JP7289962B2 - Cellulose derivative particles, cosmetic composition, and method for producing cellulose derivative particles - Google Patents

Cellulose derivative particles, cosmetic composition, and method for producing cellulose derivative particles Download PDF

Info

Publication number
JP7289962B2
JP7289962B2 JP2022095962A JP2022095962A JP7289962B2 JP 7289962 B2 JP7289962 B2 JP 7289962B2 JP 2022095962 A JP2022095962 A JP 2022095962A JP 2022095962 A JP2022095962 A JP 2022095962A JP 7289962 B2 JP7289962 B2 JP 7289962B2
Authority
JP
Japan
Prior art keywords
cellulose derivative
less
derivative particles
particles
plasticizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022095962A
Other languages
Japanese (ja)
Other versions
JP2022125063A (en
Inventor
慧子 小林
雅也 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019054171A external-priority patent/JP7149885B2/en
Application filed by Daicel Corp filed Critical Daicel Corp
Priority to JP2022095962A priority Critical patent/JP7289962B2/en
Publication of JP2022125063A publication Critical patent/JP2022125063A/en
Application granted granted Critical
Publication of JP7289962B2 publication Critical patent/JP7289962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cosmetics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、セルロース誘導体粒子、化粧品組成物及びセルロース誘導体粒子の製造方法に関する。 TECHNICAL FIELD The present invention relates to a cellulose derivative particle, a cosmetic composition, and a method for producing a cellulose derivative particle.

従来、用途に応じた様々な高分子の微粒子が提案されてきた。例えば、化粧品に含有される微粒子としてもその目的は様々である。化粧品に微粒子を含有する目的は、化粧品ののびを向上する、触感に変化を与える、シワぼかし効果を付与する、またファンデーションなどの滑り性を向上すること等である。 Conventionally, various polymer microparticles have been proposed according to their uses. For example, fine particles contained in cosmetics have various purposes. The purpose of containing fine particles in cosmetics is to improve the spreadability of cosmetics, to change the feel of the cosmetics, to impart wrinkle blurring effects, and to improve the slipperiness of foundations and the like.

特に真球度が高い微粒子は、触感に優れ、また、その物性や形状によって光散乱(ソフトフォーカス)効果が得られる。そして、このような微粒子をファンデーションなどに用いた場合には、肌の凹凸を埋めて滑らかにし、光を様々な方向に散乱させることでしわなどを目立ちにくくする(ソフトフォーカス)効果が期待できる。 In particular, fine particles with a high degree of sphericity are excellent in tactile sensation, and can provide a light scattering (soft focus) effect depending on their physical properties and shape. When such fine particles are used in foundations and the like, it can be expected to have the effect of smoothing the unevenness of the skin and scattering light in various directions to make wrinkles less noticeable (soft focus).

このような化粧品の目的及び効果のため、化粧品に配合する微粒子は、粒度分布が狭く、真球度が高い微粒子であることが必要とされ、このような微粒子として、ナイロン12などのポリアミド、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)、ポリプロピレン(PP)、及びポリエチレン(PE)等の合成ポリマーからなる微粒子が提案されている。 For the purposes and effects of such cosmetics, fine particles to be blended in cosmetics are required to have a narrow particle size distribution and a high degree of sphericity. Microparticles made of synthetic polymers such as methyl methacrylate (PMMA), polystyrene (PS), polypropylene (PP), and polyethylene (PE) have been proposed.

しかしながら、これらの合成ポリマーの内、PP及びPE等からなる微粒子は、比重が1以下と軽く、粒子径もあまりに小さすぎることから、水に浮きやすく、排水処理施設では除去できない場合があり、そのまま川やさらに川を通して海に流れ込むことがある。このため海洋等がこれらの合成ポリマーからなる微粒子で汚染されるという問題がある。さらに、合成ポリマーの中でもPSからなる微粒子は、主な可塑剤としてジオクチルフタレートのようなフタル酸エステル系可塑剤を含有している。フタル酸エステル系可塑剤には環境ホルモンの疑いがあるものもあり、海洋に流出するのは好ましくない。 However, among these synthetic polymers, fine particles made of PP, PE, etc., have a specific gravity of 1 or less and a particle size that is too small. It can flow into the sea through rivers and even rivers. As a result, there is a problem that the ocean or the like is polluted with fine particles made of these synthetic polymers. Furthermore, among synthetic polymers, fine particles made of PS contain a phthalate plasticizer such as dioctyl phthalate as a main plasticizer. Some phthalate-based plasticizers are suspected to be endocrine disruptors, and it is not desirable for them to flow into the ocean.

さらに、これらの合成ポリマーからなる微粒子は、環境中の微量の化学汚染物質を吸着する性質があるため、その化学汚染物質を吸着した微粒子をプランクトンや魚が飲み込むことで、人体へも悪影響を及ぼす可能性が生じる等、様々な影響を与えることが懸念されている。 In addition, microparticles made from these synthetic polymers have the property of adsorbing minute amounts of chemical pollutants in the environment, so when plankton and fish swallow the microparticles that have adsorbed the chemical pollutants, they can have a negative impact on the human body. It is feared that it will have various impacts, such as the possibility that it will occur.

このような懸念から、多様な用途に用いられている合成ポリマーの微粒子を、他の粒子に代替しようとする試みがなされている。 Due to such concerns, attempts have been made to replace fine particles of synthetic polymers used in various applications with other particles.

セルロース又はセルロース誘導体は、食料や飼料と競合しない、木材や綿花等の天然素材から得ることができる点で優れる。このため、合成ポリマーの微粒子を、天然ポリマーであるセルロース又は半合成ポリマーであるセルロース誘導体の微粒子に代替することができれば有益である。しかしながら、合成ポリマーの微粒子の製造方法を適用できるポリマーは限定され、セルロース又はセルロース誘導体の微粒子の製造に適用することは困難である。 Cellulose or cellulose derivatives are superior in that they can be obtained from natural materials such as wood and cotton, which do not compete with food or feed. For this reason, it would be beneficial to be able to replace microparticles of synthetic polymers with microparticles of cellulose, a natural polymer, or cellulose derivatives, a semi-synthetic polymer. However, the polymer to which the method for producing fine particles of synthetic polymers can be applied is limited, and it is difficult to apply it to the production of fine particles of cellulose or cellulose derivatives.

特許文献1には、多糖合成から多糖エステル生成物を形成する工程であって、前記多糖エステル生成物が多糖エステル及び溶媒を含む工程;前記多糖エステル生成物を希釈して、それによって多糖エステルドープをもたらす工程;及び前記多糖エステルドープから複数の多糖エステルミクロスフェアを形成する工程;を含む方法が記載され、多糖エステルミクロスフェアを含むことができる物品として化粧品組成物が挙げられている。 US Pat. No. 5,300,000 discloses a process for forming a polysaccharide ester product from polysaccharide synthesis, said polysaccharide ester product comprising a polysaccharide ester and a solvent; diluting said polysaccharide ester product, thereby forming a polysaccharide ester dope. and forming a plurality of polysaccharide ester microspheres from said polysaccharide ester dope, wherein cosmetic compositions are cited as articles that may contain the polysaccharide ester microspheres.

特許文献2には、レーザー回折式粒度分布測定装置を用いて測定した体積平均粒径D50が、72μm以上100μm以下であり、重合度が131以上350以下であり、置換度が2.1以上2.6以下である、セルロースアシレートについて記載され、また、その製造方法について、硫酸の存在下でセルロースをアシル化するアシル化工程と、極性溶媒中、酢酸の存在下で前記アシル化したセルロースを脱アシル化する脱アシル化工程と、を有するセルロースアシレートの製造方法であることが好ましいと記載されている。 In Patent Document 2, the volume average particle diameter D50 measured using a laser diffraction particle size distribution analyzer is 72 μm or more and 100 μm or less, the degree of polymerization is 131 or more and 350 or less, and the degree of substitution is 2.1 or more and 2 A cellulose acylate having a molecular weight of .6 or less, and a method for producing the same, comprising: an acylation step of acylating cellulose in the presence of sulfuric acid; and a deacylation step of deacylating the cellulose acylate.

特許文献3には、熱可塑性樹脂などの樹脂成分(A)と、水溶性助剤成分(B)とを混練して分散体を調製し、この分散体から助剤成分(B)を溶出し、樹脂成分(A)で構成された成形体(例えば、多孔体、球状粒子)を製造すること、また、樹脂成分(A)として、セルロースアセテート等のセルロース誘導体が記載されている。 In Patent Document 3, a resin component (A) such as a thermoplastic resin and a water-soluble auxiliary agent component (B) are kneaded to prepare a dispersion, and the auxiliary agent component (B) is eluted from the dispersion. , the production of a molded body (for example, a porous body, spherical particles) composed of a resin component (A), and a cellulose derivative such as cellulose acetate as the resin component (A).

特表2016-500129号公報Japanese Patent Publication No. 2016-500129 特許6187653号公報Japanese Patent No. 6187653 特開2004-051942号公報JP 2004-051942 A

しかしながら、特許文献1の多糖エステルミクロスフェアは、粒子径が大きく、粒径分布もブロードな多孔質の粒子であり、化粧品等に配合する合成ポリマーの微粒子の代替としては十分ではない。また、特許文献2に記載される製造方法により得られるセルロースアシレートも不定形で多孔質の粒子である。さらに、特許文献3に記載される製造方法により得られる粒子状の成形体も、真球度が低く、略球状という程度の粒子である。そのため、従来の微粒子は、触感に劣る。 However, the polysaccharide ester microspheres of Patent Document 1 are porous particles with a large particle size and a broad particle size distribution, and are not sufficient as a substitute for fine particles of synthetic polymers blended in cosmetics and the like. The cellulose acylate obtained by the production method described in Patent Document 2 is also amorphous and porous particles. Furthermore, the particulate compact obtained by the manufacturing method described in Patent Document 3 is also particles with a low degree of sphericity and a substantially spherical shape. Therefore, conventional fine particles are inferior in tactile sensation.

本発明は、セルロース誘導体の半合成ポリマーを含有し、触感に優れた微粒子を提供することを目的とする。 An object of the present invention is to provide fine particles containing a semi-synthetic polymer of a cellulose derivative and having excellent tactile sensation.

本発明の第一は、炭素数が2以上のアルコキシ基、又は炭素数が3以上のアシル基を有するセルロース誘導体粒子であって、前記セルロース誘導体粒子は、平均粒子径が80nm以上100μm以下、及び真球度が70%以上100%以下、表面平滑度が80%以上100%以下であり、前記セルロース誘導体の総置換度が0.7以上3以下である、セルロース誘導体粒子に関する。 A first aspect of the present invention is cellulose derivative particles having an alkoxy group having 2 or more carbon atoms or an acyl group having 3 or more carbon atoms, wherein the cellulose derivative particles have an average particle size of 80 nm or more and 100 μm or less, and The present invention relates to cellulose derivative particles having a sphericity of 70% or more and 100% or less, a surface smoothness of 80% or more and 100% or less, and a total degree of substitution of the cellulose derivative of 0.7 or more and 3 or less.

前記セルロース誘導体粒子において、前記セルロース誘導体の総置換度が2.0以上2.6未満であってよい。 In the cellulose derivative particles, the total degree of substitution of the cellulose derivative may be 2.0 or more and less than 2.6.

前記セルロース誘導体粒子において、前記アシル基の炭素数が3以上18以下であってよい。 In the cellulose derivative particles, the acyl group may have 3 or more and 18 or less carbon atoms.

前記セルロース誘導体粒子において、前記アルコキシ基の炭素数が2以上8以下であってよい。 In the cellulose derivative particles, the alkoxy group may have 2 or more and 8 or less carbon atoms.

前記セルロース誘導体粒子において、真比重が1.04以上であってよい。 The cellulose derivative particles may have a true specific gravity of 1.04 or more.

前記セルロース誘導体粒子において、セルロース誘導体粒子が可塑剤を含有し、前記可塑剤の含有量が、前記セルロース誘導体粒子の重量に対し、0重量%を超え40重量%以下であってよい。 In the cellulose derivative particles, the cellulose derivative particles may contain a plasticizer, and the content of the plasticizer may be more than 0% by weight and 40% by weight or less relative to the weight of the cellulose derivative particles.

