JP7289119B2 - Method for Synthesizing Optically Active Substituted Tetrahydrofuran Derivatives - Google Patents

Method for Synthesizing Optically Active Substituted Tetrahydrofuran Derivatives Download PDF

Info

Publication number
JP7289119B2
JP7289119B2 JP2019025092A JP2019025092A JP7289119B2 JP 7289119 B2 JP7289119 B2 JP 7289119B2 JP 2019025092 A JP2019025092 A JP 2019025092A JP 2019025092 A JP2019025092 A JP 2019025092A JP 7289119 B2 JP7289119 B2 JP 7289119B2
Authority
JP
Japan
Prior art keywords
optically active
substituted
reaction
derivative
bromoetherification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019025092A
Other languages
Japanese (ja)
Other versions
JP2020132543A (en
Inventor
克彦 森山
亮彦 富塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2019025092A priority Critical patent/JP7289119B2/en
Publication of JP2020132543A publication Critical patent/JP2020132543A/en
Application granted granted Critical
Publication of JP7289119B2 publication Critical patent/JP7289119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Furan Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

特許法第30条第2項適用 1.学会発表 (1)学会名 日本化学会第98春季年会(2018)、公益社団法人 日本化学会 (2)予稿集発行日 平成30年3月6日 (3)学会発表日 平成30年3月21日 2.ウェブサイトによる公開 (1)ウェブサイト Advanced Synthesis & Catalysis 2019 (2)ウェブサイトの掲載日 2019年1月7日 (3)ウェブサイトのアドレス https://onlinelibrary.wiley.com/doi/10.1002/adsc.201801557Application of Article 30, Paragraph 2 of the Patent Law 1. Conference presentation (1) Name of conference The 98th Annual Meeting of the Chemical Society of Japan (2018), The Chemical Society of Japan (2) Proceedings publication date March 6, 2018 (3) Conference presentation date March 2018 21st 2. (1) Website Advanced Synthesis & Catalysis 2019 (2) Website publication date January 7, 2019 (3) Website address https://onlinelibrary. wiley. com/doi/10.1002/adsc. 201801557

本発明は、液晶の原料、医薬および農薬等の中間体として利用が期待される新規な光学活性置換テトラヒドロフラン誘導体の合成方法に関するものである。 TECHNICAL FIELD The present invention relates to a method for synthesizing novel optically active substituted tetrahydrofuran derivatives that are expected to be used as raw materials for liquid crystals, intermediates for pharmaceuticals, agricultural chemicals, and the like.

従来より、光学活性な化合物を得る方法として種々の方法が知られている。例えば、公知の技術として、下記特許文献1には、光学活性アルコール類の不斉合成法が開示されている。また、この他にも、ラセミ体の光学分割法、生化学的方法、キラルなカラムによる直接分離法等が知られている。 Various methods are conventionally known for obtaining optically active compounds. For example, as a known technique, Patent Document 1 below discloses a method for asymmetric synthesis of optically active alcohols. In addition to this, optical resolution methods of racemates, biochemical methods, direct separation methods using chiral columns, and the like are known.

特開昭54-005963号公報JP-A-54-005963

しかしながら、光学活性置換テトラヒドロフラン誘導体に関しては、従来公知の方法によって得ようとする試みは、いずれも成功しなかった。 However, all attempts to obtain optically active substituted tetrahydrofuran derivatives by conventionally known methods have been unsuccessful.

光学活性置換テトラヒドロフラン誘導体を有する光学活性環状エーテル化合物は、天然物・医薬品・その他機能性材料として多岐にわたり注目を集めているが、この簡便な合成法は、未だ確立されていない。特に、2-置換-5-置換メチルテトラヒドロフラン誘導体は、様々な置換テトラヒドロフラン誘導体へと網羅的に誘導できる優れた合成中間体であるにも拘らず、この不斉合成は達成されていない。 Optically active cyclic ether compounds having optically active substituted tetrahydrofuran derivatives have attracted wide attention as natural products, pharmaceuticals, and other functional materials. In particular, although 2-substituted-5-substituted methyltetrahydrofuran derivatives are excellent synthetic intermediates that can be comprehensively derived into various substituted tetrahydrofuran derivatives, this asymmetric synthesis has not been achieved.

本発明は、上記課題に鑑みてなされたものであり、置換テトラヒドロフラン誘導体、特に2-置換-5-置換メチルテトラヒドロフラン誘導体の不斉合成を達成する合成方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a synthetic method for achieving asymmetric synthesis of substituted tetrahydrofuran derivatives, particularly 2-substituted-5-substituted methyltetrahydrofuran derivatives.

本発明者らは、上記課題を解決するべく鋭意検討を行った結果、臭化物イオンの酸素酸化による光学活性アルコールの触媒的ブロモエーテル化反応により光学活性置換テトラヒドロフラン誘導体を合成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors found that an optically active substituted tetrahydrofuran derivative can be synthesized by a catalytic bromoetherification reaction of an optically active alcohol by oxygen oxidation of bromide ions, and completed the present invention. Completed.

