JP7290382B1 - Method for recycling waste carbon fiber reinforced plastic - Google Patents

Method for recycling waste carbon fiber reinforced plastic Download PDF

Info

Publication number
JP7290382B1
JP7290382B1 JP2022198162A JP2022198162A JP7290382B1 JP 7290382 B1 JP7290382 B1 JP 7290382B1 JP 2022198162 A JP2022198162 A JP 2022198162A JP 2022198162 A JP2022198162 A JP 2022198162A JP 7290382 B1 JP7290382 B1 JP 7290382B1
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber reinforced
waste
reinforced plastic
waste material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022198162A
Other languages
Japanese (ja)
Other versions
JP2024084011A (en
Inventor
順 増岡
喜仁 各務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MASUOKA CERAMIC MATERIALS CO Ltd
Original Assignee
MASUOKA CERAMIC MATERIALS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MASUOKA CERAMIC MATERIALS CO Ltd filed Critical MASUOKA CERAMIC MATERIALS CO Ltd
Priority to JP2022198162A priority Critical patent/JP7290382B1/en
Application granted granted Critical
Publication of JP7290382B1 publication Critical patent/JP7290382B1/en
Publication of JP2024084011A publication Critical patent/JP2024084011A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

【課題】廃棄された炭素繊維強化プラスチック(廃炭素繊維強化プラスチック)を水酸化アルカリ存在下で熱分解し、その後熱処理を行う二段階方式により、炭素繊維を劣化させること無く、高強度の炭素繊維を効率的に回収することができる廃炭素繊維強化プラスチックの再生方法を提供すること。【解決手段】廃棄された炭素繊維強化プラスチックから劣化させること無く高強度の炭素繊維を効率的に回収する廃炭素繊維強化プラスチックの再生方法であって、廃炭素繊維強化プラスチックを水酸化アルカリ溶液中で加熱処理する廃材溶融工程と、前記廃材溶融工程済の廃炭素繊維強化プラスチックをトレーに充填する廃材充填工程と、前記廃材充填工程済の廃炭素繊維強化プラスチックを熱処理炉にて熱処理する廃材熱処理工程を備えることを特徴とする廃炭素繊維強化プラスチックの再生方法とした。【選択図】図1Discarded carbon fiber reinforced plastic (waste carbon fiber reinforced plastic) is thermally decomposed in the presence of alkali hydroxide and then heat-treated to produce high-strength carbon fiber without degrading the carbon fiber. To provide a recycling method for waste carbon fiber reinforced plastics capable of efficiently recovering . A method for recycling waste carbon fiber reinforced plastics for efficiently recovering high-strength carbon fibers from waste carbon fiber reinforced plastics without deteriorating the waste carbon fiber reinforced plastics in an alkali hydroxide solution. A waste material melting step of heat-treating in a heat treatment furnace, a waste material filling step of filling a tray with the waste carbon fiber reinforced plastic that has undergone the waste material melting step, and a waste material heat treatment that heats the waste carbon fiber reinforced plastic that has undergone the waste material filling step in a heat treatment furnace. A method for recycling waste carbon fiber reinforced plastic is characterized by comprising steps. [Selection drawing] Fig. 1

Description

本発明は、水酸化アルカリを用いた溶融処理と溶融処理後の熱処理の二段階方式に拠る、廃棄された炭素繊維強化プラスチック(廃炭素繊維強化プラスチック)からの炭素繊維の回収技術に関する。 TECHNICAL FIELD The present invention relates to a technique for recovering carbon fibers from discarded carbon fiber reinforced plastics (waste carbon fiber reinforced plastics) based on a two-stage system of melting treatment using alkali hydroxide and heat treatment after the melting treatment.

炭素繊維強化プラスチック(CFRP)とは、炭素繊維を樹脂で固めた複合材料のことである。炭素繊維強化プラスチック(CFRP)は、低密度、高強度、高剛性、高耐久性等の材料特性があり、これを活かして主に構造材料としての需要が伸びている。炭素繊維強化プラスチック(CFRP)の2019年の市場規模は約1兆6000億円、2035年には約3兆5000億円に達する見込みである。炭素繊維強化プラスチック(CFRP)の利用増加により、寿命を終えた炭素繊維強化プラスチック(CFRP)の廃棄物(廃炭素繊維強化プラスチック)も増加するため、再生技術が希求されている。しかしながら、炭素繊維強化プラスチック(CFRP)の工程中に出る廃材や使用済み製品は通常の焼却炉では処理が困難であり、現在、廃棄された炭素繊維強化プラスチック(廃炭素繊維強化プラスチック)の大半は埋め立て処理されており、新たな再生処理方法が求められている。 Carbon fiber reinforced plastic (CFRP) is a composite material in which carbon fibers are hardened with resin. Carbon fiber reinforced plastics (CFRP) have material properties such as low density, high strength, high rigidity, and high durability. The market size of carbon fiber reinforced plastics (CFRP) is expected to reach approximately 1.6 trillion yen in 2019 and approximately 3.5 trillion yen in 2035. As the use of carbon fiber reinforced plastics (CFRP) increases, the amount of waste (waste carbon fiber reinforced plastics) from carbon fiber reinforced plastics (CFRP) at the end of their lifespan is also increasing. However, it is difficult to dispose of waste materials and used products generated during the process of carbon fiber reinforced plastic (CFRP) in ordinary incinerators. It has been landfilled and a new recycling method is required.