前記セルロース誘導体粒子において、前記可塑剤がグリセリンエステル系可塑剤であってよい。 In the cellulose derivative particles, the plasticizer may be a glycerin ester plasticizer.

本発明の第二は、セルロース誘導体粒子を含有する、化粧品組成物に関する。 A second aspect of the present invention relates to cosmetic compositions containing cellulose derivative particles.

本発明の第三は、総置換度が0.7以上3以下のセルロース誘導体と水溶性高分子とを200℃以上280℃以下で混練して、前記セルロース誘導体を分散質とする分散体を得る工程、及び前記分散体から前記水溶性高分子を除去する工程を含む、セルロース誘導体粒子の製造方法に関する。 In the third aspect of the present invention, a cellulose derivative having a total degree of substitution of 0.7 or more and 3 or less and a water-soluble polymer are kneaded at 200° C. or more and 280° C. or less to obtain a dispersion containing the cellulose derivative as a dispersoid. and a method for producing cellulose derivative particles, comprising a step of removing the water-soluble polymer from the dispersion.

前記セルロース誘導体粒子の製造方法において、前記総置換度が0.7以上3以下のセルロース誘導体が、可塑剤が含浸したセルロース誘導体であり、前記可塑剤が含浸したセルロース誘導体は、前記総置換度が0.7以上3以下のセルロース誘導体と前記可塑剤とを、20℃以上200℃未満の範囲で溶融混練したものであってよい。 In the method for producing cellulose derivative particles, the cellulose derivative having a total substitution degree of 0.7 or more and 3 or less is a cellulose derivative impregnated with a plasticizer, and the cellulose derivative impregnated with the plasticizer has the total substitution degree of A cellulose derivative of 0.7 or more and 3 or less and the plasticizer may be melt-kneaded in the range of 20°C or more and less than 200°C.

前記セルロース誘導体粒子の製造方法において、前記可塑剤がグリセリンエステル系可塑剤であってよい。 In the method for producing cellulose derivative particles, the plasticizer may be a glycerin ester plasticizer.

前記セルロース誘導体粒子の製造方法において、前記可塑剤がトリアセチンであってよい。 In the method for producing cellulose derivative particles, the plasticizer may be triacetin.

前記セルロース誘導体粒子の製造方法において、前記水溶性高分子が、ポリビニルアルコールまたは熱可塑性デンプンであってよい。 In the method for producing cellulose derivative particles, the water-soluble polymer may be polyvinyl alcohol or thermoplastic starch.

本発明によれば、セルロース誘導体の半合成ポリマーを含有し、触感に優れた微粒子を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide fine particles containing a semi-synthetic polymer of a cellulose derivative and having excellent tactile sensation.

表面平滑度(%)の評価方法を説明する図面である。It is drawing explaining the evaluation method of surface smoothness (%). 表面平滑度(%)の評価方法を説明する図面である。It is drawing explaining the evaluation method of surface smoothness (%).

[セルロース誘導体粒子]
本開示のセルロース誘導体粒子は、炭素数が2以上のアルコキシ基、又は炭素数が3以上のアシル基を有するセルロース誘導体粒子であって、前記セルロース誘導体粒子は、平均粒子径が80nm以上100μm以下、及び真球度が70%以上100%以下、表面平滑度が80%以上100%以下であり、前記セルロース誘導体の総置換度が0.7以上3以下である。
[Cellulose derivative particles]
The cellulose derivative particles of the present disclosure are cellulose derivative particles having an alkoxy group having 2 or more carbon atoms or an acyl group having 3 or more carbon atoms, and the cellulose derivative particles have an average particle diameter of 80 nm or more and 100 μm or less. and a sphericity of 70% or more and 100% or less, a surface smoothness of 80% or more and 100% or less, and a total substitution degree of the cellulose derivative of 0.7 or more and 3 or less.

セルロース誘導体粒子が炭素数が2以上のアルコキシ基を有する場合について述べる。そのアルコキシ基の炭素数は2以上であれば、特に限定されるものではないが、3以上であってよく、5以上であってよい。また、20以下であってよく、8以下が好ましい。 A case where the cellulose derivative particles have an alkoxy group with 2 or more carbon atoms will be described. The number of carbon atoms in the alkoxy group is not particularly limited as long as it is 2 or more, but may be 3 or more, or may be 5 or more. Moreover, it may be 20 or less, preferably 8 or less.

また、セルロース誘導体粒子は、炭素数が2以上のアルコキシ基及び炭素数が1のアルコキシ基(メトキシ基)の両方を有してよい。 Moreover, the cellulose derivative particles may have both an alkoxy group having two or more carbon atoms and an alkoxy group having one carbon number (methoxy group).

炭素数が2以上のアルコキシ基としては、例えば、エトキシ基、プロトキシ基、ブトキシ基、ペントキシ基、ヘキソキシ基、ヘプトキシ基、及びオクトキシ基等が挙げられる。 Examples of alkoxy groups having 2 or more carbon atoms include ethoxy, propoxy, butoxy, pentoxy, hexoxy, heptoxy, and octoxy groups.

セルロース誘導体粒子が炭素数が3以上のアシル基を有する場合について述べる。そのアシル基の炭素数は3以上であれば、特に限定されるものではないが、4以上であってよく、10以上であってよく、14以上であってよい。また、40以下であってよく、18以下が好ましい。アシル基の炭素数が多くなるほどセルロース誘導体粒子の柔軟性は増す。 A case where the cellulose derivative particles have an acyl group with 3 or more carbon atoms will be described. The number of carbon atoms in the acyl group is not particularly limited as long as it is 3 or more, but may be 4 or more, 10 or more, or 14 or more. Moreover, it may be 40 or less, preferably 18 or less. As the number of carbon atoms in the acyl group increases, the flexibility of the cellulose derivative particles increases.

また、セルロース誘導体粒子は、炭素数が3以上のアシル基及び炭素数が2のアシル基(アセチル基)の両方を有してよい。 Moreover, the cellulose derivative particles may have both an acyl group having 3 or more carbon atoms and an acyl group having 2 carbon atoms (acetyl group).

炭素数が3以上のアシル基としては、例えば、プロピオニル基、ブチリル基、ぺンタノィル(バレリル)基、へキサノイル基、ヘプタノイル基、オクタノイル基、ノナノイル基、ウンデカノイル基、ドデカノイル基、トリデカノイル基、テトラデカノイル(ミリストイル)基、ペンタデカノイル基、へキサデカノイル基、ヘプタデカノイル基、及びオクタデカノイル(ステアロイル)基等が挙げられる。 Examples of acyl groups having 3 or more carbon atoms include propionyl, butyryl, pentanoyl (valeryl), hexanoyl, heptanoyl, octanoyl, nonanoyl, undecanoyl, dodecanoyl, tridecanoyl, and tetradecanyl. Noyl (myristoyl) group, pentadecanoyl group, hexadecanoyl group, heptadecanoyl group, octadecanoyl (stearoyl) group and the like.

本開示のセルロース誘導体粒子の平均粒子径は、80nm以上100μm以下であるところ、その平均粒子径は、100nm以上であってよく、1μm以上であってよく、2μm以上であってよく、4μm以上であってよい。また、80μm以下であってよく、40μm以下であってよく、20μm以下であってよく、14μm以下であってよい。平均粒子径が大きすぎると、その触感に劣る他、光散乱(ソフトフォーカス)効果が低減する。また、平均粒子径が小さすぎると、製造が困難となる。なお、触感としては、セルロース誘導体粒子に直接触れる場合の他、例えば、化粧品組成物に配合した場合の肌触りや触感が挙げられる。 Where the average particle diameter of the cellulose derivative particles of the present disclosure is 80 nm or more and 100 μm or less, the average particle diameter may be 100 nm or more, 1 μm or more, 2 μm or more, or 4 μm or more. It's okay. Further, it may be 80 μm or less, 40 μm or less, 20 μm or less, or 14 μm or less. If the average particle size is too large, the tactile sensation is poor and the light scattering (soft focus) effect is reduced. On the other hand, if the average particle size is too small, production becomes difficult. The tactile sensation includes not only the tactile sensation when the cellulose derivative particles are directly touched, but also the tactile sensation when the cellulose derivative particles are blended in a cosmetic composition.

平均粒子径は、動的光散乱法を用いて測定することができる。具体的には、以下のとおりである。まず、100ppm濃度のセルロース誘導体粒子を、超音波振動装置を用いて純水懸濁液とすることにより、試料を調製する。その後、レーザー回折法(株式会社堀場製作所「レーザ回折/散乱式粒子径分布測定装置LA-960」、超音波処理15分、屈折率(1.500、媒体(水;1.333))により、体積頻度粒度分布を測定することにより平均粒子径を測定することができる。なお、ここでいう平均粒子径とは、この粒度分布における散乱強度の積算50%に対応する粒子径の値のことをいう。 The average particle size can be measured using a dynamic light scattering method. Specifically, it is as follows. First, a sample is prepared by making a pure water suspension of cellulose derivative particles with a concentration of 100 ppm using an ultrasonic vibration device. After that, by the laser diffraction method (Horiba Ltd. "Laser diffraction/scattering particle size distribution analyzer LA-960", ultrasonic treatment for 15 minutes, refractive index (1.500, medium (water; 1.333)), The average particle size can be measured by measuring the volume frequency particle size distribution.The average particle size here means the value of the particle size corresponding to the cumulative scattering intensity of 50% in this particle size distribution. say.

本開示のセルロース誘導体粒子の粒子径変動係数は、0%以上60%以下であってよく、2%以上50%以下であってよい。 The particle size variation coefficient of the cellulose derivative particles of the present disclosure may be 0% or more and 60% or less, and may be 2% or more and 50% or less.

粒子径変動係数(%)は、粒子径の標準偏差/平均粒子径×100によって算出できる。 The particle size variation coefficient (%) can be calculated by (standard deviation of particle size/average particle size×100).

本開示のセルロース誘導体粒子の真球度は、70%以上100%以下であるところ、80%以上100%以下が好ましく、90%以上100%以下がより好ましく、95%以上100%以下がさらに好ましい。70%未満であると、その触感に劣り、例えば、化粧品組成物に配合した場合にも、肌触り及びソフトフォーカス効果が低下する。 The sphericity of the cellulose derivative particles of the present disclosure is 70% or more and 100% or less, preferably 80% or more and 100% or less, more preferably 90% or more and 100% or less, and even more preferably 95% or more and 100% or less. . If it is less than 70%, the tactile feel is poor, and for example, even when blended in a cosmetic composition, the tactile feel and soft focus effect are reduced.

真球度は、次の方法により測定できる。走査型電子顕微鏡(SEM)で観察した粒子の画像を用いて、ランダムに選択した30個の粒子の長径と短径を測定し、各粒子の短径/長径比を求め、その短径/長径比の平均値を真球度(%)とする。なお、真球度が100%に近いほど真球であると判断できる。 The sphericity can be measured by the following method. Using the image of the particles observed with a scanning electron microscope (SEM), the major axis and minor axis of 30 randomly selected particles are measured, the minor axis/major axis ratio of each particle is obtained, and the minor axis/major axis is obtained. Let the average value of the ratios be the sphericity (%). It should be noted that the closer the sphericity is to 100%, the more sphericity can be determined.

本開示のセルロース誘導体粒子の表面平滑度は、80%以上100%以下であるところ、85%以上100%以下が好ましく、90%以上100%以下がより好ましい。80%未満であると、その触感に劣る。100%により近い方が触感的に好ましい。 The surface smoothness of the cellulose derivative particles of the present disclosure is 80% or more and 100% or less, preferably 85% or more and 100% or less, and more preferably 90% or more and 100% or less. If it is less than 80%, the tactile sensation is poor. The closer to 100%, the better the tactile sensation.

表面平滑度は、粒子の走査型電子顕微鏡写真を撮り、粒子表面の凹凸を観察し、凹部の面積に基づいて求めることができる。 The surface smoothness can be obtained by taking a scanning electron micrograph of the particle, observing the unevenness of the particle surface, and determining the area of the recesses.