本発明の一つの観点によれば、上記課題を解決するために、光学活性アルコールを臭化物イオンの酸素酸化によるブロモエーテル化反応により光学活性置換テトラヒドロフラン誘導体を合成するものである。 According to one aspect of the present invention, in order to solve the above problems, an optically active substituted tetrahydrofuran derivative is synthesized by a bromoetherification reaction of an optically active alcohol by oxidation of bromide ions with oxygen.

さらに、光学活性アルコールが、光学活性アルケニルアルコールであると望ましい。 Furthermore, it is desirable that the optically active alcohol is an optically active alkenyl alcohol.

さらに、光学活性アルケニルアルコールが、光学活性ペンテニルアルコールであると望ましい。 Furthermore, it is desirable that the optically active alkenyl alcohol is optically active pentenyl alcohol.

さらに、光学活性置換テトラヒドロフラン誘導体が、光学活性2-置換-5-置換メチルテトラヒドロフラン誘導体であると望ましい。 Furthermore, it is desirable that the optically active substituted tetrahydrofuran derivative is an optically active 2-substituted-5-substituted methyltetrahydrofuran derivative.

さらに、光学活性2-置換-5-置換メチルテトラヒドロフラン誘導体の置換メチルが、CHBr、CHN又はCHOであると望ましい。 Further, the substituted methyl in the optically active 2-substituted-5-substituted methyltetrahydrofuran derivative is desirably CH 2 Br, CH 2 N or CH 2 O.

さらに、ブテニルケトンから光学活性ルテニウム触媒を用いたエナンチオ選択的水素移動型反応を行うことで、光学活性アルコールを合成すると望ましい。 Furthermore, it is desirable to synthesize an optically active alcohol from butenyl ketone by performing an enantioselective hydrogen transfer reaction using an optically active ruthenium catalyst.

現在に至るまで、置換テトラヒドロフラン誘導体、特に2-置換-5-置換メチルテトラヒドロフラン誘導体の不斉合成を達成する合成方法はなかったが、本発明によれば、臭化物イオンの酸素酸化による光学活性アルコールの触媒的ブロモエーテル化反応により光学活性置換テトラヒドロフラン誘導体を合成できる利点がある。 Until now, there has been no synthetic method for achieving asymmetric synthesis of substituted tetrahydrofuran derivatives, particularly 2-substituted-5-substituted methyltetrahydrofuran derivatives. There is an advantage that an optically active substituted tetrahydrofuran derivative can be synthesized by a catalytic bromoetherification reaction.

また、臭化物イオンの酸素酸化による触媒的ブロモエーテル化反応は、有機反応後の有機廃棄物を全く出さない点、危険な酸化剤を用いない点等から環境調和に優れており、さらに安価な試薬のみを用いているので、低価格で実用的な合成法として利用出来る利点もある。 In addition, the catalytic bromoetherification reaction by oxidation of bromide ions with oxygen does not generate any organic waste after the organic reaction, does not use dangerous oxidizing agents, and is environmentally friendly. Since only is used, there is also an advantage that it can be used as a low-cost and practical synthesis method.

以下、本発明の実施形態について説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。 Embodiments of the present invention will be described below. The scope of the present invention is not restricted by these explanations, and other than the following examples can be appropriately changed and implemented without impairing the gist of the present invention.

有機化合物において官能基の選択的形成は、目的化合物を効率的に生成するために重要な事項である。そして、臭化物イオンの酸素酸化による変換は環境調和型で実用的な方法として注目されてきたが、酸化された臭素は、求電子付加反応、ラジカル反応などを促進するカチオン的およびラジカル的性質を有するため、有機化合物に複数の反応を起こす。その反応形態の一例を一般式<化1>に示す。

Figure 0007289119000001
Selective formation of functional groups in organic compounds is an important matter for efficiently producing target compounds. The conversion of bromide ions by oxygen oxidation has attracted attention as an environmentally friendly and practical method, but oxidized bromine has cationic and radical properties that promote electrophilic addition reactions, radical reactions, etc. Therefore, multiple reactions occur in organic compounds. An example of the reaction form is shown in the general formula <Chemical Formula 1>.
Figure 0007289119000001

第一の反応形態として、臭素と酸化剤を用いたアルコールの酸化反応が報告されている(一般式<化1>上段)。第二の反応形態として、アルケンへの求電子付加反応として、ジブロモ化および酸素求核種の付加によるオキシブロモ化が、臭素分子により簡単に進行する(一般式<化1>中段)。このような様々な副反応が起こりうる臭化物イオンの酸素酸化による変換において、分子内ブロモ環化は挑戦的な課題である。(一般式<化1>下段)。 As a first reaction form, an alcohol oxidation reaction using bromine and an oxidizing agent has been reported (general formula <Chemical Formula 1> upper row). As a second reaction form, as electrophilic addition reactions to alkenes, dibromination and oxybromination by addition of an oxygen nucleophile proceed easily with a bromine molecule (general formula <Chemical Formula 1> middle row). Intramolecular bromocyclization is a challenging task in the conversion of bromide ion by oxygen oxidation in which various side reactions can occur. (General formula <Chem. 1> lower part).