従来の再生処理法として、燃焼法、超臨界流体法、常圧溶解法等が挙げられるが、燃焼法による再生処理は、他の処理方法と比較して、大量処理が可能である。しかしながら今後発生する複雑形状かつ大型形状の廃炭素繊維強化プラスチックや、様々なマトリックスを含んだ廃炭素繊維強化プラスチックを処理する際、(廃炭素繊維強化プラスチックの)処理量としては非常に少量である。炭素繊維の状態を(非常に)綺麗な状態(劣化等が無い)で保持するための熱処理には(常温からの温度上昇~徐冷までの)処理時間が非常に長く掛かる為である。超臨界流体法による再生処理は、炭素繊維の劣化は少ないものの、溶剤を高温、高圧にする必要があり、さらに、大量の排水、危険なガスを放出するという問題がある。常圧溶解法による再生処理は、炭素繊維の劣化が少ないものの、溶剤を高温にする必要、長い処理時間が必要等の問題がある。 Conventional regeneration methods include the combustion method, the supercritical fluid method, the normal pressure dissolution method, and the like, but the regeneration treatment by the combustion method is capable of large-scale treatment compared to other treatment methods. However, when processing complex-shaped and large-sized waste carbon fiber reinforced plastics that will be generated in the future and waste carbon fiber reinforced plastics containing various matrices, the processing amount (of waste carbon fiber reinforced plastics) will be very small. . This is because the heat treatment for maintaining the state of the carbon fiber in a (very) clean state (no deterioration etc.) takes a very long time (from temperature rise from room temperature to slow cooling). Regeneration by the supercritical fluid method causes little deterioration of carbon fibers, but requires a high-temperature, high-pressure solvent. The regeneration treatment by the normal pressure dissolution method causes little deterioration of carbon fibers, but has problems such as the need to use a high temperature solvent and the need for a long treatment time.

現時点で、事業化に至ったものは燃焼法の一部のみである。燃焼法においては再生処理を行う際、1次処理破砕を行うことで比表面積を増やす処理を行うため、再生する際の炭素繊維製品のサイズが限られている。炭素繊維は高価であり、廃炭素繊維強化プラスチックから炭素繊維を回収する技術が希求されている。かかる現状に鑑み、出願人らは鋭意開発を行い、廃棄された炭素繊維強化プラスチック(廃炭素繊維強化プラスチック)を水酸化アルカリ存在下で熱分解をすることで、1時破砕処理を軽減し、その後熱処理を行う二段階方式による高強度の炭素繊維を効率的に回収する方法を新たに開発した。 At present, only a part of the combustion method has been commercialized. In the combustion method, the size of the carbon fiber product to be recycled is limited because the specific surface area is increased by first crushing when the recycling process is performed. Carbon fibers are expensive, and there is a demand for a technique for recovering carbon fibers from waste carbon fiber reinforced plastics. In view of this current situation, the applicants have made intensive development, and have reduced the primary crushing process by thermally decomposing discarded carbon fiber reinforced plastics (waste carbon fiber reinforced plastics) in the presence of alkali hydroxide. A new method was developed to efficiently recover high-strength carbon fibers by a two-step method in which heat treatment is then performed.

特許文献1には、「所定の厚さを有する立体形状の炭素繊維強化プラスチック(CFRP)を原料として、取扱い性に優れた再生炭素繊維を効率的且つ安価に製造する製造方法を提供することを課題とする(特許文献1:要約の課題)」ことを課題として、「本発明の再生炭素繊維の製造方法は、1mm以上300mm以下の厚さに成形されている炭素繊維強化プラスチックを原料として、炭化乾留炉の炭化乾留室内に炭素繊維強化プラスチックを収容する工程と、200℃以上800℃以下の目標温度で炭化乾留室を維持する加熱工程と、を備えている。本発明の製造方法は、炭化乾留室の内部に高さ方向を三分割以上に分割する区画を形成し、それぞれの区画に対して、有効容積の70容積%以下となるように炭素繊維強化プラスチックを収容していることを特徴とする(特許文献1:要約の解決手段から抜粋)」再生炭素繊維の製造方法および再生炭素繊維(特許文献1:発明に名称)が開示されている。 Patent Literature 1 states, "Providing a production method for efficiently and inexpensively producing recycled carbon fibers with excellent handleability using a three-dimensional carbon fiber reinforced plastic (CFRP) having a predetermined thickness as a raw material. The problem (Patent Document 1: problem of abstract)” is set as the problem, and “the method for producing recycled carbon fiber of the present invention uses carbon fiber reinforced plastic molded to a thickness of 1 mm or more and 300 mm or less as a raw material, The production method of the present invention comprises a step of accommodating the carbon fiber reinforced plastic in a carbonization dry distillation chamber of the carbonization dry distillation furnace, and a heating step of maintaining the carbon fiber reinforced plastic at a target temperature of 200° C. or more and 800° C. or less. The interior of the carbonization dry distillation chamber is divided into three or more compartments in the height direction, and each compartment contains carbon fiber reinforced plastic so that the effective volume is 70% or less by volume. (excerpt from Patent Literature 1: Abstract Solution)”, a method for producing recycled carbon fibers and recycled carbon fibers (Patent Literature 1: Title of Invention) are disclosed.