本開示のセルロース誘導体粒子のセルロース誘導体は、総置換度が0.7以上3以下であるところ、1.0以上3以下が好ましく、1.4以上3以下がより好ましく、2.0以上3以下がさらに好ましい。成形性に優れ、真球度が高い球状粒子の製造が容易なためである。 The cellulose derivative of the cellulose derivative particles of the present disclosure has a total substitution degree of 0.7 or more and 3 or less, preferably 1.0 or more and 3 or less, more preferably 1.4 or more and 3 or less, and 2.0 or more and 3 or less. is more preferred. This is because it is easy to produce spherical particles with excellent moldability and high sphericity.

総置換度が0.7未満であると水溶性が高くなり、後述するセルロース誘導体粒子の製造における粒子を抽出する工程、特に分散体から水溶性高分子を除去する工程において、セルロース誘導体が溶出しやすく、得られる粒子の真球度が低下する場合があり、そのため触感に劣る場合がある。なお、3により近い方がセルロース誘導体粒子の生分解性に劣る。 If the total degree of substitution is less than 0.7, the water solubility is high, and the cellulose derivative is eluted in the step of extracting particles in the production of cellulose derivative particles described later, particularly in the step of removing the water-soluble polymer from the dispersion. In some cases, the sphericity of the resulting particles is reduced, and the tactile sensation is therefore inferior in some cases. In addition, the closer to 3, the lower the biodegradability of the cellulose derivative particles.

セルロース誘導体の総置換度は、以下の方法により測定できる。まず、セルロース誘導体の総置換度とは、セルロース誘導体のグルコース環の2,3,6位の各置換度の和であり、セルロース誘導体のグルコース環の2,3,6位の各置換度は、手塚(Tezuka, Carbonydr. Res. 273, 83(1995))の方法に従いNMR法で測定できる。すなわち、セルロース誘導体の遊離水酸基をピリジン中でカルボン酸無水物によりアシル化する。ここで使用するカルボン酸無水物の種類は分析目的に応じて選択すべきであり、例えば、セルロースアセテートプロピオネートのプロピオニル置換度を分析する場合は無水酢酸が良く、アセチル置換度を分析する場合は無水プロピオン酸がよい。アシル化反応の溶媒及び酸無水物は分析対象のセルロース誘導体に応じて適宜選択すればよい。 The total degree of substitution of cellulose derivatives can be measured by the following method. First, the total degree of substitution of the cellulose derivative is the sum of the degrees of substitution at the 2, 3, and 6 positions of the glucose ring of the cellulose derivative, and the degree of substitution at the 2, 3, and 6 positions of the glucose ring of the cellulose derivative is It can be measured by the NMR method according to the method of Tezuka (Carbonydr. Res. 273, 83 (1995)). That is, the free hydroxyl groups of the cellulose derivative are acylated with a carboxylic acid anhydride in pyridine. The type of carboxylic anhydride used here should be selected according to the purpose of analysis. For example, acetic anhydride is good for analyzing the degree of propionyl substitution of cellulose acetate propionate, and is preferably propionic anhydride. The solvent and acid anhydride for the acylation reaction may be appropriately selected according to the cellulose derivative to be analyzed.

アシル化して得られた試料を重クロロホルムに溶解し、13C-NMRスペクトルを測定する。置換基がアセチル基、プロピオニル基、またはブチリル基である場合を例に挙げれば、アセチル基の炭素シグナルは169ppmから171ppmの領域に高磁場から2位、3位、6位の順序で、プロピオニル基のカルボニル炭素のシグナルは、172ppmから174ppmの領域に同じ順序で、ブチリル基の炭素シグナルは、171ppmから173ppmの領域に同様に高磁場側から2位、3位、6位の順序で現れる。他の例を挙げれば、プロピオニル基を有するセルロース誘導体か、または、プロピオニル基を有しないセルロース誘導体を分析目的で無水プロピオン酸で処理し、プロピオニル置換度を分析する場合は、プロピオニル基のカルボニル炭素のシグナルは、172ppmから174ppmの領域に同じ順序で現れる。 A sample obtained by acylation is dissolved in deuterated chloroform, and the 13 C-NMR spectrum is measured. Taking as an example the case where the substituent is an acetyl group, a propionyl group, or a butyryl group, the carbon signal of the acetyl group is in the region of 169 ppm to 171 ppm from the high magnetic field in the order of 2-, 3-, and 6-positions, followed by the propionyl group. carbonyl carbon signals appear in the same order in the region from 172 ppm to 174 ppm, and butyryl group carbon signals appear in the region from 171 ppm to 173 ppm in the same order as the 2nd, 3rd, and 6th positions from the high magnetic field side. As another example, when a cellulose derivative having a propionyl group or a cellulose derivative having no propionyl group is treated with propionic anhydride for analytical purposes and the degree of propionyl substitution is analyzed, the carbonyl carbon of the propionyl group is The signals appear in the same order in the region from 172 ppm to 174 ppm.

手塚の方法やそれに準じる方法で無水カルボン酸で処理したセルロース誘導体の総置換度は3.0なので、セルロース誘導体がもともと有するアシル基のカルボニル炭素シグナルと、無水カルボン酸処理で導入したアシル基のカルボニルシグナルの面積の総和を3.0と規格化し、それぞれ対応する位置でのアセチル基とプロピオニル基の存在比(各シグナルの面積比)を求めれば、元のセルロース誘導体におけるグルコース環の2,3,6位の各アシル置換度を求めることができる。なお、言うまでもなく、この方法で分析できるアシル基を含む置換基は、分析目的の処理に用いる無水カルボン酸に対応しない置換基のみである。 Since the total degree of substitution of cellulose derivatives treated with carboxylic anhydride by Tezuka's method or a similar method is 3.0, the carbonyl carbon signal of the acyl group originally possessed by the cellulose derivative and the carbonyl of the acyl group introduced by the carboxylic anhydride treatment The sum of the areas of the signals is normalized to 3.0, and the abundance ratio of the acetyl group and the propionyl group at the corresponding positions (the area ratio of each signal) is obtained. Each degree of acyl substitution at the 6-position can be determined. Needless to say, substituents containing acyl groups that can be analyzed by this method are only substituents that do not correspond to the carboxylic anhydride used for the treatment for analytical purposes.

ただし、試料であるセルロース誘導体のグルコース環の2位、3位及び6位の総置換度が3.0であり、かつその置換基が全てアセチル基及びプロピオニル基等の限定的な置換基であることが予め把握される場合には、アシル化の工程を除き、試料を直接重クロロホルムに溶解してNMRスペクトルを測定することもできる。置換基が全てアセチル基及びプロピオニル基であれば、アシル化の工程を含む場合と同様に、アセチル基の炭素シグナルは169ppmから171ppmの領域に高磁場から2位、3位、6位の順序で、プロピオニル基の炭素のシグナルは、172ppmから174ppmの領域に同じ順序で現れるので、それぞれ対応する位置でのアセチル基及びプロピオニル基の存在比(言い換えれば、各シグナルの面積比)から、セルロース誘導体におけるグルコース環の2位、3位、6位の各アセチル及びプロピオニル置換度等の置換度を求めることができる。 However, the total degree of substitution at the 2-, 3-, and 6-positions of the glucose ring of the cellulose derivative as a sample is 3.0, and the substituents are all limited substituents such as acetyl and propionyl groups. If this is known in advance, the NMR spectrum can be measured by directly dissolving the sample in deuterated chloroform, excluding the acylation step. If the substituents are all acetyl and propionyl groups, the carbon signals of the acetyl groups are in the region of 169 ppm to 171 ppm in the order 2, 3, 6 from the high magnetic field, as in the case involving the step of acylation. , the carbon signals of the propionyl group appear in the same order in the region from 172 ppm to 174 ppm, so from the abundance ratio of the acetyl group and the propionyl group at the corresponding positions (in other words, the area ratio of each signal), in the cellulose derivative Degrees of substitution such as acetyl and propionyl substitution at the 2-, 3-, and 6-positions of the glucose ring can be determined.

本開示のセルロース誘導体粒子は、嵩比重が0.1以上0.9以下であってよく、0.5以上0.9以下であってよく、0.6以上0.9以下であってよい。例えば、その粒子を化粧品に配合した場合、粒子の嵩比重が高い程、その化粧品組成物の流動性が良くなる。嵩比重は、JIS K 1201-1に準拠した方法により測定することができる。 The cellulose derivative particles of the present disclosure may have a bulk specific gravity of 0.1 or more and 0.9 or less, 0.5 or more and 0.9 or less, or 0.6 or more and 0.9 or less. For example, when the particles are incorporated into cosmetics, the higher the bulk specific gravity of the particles, the better the fluidity of the cosmetic composition. Bulk specific gravity can be measured by a method based on JIS K 1201-1.

本開示のセルロース誘導体粒子は、真比重が1を超えることが好ましく、1.04以上がより好ましく、1.1以上がさらに好ましく、1.2以上が最も好ましい。セルロース誘導体微粒子の真球度を70%以上とする観点からは、1.35以下であってよい。真比重は、JIS Z 8807-1976「固体比重測定方法」の2.比重びんによる測定方法(液体:水)により測定することができる。 The cellulose derivative particles of the present disclosure preferably have a true specific gravity of more than 1, more preferably 1.04 or more, even more preferably 1.1 or more, and most preferably 1.2 or more. From the viewpoint of making the sphericity of the cellulose derivative fine particles 70% or more, it may be 1.35 or less. The true specific gravity is 2. of JIS Z 8807-1976 "Solid specific gravity measurement method". It can be measured by a pycnometer measurement method (liquid: water).

真比重は、4℃の水の密度:0.999973g/cm-3とを基準とした比重である。 The true specific gravity is based on the density of water at 4° C.: 0.999973 g/cm −3 .

本開示のセルロース誘導体粒子は可塑剤を含有してよく、含有しなくてもよい。本開示において可塑剤とは、セルロース誘導体の可塑性を増加させることができる化合物をいう。可塑剤は、特に限定されるものではなく、例えば、アジピン酸ジメチル、アジピン酸ジブチル、アジピン酸ジイソステアリル、アジピン酸ジイソデシル、アジピン酸ジイソノニル、アジピン酸ジイソブチル、アジピン酸ジイソプロピル、アジピン酸ジエチルヘキシルアジピン酸ジオクチル、アジピン酸ジオクチルドデシル、アジピン酸ジカプリル、及びアジピン酸ジヘキシルデシル等のアジピン酸エステルを含むアジピン酸系可塑剤;クエン酸アセチルトリエチル、クエン酸アセチルトリブチル、クエン酸イソデシル、クエン酸イソプロピル、クエン酸トリエチル、クエン酸トリエチルヘキシル、及びクエン酸トリブチル等のクエン酸エステルを含むクエン酸系可塑剤;グルタル酸ジイソブチル、グルタル酸ジオクチル、及びグルタル酸ジメチル等のグルタル酸エステルを含むグルタル酸系可塑剤;コハク酸ジイソブチル、コハク酸ジエチル、コハク酸ジエチルヘキシル、及びコハク酸ジオクチル等のコハク酸エステルを含むコハク酸系可塑剤;セバシン酸ジイソアミル、セバシン酸ジイソオクチル、セバシン酸ジイソプロピル、セバシン酸ジエチル、セバシン酸ジエチルヘキシル、及びセバシン酸ジオクチル等のセバシン酸エステルを含むセバシン酸系可塑剤;トリアセチン、ジアセチン、及びモノアセチン等のグリセリンアルキルエステルを含むグリセリンエステル系可塑剤;ネオペンチルグリコール;並びにリン酸トリオレイル、リン酸トリステアリル、及びリン酸トリセチル等のリン酸エステルを含むリン酸系可塑剤が挙げられる。これらの可塑剤は、単独で用いてもよく、2以上の可塑剤を組み合せて用いてもよい。 The cellulose derivative particles of the present disclosure may or may not contain a plasticizer. A plasticizer in the present disclosure refers to a compound capable of increasing the plasticity of a cellulose derivative. The plasticizer is not particularly limited, and examples thereof include dimethyl adipate, dibutyl adipate, diisostearyl adipate, diisodecyl adipate, diisononyl adipate, diisobutyl adipate, diisopropyl adipate, and diethylhexyl adipate. Adipate plasticizers, including adipate esters such as dioctyl, dioctyldodecyl adipate, dicapryl adipate, and dihexyldecyl adipate; acetyltriethyl citrate, acetyltributyl citrate, isodecyl citrate, isopropyl citrate, triethyl citrate citrate plasticizers, including citrate esters such as , triethylhexyl citrate, and tributyl citrate; glutarate plasticizers, including glutarate esters such as diisobutyl glutarate, dioctyl glutarate, and dimethyl glutarate; succinic acid Succinate plasticizers, including succinate esters such as diisobutyl, diethyl succinate, diethylhexyl succinate, and dioctyl succinate; diisoamyl sebacate, diisooctyl sebacate, diisopropyl sebacate, diethyl sebacate, diethylhexyl sebacate, and sebacate plasticizers, including sebacate esters such as dioctyl sebacate; glycerol ester plasticizers, including glycerol alkyl esters such as triacetin, diacetin, and monoacetin; neopentyl glycol; and trioleyl phosphate, tristearyl phosphate, and phosphate-based plasticizers including phosphate esters such as tricetyl phosphate. These plasticizers may be used alone, or two or more plasticizers may be used in combination.