光学活性2-置換-5-置換メチルテトラヒドロフラン誘導体は、天然物および生理活性物質において重要な構造である。そして、置換ペンテニルアルコールの分子内ブロモエーテル化は、2-置換-5-置換メチルテトラヒドロフラン誘導体骨格を構築するのに極めて有用である。しかしながら、高い光学純度を有する化合物を与える不斉分子内ブロモエーテル化はこれまで確立されていない。 Optically active 2-substituted-5-substituted methyltetrahydrofuran derivatives are important structures in natural products and bioactive substances. And intramolecular bromoetherification of substituted pentenyl alcohols is very useful for building 2-substituted-5-substituted methyltetrahydrofuran derivative backbones. However, an asymmetric intramolecular bromoetherification leading to compounds with high optical purity has not been established so far.

本発明者らは、ブテニルケトンのエナンチオ選択的還元およびそれに続く臭化物イオンの酸素酸化による光学活性ペンテニルアルコールの分子内ブロモエーテル化により、光学活性置換テトラヒドロフラン誘導体を効率的に生成できることを見出した。その反応形態を一般式<化2>に示す。

Figure 0007289119000002
The present inventors have found that enantioselective reduction of butenyl ketones and subsequent intramolecular bromoetherification of optically active pentenyl alcohols by oxygen oxidation of bromide ions can efficiently produce optically active substituted tetrahydrofuran derivatives. The reaction form is shown in the general formula <Formula 2>.
Figure 0007289119000002

そして、本発明で合成された光学活性置換テトラヒドロフラン誘導体は、一般式<化3>で表されるものより構成された。

Figure 0007289119000003
The optically active substituted tetrahydrofuran derivative synthesized in the present invention was composed of one represented by the general formula <Chemical Formula 3>.
Figure 0007289119000003

式中、Rで示される官能基としては、(置換)フェニル基、ナフチル基、アルキニル基等が挙げられる。また、Rは、水素又や官能基であり、官能基としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基が挙げられる。さらに、式中において、ブロモメチル(CHBr)に代えて、CHN又はCHO等も置換できる。 In the formula, functional groups represented by R 1 include (substituted) phenyl groups, naphthyl groups, alkynyl groups and the like. R 2 is hydrogen or a functional group, and examples of functional groups include alkyl groups such as methyl, ethyl, propyl and butyl groups. Furthermore, in the formula, bromomethyl (CH 2 Br) can be substituted with CH 2 N, CH 2 O, or the like.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these.

本発明者らは、ブテニルケトンのエナンチオ選択的還元のための光学活性ルテニウム触媒によるエナンチオ選択的水素移動型反応に焦点を当て、3-ブテニルフェニルケトン(1a)の反応でルテニウム触媒の検討を行った。一般式<化4>に反応式と、検討した3種類のルテニウム触媒を示しておく。また、各触媒に対する収率、エナンチオマー過剰率等の検討結果を<表1>に示しておく。

Figure 0007289119000004
Figure 0007289119000005
The present inventors focused on the enantioselective hydrogen transfer reaction with an optically active ruthenium catalyst for the enantioselective reduction of butenyl ketones, and investigated ruthenium catalysts in the reaction of 3-butenyl phenyl ketone (1a). rice field. The general formula <Chemical Formula 4> shows the reaction formula and three types of ruthenium catalysts studied. In addition, Table 1 shows the results of examination of the yield, enantiomeric excess, etc. for each catalyst.
Figure 0007289119000004
Figure 0007289119000005

室温で、光学活性ルテニウム触媒として、RuCl[(S,S)-Tsdpen](p-cymene) ((S,S)-A)をギ酸/トリエチルアミン中で3-ブテニルフェニルケトン(1a)と反応させたところ、目的のアルコール((S)-2a)が収率56%、エナンチオマー過剰率94% eeで得られ、37%の3-ブテニルフェニルケトン(1a)が回収された(条件1)。また、テザー型ルテニウム触媒((S,S)-Bおよび(S,S)-C)を室温で用いた時、目的のアルコール((S)-2a)の収率とエナンチオマー過剰率が向上し、副生成物を生成しなかった(条件3、条件5)。しかしながら、3種類のルテニウム触媒の60℃での反応は反応性を向上させたものの、末端アルケンが異性化した副生成物を発生した(条件2、条件4、条件6)。また、3-ブテニルフェニルケトン(1a)の1mmolスケールによるエナンチオ選択的水素移動型反応もまた目的のアルコール((S)-2a)を収率94%、エナンチオマー過剰率97% eeで得られた(条件7)。 Reaction of RuCl[(S,S)-Tsdpen](p-cymene) ((S,S)-A) as an optically active ruthenium catalyst with 3-butenyl phenyl ketone (1a) in formic acid/triethylamine at room temperature As a result, the desired alcohol ((S)-2a) was obtained with a yield of 56% and an enantiomeric excess of 94% ee, and 37% of 3-butenylphenyl ketone (1a) was recovered (condition 1). . In addition, when tethered ruthenium catalysts ((S,S)-B and (S,S)-C) were used at room temperature, the yield and enantiomeric excess of the desired alcohol ((S)-2a) were improved. , did not produce by-products (Conditions 3, 5). However, although the reaction of the three types of ruthenium catalysts at 60° C. improved the reactivity, isomerized by-products of terminal alkenes were generated (Conditions 2, 4, 6). In addition, the enantioselective hydrogen transfer type reaction of 3-butenylphenyl ketone (1a) on a 1 mmol scale also gave the desired alcohol ((S)-2a) with a yield of 94% and an enantiomeric excess of 97% ee. (Condition 7).