特開2017-082037号公報JP 2017-082037 A

特許文献1に係る再生炭素繊維の製造方法および再生炭素繊維(特許文献1:発明に名称)は、「本発明の再生炭素繊維の製造方法は、炭化乾留室の区画を形成する棚の水蒸気供給路から過熱水蒸気が供給されることで、炭化乾留室全体をより均一に加熱することができる。この結果、厚さのある炭素繊維強化プラスチックから、より迅速に再生炭素繊維を製造することができる。(特許文献1:0013段落)」との記載より、熱処理工程において、炭化乾留室全体をより均一に加熱することができるようにするための過熱水蒸気を供給するための設備を設置している。通常の熱処理とは異なり、過熱水蒸気を供給するための設備を設置しなければならないので、設置コスト面、メンテナンス面で問題があると言える。 The method for manufacturing recycled carbon fiber and the recycled carbon fiber (Patent Document 1: title of the invention) according to Patent Document 1 is described as follows: By supplying superheated steam from the channel, the entire carbonization dry distillation chamber can be heated more uniformly, and as a result, recycled carbon fiber can be produced more quickly from thick carbon fiber reinforced plastic. (Patent Document 1: 0013 paragraph)”, in the heat treatment process, equipment for supplying superheated steam is installed so that the entire carbonization dry distillation chamber can be heated more uniformly. . Unlike normal heat treatment, equipment for supplying superheated steam must be installed, so it can be said that there are problems in terms of installation cost and maintenance.

本発明の目的は、今後、複雑形状・大型形状・様々なマトリックスを含んだ炭素繊維強化プラスチックを使用した製品が廃棄されることに備えて、廃炭素繊維強化プラスチックを水酸化アルカリ存在下で熱分解し、その後熱処理を行う二段階方式により、炭素繊維を劣化させること無く、高強度の炭素繊維を効率的に回収することができる廃炭素繊維強化プラスチックの再生方法を提供することにある。 The purpose of the present invention is to prepare for the future disposal of products using carbon fiber reinforced plastics with complex shapes, large shapes, and various matrices, and to heat waste carbon fiber reinforced plastics in the presence of alkali hydroxide. To provide a recycling method for waste carbon fiber reinforced plastics capable of efficiently recovering high-strength carbon fibers without degrading the carbon fibers by a two-stage system of decomposing and then heat-treating.

上記課題を解決するために、請求項1に記載された発明は、廃棄された炭素繊維強化プラスチックから劣化させること無く高強度の炭素繊維を効率的に回収する廃炭素繊維強化プラスチックの再生方法であって、廃炭素繊維強化プラスチックを水酸化ナトリウム溶液中、又は水酸化カリウム溶液中で加熱処理する廃材溶融工程と、前記廃材溶融工程済の廃炭素繊維強化プラスチックをトレーに充填する廃材充填工程と、前記廃材充填工程済の廃炭素繊維強化プラスチックを熱処理炉にて熱処理する廃材熱処理工程を備えており、前記廃材充填工程は、廃炭素繊維強化プラスチックをトレーに充填する際、トレーの長手方向の中心線に沿った所定の幅(トレーの長手方向と垂直な方向の長さを三等分した時の3分の1の範囲、及びトレーの長手方向における両端部)を凹ませて高さが低くなるように充填し、前記廃材熱処理工程は、廃炭素繊維強化プラスチックが充填されたトレーの積載方法が、熱処理炉の入口側から見て3列になるように複数の廃炭素繊維強化プラスチックが充填されたトレーを積載するのであるが、真ん中の列に積載されたトレーの数は隣接する外側の列に積載されたトレーの数よりも少なくなるように積載する廃炭素繊維強化プラスチックの再生方法であることを特徴とするものである。 In order to solve the above problems, the invention described in claim 1 is a method for recycling waste carbon fiber reinforced plastic that efficiently recovers high-strength carbon fiber from waste carbon fiber reinforced plastic without deteriorating it. There is a waste material melting step of heat-treating waste carbon fiber reinforced plastic in a sodium hydroxide solution or a potassium hydroxide solution , and a waste material filling step of filling a tray with the waste carbon fiber reinforced plastic that has undergone the waste material melting process. , a waste material heat treatment step of heat-treating the waste carbon fiber reinforced plastic that has been filled in the waste material filling step in a heat treatment furnace, and the waste material filling step includes, when filling the tray with the waste carbon fiber reinforced plastic, the longitudinal direction of the tray. A predetermined width along the center line (1/3 range when the length in the direction perpendicular to the longitudinal direction of the tray is divided into thirds, and both ends in the longitudinal direction of the tray) is recessed to increase the height In the waste material heat treatment step, a plurality of waste carbon fiber reinforced plastics are loaded so that the trays filled with the waste carbon fiber reinforced plastics are stacked in three rows when viewed from the entrance side of the heat treatment furnace. A recycling method for waste carbon fiber reinforced plastics in which filled trays are loaded so that the number of trays loaded in the middle row is less than the number of trays loaded in adjacent outer rows. It is characterized by being

請求項2に記載された発明は、請求項1に記載された発明において、前記廃材溶融工程は、廃炭素繊維強化プラスチック重量部100に対して、水酸化ナトリウムを150重量部~300重量部を加えてから、220℃~330℃の温度で、50分~120分、加熱処理する廃炭素繊維強化プラスチックの再生方法であることを特徴とするものである。 The invention described in claim 2 is the invention described in claim 1, wherein the waste material melting step includes adding 150 to 300 parts by weight of sodium hydroxide to 100 parts by weight of waste carbon fiber reinforced plastic. It is characterized by being a method for recycling waste carbon fiber reinforced plastics, which is heat-treated at a temperature of 220° C. to 330° C. for 50 minutes to 120 minutes after addition.

