
前記第2の工程以降、前記巻回工程の前に、前記拡面部及び前記分断部の内表面に誘電体皮膜を形成する第3の工程と、
を有し、
前記巻回工程では、前記箔形成工程で形成された前記分断部を率先して開きながら巻回し、
前記封止工程は、前記コンデンサ素子を外装ケースに収容して、当該外装ケースの開口を、ブチルゴムを含み構成される封口体で封止すること、
を特徴とする電解コンデンサの製造方法
a foil forming step of forming a strip-shaped anode foil;
A winding step of winding the anode foil and strip-shaped cathode foil with a separator interposed therebetween;
an impregnation step of impregnating the capacitor element obtained by the winding step with an electrolytic solution;
a sealing step of sealing the capacitor element;
including
The foil forming step includes
a first step of forming an enlarged surface portion on the surface of the anode foil excluding the core portion;
After the first step and before the winding step, a second step of dividing the enlarged surface portion and providing a plurality of divided portions at intervals of an average pitch of 2.1 mm or less;
a third step of forming a dielectric film on the inner surfaces of the enlarged surface portion and the dividing portion after the second step and before the winding step;
has
In the winding step, winding while taking the initiative to open the divided portion formed in the foil forming step,
In the sealing step, the capacitor element is housed in an exterior case, and the opening of the exterior case is sealed with a sealing body containing butyl rubber;
A method for manufacturing an electrolytic capacitor characterized by.
JP2017193056A 2017-10-02 2017-10-02 Electrolytic capacitor and its manufacturing method Active JP7292003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017193056A JP7292003B2 (en) 2017-10-02 2017-10-02 Electrolytic capacitor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017193056A JP7292003B2 (en) 2017-10-02 2017-10-02 Electrolytic capacitor and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019067961A JP2019067961A (en) 2019-04-25
JP7292003B2 true JP7292003B2 (en) 2023-06-16

Family

ID=66339850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017193056A Active JP7292003B2 (en) 2017-10-02 2017-10-02 Electrolytic capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7292003B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555222B (en) * 2021-07-20 2022-10-11 雅安旭光电子材料有限公司 Ultrahigh-voltage aluminum electrolytic capacitor anode foil and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050492A (en) 2009-12-02 2010-03-04 Nippon Chemicon Corp Aluminum electrolytic capacitor
JP2014135481A (en) 2012-12-11 2014-07-24 Nippon Chemicon Corp Capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062595A (en) * 2007-09-07 2009-03-26 Sumitomo Light Metal Ind Ltd Aluminum foil material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050492A (en) 2009-12-02 2010-03-04 Nippon Chemicon Corp Aluminum electrolytic capacitor
JP2014135481A (en) 2012-12-11 2014-07-24 Nippon Chemicon Corp Capacitor

Also Published As

Publication number Publication date
JP2019067961A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
KR101914071B1 (en) Electrode foil, wound capacitor, method of manufacturing electrode foil, and method of manufacturing wound-wound capacitor
TWI416558B (en) Solid electrolytic capacitor and manufacturing method thereof
JP7435700B2 (en) Electrode foil, wound capacitor, method for manufacturing electrode foil, and method for manufacturing wound capacitor
JP2016100602A (en) Hermetically sealed capacitor for implantable medical device
JPWO2017208984A1 (en) Electrolytic capacitor and manufacturing method thereof
JP7292003B2 (en) Electrolytic capacitor and its manufacturing method
TWI808500B (en) Cathode body and electrolytic capacitor
JP3416099B2 (en) Capacitor and manufacturing method thereof
JP7124289B2 (en) Electrolytic capacitor
JP2009064958A (en) Aluminum electrolytic capacitor
WO2023127928A1 (en) Electrolytic capacitor and production method for same
JP2010177467A (en) Solid-state electrolytic capacitor element
JP7221588B2 (en) Wound Solid Electrolytic Capacitor and Manufacturing Method
JP2008091358A (en) Solid-state electrolytic capacitor, and its manufacturing process
TW202215462A (en) Cathode and electrolytic capacitor
JP2019029597A (en) Aluminum electrolytic capacitor
JP5268591B2 (en) Electrolytic capacitor
JP2019067939A (en) Capacitor and method for manufacturing the same
JP2006108170A (en) Solid electrolytic capacitor
JP2003100566A (en) Electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211102

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220202

C116 Written invitation by the chief administrative judge to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C116

Effective date: 20220215

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220316

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220412

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221018

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230215

C126 Written invitation by the chief administrative judge to file intermediate amendments

Free format text: JAPANESE INTERMEDIATE CODE: C126

Effective date: 20230228

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230606

R150 Certificate of patent or registration of utility model

Ref document number: 7292003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150