以上の結果、特に条件7が、エナンチオマー過剰率が高く、副生成物が生成しないことを確認した。 From the above results, it was confirmed that condition 7, in particular, has a high enantiomeric excess and does not produce by-products.

エナンチオ選択的水素移動型反応の基質検討のために、ブテニルケトン類を最適条件(<表1>の条件7)で反応させた。その反応形態を一般式<化5>に示しておく。また、各種のブテニルケトン類を反応させて、各種のアルコールを得た場合の収率、エナンチオマー過剰率の検討結果を<表2>に示しておく。

Figure 0007289119000006
Figure 0007289119000007
In order to investigate substrates for enantioselective hydrogen transfer reactions, butenyl ketones were reacted under optimum conditions (Condition 7 in <Table 1>). The reaction form is shown in the general formula <Formula 5>. Table 2 shows the results of studies on yields and enantiomeric excesses when various alcohols were obtained by reacting various butenyl ketones.
Figure 0007289119000006
Figure 0007289119000007

電子供与基および電子求引基を持つ1置換フェニルブテニルケトン(1b-1j)、2置換フェニルブテニルケトン(1k)は、優れた収率(90%-99%)で、90% ee-98% eeのエナンチオマー過剰率で対応するアルコール(2b-2k)を得た。しかしながら、3置換フェニルブテニルケトン(2l)はほぼ反応しなかった。また、1-ナフチル基(1m)、ベンゾチオフェン(1n)、2置換アルケン(1o)、アルキニル基を持つ基質(1p)もまた優れた収率かつ高いエナンチオマー過剰率で光学活性アルコールを得た(2m-2p)。さらに、飽和炭化水素鎖を持つケトン(1q)は高収率であるが低いエナンチオマー過剰率で目的物(2q)を得た。 Mono-substituted phenylbutenyl ketones (1b-1j) and di-substituted phenylbutenyl ketones (1k) with electron-donating and electron-withdrawing groups were obtained in excellent yields (90%-99%) with 90% ee- The corresponding alcohols (2b-2k) were obtained with an enantiomeric excess of 98% ee. However, 3-substituted phenylbutenyl ketone (2l) hardly reacted. Substrates with 1-naphthyl group (1m), benzothiophene (1n), disubstituted alkenes (1o), and alkynyl groups (1p) also gave optically active alcohols in excellent yields and high enantiomeric excesses ( 2m-2p). Furthermore, the ketone (1q) having a saturated hydrocarbon chain gave the target product (2q) with a low enantiomeric excess although the yield was high.

以上の結果、ブテニルケトン類から光学活性ルテニウム触媒を用いたエナンチオ選択的水素移動型反応を行うことで、光学活性アルコールを合成できることを確認した。 From the above results, it was confirmed that optically active alcohols can be synthesized from butenyl ketones by enantioselective hydrogen transfer reaction using an optically active ruthenium catalyst.

次に、発明者らは置換テトラヒドロフラン誘導体の不斉合成に展開するために、ラセミ体のアルコール(rac-2a)のブロモエーテル化における添加剤および溶媒の検討を行った。一般式<化6>に反応式を示しておく。また、各溶媒に対する収率等の検討結果を<表3>に示しておく。

Figure 0007289119000008
Figure 0007289119000009
Next, the inventors investigated additives and solvents in the bromoetherification of racemic alcohol (rac-2a) in order to develop the asymmetric synthesis of substituted tetrahydrofuran derivatives. The reaction formula is shown in the general formula <Formula 6>. In addition, Table 3 shows the results of examination of the yield and the like for each solvent.
Figure 0007289119000008
Figure 0007289119000009

アセトニトリル(MeCN)中でのアルコール(rac-2a)のブロモエーテル化は80%の収率で光学活性置換テトラヒドロフラン誘導体(rac-5a)を得た(条件1)。溶媒としてジクロロメタン(CHCl)を用いた時、少量の副生成物を伴って光学活性置換テトラヒドロフラン誘導体(rac-5a)を46%の収率で得た。これは反応の化学選択性の高さを示している(条件4)。他の溶媒は光学活性置換テトラヒドロフラン誘導体(rac-5a)の収率を向上させなかった(条件2、条件3、条件5)。さらなる反応条件の検討結果(条件6-10)により、最適条件(条件9)は、添加剤としてMg(OTf)を20mol%加え、アセトニトリル(MeCN)とジクロロメタン(CHCl)の1:1混合溶媒中、酸素条件下の時と判明し、光学活性置換テトラヒドロフラン誘導体(rac-5a)を91%の収率で得ることができた。 Bromoetherification of alcohol (rac-2a) in acetonitrile (MeCN) gave the optically active substituted tetrahydrofuran derivative (rac-5a) in 80% yield (condition 1). When dichloromethane (CH 2 Cl 2 ) was used as a solvent, an optically active substituted tetrahydrofuran derivative (rac-5a) was obtained with a small amount of by-products in a yield of 46%. This indicates the high chemoselectivity of the reaction (Condition 4). Other solvents did not improve the yield of the optically active substituted tetrahydrofuran derivative (rac-5a) (conditions 2, 3, 5). According to the results of further investigation of the reaction conditions (conditions 6-10), the optimum conditions (condition 9) are the addition of 20 mol % of Mg(OTf) 2 as an additive and the addition of acetonitrile (MeCN) and dichloromethane (CH 2 Cl 2 ) at 1:1. 1 mixed solvent under oxygen conditions, and an optically active substituted tetrahydrofuran derivative (rac-5a) was obtained with a yield of 91%.