本発明は、廃棄された炭素繊維強化プラスチックから劣化させること無く高強度の炭素繊維を効率的に回収する廃炭素繊維強化プラスチックの再生方法である。廃炭素繊維強化プラスチックを水酸化アルカリ溶液中で加熱処理する廃材溶融工程と、廃材溶融工程済の廃炭素繊維強化プラスチックをトレーに充填する廃材充填工程と、廃材充填工程済の廃炭素繊維強化プラスチックを熱処理炉にて熱処理する廃材熱処理工程を備えている。水酸化アルカリを用いた溶融処理と溶融処理後の熱処理の二段階方式により、炭素繊維を劣化させること無く、高強度の炭素繊維を効率的に回収することができるようになった。 INDUSTRIAL APPLICABILITY The present invention is a method for recycling waste carbon fiber reinforced plastics for efficiently recovering high-strength carbon fibers from waste carbon fiber reinforced plastics without deteriorating them. A waste material melting process in which waste carbon fiber reinforced plastic is heat-treated in an alkali hydroxide solution, a waste material filling process in which trays are filled with the waste carbon fiber reinforced plastic that has undergone the waste material melting process, and a waste carbon fiber reinforced plastic that has undergone the waste material filling process. is heat treated in a heat treatment furnace. A two-stage system of melting treatment using alkali hydroxide and heat treatment after the melting treatment has made it possible to efficiently recover high-strength carbon fibers without deteriorating the carbon fibers.

本発明に係る廃炭素繊維強化プラスチックの再生方法の工程の流れを説明するための図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram for explaining the process flow of a method for recycling waste carbon fiber reinforced plastics according to the present invention; 廃材充填工程を説明するための図である。It is a figure for demonstrating a waste material filling process. 廃材熱処理工程を説明するための図である。It is a figure for demonstrating a waste material heat treatment process.

<廃炭素繊維強化プラスチックの再生方法の工程の流れ>
以下、本発明に係る廃炭素繊維強化プラスチックの再生方法の一実施形態について、図1~図3に基づいて詳細に説明する。図1は、本発明に係る廃炭素繊維強化プラスチックの再生方法の工程の流れを説明するための図である。
<Process flow of recycling method for waste carbon fiber reinforced plastic>
An embodiment of the method for recycling waste carbon fiber reinforced plastics according to the present invention will be described in detail below with reference to FIGS. 1 to 3. FIG. FIG. 1 is a diagram for explaining the process flow of a method for recycling waste carbon fiber reinforced plastics according to the present invention.

本発明に係る廃炭素繊維強化プラスチックの再生方法は、図1に記載したように、マトリクス樹脂内に分散されつつ固められた廃炭素繊維強化プラスチック(以下、炭素繊維と記載する)を水酸化アルカリ処理(廃材溶融工程)した後、熱処理(廃材充填工程、廃材熱処理工程)すること、即ち、二段階処理することに特徴がある。要するに、水酸化アルカリ(水酸化ナトリウム、水酸化カリウム等)を用いた溶融処理と、溶融処理後の熱処理の二段階方式に拠ることが大きな特徴である。第一段階として水酸化アルカリ(水酸化ナトリウム、水酸化カリウム)を用いた溶融処理を廃材溶融工程で行い、その後第二段階として、廃材充填工程、廃材熱処理工程にて熱処理を行う。尚、廃材溶融工程、及び(廃材充填工程を含む)廃材熱処理工程にてマトリックス樹脂はガス、及び炭化物になる(図1参照)。 In the method for recycling waste carbon fiber reinforced plastics according to the present invention, as shown in FIG. 1, waste carbon fiber reinforced plastics (hereinafter referred to as carbon fibers) dispersed and hardened in a matrix resin are treated with an alkali hydroxide. It is characterized by heat treatment (waste material filling process, waste material heat treatment process) after treatment (waste material melting process), that is, two-stage treatment. In short, the major feature is that it is based on a two-stage system of melting treatment using an alkali hydroxide (sodium hydroxide, potassium hydroxide, etc.) and heat treatment after the melting treatment. As the first step, melting treatment using alkali hydroxide (sodium hydroxide, potassium hydroxide) is performed in the waste material melting process, and then as the second stage, heat treatment is performed in the waste material filling process and the waste material heat treatment process. The matrix resin becomes gas and carbide in the waste material melting process and the waste material heat treatment process (including the waste material filling process) (see FIG. 1).

<廃材溶融工程>
廃材溶融工程では、炭素繊維を、水酸化ナトリウム等のアルカリ金属化合物の存在下にて加熱処理する。この加熱処理によって、炭素繊維に含まれるマトリックス樹脂を(廃材熱処理工程に移行する前にある程度)分解させることができる。
<Waste Material Melting Process>
In the waste material melting step, carbon fibers are heat-treated in the presence of an alkali metal compound such as sodium hydroxide. By this heat treatment, the matrix resin contained in the carbon fibers can be decomposed (to some extent before transferring to the waste material heat treatment step).

アルカリ金属化合物としては、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム等)の水酸化物、無機酸塩(例:リン酸塩、炭酸塩、硫酸塩、硝酸塩)、有機酸塩が挙げられるが、マトリックス樹脂の分解を低温で良好に進行させることができる点から、アルカリ金属の水酸化物が好ましく、水酸化ナトリウム、及び水酸化カリウムがより好ましい。 Alkali metal compounds include hydroxides of alkali metals (lithium, sodium, potassium, rubidium, cesium, etc.), inorganic acid salts (eg, phosphates, carbonates, sulfates, nitrates), and organic acid salts. However, alkali metal hydroxides are preferable, and sodium hydroxide and potassium hydroxide are more preferable, since the decomposition of the matrix resin can proceed satisfactorily at a low temperature.