これらの中でも、クエン酸トリエチル、クエン酸アセチルトリエチル、及びクエン酸アセチルトリブチル等のクエン酸エステルを含むクエン酸系可塑剤;トリアセチン、ジアセチン、及びモノアセチン等のグリセリンアルキルエステルを含むグリセリンエステル系可塑剤;並びにアジピン酸ジイソノニル等のアジピン酸系可塑剤からなる群より選択される少なくとも1以上が好ましく、クエン酸トリエチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル、トリアセチン、及びアジピン酸ジイソノニルからなる群より選択される少なくとも1以上がより好ましく、クエン酸アセチルトリエチル、トリアセチン、及びジアセチンからなる群より選択される少なくとも1以上がさらに好ましい。フタル酸系可塑剤は使用可能ではあるが、環境ホルモンとの類似性が懸念されるため使用には注意が必要である。 Citric acid-based plasticizers, including citric acid esters such as triethyl citrate, acetyltriethyl citrate, and acetyltributyl citrate, among others; glycerol ester-based plasticizers, including glycerol alkyl esters such as triacetin, diacetin, and monoacetin; and at least one selected from the group consisting of adipic acid-based plasticizers such as diisononyl adipate, and is preferably selected from the group consisting of triethyl citrate, acetyltriethyl citrate, acetyltributyl citrate, triacetin, and diisononyl adipate. and more preferably at least one selected from the group consisting of acetyltriethyl citrate, triacetin, and diacetin. Although phthalic acid-based plasticizers can be used, they should be used with caution due to concerns about their similarity to endocrine disruptors.

セルロース誘導体粒子が可塑剤を含有する場合、セルロース誘導体粒子に含まれる可塑剤の含有量は、特に限定されない。例えば、セルロース誘導体粒子の重量に対し、0重量%を超え40重量%以下であってよく、0.01重量%以上40重量%以下であってよく、0.05重量%以上35重量%以下であってよく、0.1重量%以上30重量%以下であってよく、0.4重量%以上20重量%以下であってよく、0.4重量%以上15重量%以下であってよく、0.4重量%以上10重量%以下であってよく、0.4重量%以上5重量%以下であってよく、0.4重量%以上2.5重量%以下であってよい。可塑剤の含有量は少ない方がよいが、多く存在しても本発明の目的を損なわない限り許容される。 When the cellulose derivative particles contain a plasticizer, the content of the plasticizer contained in the cellulose derivative particles is not particularly limited. For example, with respect to the weight of the cellulose derivative particles, it may be more than 0% by weight and 40% by weight or less, may be 0.01% by weight or more and 40% by weight or less, or may be 0.05% by weight or more and 35% by weight or less. may be 0.1 wt% or more and 30 wt% or less, may be 0.4 wt% or more and 20 wt% or less, may be 0.4 wt% or more and 15 wt% or less, and 0 0.4 wt % or more and 10 wt % or less, 0.4 wt % or more and 5 wt % or less, or 0.4 wt % or more and 2.5 wt % or less. The content of the plasticizer is preferably as low as possible, but a large content is permissible as long as the object of the present invention is not impaired.

セルロース誘導体粒子における可塑剤の含有量は、セルロース誘導体粒子を溶解できる溶媒にセルロース誘導体粒子を溶解して、その溶液をH-NMR測定によって求められる。 The content of the plasticizer in the cellulose derivative particles is determined by dissolving the cellulose derivative particles in a solvent capable of dissolving the cellulose derivative particles and subjecting the solution to 1 H-NMR measurement.

本開示のセルロース誘導体粒子は、後述の製造方法により製造することができる。 The cellulose derivative particles of the present disclosure can be produced by the below-described production method.

本開示のセルロース誘導体粒子は、触感に優れることから、例えば、化粧品組成物に好適に用いることができる。また、高い真球度を有することから、化粧品組成物に配合すれば、肌の凹凸を埋めて滑らかにし、光を様々な方向に散乱させることでしわなどを目立ちにくくする(ソフトフォーカス)効果が得られる。 Since the cellulose derivative particles of the present disclosure have excellent tactile sensation, they can be suitably used, for example, in cosmetic compositions. In addition, due to its high sphericity, when blended in a cosmetic composition, it has the effect of filling unevenness in the skin to make it smooth and scattering light in various directions to make wrinkles less noticeable (soft focus). can get.

化粧品組成物としては、リキッドファンデーション及びパウダーファンデーション等のファンデーション;コンシーラー;日焼け止め;化粧下地;口紅及び口紅用下地;ボディパウダー、固形白粉、及びフェイスパウダー等のおしろい:固形粉末アイシャドー;皺隠しクリーム;並びにスキンケアローション等の主に化粧を目的とした皮膚及び毛外用剤が含まれ、その剤型は限定されない。剤型としては、水溶液、乳液、懸濁液等の液剤;ゲル及びクリーム等の半固形剤;粉末、顆粒及び固形等の固形剤のいずれあってもよい。また、クリームや乳液等のエマルション剤型;口紅等のオイルゲル剤型;ファンデーション等のパウダー剤型;及びヘアスタイリング剤等のエアゾール剤型等であってもよい。 Cosmetic compositions include foundations such as liquid foundations and powder foundations; concealers; sunscreens; makeup bases; lipsticks and bases for lipsticks; and skin and hair external preparations mainly for cosmetic purposes, such as skin care lotions, which are not limited in dosage form. The dosage form may be any of liquid formulations such as aqueous solutions, emulsions and suspensions; semi-solid formulations such as gels and creams; solid formulations such as powders, granules and solid formulations. Further, it may be an emulsion dosage form such as cream or milky lotion; an oil gel dosage form such as lipstick; a powder dosage form such as foundation; and an aerosol dosage form such as hair styling agent.

本開示のセルロース誘導体粒子を含有する化粧品組成物、特に、リキッドファンデーションは、肌への伸び、シミやソバカスのカバー力、及び滑り性にも優れる。 A cosmetic composition containing the cellulose derivative particles of the present disclosure, particularly a liquid foundation, is excellent in spreading on the skin, covering spots and freckles, and slipperiness.

[セルロース誘導体粒子の製造方法]
本開示のセルロース誘導体粒子の製造方法は、総置換度が0.7以上3以下のセルロース誘導体と水溶性高分子とを200℃以上280℃以下で混練して、前記セルロース誘導体を分散質とする分散体を得る工程、及び前記分散体から前記水溶性高分子を除去する工程を含む。
[Method for producing cellulose derivative particles]
In the method for producing cellulose derivative particles of the present disclosure, a cellulose derivative having a total degree of substitution of 0.7 or more and 3 or less and a water-soluble polymer are kneaded at 200° C. or more and 280° C. or less to use the cellulose derivative as a dispersoid. Obtaining a dispersion and removing the water-soluble polymer from the dispersion.

(分散体を得る工程)
分散体を得る工程においては、総置換度が0.7以上3以下のセルロース誘導体と水溶性高分子とを200℃以上280℃以下で混練して、前記セルロース誘導体を分散質とする分散体を得る。
(Step of obtaining dispersion)
In the step of obtaining a dispersion, a cellulose derivative having a total degree of substitution of 0.7 or more and 3 or less and a water-soluble polymer are kneaded at 200° C. or more and 280° C. or less to obtain a dispersion containing the cellulose derivative as a dispersoid. obtain.

前記セルロース誘導体と水溶性高分子との混練は、二軸押出機等の押出機で行うことができる。混練の温度は、シリンダー温度をいう。 The kneading of the cellulose derivative and the water-soluble polymer can be performed using an extruder such as a twin-screw extruder. The kneading temperature refers to the cylinder temperature.

二軸押出機等の押出機の先端に取り付けたダイスから分散体をひも状に押出した後、カットしてペレットにしてもよい。このときダイス温度は、220℃以上300℃以下であってよい。 The dispersion may be extruded in the form of a string from a die attached to the tip of an extruder such as a twin-screw extruder, and then cut into pellets. At this time, the die temperature may be 220° C. or more and 300° C. or less.

上記セルロースアセテートの総置換度は、0.7以上3以下であるところ、1.0以上3以下が好ましく、1.4以上3以下がより好ましく、2.0以上3以下がさらに好ましい。総置換度の調整は、熟成工程の条件(時間や温度等の条件)を調整することにより可能となる。 The total degree of substitution of the cellulose acetate is 0.7 or more and 3 or less, preferably 1.0 or more and 3 or less, more preferably 1.4 or more and 3 or less, and even more preferably 2.0 or more and 3 or less. The total degree of substitution can be adjusted by adjusting the conditions of the aging process (conditions such as time and temperature).

水溶性高分子の配合量は、セルロース誘導体及び水溶性高分子の合計量100重量部に対し、55重量部以上99重量部以下であってよい。好ましくは60重量部以上90重量部以下であり、更に好ましくは65重量部以上85重量部以下である。 The blending amount of the water-soluble polymer may be 55 parts by weight or more and 99 parts by weight or less with respect to 100 parts by weight as the total amount of the cellulose derivative and the water-soluble polymer. It is preferably 60 to 90 parts by weight, more preferably 65 to 85 parts by weight.

本明細書における水溶性高分子は、25℃において、高分子1gを100gの水に溶解した際に、不溶分が50重量%未満の高分子をいう。水溶性高分子としては、例えば、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸ナトリウム、ポリビニルピロリドン、ポリプロピレンオキシド、ポリグリセリン、ポロエチレンオキシド、酢酸ビニル、変性デンプン、熱可塑性デンプン、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、及びヒドロキシプロピルセルロース等を挙げることができる。これらの中でもポリビニルアルコール、ポリエチレングリコール及び熱可塑性デンプンが好ましく、ポリビニルアルコール及び熱可塑性デンプンが特に好ましい。なお、熱可塑性デンプンは、公知の方法で得ることができる。例えば、特公平6-6307号、WO92/
04408号などが参照でき、さらに具体的には、例えば、タピオカデンプンに可塑剤としてグリセリンを20%程度混合し、二軸押し出し機で混錬したものなどが利用できる。
A water-soluble polymer as used herein refers to a polymer having an insoluble content of less than 50% by weight when 1 g of the polymer is dissolved in 100 g of water at 25°C. Examples of water-soluble polymers include polyvinyl alcohol, polyethylene glycol, sodium polyacrylate, polyvinylpyrrolidone, polypropylene oxide, polyglycerin, polyethylene oxide, vinyl acetate, modified starch, thermoplastic starch, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, and Hydroxypropyl cellulose and the like can be mentioned. Among these, polyvinyl alcohol, polyethylene glycol and thermoplastic starch are preferred, and polyvinyl alcohol and thermoplastic starch are particularly preferred. Thermoplastic starch can be obtained by a known method. For example, Japanese Patent Publication No. 6-6307, WO92/
No. 04408 can be referred to, and more specifically, for example, tapioca starch mixed with about 20% glycerin as a plasticizer and kneaded by a twin-screw extruder can be used.