さらに、発明者らは、臭化物イオンの酸素酸化による光学活性置換ペンテニルアルコールの光学活性ブロモエーテル化における基質検討を行った。その反応形態を一般式<化7>に示しておく。また、各種のアルコール類を反応させて、各種の光学活性ブロモメチルテトラヒドロフラン誘導体を得た場合の収率、エナンチオマー過剰率等の検討結果を<表4>に示しておく。

Figure 0007289119000010
Figure 0007289119000011
Furthermore, the inventors investigated substrates in optically active bromoetherification of optically active substituted pentenyl alcohols by oxygen oxidation of bromide ions. The reaction form is shown in the general formula <Formula 7>. Table 4 shows the results of studies on yields, enantiomeric excesses, etc. when various optically active bromomethyltetrahydrofuran derivatives were obtained by reacting various alcohols.
Figure 0007289119000010
Figure 0007289119000011

無置換アルコール(2a)、p-置換基にCl(2d)、Br(2e)、CF(2f)をもつアルコール、m-置換アルコール(2h、2i)およびo-置換アルコール(2j)はブロモエーテル化に用いたところ、光学活性ブロモメチルテトラヒドロフラン誘導体(5a、5d、5e、5f、5h、5i、5j)を高収率(81-92%)かつトランス選択的(dr=67:33-72:28)でエナンチオマー過剰率を損なうことなく得ることができた。p-Me(2b)、p-F(2c)、m-diMe(2k)、1-ナフチル(2m)を持つ基質についてはNaNO/Mg(OTf)/ap.HBr、酸素雰囲気下で目的物を81-92% eeで得ることができ、若干のラセミ化が示された。特に、p-MeOフェニル(2g)とベンゾチオフェン(2n)といった電子豊富なアリル基を持つ基質の反応においては、生成物5g、5nの顕著なラセミ化が起こったことが観測された(2-64% ee)。96%eeのアルキニルアルコール(2p)もまたブロモエーテル化により、対応する生成物(5p)を87%の収率かつ満足するエナンチオ選択性で得られた。ラセミ体の3置換フェニルアルコール(2l)および飽和炭化水素アルコール(2q)のブロモエーテル化は目的物(5l、5q)を高収率(75%および84%)でトランス選択的に(dr=79:21、70:30)与えた。 Unsubstituted alcohols (2a), alcohols with Cl (2d), Br (2e), CF 3 (2f) in p-substituents, m-substituted alcohols (2h, 2i) and o-substituted alcohols (2j) are bromo When used for etherification, optically active bromomethyltetrahydrofuran derivatives (5a, 5d, 5e, 5f, 5h, 5i, 5j) were obtained in high yields (81-92%) and trans-selectively (dr = 67:33-72 : 28) without loss of enantiomeric excess. NaNO 2 /Mg(OTf) 2 /ap.HBr for substrates with p-Me (2b), p-F (2c), m-diMe (2k), 1-naphthyl (2m) under oxygen atmosphere. Material could be obtained in 81-92% ee, indicating some racemization. In particular, in the reaction of substrates with electron-rich allyl groups such as p-MeO phenyl (2g) and benzothiophene (2n), significant racemization of products 5g and 5n was observed (2- 64% ee). The 96% ee alkynyl alcohol (2p) was also bromoetherified to give the corresponding product (5p) in 87% yield and satisfactory enantioselectivity. Bromoetherification of racemic tri-substituted phenyl alcohol (2l) and saturated hydrocarbon alcohol (2q) yielded the desired products (5l, 5q) in high yields (75% and 84%) in a transselective manner (dr = 79 :21, 70:30).

次に、ブロモエーテル化におけるラセミ化の機構を明らかにするために、発明者らは反応機構に関する実験を行った。実験に用いた反応形態を一般式<化8>に示しておく。

Figure 0007289119000012
Next, the inventors conducted experiments on the reaction mechanism in order to clarify the racemization mechanism in bromoetherification. The reaction form used in the experiment is shown in the general formula <Chemical Formula 8>.
Figure 0007289119000012

N-ブロモスクシンイミド(NBS)存在下で、2gのブロモエーテル化は目的物5gを97%収率で得たが、エナンチオマー過剰率は低かった(39% ee/40% ee)(式1)。2gを臭化水素酸で処理すると、2gが1% ee及び低収率(24%)で回収され、多くの副生成物が生成された(式2)。一般式<化8>の結果に基づき、発明者らは、この反応における基質のラセミ化は、臭素ラジカルまたは酸条件におけるプロトンによって引き起こされると推測した。 Bromoetherification of 2 g in the presence of N-bromosuccinimide (NBS) gave 5 g of the desired product in 97% yield, but with low enantiomeric excess (39% ee/40% ee) (equation 1). Treatment of 2g with hydrobromic acid yielded 2g in 1% ee and low yield (24%) with many by-products (equation 2). Based on the results of general formula <Formula 8>, the inventors speculated that the racemization of the substrate in this reaction was caused by bromine radicals or protons in acid conditions.