廃材溶融工程は、炭素繊維表面の酸化劣化を抑制でき、強度(引張強度等)がバージン材と遜色ない程度の炭素繊維を回収できる点から、非酸化性ガス雰囲気下で行うことが好ましい。非酸化性ガスとしては、例えば、窒素ガス、アルゴンガスなどの不活性ガスが挙げられる。さらに、廃材溶融工程における実施形態は、安全面およびコスト面などの点から、アルカリ金属化合物(水酸化ナトリウム)の使用量が、炭素繊維100質量部に対して、150~300質量部であり、加熱温度が220~330℃であり、加熱時間が50分~2時間であることが好ましい。 The waste material melting process is preferably carried out in a non-oxidizing gas atmosphere because it is possible to suppress oxidative deterioration of the carbon fiber surface and recover carbon fibers having a strength (tensile strength, etc.) comparable to that of virgin material. Examples of non-oxidizing gases include inert gases such as nitrogen gas and argon gas. Furthermore, in the embodiment of the waste material melting process, from the viewpoint of safety and cost, the amount of alkali metal compound (sodium hydroxide) used is 150 to 300 parts by mass with respect to 100 parts by mass of carbon fiber. It is preferable that the heating temperature is 220 to 330° C. and the heating time is 50 minutes to 2 hours.

<廃材充填工程、及び廃材熱処理工程、その後の出荷までの工程>
図2は、(廃炭素繊維強化プラスチックの再生方法における)廃材充填工程におけるトレー内に充填された(廃材溶融工程を経た)炭素繊維の充填状態を説明するための図である。図2に記載したように、炭素繊維をトレー(1000mm×625mm×110mm)に充填する時に(炭素繊維のトレーの底からの高さが)どの地点でも同じ高さになるように均一に充填せずに、トレー内に充填された炭素繊維のトレーの長手方向の中心線に沿った所定の幅(トレーの長手方向と垂直な方向の長さを三等分した時の3分の1の範囲、及びトレーの長手方向における両端部)の高さを低くしている(凹ませている)。廃材熱処理工程後に炭素繊維のトレーの中での置かれた位置の違いによるバラツキが出るのを回避するためである。
<Waste material filling process, waste material heat treatment process, and subsequent processes until shipment>
FIG. 2 is a diagram for explaining the filling state of carbon fibers (passed through the waste material melting process) filled in the tray in the waste material filling process (in the method for recycling waste carbon fiber reinforced plastic). As shown in FIG. 2, when filling a tray (1000 mm × 625 mm × 110 mm) with carbon fibers, the height of the carbon fibers from the bottom of the tray is the same at any point. A predetermined width along the center line of the tray in the longitudinal direction of the carbon fiber filled in the tray (one third range when the length in the direction perpendicular to the longitudinal direction of the tray is divided into three , and both ends in the longitudinal direction of the tray) are lowered (recessed). This is to avoid variations due to differences in the positions of the carbon fibers placed in the tray after the waste material heat treatment process.

炭素繊維をトレーに充填する時に均一に同じ高さになるように充填すると、廃材熱処理工程時に、トレーの長手方向中心線上部側に充填された炭素繊維が、過剰に熱処理されて品質にバラツキが出ることが経験上解っている。炭素繊維の色は黒色なので熱(赤外線)を吸収し易い材料である。炭素繊維は特に赤外線領域の波長の光を吸収してしまうため、(黒色の炭素繊維は)温度が上昇し易く結果として熱が籠り易い材料であると考えられる。 If the carbon fiber is filled uniformly into the tray so that it is at the same height, the carbon fiber filled above the center line in the longitudinal direction of the tray will be excessively heat treated during the waste material heat treatment process, resulting in uneven quality. I know from experience that I will leave. Since carbon fiber is black in color, it is a material that easily absorbs heat (infrared rays). Since carbon fiber absorbs light with wavelengths in the infrared region in particular, it is considered that (black carbon fiber) is a material that tends to increase in temperature and, as a result, tends to retain heat.

炭素繊維をトレーに充填する時に(炭素繊維のトレーの底からの高さが)どの地点でも同じ高さになるように充填せずに、トレー内に充填された炭素繊維のトレーの長手方向の中心線に沿った所定の幅(トレーの長手方向と垂直な方向の長さを三等分した時の3分の1の範囲、及びトレーの長手方向における両端部)を凹ませることで、できるだけ炭素繊維が大気に触れる面積を増やせば、炭素繊維に熱が篭り難くなるので、廃材熱処理工程後に、炭素繊維のトレーの中での置かれた位置の違いによる品質バラツキを少なくすることができる。尚、炭素繊維に熱が篭り難くするためには(炭素繊維の充填量をトレーの高さの3分の1程度にする等)1バッチ処理量を減らせば良いのであるが、それでは生産コスト面で問題がある。本発明においては、1バッチの処理量を出来るだけ減らすことなく、一定の品質を確保するための工夫をしている。 When filling the tray with carbon fiber, the height of the carbon fiber from the bottom of the tray is the same at any point, and the length of the carbon fiber tray filled in the tray By recessing a predetermined width along the center line (one-third range when the length of the tray in the direction perpendicular to the longitudinal direction is divided into thirds, and both ends in the longitudinal direction of the tray), If the area of the carbon fiber that is exposed to the air is increased, it becomes difficult for the carbon fiber to retain heat, so that it is possible to reduce the quality variation due to the difference in the position of the carbon fiber in the tray after the waste material heat treatment process. Incidentally, in order to make it difficult for heat to be trapped in the carbon fiber (for example, the filling amount of carbon fiber should be reduced to about one-third of the height of the tray), it would be good to reduce the amount of processing per batch, but in that case the production cost would be reduced. I have a problem with In the present invention, a contrivance is made to ensure constant quality without reducing the processing amount of one batch as much as possible.