得られる分散体は、水溶性高分子を分散媒、前記セルロース誘導体を分散質とする分散体である。言い換えれば、水溶性高分子を海成分、前記セルロース誘導体を島成分とする構成であってよい。分散体において、島成分を構成する前記混錬物は、セルロース誘導体を含有し、主に球状である。 The resulting dispersion is a dispersion containing the water-soluble polymer as a dispersion medium and the cellulose derivative as a dispersoid. In other words, the water-soluble polymer may be the sea component, and the cellulose derivative may be the island component. In the dispersion, the kneaded material constituting the island component contains a cellulose derivative and is mainly spherical.

置換度が0.7以上3以下のセルロース誘導体は、公知の誘導体の製造方法により製造できる。セルロース誘導体がセルロースエステルの場合、例えば、原料パルプ(セルロース)を活性化する工程;活性化されたセルロースをエステル化剤(アシル化剤)でアシル化する工程;アシル化反応の終了後、アシル化剤を失活させる工程;生成したセルロースアシレートを熟成(ケン化、加水分解)する工程を経て製造できる。また、活性化する工程の前に、原料パルプを、離解・解砕後、酢酸を散布混合する前処理工程を有してよい。熟成(ケン化、加水分解)する工程の後、沈澱分離、精製、安定化、乾燥する後処理工程を有してよい。 A cellulose derivative having a degree of substitution of 0.7 or more and 3 or less can be produced by a known derivative production method. When the cellulose derivative is a cellulose ester, for example, a step of activating the raw material pulp (cellulose); a step of acylating the activated cellulose with an esterifying agent (acylating agent); It can be produced through a step of deactivating the agent; and a step of maturing (saponifying, hydrolyzing) the produced cellulose acylate. Moreover, before the step of activating, a pretreatment step of sprinkling and mixing the raw material pulp with acetic acid after disintegration and crushing may be included. After the step of aging (saponification, hydrolysis), post-treatment steps of sedimentation, purification, stabilization and drying may be included.

また、セルロース誘導体がセルロースエーテルの場合、イソプロピルアルコール(IPA)や第3級ブタノール(TBA)等の低級脂肪族アルコール、水、及び水酸化ナトリウム等のアルカリ金属水酸化物の混合液に原料パルプ(セルロース)を浸漬して、セルロースエーテルの前駆体となるアルカリセルロースを得る工程;及び、さらにエーテル化剤を添加し、スラリー化(沈殿化)する工程を経て製造できる。また、アルカリセルロースを得る工程の前に、原料パルプを、離解・解砕後、酢酸を散布混合する前処理工程を有してよい。スラリー化(沈殿化)する工程の後、沈澱分離、精製、安定化、乾燥する後処理工程を有してよい。 When the cellulose derivative is cellulose ether, raw pulp ( cellulose) to obtain alkali cellulose, which is a precursor of cellulose ether; In addition, before the step of obtaining alkali cellulose, a pretreatment step of sprinkling and mixing the raw material pulp with acetic acid after disintegration and crushing may be included. After the step of slurrying (precipitating), post-treatment steps of precipitation separation, purification, stabilization and drying may be carried out.

(水溶性高分子を除去する工程)
前記分散体から水溶性高分子を除去する工程について述べる。
(Step of removing water-soluble polymer)
The step of removing the water-soluble polymer from the dispersion will be described.

水溶性高分子を除去する方法としては、水溶性高分子を溶解し当該粒子から除去することができれば、特に限定されるものではないが、例えば、水;メタノール、エタノール、イソプロパノール等のアルコール;または、それらの混合溶液等の溶媒を用いて前記分散体の水溶性高分子を溶解して除去する方法が挙げられる。具体的には、例えば、前記分散体と前記溶媒とを混合し、ろ過してろ物を取り出すこと等によって、分散体から水溶性高分子を除去する方法が挙げられる。 The method for removing the water-soluble polymer is not particularly limited as long as the water-soluble polymer can be dissolved and removed from the particles. Examples include water; alcohols such as methanol, ethanol, and isopropanol; , a method of dissolving and removing the water-soluble polymer in the dispersion using a solvent such as a mixed solution thereof. Specifically, for example, a method of removing the water-soluble polymer from the dispersion by, for example, mixing the dispersion and the solvent, filtering the mixture, and taking out the filter cake can be used.

後述のとおり、分散体を得る工程の前に、総置換度が0.7以上3以下のセルロース誘導体と可塑剤とを混合して、前記可塑剤が含浸したセルロース誘導体を調製する場合、分散体から水溶性高分子を除去する工程において、可塑剤は、水溶性高分子と共に分散体から除去してよく、除去しなくてもよい。したがって、得られるセルロース誘導体粒子は可塑剤を含有してよく、含有しなくてもよい。 As will be described later, when preparing a cellulose derivative impregnated with the plasticizer by mixing a cellulose derivative having a total degree of substitution of 0.7 or more and 3 or less and a plasticizer before the step of obtaining a dispersion, the dispersion In the step of removing the water-soluble polymer from the dispersion, the plasticizer may or may not be removed from the dispersion together with the water-soluble polymer. Therefore, the resulting cellulose derivative particles may or may not contain a plasticizer.

分散体と溶媒との混合比率について、分散体及び溶媒の合計重量に対し分散体が0.01重量%以上20重量%以下が好ましく、2重量%以上15重量%以下がより好ましく、4重量%以上13重量%以下がさらに好ましい。分散体が20重量%よりも高い場合には、水溶性高分子の溶解が不十分となり洗浄除去できなくなったり、溶媒に溶解していないセルロース誘導体粒子と溶媒に溶解している水溶性高分子とをろ過や遠心分離等の操作で分離するのが困難となる。 Regarding the mixing ratio of the dispersion and the solvent, the dispersion is preferably 0.01% by weight or more and 20% by weight or less, more preferably 2% by weight or more and 15% by weight or less, and 4% by weight based on the total weight of the dispersion and the solvent. Above 13% by weight is more preferable. If the content of the dispersion is higher than 20% by weight, the water-soluble polymer cannot be sufficiently dissolved and removed by washing, or the cellulose derivative particles that are not dissolved in the solvent and the water-soluble polymer that is dissolved in the solvent are mixed. becomes difficult to separate by operations such as filtration and centrifugation.

分散体と溶媒との混合温度は、0℃以上200℃以下が好ましく、20℃以上110℃以下がより好ましく、40℃以上80℃以下がさらに好ましい。0℃より低温では、水溶性高分子の溶解性が不十分となり洗浄除去が困難となり、200℃を超える温度では、粒子の変形や凝集等が発生し、所望の粒子の形状を維持したまま、粒子を取り出すことが困難となる。 The temperature for mixing the dispersion and the solvent is preferably 0° C. or higher and 200° C. or lower, more preferably 20° C. or higher and 110° C. or lower, even more preferably 40° C. or higher and 80° C. or lower. When the temperature is lower than 0°C, the solubility of the water-soluble polymer becomes insufficient and it becomes difficult to remove it by washing. It becomes difficult to take out the particles.

分散体と溶媒との混合時間は、特に限定されるものではなく適宜調整すればよいが、例えば0.5時間以上、1時間以上、3時間以上、5時間以上であってよく、6時間以下であってよい。 The mixing time of the dispersion and the solvent is not particularly limited and may be adjusted as appropriate. can be

また、当該混合の方法として、水溶性高分子を溶解できれば限定されないが、例えば、超音波ホモジナイザー、スリーワンモータなどの攪拌装置を用いることで、室温でも効率よく、分散体から水溶性高分子を除去することができる。 The mixing method is not limited as long as the water-soluble polymer can be dissolved. For example, by using a stirring device such as an ultrasonic homogenizer or a three-one motor, the water-soluble polymer can be efficiently removed from the dispersion even at room temperature. can do.

例えば、撹拌装置としてスリーワンモータを用いる場合、分散体と溶媒との混合時の回転数は、例えば、5rpm以上3000rpm以下であってよい。これにより、より効率よく、分散体から水溶性高分子を除去することができる。また、分散体から可塑剤を効率よく除去することにもなる。 For example, when a three-one motor is used as the stirring device, the rotation speed during mixing of the dispersion and the solvent may be, for example, 5 rpm or more and 3000 rpm or less. Thereby, the water-soluble polymer can be removed from the dispersion more efficiently. It also effectively removes the plasticizer from the dispersion.

(任意工程:可塑剤が含浸したセルロース誘導体を得る工程)
前記総置換度が0.7以上3以下のセルロース誘導体が、可塑剤が含浸したセルロース誘導体であってよく、前記分散体を得る工程の前に、総置換度が0.7以上3以下のセルロース誘導体と可塑剤とを混合して、前記可塑剤が含浸したセルロース誘導体を得る工程を有してよい。当該工程においては、総置換度が0.7以上3以下のセルロース誘導体と可塑剤とを混合する。
(Optional step: step of obtaining a cellulose derivative impregnated with a plasticizer)
The cellulose derivative having a total degree of substitution of 0.7 or more and 3 or less may be a cellulose derivative impregnated with a plasticizer, and the cellulose derivative having a total degree of substitution of 0.7 or more and 3 or less is prepared before the step of obtaining the dispersion. There may be a step of mixing the derivative with a plasticizer to obtain a cellulose derivative impregnated with said plasticizer. In this step, a cellulose derivative having a total substitution degree of 0.7 or more and 3 or less and a plasticizer are mixed.

可塑剤としては、セルロースア誘導体の溶融押出加工において可塑効果を有するものであれば特に限定無く使用することができ、具体的には、セルロース誘導体粒子に含有される可塑剤として例示した上記可塑剤を、単独または2以上の可塑剤を組み合せて使用することができる。 Any plasticizer can be used without any particular limitation as long as it has a plasticizing effect in the melt-extrusion process of the cellulose derivative. can be used alone or in combination with two or more plasticizers.

例示した上記可塑剤の中でも、クエン酸トリエチル、クエン酸アセチルトリエチル、及びクエン酸アセチルトリブチル等のクエン酸エステルを含むクエン酸系可塑剤;トリアセチン、ジアセチン、及びモノアセチン等のグリセリンアルキルエステルを含むグリセリンエステル系可塑剤;並びにアジピン酸ジイソノニル等のアジピン酸系可塑剤からなる群より選択される少なくとも1以上が好ましく、クエン酸トリエチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル、トリアセチン、及びアジピン酸ジイソノニルからなる群より選択される少なくとも1以上がより好ましく、クエン酸アセチルトリエチル、トリアセチン、及びジアセチンからなる群より選択される少なくとも1以上がさらに好ましい。フタル酸系可塑剤は環境ホルモンとの類似性が懸念されるため使用には注意が必要である。 Citric acid-based plasticizers, including citric acid esters such as triethyl citrate, acetyltriethyl citrate, and acetyltributyl citrate, among the plasticizers exemplified above; glycerol esters, including glycerol alkyl esters such as triacetin, diacetin, and monoacetin. and at least one selected from the group consisting of adipic acid-based plasticizers such as diisononyl adipate, triethyl citrate, acetyltriethyl citrate, acetyltributyl citrate, triacetin, and diisononyl adipate. At least one selected from the group is more preferable, and at least one selected from the group consisting of acetyltriethyl citrate, triacetin, and diacetin is more preferable. Caution is required when using phthalate plasticizers due to concerns about their similarity to endocrine disruptors.