発明者らは、機構解析に基づき、アルコールのラセミ化を含む、臭化物イオンの酸素酸化による光学活性アルケニルアルコールのブロモエーテル化の反応機構を推測した。その反応機構を一般式<化9>に示しておく。

Figure 0007289119000013
Based on mechanistic analysis, the inventors speculated the reaction mechanism of bromoetherification of optically active alkenyl alcohols by oxygen oxidation of bromide ions, including alcohol racemization. The reaction mechanism is shown in the general formula <Formula 9>.
Figure 0007289119000013

NaNOと酸素を用いた臭化物イオンの酸素酸化はBrを生成し、それは系中でブロモカチオンまたはブロモラジカルとして作用する。ブロモカチオン種は分子内環化を促進するためにアルケンのπ電子と反応する。このアルケンの求電子付加は起こりやすく、環化生成物は高いエナンチオマー過剰率を有する(pathA)。一方で、ブロモラジカルは基質のベンジル位から水素原子を引き抜いてベンジルラジカル中間体を形成し、これはすぐに基質のラセミ化を促進する(pathB)。p-MeOフェニル基を持つ、強い共鳴効果を持つ基質のベンジル位水素原子の協奏的引き抜きはブロモ環化より優先され、低光学純度の生成物を与える。加えて、これらの基質のラセミ化は酸条件による脱水によってベンジルカチオン中間体を形成する経路でも可能である(pathC)。 Oxygen oxidation of bromide ion with NaNO2 and oxygen produces Br2 , which acts as a bromocation or bromoradical in the system. The bromocationic species reacts with the pi-electrons of alkenes to promote intramolecular cyclization. Electrophilic addition of this alkene is favourable, and the cyclization product has a high enantiomeric excess (pathA). On the one hand, the bromo radical abstracts a hydrogen atom from the benzylic position of the substrate to form a benzylic radical intermediate, which readily facilitates racemization of the substrate (pathB). The concerted abstraction of the benzylic hydrogen atom of substrates with strong resonance effects, bearing the p-MeO phenyl group, is favored over the bromocyclization and gives products of low optical purity. In addition, racemization of these substrates is also possible via a route that forms a benzyl cation intermediate by dehydration under acidic conditions (pathC).

最後に、3-ブテニルフェニルケトン1aを出発物質とするエナンチオ選択的水素移動とブロモエーテル化を経由する光学活性2-置換-5-ブロモメチルテトラヒドロフラン誘導体5aのワンポット合成を調査した。その反応形態を一般式<化10>に示しておく。

Figure 0007289119000014
Finally, the one-pot synthesis of optically active 2-substituted-5-bromomethyltetrahydrofuran derivative 5a via enantioselective hydrogen transfer and bromoetherification starting from 3-butenyl phenyl ketone 1a was investigated. The reaction form is shown in the general formula <Formula 10>.
Figure 0007289119000014

3-ブテニルフェニルケトン1aの(S,S)-Ts- DENEB触媒によるエナンチオ選択的水素移動型反応の後、混合生成物を蒸発させてギ酸とトリエチルアミンを除去し、前述の条件下で臭化物イオンの酸素酸化によるブロモエーテル化を行ったところ、目的物5aを72%の収率かつ高エナンチオ選択性(97% ee/97% ee)で得られた。 After (S,S)-Ts-DENEB-catalyzed enantioselective transfer hydrogenation type reaction of 3-butenyl phenyl ketone 1a, the mixed product is evaporated to remove formic acid and triethylamine, and bromide ions under the conditions previously described. bromoetherification by oxygen oxidation of 5a gave the desired product 5a in 72% yield and high enantioselectivity (97% ee/97% ee).

光学活性ブロモエーテル化生成物の合成的有用性を示すため、発明者らは単純な炭素-ヘテロ原子結合生成により含ヘテロ原子化合物を生成する反応を用いて、光学活性2-置換-5-ブロモメチルテトラヒドロフラン誘導体5aの誘導化を調査した。調査結果を<化11>に示しておく。

Figure 0007289119000015
To demonstrate the synthetic utility of the optically active bromoetherified products, we used a simple carbon-heteroatom bond formation to form heteroatom-containing compounds to give optically active 2-substituted-5-bromo The derivatization of the methyltetrahydrofuran derivative 5a was investigated. <Formula 11> shows the results of the investigation.
Figure 0007289119000015

安息香酸ナトリウムを酸素求核種として、フタルイミドカリウムを窒素求核種としてジメチルスルホキシド(DMSO)中、80 ℃で光学活性2-置換-5-ブロモメチルテトラヒドロフラン誘導体5aをそれぞれ処理したところ、目的物6aおよび7aを高収率かつジアステレオマー比、エナンチオマー過剰率を損なうことなく得ることができた。 Optically active 2-substituted-5-bromomethyltetrahydrofuran derivative 5a was treated at 80° C. in dimethyl sulfoxide (DMSO) using sodium benzoate as an oxygen nucleophile and potassium phthalimide as a nitrogen nucleophile to give target compounds 6a and 7a. was obtained in high yield without sacrificing the diastereomeric ratio and enantiomeric excess.