図3は、廃材熱処理工程における炭素繊維が充填された熱処理炉入口側から見たトレーの積載状態を説明するための図である。廃材熱処理工程では、熱処理炉の入口側から見て3列になるように複数の炭素繊維が充填されたトレーを垂直方向に積載する(図3参照)。真ん中の列のトレーは、7段積載されており、隣接する外側の列のトレーは、9段積載されている(図3参照)。 FIG. 3 is a diagram for explaining the loading state of the trays viewed from the entrance side of the heat treatment furnace filled with carbon fibers in the waste material heat treatment process. In the waste material heat treatment process, trays filled with a plurality of carbon fibers are stacked vertically in three rows when viewed from the entrance side of the heat treatment furnace (see FIG. 3). The middle row of trays is stacked 7 highs and the adjacent outer row of trays is stacked 9 highs (see Figure 3).

熱処理炉内におけるトレーの積載方法は、熱処理炉の熱処理空間におけるトレーの配置で表現すれば、真ん中の列の炭素繊維が充填されたトレーを積載しない空間を、隣接する外側の列のトレーを積載しない空間よりも大きくなるようにすることで、即ち、真ん中の列のトレーの垂直方向における隙間の方が、隣接する外側の列のトレーの垂直方向における隙間よりも大きくなるようにすることで、熱が篭らないように工夫している。さらに、真ん中の列のトレーと隣接する外側の列のトレーの水平方向における隙間(トレーの長手方向と垂直な方向の長さの6分の1~4分の1の長さの隙間)を形成しても良い(図3参照)。 The tray loading method in the heat treatment furnace is expressed by the layout of the trays in the heat treatment space of the heat treatment furnace. By making the space larger than the free space, i.e., the vertical gap of the middle row of trays is larger than the vertical gap of the adjacent outer row of trays, It is devised so that the heat does not get stuck. Furthermore, a gap in the horizontal direction (a gap of 1/6 to 1/4 of the length in the direction perpendicular to the longitudinal direction of the tray) is formed between the tray in the middle row and the tray in the adjacent outer row. (See Figure 3).

熱処理炉の熱処理空間におけるトレーの配置で表現すれば、真ん中の列の上部側に空間を(生産効率が下がるのにも拘わらず)敢えて作ることで、或いは、(真ん中の列の)炭素繊維が充填されたトレーと上下方向に位置するトレーの隙間量を増やす(隙間量を隣接する外側の列のトレーの二倍(1.8倍~2.2倍)にすることで、熱が篭ることが無くなり、炭素繊維が均一に熱処理されるように工夫されている。 Expressing it in terms of the arrangement of trays in the heat treatment space of the heat treatment furnace, by intentionally creating a space on the upper side of the middle row (despite the decrease in production efficiency), or the carbon fiber (in the middle row) Increase the amount of space between the filled tray and the trays located vertically is eliminated, and the carbon fiber is devised so that it can be heat-treated uniformly.

熱処理炉に炭素繊維が充填されたトレーを積載した状態で、所定の温度、所定の温度に到達する時間、所定の保持時間、及び所定の保持時間から常温への下降時間にて熱処理を行う。熱処理された炭素繊維は、粉砕工程、及び選別工程を経て、最終的に出荷検査された後、出荷される。
<廃炭素繊維強化プラスチックの再生方法の効果>
With the tray filled with carbon fibers loaded in the heat treatment furnace, heat treatment is performed at a predetermined temperature, a time to reach the predetermined temperature, a predetermined holding time, and a fall time from the predetermined holding time to normal temperature. The heat-treated carbon fibers undergo a crushing process and a sorting process, and are shipped after a final shipping inspection.
<Effects of Recycling Method for Waste Carbon Fiber Reinforced Plastics>

現状、廃炭素繊維強化プラスチックの再生において事業化に至ったものは燃焼法の一部のみである。しかも炭素繊維の劣化が生じるという問題があり、再生後の炭素繊維の用途が限られていた。本発明に係る廃炭素繊維強化プラスチックの再生方法により、高価値な炭素繊維を(事業ベースで)廃炭素繊維強化プラスチックから回収することができるようになったし、再生後の炭素繊維の用途も拡大された。 At present, only a part of the combustion method has been commercialized for the recycling of waste carbon fiber reinforced plastics. Moreover, there is a problem that the carbon fiber deteriorates, and the applications of the recycled carbon fiber have been limited. The method for recycling waste carbon fiber reinforced plastics according to the present invention has made it possible to recover high-value carbon fibers from waste carbon fiber reinforced plastics (on a business basis), and the carbon fibers after recycling can be used. Expanded.

即ち、廃棄された炭素繊維強化プラスチックから、水酸化アルカリ溶液中で加熱処理する廃材溶融工程と、廃材溶融工程済の廃炭素繊維強化プラスチックをトレーに充填する廃材充填工程と、廃材充填工程済の廃炭素繊維強化プラスチックを、熱処理炉にて熱処理する廃材熱処理工程にて、炭素繊維を劣化させること無く(廃棄された炭素繊維強化プラスチックから)高強度の炭素繊維を効率的に回収する廃炭素繊維強化プラスチックの再生方法を確立することができるようになった。 That is, a waste material melting process in which waste carbon fiber reinforced plastic is heat-treated in an alkaline hydroxide solution, a waste material filling process in which trays are filled with waste carbon fiber reinforced plastic that has undergone the waste material melting process, and a waste material filling process has been completed. Waste carbon fiber that efficiently recovers high-strength carbon fiber (from discarded carbon fiber reinforced plastic) without degrading the carbon fiber in the waste material heat treatment process in which waste carbon fiber reinforced plastic is heat treated in a heat treatment furnace. It became possible to establish a recycling method for reinforced plastics.