可塑剤の配合量は、セルロース誘導体及び可塑剤の合計量100重量部に対し、0重量部を超え40重量部以下であってよく、2重量部以上40重量部以下であってよく、10重量部以上30重量部以下であってよく、15重量部以上20重量部以下であってよい。少なすぎると、得られるセルロース誘導体粒子の真球度が低下する傾向となり、多すぎると粒子の形状を保つことができず、真球度が低下する傾向となる。 The blending amount of the plasticizer may be more than 0 parts by weight and 40 parts by weight or less, may be 2 parts by weight or more and 40 parts by weight or less, or 10 parts by weight with respect to the total amount of 100 parts by weight of the cellulose derivative and the plasticizer. parts or more and 30 parts by weight or less, or 15 parts by weight or more and 20 parts by weight or less. If it is too small, the sphericity of the obtained cellulose derivative particles tends to decrease, and if it is too large, the shape of the particles cannot be maintained and the sphericity tends to decrease.

セルロースアセテート誘導体と可塑剤との混合は、ヘンシェルミキサー等の混合機を用いて乾式又は湿式で行うことができる。ヘンシェルミキサー等の混合機を用いる場合、混合機内の温度は、セルロース誘導体が溶融しない温度、例えば、20℃以上200℃未満の範囲としてよい。 The cellulose acetate derivative and the plasticizer can be mixed in a dry or wet manner using a mixer such as a Henschel mixer. When using a mixer such as a Henschel mixer, the temperature in the mixer may be a temperature at which the cellulose derivative does not melt, for example, in the range of 20°C or higher and lower than 200°C.

また、セルロース誘導体と可塑剤との混合は、溶融混練によって行ってもよい。そして、溶融混練は、ヘンシェルミキサー等の混合機を用いた混合と組み合わせて行ってもよく、その場合、ヘンシェルミキサー等の混合機を用いて、温度条件20℃以上200℃未満の範囲で混合した後に、溶融混練を行うことが好ましい。可塑剤とセルロース誘導体とがより均一に、また短時間で馴染むことで、最終的に調製できるセルロース誘導体粒子の真球度が高くなり、触感、触り心地が良くなる。 Also, the cellulose derivative and the plasticizer may be mixed by melt-kneading. Melt-kneading may be performed in combination with mixing using a mixer such as a Henschel mixer. In that case, mixing is performed using a mixer such as a Henschel mixer under a temperature condition of 20 ° C. or more and less than 200 ° C. Melt-kneading is preferably performed later. Since the plasticizer and the cellulose derivative are more uniformly compatible with each other in a short period of time, the sphericity of the finally prepared cellulose derivative particles is increased, and the tactile sensation and tactile sensation are improved.

溶融混練は、押出機で加熱混合することにより行うことが好ましい。押出機の混練温度(シリンダー温度)は、200℃から230℃の範囲であってよい。この範囲の温度でも可塑化して均一な混練物を得ることができる。温度が低すぎると、得られる粒子の真球度が低下するため、触感、触り心地が低下し、温度が高すぎると、混練物の熱による変質や着色が起こることがある。また、溶融物の粘度が低下して、二軸押出機内での樹脂の混錬が不足する可能性がある。 Melt-kneading is preferably carried out by heating and mixing with an extruder. The kneading temperature (cylinder temperature) of the extruder may range from 200°C to 230°C. A uniform kneaded product can be obtained by plasticizing even at a temperature within this range. If the temperature is too low, the sphericity of the resulting particles will be low, resulting in poor tactile sensation and feel. In addition, the viscosity of the melt may decrease, resulting in insufficient kneading of the resin in the twin-screw extruder.

セルロース誘導体の融点は、置換度にもよるが、およそ230℃から280℃であり、セルロース誘導体の分解温度に近いため、通常は、この温度範囲では溶融混練は難しいが、可塑剤が含浸したセルロース誘導体(フレーク)は可塑化温度を低くできるためである。混練温度(シリンダー温度)としては、例えば二軸押出機を用いる場合200℃であってもよい。混練物はストランド状に押出し、ホットカットなどでペレット状の形状にすればよい。この場合のダイス温度としては220℃程度であってもよい。 The melting point of the cellulose derivative is approximately 230° C. to 280° C., although it depends on the degree of substitution, and is close to the decomposition temperature of the cellulose derivative. This is because derivatives (flakes) can lower the plasticizing temperature. The kneading temperature (cylinder temperature) may be, for example, 200° C. when using a twin-screw extruder. The kneaded product may be extruded in the form of strands and cut into pellets by hot cutting or the like. The die temperature in this case may be about 220.degree.

以下、実施例により本発明を具体的に説明するが、本発明は、これらの実施例によりその技術的範囲が限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the technical scope of the present invention is not limited by these examples.

(実施例A-1)
セルロースアセテートプロピオネート(イーストマンケミカル製:CAP-482-0.5)100重量部と可塑剤としてトリアセチン10重量部とを液添装置付き二軸押出機(株式会社池貝製PCM30、シリンダー温度:200℃、ダイス温度:220℃)に供給し、溶融混練し、押し出してペレット化し、混練物とした。
(Example A-1)
100 parts by weight of cellulose acetate propionate (manufactured by Eastman Chemical Co., Ltd.: CAP-482-0.5) and 10 parts by weight of triacetin as a plasticizer are added to a twin-screw extruder equipped with a liquid addition device (PCM30 manufactured by Ikegai Co., Ltd., cylinder temperature: 200° C., die temperature: 220° C.), melt-kneaded, extruded and pelletized to obtain a kneaded product.

得られた混錬物のペレット30重量部と、水溶性高分子としてポリビニルアルコール(日本合成化学製:融点190℃、けん化度99.1%)70重量部とを乾燥状態でブレンドした後、二軸押出機(株式会社池貝製PCM30、シリンダー温度220℃、ダイス温度220℃)に供給し、押出して分散体を形成した。 30 parts by weight of the resulting kneaded pellets and 70 parts by weight of polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Co., Ltd.: melting point 190 ° C., saponification degree 99.1%) as a water-soluble polymer are blended in a dry state. It was supplied to a screw extruder (PCM30 manufactured by Ikegai Co., Ltd., cylinder temperature: 220°C, die temperature: 220°C) and extruded to form a dispersion.

得られた分散体が5重量%(分散体の重量/(分散体の重量+純水の重量)×100)以下となるように純水(溶媒)と合せ、スリーワンモータ(新東科学社製BL-3000)を用いて、温度80℃、回転数100rpmで3時間攪拌した。攪拌後の溶液をろ紙(ADVANTEC製No.5A)でろ別し、ろ物を取り出した。取り出したろ物を再び純水を用いて分散体が5重量%以下となるように調製し、さらに温度80℃、回転数100rpmで3時間攪拌、ろ別し、ろ物を取り出す作業を3回以上繰り返し、セルロース誘導体粒子(セルロースアセテートプロピオネート粒子)を得た。得られたセルロース誘導体粒子の置換度はH-NMRを測定することにより、総置換度は2.58(アセチル置換度0.18、プロピオニル置換度2.40)であることを確認した。 Combined with pure water (solvent) so that the resulting dispersion is 5% by weight or less (weight of dispersion / (weight of dispersion + weight of pure water) × 100), Three-One Motor (manufactured by Shinto Kagaku Co., Ltd.) BL-3000), the mixture was stirred at a temperature of 80° C. and a rotation speed of 100 rpm for 3 hours. The solution after stirring was filtered with filter paper (No. 5A manufactured by ADVANTEC), and the filtered material was taken out. The removed filter cake is again prepared with pure water so that the content of the dispersion is 5% by weight or less, further stirred at a temperature of 80° C. and a rotation speed of 100 rpm for 3 hours, filtered, and the filter cake is taken out three times or more. Repeatedly, cellulose derivative particles (cellulose acetate propionate particles) were obtained. The degree of substitution of the obtained cellulose derivative particles was confirmed to be 2.58 (degree of acetyl substitution 0.18, degree of propionyl substitution 2.40) by measuring 1 H-NMR.

得られたセルロース誘導体粒子の平均粒子径、粒子径変動係数、真球度、表面平滑度、嵩比重、可塑剤含有量、真比重、及び触感をそれぞれ測定及び評価した。結果は表1に示す。尚、各物性の測定及び評価は下記の方法で行った。 The average particle size, particle size variation coefficient, sphericity, surface smoothness, bulk specific gravity, plasticizer content, true specific gravity, and tactile sensation of the obtained cellulose derivative particles were measured and evaluated. Results are shown in Table 1. Measurement and evaluation of each physical property were performed by the following methods.

<平均粒子径及び粒子径変動係数>
平均粒子径は、動的光散乱法を用いて測定した。まず、純水を用いサンプルを100ppm程度の濃度に調整し、超音波振動装置を用いて純水懸濁液とした。その後、レーザー回折法(株式会社堀場製作所「レーザ回折/散乱式粒子径分布測定装置LA-960」超音波処理15分、屈折率(1.500、媒体(水;1.333))により、体積頻度粒度分布を求め、平均粒子径を測定した。ここでいう平均粒子径(nm及びμm等)は、体積頻度粒度分布における散乱強度の積算50%に対応する粒子径の値とした。また、粒子径変動係数(%)は、粒子径の標準偏差/平均粒子径×100によって算出した。
<Average particle size and particle size variation coefficient>
Average particle size was measured using a dynamic light scattering method. First, pure water was used to adjust a sample to a concentration of about 100 ppm, and an ultrasonic oscillator was used to prepare a pure water suspension. After that, the volume The frequency particle size distribution was determined, and the average particle size was measured.The average particle size (nm, μm, etc.) referred to here is the value of the particle size corresponding to the cumulative scattering intensity of 50% in the volume frequency particle size distribution. The particle size variation coefficient (%) was calculated by (standard deviation of particle size/average particle size×100).

<真球度>
走査型電子顕微鏡(SEM)で観察した粒子の画像を用いて、ランダムに選択した30個の粒子の長径と短径を測定し、各粒子の短径/長径比を求め、その短径/長径比の平均値を真球度とした。
<Sphericality>
Using the image of the particles observed with a scanning electron microscope (SEM), the major axis and minor axis of 30 randomly selected particles are measured, the minor axis/major axis ratio of each particle is obtained, and the minor axis/major axis is obtained. The average value of the ratios was taken as the sphericity.

<表面平滑度>
粒子の2500~5000倍の走査型電子顕微鏡写真を撮り(セルロース誘導体粒子の顕微鏡写真の一例は、図1参照)、画像処理装置Winroof(三谷商事社製)を用いて、画像を二値化した(図1の顕微鏡写真を二値化した画像は図2参照)。粒子1個の中心及び/又は中心付近を含む、粒子よりも小さい任意の領域(例えば、図2を参照すれば、n1及びn2で示す領域)であってよい。また、その領域の大きさは、粒子径が15μmのとき5μm四方であってよい。当該領域における凹凸の凹に当たる部分(陰の部分)の面積率を算出し、以下の式によりその粒子1個の表面平滑度(%)を算出した。
粒子1個の表面平滑度(%)=(1-凹の面積率)×100
凹の面積率=前記任意の領域における凹部の面積/前記任意の領域
表面平滑度(%)はランダムに選択した10個の粒子サンプル、つまりn1~10まで表面平滑度の平均値とした。この数値が高いほど表面平滑度は高くなる。
<Surface smoothness>
Scanning electron micrographs of the particles were taken at a magnification of 2500 to 5000 (see FIG. 1 for an example of the micrograph of the cellulose derivative particles), and the image was binarized using an image processor Winroof (manufactured by Mitani Shoji Co., Ltd.). (See FIG. 2 for the binarized image of the micrograph of FIG. 1). It may be any region smaller than the particle (eg, regions designated n1 and n2, referring to FIG. 2), including the center and/or near the center of a particle. Moreover, the size of the region may be 5 μm square when the particle diameter is 15 μm. The area ratio of the concave portion (shadow portion) of the unevenness in the region was calculated, and the surface smoothness (%) of one particle was calculated by the following formula.
Surface smoothness of one particle (%) = (1-concave area ratio) x 100
Area ratio of recesses=area of recesses in the arbitrary region/surface smoothness of the arbitrary region (%) was the average value of the surface smoothness of 10 randomly selected particle samples, that is, from n1 to n10. The higher the numerical value, the higher the surface smoothness.

<嵩比重>
「JIS K 1201-1」に従い測定した。
<Bulk specific gravity>
It was measured according to "JIS K 1201-1".