本実施例の効果は、次のとおりである。
(1)現在に至るまで、置換テトラヒドロフラン誘導体、特に2-置換-5-置換メチルテトラヒドロフラン誘導体の不斉合成を達成する合成方法はなかったが、本発明によれば、臭化物イオンの酸素酸化による光学活性アルコールの触媒的ブロモエーテル化反応により光学活性置換テトラヒドロフラン誘導体を合成できる利点がある。
(2)臭化物イオンの酸素酸化による触媒的ブロモエーテル化反応は、有機反応後の有機廃棄物を全く出さない点、危険な酸化剤を用いない点等から環境調和に優れており、さらに安価な試薬のみを用いているので、低価格で実用的な合成法として利用出来る利点もある。
The effects of this embodiment are as follows.
(1) Up to now, there has been no synthetic method that achieves the asymmetric synthesis of substituted tetrahydrofuran derivatives, especially 2-substituted-5-substituted methyltetrahydrofuran derivatives. There is an advantage that optically active substituted tetrahydrofuran derivatives can be synthesized by catalytic bromoetherification reaction of active alcohol.
(2) The catalytic bromoetherification reaction by oxygen oxidation of bromide ions is excellent in terms of environmental friendliness in that it does not generate any organic waste after the organic reaction and does not use dangerous oxidizing agents, and is also inexpensive. Since only reagents are used, there is also the advantage that it can be used as a low-cost and practical synthesis method.

本発明は、生物活性化合物や有機合成に必要な不斉素子等の機能性分子の中間体として利用が期待される新規な光学活性置換テトラヒドロフラン誘導体の合成方法として産業上利用可能である。

INDUSTRIAL APPLICABILITY The present invention is industrially applicable as a method for synthesizing novel optically active substituted tetrahydrofuran derivatives that are expected to be used as intermediates for functional molecules such as biologically active compounds and chiral elements necessary for organic synthesis.

Claims (5)

下記式1で示される光学活性アルコールを臭化物イオンの酸素酸化によブロモエーテル化反応させることにより光学活性置換テトラヒドロフラン誘導体を合成する方法であって、
ブロモエーテル化反応を、亜硝酸ナトリウム及びマグネシウムトリフラートの存在下、溶媒中で、臭化物イオンの酸素酸化により行う、光学活性置換テトラヒドロフラン誘導体の合成方法。
Figure 0007289119000016
(式中、R及びRは、官能基を表す。)
A method for synthesizing an optically active substituted tetrahydrofuran derivative by subjecting an optically active alcohol represented by the following formula 1 to a bromoetherification reaction by oxygen oxidation of bromide ions,
A method for synthesizing an optically active substituted tetrahydrofuran derivative, wherein the bromoetherification reaction is carried out by oxygen oxidation of bromide ions in the presence of sodium nitrite and magnesium triflate in a solvent.
Figure 0007289119000016
(In the formula, R 1 and R 2 represent functional groups.)
前記光学活性アルコールが、下記式(i)~(xvii)からなる群より選択される少なくとも1種である、請求項1に記載の方法。
Figure 0007289119000017
2. The method according to claim 1, wherein the optically active alcohol is at least one selected from the group consisting of formulas (i) to (xvii) below.
Figure 0007289119000017
前記光学活性置換テトラヒドロフラン誘導体が、光学活性2-置換-5-置換メチルテトラヒドロフラン誘導体であることを特徴とする請求項1又は2のいずれか1項に記載の方法。 3. The method according to claim 1, wherein the optically active substituted tetrahydrofuran derivative is an optically active 2-substituted-5-substituted methyltetrahydrofuran derivative. 前記光学活性2-置換-5-置換メチルテトラヒドロフラン誘導体の置換メチルが、CHBrであることを特徴とする請求項3記載の方法。 4. The method according to claim 3, wherein the substituted methyl of said optically active 2-substituted-5-substituted methyltetrahydrofuran derivative is CH 2 Br. ブテニルケトンから光学活性ルテニウム触媒を用いたエナンチオ選択的水素移動型反応を行うことで、前記光学活性アルコールを合成することを特徴とする請求項1乃至請求項4のいずれか1項に記載の方法。 5. The method according to any one of claims 1 to 4, wherein the optically active alcohol is synthesized by performing an enantioselective hydrogen transfer reaction from butenyl ketone using an optically active ruthenium catalyst.
JP2019025092A 2019-02-15 2019-02-15 Method for Synthesizing Optically Active Substituted Tetrahydrofuran Derivatives Active JP7289119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019025092A JP7289119B2 (en) 2019-02-15 2019-02-15 Method for Synthesizing Optically Active Substituted Tetrahydrofuran Derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019025092A JP7289119B2 (en) 2019-02-15 2019-02-15 Method for Synthesizing Optically Active Substituted Tetrahydrofuran Derivatives