<廃炭素繊維強化プラスチックの再生方法の変更例>
本発明に係る廃炭素繊維強化プラスチックの再生方法は、上記した各実施形態の態様に何ら限定されるものではなく、廃材溶融工程、廃材充填工程、廃材熱処理工程等の工程を、本発明の趣旨を逸脱しない範囲で、必要に応じて適宜変更することができる。
<Example of change in recycling method for waste carbon fiber reinforced plastic>
The method for recycling waste carbon fiber reinforced plastics according to the present invention is not limited to the aspects of the respective embodiments described above. can be changed as appropriate within a range that does not deviate from

本発明に係る廃炭素繊維強化プラスチックの再生方法は、上記の如く優れた効果を奏するものであるので、炭素繊維を劣化させること無く、高強度の炭素繊維を効率的に回収することができる廃炭素繊維強化プラスチックの再生方法として好適に用いることができる。 Since the method for recycling waste carbon fiber reinforced plastics according to the present invention exhibits excellent effects as described above, it is possible to efficiently recover high-strength carbon fibers from waste without deteriorating the carbon fibers. It can be suitably used as a method for recycling carbon fiber reinforced plastics.

10・・炭素繊維(廃材溶融工程後)
20・・トレー
30・・熱処理炉(入口側)
10... Carbon fiber (after waste material melting process)
20 Tray 30 Heat treatment furnace (entrance side)

Claims (2)

廃棄された炭素繊維強化プラスチックから劣化させること無く高強度の炭素繊維を効率的に回収する廃炭素繊維強化プラスチックの再生方法であって、
廃炭素繊維強化プラスチックを水酸化ナトリウム溶液中、又は水酸化カリウム溶液中で加熱処理する廃材溶融工程と、
前記廃材溶融工程済の廃炭素繊維強化プラスチックをトレーに充填する廃材充填工程と、
前記廃材充填工程済の廃炭素繊維強化プラスチックを熱処理炉にて熱処理する廃材熱処理工程を備えており、
前記廃材充填工程は、廃炭素繊維強化プラスチックをトレーに充填する際、トレーの長手方向の中心線に沿った所定の幅(トレーの長手方向と垂直な方向の長さを三等分した時の3分の1の範囲、及びトレーの長手方向における両端部)を凹ませて高さが低くなるように充填し、
前記廃材熱処理工程は、廃炭素繊維強化プラスチックが充填されたトレーの積載方法が、熱処理炉の入口側から見て3列になるように複数の廃炭素繊維強化プラスチックが充填されたトレーを積載するのであるが、真ん中の列に積載されたトレーの数は隣接する外側の列に積載されたトレーの数よりも少なくなるように積載することを特徴とする廃炭素繊維強化プラスチックの再生方法。
A method for recycling waste carbon fiber reinforced plastic, which efficiently recovers high-strength carbon fiber from waste carbon fiber reinforced plastic without deteriorating it,
a waste material melting step of heat-treating waste carbon fiber reinforced plastic in a sodium hydroxide solution or in a potassium hydroxide solution ;
a waste material filling step of filling a tray with the waste carbon fiber reinforced plastic that has undergone the waste material melting process;
A waste material heat treatment step of heat-treating the waste carbon fiber reinforced plastic that has undergone the waste material filling step in a heat treatment furnace,
In the waste material filling step, when filling the tray with the waste carbon fiber reinforced plastic, a predetermined width along the center line in the longitudinal direction of the tray (when the length in the direction perpendicular to the longitudinal direction of the tray is divided into three equal parts) 1/3 area and both ends in the longitudinal direction of the tray) are recessed and filled so that the height is low,
In the waste material heat treatment step, a plurality of trays filled with waste carbon fiber reinforced plastics are loaded so that the trays filled with waste carbon fiber reinforced plastics are stacked in three rows when viewed from the entrance side of the heat treatment furnace. However, a method for recycling waste carbon fiber reinforced plastics is characterized in that the number of trays loaded in a middle row is smaller than the number of trays loaded in adjacent outer rows.
前記廃材溶融工程は、廃炭素繊維強化プラスチック重量部100に対して、水酸化ナトリウムを150重量部~300重量部を加えてから、220℃~330℃の温度で、50分~120分、加熱処理することを特徴とする請求項1に記載の廃炭素繊維強化プラスチックの再生方法。 In the waste material melting step, 150 to 300 parts by weight of sodium hydroxide is added to 100 parts by weight of waste carbon fiber reinforced plastic, and then heated at a temperature of 220 ° C. to 330 ° C. for 50 to 120 minutes. 2. The method for recycling waste carbon fiber reinforced plastic according to claim 1, wherein the waste carbon fiber reinforced plastic is treated.
JP2022198162A 2022-12-12 2022-12-12 Method for recycling waste carbon fiber reinforced plastic Active JP7290382B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022198162A JP7290382B1 (en) 2022-12-12 2022-12-12 Method for recycling waste carbon fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022198162A JP7290382B1 (en) 2022-12-12 2022-12-12 Method for recycling waste carbon fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JP7290382B1 true JP7290382B1 (en) 2023-06-13
JP2024084011A JP2024084011A (en) 2024-06-24