<可塑剤含有量>
H-NMR測定によって可塑剤含有量(重量%)を測定した。
<Plasticizer content>
The plasticizer content (% by weight) was determined by 1 H-NMR measurement.

<真比重>
JIS Z 8807-1976「固体比重測定方法」の2.比重びんによる測定方法(液体:水)により測定した。
<True specific gravity>
JIS Z 8807-1976 "Solid specific gravity measurement method" 2. It was measured by the measurement method (liquid: water) using a pycnometer.

<触感>
粒子の触感について、20人のパネルテストにより官能評価を行なった。粒子に触れさせ、なめらかさ及びしっとり感の両方を総合的に、5点満点として、以下の基準により評価した。20人の平均点を算出した。
良い:5、やや良い:4、普通:3、やや悪い:2、悪い:1
<Tactile sensation>
The tactile feel of the particles was sensory evaluated by a panel test of 20 people. The particles were touched, and both the smoothness and the moist feeling were comprehensively evaluated on a scale of 5 out of 5 according to the following criteria. The average score of 20 people was calculated.
Good: 5, Somewhat good: 4, Average: 3, Somewhat bad: 2, Bad: 1

(実施例A-2)
可塑剤を添加せず、得られた混錬物のペレットを20重量部、ポリビニルアルコールを80重量部に変更した以外は、実施例A-1と同様にして、セルロース誘導体粒子)セルロースアセテートプロピオネート粒子)を得た。得られたセルロース誘導体粒子の置換度はH-NMRを測定することにより、総置換度は2.58(アセチル置換度0.18、プロピオニル置換度2.40)であることを確認した。
(Example A-2)
Cellulose derivative particles) Cellulose acetate propio nate particles) were obtained. The degree of substitution of the obtained cellulose derivative particles was confirmed to be 2.58 (degree of acetyl substitution 0.18, degree of propionyl substitution 2.40) by measuring 1 H-NMR.

(実施例A-3)
セルロースアセテートプロピオネートをセルロースアセテートブチレート(イーストマンケミカル製:CAB-171-15)に変更した以外は、実施例A-2と同様にして、セルロース誘導体粒子(セルロースアセテートブチレート粒子)を得た。得られたセルロース誘導体粒子の置換度はH-NMRを測定することにより、総置換度は2.75(アセチル置換度2.04、ブチリル置換度0.71)であることを確認した。
(Example A-3)
Cellulose derivative particles (cellulose acetate butyrate particles) were obtained in the same manner as in Example A-2, except that cellulose acetate propionate was changed to cellulose acetate butyrate (manufactured by Eastman Chemical: CAB-171-15). rice field. The degree of substitution of the obtained cellulose derivative particles was confirmed to be 2.75 (degree of acetyl substitution: 2.04, degree of butyryl substitution: 0.71) by measuring 1 H-NMR.

(実施例A-4)
セルロースアセテートプロピオネートを下記合成方法で得られたセルロースステアレート(C18)に変更した以外は、実施例A-2と同様にして、セルロースステアレート粒子を得た。
(Example A-4)
Cellulose stearate particles were obtained in the same manner as in Example A-2, except that cellulose acetate propionate was changed to cellulose stearate (C18) obtained by the following synthesis method.

<セルロースステアレートの合成方法>
撹拌機、還流冷却器、温度計、及び滴下ロートを備えた100L反応槽に、セルロース486g、ピリジン30kgを加え、続いて、ステアリン酸クロライド3450gを加え、窒素雰囲気下、80℃~100℃の温度範囲に昇温し、12時間撹拌を継続して反応させた。
<Method for synthesizing cellulose stearate>
Into a 100 L reactor equipped with a stirrer, reflux condenser, thermometer, and dropping funnel, 486 g of cellulose and 30 kg of pyridine were added, followed by 3450 g of stearyl chloride, and the temperature was maintained at 80° C.-100° C. under a nitrogen atmosphere. The temperature was raised to range and the reaction was allowed to continue stirring for 12 hours.

反応終了後、反応混合液をメタノール90kgに投入し、目的の粗セルロース誘導体を析出させた。 After completion of the reaction, the reaction mixture was poured into 90 kg of methanol to precipitate the intended crude cellulose derivative.

析出させた粗セルロース誘導体を濾別し、メタノールでの洗浄と濾別を3回繰り返した後、90℃で8時間真空乾燥することで、目的のセルロース誘導体粒子2120gを得た。得られたセルロース誘導体粒子(セルロースステアレート粒子)の置換度はH-NMRを測定することにより3.0であることを確認した。 The precipitated crude cellulose derivative was separated by filtration, washed with methanol and separated by filtration three times, and then vacuum-dried at 90° C. for 8 hours to obtain 2120 g of the desired cellulose derivative particles. The degree of substitution of the obtained cellulose derivative particles (cellulose stearate particles) was confirmed to be 3.0 by measuring 1 H-NMR.

(実施例A-5)
ステアリン酸クロライド3450gをミリスチン酸クロライド(C1427COCl)2881gに変更した以外は、実施例A-4と同様にして、セルロース誘導体粒子(セルロースミリスチレート粒子)を得た。得られたセルロース誘導体粒子の重量は2211gであった、置換度は3.0であった。
(Example A-5)
Cellulose derivative particles (cellulose myristate particles) were obtained in the same manner as in Example A-4, except that 3450 g of stearic chloride was changed to 2881 g of myristic chloride (C 14 H 27 COCl). The resulting cellulose derivative particles weighed 2211 g and had a degree of substitution of 3.0.

(実施例A-6)
セルロースアセテートプロピオネートをエチルセルロース(ダウケミカル社製:Ethocel Std.10)に変更した以外は、実施例A-2と同様にしてエチルセルロース粒子を得た。
(Example A-6)
Ethyl cellulose particles were obtained in the same manner as in Example A-2, except that cellulose acetate propionate was changed to ethyl cellulose (manufactured by Dow Chemical Co.: Ethocel Std. 10).

(実施例A-7)
セルロースアセテートプロピオネートを下記合成方法で得られたメチルオクチルセルロースに変更した以外は、実施例A-2と同様にしてメチルオクチルセルロース粒子を得た。
(Example A-7)
Methyloctyl cellulose particles were obtained in the same manner as in Example A-2, except that cellulose acetate propionate was changed to methyloctyl cellulose obtained by the synthesis method described below.

<メチルオクチルセルロースの合成>
撹拌機、還流冷却器、温度計、滴下ロートを付した100L反応槽に、メチルセルロース(富士フイルム和光純薬株式会社製:メチル置換度1.8)2,000g、ジメチルアセトアミド40Lを添加し、室温で攪拌した。続いて、粉末水酸化ナトリウム5,000gを添加し、そのまま1時間攪拌した。室温に戻した後、ヨウ化オクチル2Lを滴下し、室温で30分攪拌し、続いて、50℃で5時間攪拌して反応させた。
<Synthesis of methyloctyl cellulose>
2,000 g of methyl cellulose (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.: degree of methyl substitution: 1.8) and 40 L of dimethylacetamide were added to a 100 L reactor equipped with a stirrer, reflux condenser, thermometer, and dropping funnel. was stirred. Subsequently, 5,000 g of powdered sodium hydroxide was added, and the mixture was stirred for 1 hour. After returning to room temperature, 2 L of octyl iodide was added dropwise, stirred at room temperature for 30 minutes, and then stirred at 50° C. for 5 hours to cause a reaction.

反応終了後、室温に戻した。反応槽にメタノール240Lを激しく攪拌しながら投入し、白色固体を析出させた。白色固体を加圧ろ過によりろ別した後、水で2回洗浄を行った。80℃で12時間加熱乾燥を行うことで、目的のセルロース誘導体2,100gを得た。得られたセルロース誘導体(メチルオクチルセルロース)の置換度はH-NMRを測定することにより、総置換度は2.10(メチル置換度1.8、オクチル置換度0.3)であることを確認した。 After completion of the reaction, the temperature was returned to room temperature. 240 L of methanol was charged into the reactor with vigorous stirring to precipitate a white solid. After the white solid was separated by pressure filtration, it was washed twice with water. By heat-drying at 80° C. for 12 hours, 2,100 g of the target cellulose derivative was obtained. The total degree of substitution of the obtained cellulose derivative (methyloctyl cellulose) was 2.10 (degree of methyl substitution 1.8, degree of octyl substitution 0.3) by measuring 1 H-NMR. confirmed.

上記の測定方法により、各実施例で得られたセルロース誘導体粒子の各物性を評価した。結果は表1に示す。 Each physical property of the cellulose derivative particles obtained in each example was evaluated by the above measurement methods. Results are shown in Table 1.

(比較例A-1)
ナイロン粒子は、東レナイロン(登録商標)ナイロン12 SP-500(東レ株式会社製)を使用した。上記の測定方法により、この粒子の各物性を評価した。結果は表1に示す。
(Comparative Example A-1)
For the nylon particles, Toray Nylon (registered trademark) Nylon 12 SP-500 (manufactured by Toray Industries, Inc.) was used. Each physical property of the particles was evaluated by the above measuring methods. Results are shown in Table 1.

(比較例A-2)
アクリル粒子は、マツモトマイクロスフェアー(登録商標)M-100(松本油脂製薬株式会社製)を使用した。上記の測定方法により、この粒子の各物性を評価した。結果は表1に示す。
(Comparative Example A-2)
Matsumoto Microsphere (registered trademark) M-100 (manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) was used as acrylic particles. Each physical property of the particles was evaluated by the above measuring methods. Results are shown in Table 1.

(比較例A-3)
セルロースアセテート粒子は、セルフローTA-25(JNC社製)を使用した。上記の測定方法により、この粒子の各物性を評価した。結果は表1に示す。
(Comparative Example A-3)
Cellulose acetate particles used were Cellulo TA-25 (manufactured by JNC). Each physical property of the particles was evaluated by the above measuring methods. Results are shown in Table 1.

(比較例A-4)
セルロース粒子は、セルフロー C-25(JNC社製)を使用した。上記の測定方法により、この粒子の各物性を評価した。結果は表1に示す。
(Comparative Example A-4)
Cellulose particles used were Cellulose C-25 (manufactured by JNC). Each physical property of the particles was evaluated by the above measuring methods. Results are shown in Table 1.

Figure 0007289962000001
Figure 0007289962000001

表1に示すとおり、実施例のセルロース誘導体粒子は、いずれも半合成ポリマーであり、優れた触感を有する。 As shown in Table 1, the cellulose derivative particles of Examples are all semi-synthetic polymers and have excellent tactile feel.

(実施例B-1)
リキッドファンデーションの調製
表2に示す各成分を混合後、良く攪拌し、容器に充填してリキッドファンデーションを調製した。得られたリキッドファンデーションの各物性を下記の方法で評価した。結果は表3に示す。

Figure 0007289962000002
(Example B-1)
Preparation of Liquid Foundation After mixing each component shown in Table 2, they were well stirred and filled in a container to prepare a liquid foundation. Each physical property of the obtained liquid foundation was evaluated by the following methods. The results are shown in Table 3.
Figure 0007289962000002

<肌への伸び>
触感測定装置(静動摩擦測定機 TL201Ts)を用い、リキッドファンデーション0.2gの1回走行時の伸びの長さを測定した。
<Elongation to the skin>
Using a tactile measurement device (Static and Dynamic Friction Tester TL201Ts), the elongation length of 0.2 g of the liquid foundation was measured when it was run once.