Publications (2)

Publication Number Publication Date
JP2020132543A JP2020132543A (en) 2020-08-31
JP7289119B2 true JP7289119B2 (en) 2023-06-09

Family

ID=72277598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019025092A Active JP7289119B2 (en) 2019-02-15 2019-02-15 Method for Synthesizing Optically Active Substituted Tetrahydrofuran Derivatives

Country Status (1)

Country Link
JP (1) JP7289119B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537393A (en) 1999-02-23 2002-11-05 ベーリンガー インゲルハイム ファルマ コマンディトゲゼルシャフト Substituted 1,2,3,4,5,6-hexahydro-2,6-methano-3-benzoazosin-10-ols, processes for their preparation and their use as drugs

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537393A (en) 1999-02-23 2002-11-05 ベーリンガー インゲルハイム ファルマ コマンディトゲゼルシャフト Substituted 1,2,3,4,5,6-hexahydro-2,6-methano-3-benzoazosin-10-ols, processes for their preparation and their use as drugs

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Podgorsek, Ajda; Eissen, Marco; Fleckenstein, Jens; Stavber, Stojan; Zupan, Marko; Iskra, Jernej,Selective aerobic oxidative dibromination of alkenes with aqueous HBr and sodium nitrite as a catalyst,Green Chemistry,2009年,11(1),,120-126
Rasina, Dace; Otikovs, Martins; Leitans, Janis; Recacha, Rosario; Borysov, Oleksandr V.; Kanepe-Lapsa, Iveta; Domraceva, Ilona; Pantelejevs, Teodors; Tars, Kaspars; Blackman, Michael J.; Jaudzems, Kristaps; Jirgensons, Aigars,Fragment-Based Discovery of 2-Aminoquinazolin-4(3H)-ones As Novel Class Nonpeptidomimetic Inhibitors of the Plasmepsins I, II, and IV,Journal of Medicinal Chemistry ,2016年,59(1),,374-387
Zhang, Guofu; Liu, Renhua; Xu, Qing; Ma, Lixin; Liang, Xinmiao,Sodium Nitrite-Catalyzed Oxybromination of Aromatic Compounds and Aryl Ketones with a Combination of Hydrobromic Acid and Molecular Oxygen under Mild Conditions,Advanced Synthesis & Catalysis,2006年,348(7-8),,862-866

Also Published As

Publication number Publication date
JP2020132543A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
Tejedor et al. Propargyl Claisen rearrangement: allene synthesis and beyond
Enders et al. Proline-catalyzed enantioselective Michael additions of ketones to nitrostyrene
Reyes et al. How to make five contiguous stereocenters in one reaction: Asymmetric organocatalytic synthesis of pentasubstituted cyclohexanes
Fleming et al. A synthesis of (+)-saxitoxin
Wang et al. Asymmetric synthesis of syn-propargylamines and unsaturated β-amino acids under Brønsted base catalysis
Armanino et al. Autotandem Catalysis with Ruthenium: Remote Hydroesterification of Allylic Amides
Xing et al. Acid-catalyzed acylation reaction via C–C bond cleavage: a facile and mechanistically defined approach to synthesize 3-acylindoles
Fructos et al. [2+ 2] Cycloaddition reactions promoted by group 11 metal-based catalysts
Pilgrim et al. Osmium-catalyzed oxidative cyclization of dienes and their derivatives
CN111205279B (en) Polysubstituted benzodihydrofuran heterocyclic compound and preparation method and application thereof
CN112920066A (en) Alpha-substituted-alpha-amino acid ester compound and preparation method thereof
JP6481689B2 (en) Method for producing phenolic compound
Das Desymmetrization of Cyclopentene‐1, 3‐Diones via Alkylation, Arylation, Amidation and Cycloaddition Reactions
Komeyama et al. Nickel-Catalyzed Reductive Bis-Allylation of Alkynes
ES2390590T3 (en) Sulphonylated diphenylethylene diamines, method for their preparation and use in transfer hydrogenation catalysis
Borkin et al. K-10-catalyzed highly diastereoselective synthesis of aziridines
Mortensen et al. Recent Advances in 1, 2-Diamination of Alkenes
US9873713B2 (en) Process for synthesizing highly optically active 1,3-disubstituted allenes
Vanlaldinpuia et al. Monofunctional primary amine: A new class of organocatalyst for asymmetric Aldol reaction
Sela et al. Concentrated aqueous sodium tosylate as green medium for alkene oxidation and nucleophilic substitution reactions
JP7289119B2 (en) Method for Synthesizing Optically Active Substituted Tetrahydrofuran Derivatives
Cheng et al. Ligand-free copper-catalyzed direct amidation of diaryliodonium salts using nitriles as amidation reagents
JPWO2005000803A1 (en) Asymmetric urea compound and method for producing asymmetric compound by asymmetric conjugate addition reaction using the same
JP6028606B2 (en) Method for producing amine compound
EP2752402B1 (en) Production method for 2-alkenylamine compound

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230523

R150 Certificate of patent or registration of utility model

Ref document number: 7289119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150