Family

ID=86721413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022198162A Active JP7290382B1 (en) 2022-12-12 2022-12-12 Method for recycling waste carbon fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP7290382B1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121375A (en) * 1997-07-01 1999-01-26 Matsushita Electric Ind Co Ltd Production of filler
JP2000281830A (en) * 1999-03-30 2000-10-10 Kumamoto Prefecture Recovery of carbon material from carbon material containing resin
JP2015199827A (en) * 2014-04-08 2015-11-12 トヨタ自動車株式会社 Apparatus and method for treating fiber-containing resin
JP2017025312A (en) * 2015-07-22 2017-02-02 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Depolymerization method for epoxy resin cured matter and composition
JP2017082037A (en) * 2015-10-23 2017-05-18 カーボンファイバーリサイクル工業株式会社 Method for producing regenerated carbon fiber, and the regenerated carbon fiber
WO2017154101A1 (en) * 2016-03-08 2017-09-14 日立化成株式会社 Method for processing thermosetting resin cured product
WO2017154098A1 (en) * 2016-03-08 2017-09-14 日立化成株式会社 Inorganic material separation method, reprocessed material production method, and organic substance removal method
JP2018069524A (en) * 2016-10-27 2018-05-10 日立化成株式会社 Method for producing regenerated carbon fibers
JP2019104861A (en) * 2017-12-14 2019-06-27 埼玉県 Recycle method of fiber-reinforced resin composite material and system of the same
JP2020011482A (en) * 2018-07-20 2020-01-23 日立化成株式会社 Method for producing recycled material, method for treating composite material, and carbon fiber
JP2022082861A (en) * 2020-11-24 2022-06-03 トヨタ自動車株式会社 Method for recycling carbon fiber

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121375A (en) * 1997-07-01 1999-01-26 Matsushita Electric Ind Co Ltd Production of filler
JP2000281830A (en) * 1999-03-30 2000-10-10 Kumamoto Prefecture Recovery of carbon material from carbon material containing resin
JP2015199827A (en) * 2014-04-08 2015-11-12 トヨタ自動車株式会社 Apparatus and method for treating fiber-containing resin
JP2017025312A (en) * 2015-07-22 2017-02-02 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Depolymerization method for epoxy resin cured matter and composition
JP2017082037A (en) * 2015-10-23 2017-05-18 カーボンファイバーリサイクル工業株式会社 Method for producing regenerated carbon fiber, and the regenerated carbon fiber
WO2017154101A1 (en) * 2016-03-08 2017-09-14 日立化成株式会社 Method for processing thermosetting resin cured product
WO2017154098A1 (en) * 2016-03-08 2017-09-14 日立化成株式会社 Inorganic material separation method, reprocessed material production method, and organic substance removal method
JP2018069524A (en) * 2016-10-27 2018-05-10 日立化成株式会社 Method for producing regenerated carbon fibers
JP2019104861A (en) * 2017-12-14 2019-06-27 埼玉県 Recycle method of fiber-reinforced resin composite material and system of the same
JP2020011482A (en) * 2018-07-20 2020-01-23 日立化成株式会社 Method for producing recycled material, method for treating composite material, and carbon fiber
JP2022082861A (en) * 2020-11-24 2022-06-03 トヨタ自動車株式会社 Method for recycling carbon fiber

Also Published As

Publication number Publication date
JP2024084011A (en) 2024-06-24

Similar Documents

Publication Publication Date Title
US9463979B2 (en) Device for manufacturing recycled carbon fibers, and method for manufacturing recycled carbon fibers
JPWO2018212016A1 (en) Recycled carbon fiber bundle, recycled carbon fiber, method of producing recycled carbon fiber milled and device for producing recycled carbon fiber bundle, method of producing carbon fiber reinforced resin, and recycled carbon fiber bundle
JP7290382B1 (en) Method for recycling waste carbon fiber reinforced plastic
CN110028698B (en) Carbon fiber recovery method
CN104649235A (en) Method, equipment and system for producing sulfuric acid
AU2003236029A1 (en) Method and apparatus for recovering carbon and/or glass fibers from a composite material
JP2017082037A (en) Method for producing regenerated carbon fiber, and the regenerated carbon fiber
KR20210005887A (en) How to recycle composite materials with improved energy balance
WO2021088123A1 (en) Catalyst for thermal degradation of carbon-fiber-and-resin-based composite material and application method therefor
CN105246604B (en) The low-temperature stratification method of heat engine control
JP2015196773A (en) Method for recycling fiber-reinforced thermoplastic resin
KR20210005113A (en) Recovery of (meth)acrylic resin by depolymerization and hydrolysis
JP2017082036A (en) Manufacturing apparatus and manufacturing method of recycled carbon fiber
CN107345000A (en) The recovery method of fibre reinforced composites
US20210246243A1 (en) Thermoplastic composition comprising a microwave-depolymerisation sensitising compound
Shi et al. Research in recycling technology of fiber reinforced polymers for reduction of environmental load: Optimum decomposition conditions of carbon fiber reinforced polymers in the purpose of fiber reuse
CN109336379A (en) A kind of chalcogenide glass waste residue reuse method and gained glass
US9643343B2 (en) Method for molding recycled EPS using powder adhesive and steam
JP2007225173A (en) Heat treatment furnace and solar battery cell
AU2012272546A1 (en) Apparatus and process for continuous carbonisation of wood chips or wastes and other charring organic materials
JPH04180995A (en) Production of aromatic hydrocarbon oil from pyrolyzed polyolefin plastic
CN105237754B (en) A kind of high efficiency polyester solid phase polycondensation method of high-pressure carbon dioxide auxiliary
KR20230077080A (en) Atmospheric pressure pyrolysis reactor for polytetrafluoroethylene and method for producing tetrafluoroethylene using the same
JP2022065221A (en) Recycling method of tank and recycling unit of tank
CN103305034A (en) Recyclable carbon black powder treatment system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230209

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230525

R150 Certificate of patent or registration of utility model

Ref document number: 7290382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150