<カバー力>
リキッドファンデーションを少量皮膚に塗布し、指で20回塗り広げることでシミ、ソバカスの隠れる度合いを下記の基準で目視で評価した。
◎・・・十分カバーされている
〇・・・カバーされている
△・・・カバーされているが不十分
×・・・カバー力が無い
<Covering power>
A small amount of the liquid foundation was applied to the skin, and spread 20 times with a finger to visually evaluate the degree of concealment of spots and freckles according to the following criteria.
◎: Sufficiently covered 〇: Covered △: Covered but insufficient ×: No covering power

<均一性>
リキッドファンデーションを少量皮膚に塗布し、指で20回塗り広げることで均一性を下記の基準で目視で評価した。
◎・・・一様に塗り広げられている
〇・・・均一性がある
△・・・ややまだらの部分がある
×・・・まだらになっている
<Uniformity>
A small amount of the liquid foundation was applied to the skin and spread 20 times with a finger, and the uniformity was visually evaluated according to the following criteria.
◎: Spread evenly 〇: Uniform △: Slightly mottled ×: Mottled

<滑り性>
リキッドファンデーションを少量皮膚に塗布し、指で20回塗り広げることで滑り性(クリーミーさ)を下記の基準で評価した。
◎・・・良く滑り、クリーミーさが十分ある
〇・・・良く滑り、クリーミーさがある
△・・・滑りが悪い
×・・・滑らない
<Slipperiness>
A small amount of the liquid foundation was applied to the skin and spread with fingers 20 times to evaluate slipperiness (creaminess) according to the following criteria.
◎: Good slipperiness and sufficient creaminess 〇: Good slipperiness and creaminess △: Poor slippage ×: Not slippery

(実施例B-2~7)
表2における実施例A-1で得られたセルロース誘導体粒子を、それぞれ実施例A-2~7で得られたセルロース誘導体粒子に変更した以外は、実施例B-1と同様にして、リキッドファンデーションを調製した。得られたリキッドファンデーションの各物性を上記の方法で評価した。結果は表3に示す。
(Examples B-2 to 7)
Liquid foundation was prepared in the same manner as in Example B-1, except that the cellulose derivative particles obtained in Example A-1 in Table 2 were changed to the cellulose derivative particles obtained in Examples A-2 to A-7, respectively. was prepared. Each physical property of the obtained liquid foundation was evaluated by the methods described above. The results are shown in Table 3.

(比較例B-1~4)
表2における実施例A-1で得られたセルロース誘導体粒子を、それぞれ比較例A-1~4の粒子に変更した以外は、実施例B-1と同様にして、リキッドファンデーションを調製した。得られたリキッドファンデーションの各物性を上記の方法で評価した。結果は表3に示す。
(Comparative Examples B-1 to 4)
A liquid foundation was prepared in the same manner as in Example B-1 except that the cellulose derivative particles obtained in Example A-1 in Table 2 were changed to the particles of Comparative Examples A-1 to A-4. Each physical property of the obtained liquid foundation was evaluated by the methods described above. The results are shown in Table 3.

Figure 0007289962000003
Figure 0007289962000003

表3に示すように、実施例B-1~8のセルロース誘導体粒子を含有する化粧品組成物は、いずれも肌への伸び、シミやソバカスのカバー力、及び滑り性に優れる。 As shown in Table 3, all of the cosmetic compositions containing the cellulose derivative particles of Examples B-1 to B-8 are excellent in spreadability on the skin, coverage of spots and freckles, and slipperiness.

Claims (15)

炭素数が2以上のアルコキシ基、又は炭素数が3以上のアシル基を有するセルロース誘導体粒子であって、
前記セルロース誘導体粒子は、平均粒子径が80nm以上100μm以下、真球度が70%以上100%以下、表面平滑度が80%以上100%以下、及び、嵩比重が0.5以上0.9以下であり、
前記セルロース誘導体の総置換度が0.7以上3以下である、セルロース誘導体粒子。
Cellulose derivative particles having an alkoxy group having 2 or more carbon atoms or an acyl group having 3 or more carbon atoms,
The cellulose derivative particles have an average particle diameter of 80 nm or more and 100 μm or less, a sphericity of 70% or more and 100% or less, a surface smoothness of 80% or more and 100% or less, and a bulk specific gravity of 0.5 or more and 0.9 or less. and
Cellulose derivative particles, wherein the total degree of substitution of the cellulose derivative is 0.7 or more and 3 or less.
前記セルロース誘導体の総置換度が2.0以上2.6未満である、請求項1に記載のセルロース誘導体粒子。 The cellulose derivative particles according to claim 1, wherein the total degree of substitution of the cellulose derivative is 2.0 or more and less than 2.6. 前記アシル基の炭素数が3以上18以下である、請求項1又は2に記載のセルロース誘導体粒子。 The cellulose derivative particles according to claim 1 or 2, wherein the acyl group has 3 or more and 18 or less carbon atoms. 前記アルコキシ基の炭素数が2以上8以下である、請求項1~3のいずれか1項に記載のセルロース誘導体粒子。 The cellulose derivative particles according to any one of claims 1 to 3, wherein the alkoxy group has 2 or more and 8 or less carbon atoms. 真比重が1.04以上である、請求項1~4のいずれか1項に記載のセルロース誘導体粒子。 The cellulose derivative particles according to any one of claims 1 to 4, which have a true specific gravity of 1.04 or more. 前記セルロース誘導体粒子が可塑剤を含有し、
前記可塑剤の含有量が、前記セルロース誘導体粒子の重量に対し、0重量%を超え40重量%以下である、請求項1~5のいずれか1項に記載のセルロース誘導体粒子。
The cellulose derivative particles contain a plasticizer,
The cellulose derivative particles according to any one of claims 1 to 5, wherein the content of the plasticizer is more than 0% by weight and 40% by weight or less based on the weight of the cellulose derivative particles.
前記可塑剤がグリセリンエステル系可塑剤である、請求項6に記載のセルロース誘導体粒子。 The cellulose derivative particles according to claim 6, wherein the plasticizer is a glycerin ester plasticizer. 請求項1~7のいずれか1項に記載のセルロース誘導体粒子を含有する、化粧品組成物。 A cosmetic composition containing the cellulose derivative particles according to any one of claims 1 to 7. 総置換度が0.7以上3以下のセルロース誘導体と水溶性高分子とを200℃以上280℃以下で混練して、前記セルロース誘導体を分散質とする分散体を得る工程、及び
前記分散体から前記水溶性高分子を除去する工程を含む、請求項1~7のいずれかに記載のセルロース誘導体粒子の製造方法。
a step of kneading a cellulose derivative having a total degree of substitution of 0.7 or more and 3 or less and a water-soluble polymer at 200° C. or more and 280° C. or less to obtain a dispersion containing the cellulose derivative as a dispersoid; The method for producing cellulose derivative particles according to any one of claims 1 to 7, comprising a step of removing the water-soluble polymer.
前記総置換度が0.7以上3以下のセルロース誘導体が、可塑剤が含浸したセルロース誘導体であり、
前記可塑剤が含浸したセルロース誘導体は、前記総置換度が0.7以上3以下のセルロース誘導体と前記可塑剤とを、20℃以上200℃未満の範囲で溶融混練したものである、請求項9に記載のセルロース誘導体粒子の製造方法。
The cellulose derivative having a total degree of substitution of 0.7 or more and 3 or less is a cellulose derivative impregnated with a plasticizer,
9. The cellulose derivative impregnated with the plasticizer is obtained by melt-kneading the cellulose derivative having a total degree of substitution of 0.7 or more and 3 or less and the plasticizer at a temperature of 20° C. or more and less than 200° C. The method for producing the cellulose derivative particles according to .
前記可塑剤がグリセリンエステル系可塑剤である、請求項10に記載のセルロース誘導体粒子の製造方法。 The method for producing cellulose derivative particles according to claim 10, wherein the plasticizer is a glycerin ester plasticizer. 前記可塑剤がトリアセチンである、請求項10に記載のセルロース誘導体粒子の製造方法。 The method for producing cellulose derivative particles according to claim 10, wherein the plasticizer is triacetin. 前記水溶性高分子が、ポリビニルアルコールまたは熱可塑性デンプンである、請求項9~12のいずれか1項に記載のセルロース誘導体粒子の製造方法。 The method for producing cellulose derivative particles according to any one of claims 9 to 12, wherein the water-soluble polymer is polyvinyl alcohol or thermoplastic starch. 前記分散体と溶媒とを混合して、前記水溶性高分子を溶媒に溶解することにより、前記分散体から前記水溶性高分子を除去する、請求項9~13のいずれか1項に記載のセルロース誘導体粒子の製造方法。 The water-soluble polymer is removed from the dispersion by mixing the dispersion and a solvent to dissolve the water-soluble polymer in the solvent. A method for producing cellulose derivative particles. 前記分散体と溶媒との混合比率が、前記分散体及び溶媒の合計重量に対し前記分散体が0.01重量%以上20重量%以下である、請求項14に記載のセルロース誘導体粒子の製造方法。 15. The method for producing cellulose derivative particles according to claim 14, wherein the mixing ratio of the dispersion and the solvent is 0.01% by weight or more and 20% by weight or less of the dispersion with respect to the total weight of the dispersion and the solvent. .
JP2022095962A 2019-03-22 2022-06-14 Cellulose derivative particles, cosmetic composition, and method for producing cellulose derivative particles Active JP7289962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022095962A JP7289962B2 (en) 2019-03-22 2022-06-14 Cellulose derivative particles, cosmetic composition, and method for producing cellulose derivative particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019054171A JP7149885B2 (en) 2019-03-22 2019-03-22 Cellulose derivative particles, cosmetic composition, and method for producing cellulose derivative particles
JP2022095962A JP7289962B2 (en) 2019-03-22 2022-06-14 Cellulose derivative particles, cosmetic composition, and method for producing cellulose derivative particles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019054171A Division JP7149885B2 (en) 2019-03-22 2019-03-22 Cellulose derivative particles, cosmetic composition, and method for producing cellulose derivative particles

Publications (2)

Publication Number Publication Date
JP2022125063A JP2022125063A (en) 2022-08-26
JP7289962B2 true JP7289962B2 (en) 2023-06-12

Family

ID=87884606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022095962A Active JP7289962B2 (en) 2019-03-22 2022-06-14 Cellulose derivative particles, cosmetic composition, and method for producing cellulose derivative particles

Country Status (1)

Country Link
JP (1) JP7289962B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059611A (en) 2002-07-25 2004-02-26 Asahi Kasei Chemicals Corp Carboxy-group-containing cellulose derivative latex and its production method
WO2008149894A1 (en) 2007-06-06 2008-12-11 Asahi Kasei Chemicals Corporation Cellulose fine core particle, and method for production thereof
JP2009137806A (en) 2007-12-07 2009-06-25 Jgc Catalysts & Chemicals Ltd Porous silica particle having surface smoothness, manufacturing process of the porous silica particle, and cosmetic mixed with the porous silica particle
JP2012021119A (en) 2010-07-16 2012-02-02 Jnc Corp Cellulose derivative or its salt, its production method and cosmetic composition containing the derivative

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059611A (en) 2002-07-25 2004-02-26 Asahi Kasei Chemicals Corp Carboxy-group-containing cellulose derivative latex and its production method
WO2008149894A1 (en) 2007-06-06 2008-12-11 Asahi Kasei Chemicals Corporation Cellulose fine core particle, and method for production thereof
JP2009137806A (en) 2007-12-07 2009-06-25 Jgc Catalysts & Chemicals Ltd Porous silica particle having surface smoothness, manufacturing process of the porous silica particle, and cosmetic mixed with the porous silica particle
JP2012021119A (en) 2010-07-16 2012-02-02 Jnc Corp Cellulose derivative or its salt, its production method and cosmetic composition containing the derivative

Also Published As

Publication number Publication date
JP2022125063A (en) 2022-08-26

Similar Documents

Publication Publication Date Title
JP7149885B2 (en) Cellulose derivative particles, cosmetic composition, and method for producing cellulose derivative particles
KR102111296B1 (en) Cellulose acetate particles, cosmetic composition and method for producing cellulose acetate particles
WO2021235352A1 (en) Emulsifiable preparation, aqueous cosmetic, food or beverage and pharmaceutical composition
JP2024028475A (en) Biodegradable spherical particles and production method therefor
JP2023157922A (en) Composite particles and method for producing the same
WO2022176825A1 (en) Cellulose acylate composition and production method therefor
JP2023162228A (en) Composition, and production method of the same
JP7289962B2 (en) Cellulose derivative particles, cosmetic composition, and method for producing cellulose derivative particles
WO2023119927A1 (en) Porous particle, cosmetic composition, and production method for porous particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230531

R150 Certificate of patent or registration of utility model

Ref document number: 7289962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150