JP7287122B2 - grain drying equipment - Google Patents

grain drying equipment Download PDF

Info

Publication number
JP7287122B2
JP7287122B2 JP2019102961A JP2019102961A JP7287122B2 JP 7287122 B2 JP7287122 B2 JP 7287122B2 JP 2019102961 A JP2019102961 A JP 2019102961A JP 2019102961 A JP2019102961 A JP 2019102961A JP 7287122 B2 JP7287122 B2 JP 7287122B2
Authority
JP
Japan
Prior art keywords
grain
air
air volume
exhaust
dryers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019102961A
Other languages
Japanese (ja)
Other versions
JP2020197335A (en
Inventor
裕人 薬内
澄人 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Original Assignee
Iseki and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2019102961A priority Critical patent/JP7287122B2/en
Publication of JP2020197335A publication Critical patent/JP2020197335A/en
Application granted granted Critical
Publication of JP7287122B2 publication Critical patent/JP7287122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Description

本発明は、穀物乾燥装置に関する。 The present invention relates to grain drying equipment.

穀物乾燥機において、バーナ本体の上部に吊り下げ状態に風量センサを設けて風量検出手段を構成している(特許文献1)。 In a grain dryer, an air volume sensor is provided in a suspended state on the upper part of a burner body to constitute air volume detection means (Patent Document 1).

特開平8-128782号公報JP-A-8-128782

特許文献1によると、熱風を供給しながら穀物乾燥するものにおいて、風量検出手段からの検出風量に対してバーナによる加温度が適正燃焼状態にあるか否かを判定できる。しかしながら、建屋内に複数の穀物乾燥機を設置して運転すると隣接の乾燥機の排風ファン運転で風量が変動し易い。 According to Patent Literature 1, in the case of drying grains while supplying hot air, it is possible to determine whether or not the heating temperature by the burner is in an appropriate combustion state with respect to the air volume detected by the air volume detecting means. However, when a plurality of grain dryers are installed and operated in a building, the air volume tends to fluctuate due to the operation of the exhaust fan of the adjacent dryer.

この発明は、隣接乾燥機の運転による影響を判定し、併せて適正乾燥運転を継続しようとする。 The present invention determines the impact of adjacent dryer operation and attempts to continue proper drying operation.

この発明は、上記課題を解決すべく次のような技術的手段を講じた。 In order to solve the above problems, the present invention has taken the following technical means.

第1の本発明は、吸気口(63)を設ける建屋(H)内に吸気口(63)から近い側から遠い側に向かって複数の穀物乾燥機(D1,D2,D3)を配置し、各穀物乾燥機(D1,D2,D3)からそれぞれ排風案内ダクト(55d1,55d2,55d3)が建屋(H)壁部を貫通して建屋(H)外に排風を排出する穀物乾燥装置において、
前記複数の穀物乾燥機(D1,D2,D3)の内の各穀物乾燥機(D1,D2,D3)に乾燥風量を検出する風圧計(65d1,65d2,65d3)を設け、風圧計(65d1,65d2,65d3)の風量検出に基づいて前記各穀物乾燥機(D1,D2,D3)の排風ファン(10)の設定回転数における風量(q0)に対する低下風量(Δq1,Δq2,Δq3)を演算する制御部(Sd1,Sd2,Sd3)を各穀物乾燥機(D1,D2,D3)にそれぞれ備え、
該各穀物乾燥機(D1,D2,D3)の制御部(Sd1,Sd2,Sd3)はそれぞれ管理用端末(T)と接続して各穀物乾燥機(D1,D2,D3)の運転情報を連絡可能とし、
ある穀物乾燥機(D3)が風量低下を検出した場合に、他の穀物乾燥機の運転状況による影響を判定すると共に、風量低下(Δq)は許容し得る低下状況か、または他の原因による異常低下状況かを前記各穀物乾燥機の運転情報から判定可能に構成したことを特徴とする穀物乾燥装置である。
第2の本発明は、前記各穀物乾燥機(D1,D2,D3)の低下風量(Δq1,Δq2,Δq3)に基づいて前記排風ファン(10)回転数を上昇制御するよう構成した第1の本発明の穀物乾燥装置である。
第3の本発明は、前記各穀物乾燥機(D1,D2,D3)の低下風量(Δq1,Δq2,Δq3)に基づいて燃焼バーナ(7)の燃焼量を低下制御するよう構成した第1の本発明の穀物乾燥装置である。
本発明に関連する第発明は、建屋H内に複数の穀物乾燥機D1,D2,D3を配置した穀物乾燥装置において、複数の穀物乾燥機(D1,D2,D3)の内の各穀物乾燥機D1,D2,D3に減圧検出手段64d1,64d2,64d3を設け、減圧検出手段64d1,64d2,d3の減圧検出に基づいて各穀物乾燥機D1,D2,D3の排風ファン10の設定回転数における風量q0に対する低下風量Δq1,Δq2,Δq3を演算する制御部Sd1,Sd2,Sd3を備えたものである。
In the first present invention, a plurality of grain dryers (D1, D2, D3) are arranged from the near side to the far side from the air intake (63) in a building (H) in which the air intake (63) is provided, In a grain drying apparatus in which exhaust air guide ducts (55d1, 55d2, 55d3) from each grain dryer (D1, D2, D3) penetrate the building (H) wall and exhaust air out of the building (H) ,
Each grain dryer (D1, D2, D3) among the plurality of grain dryers (D1, D2, D3) is provided with an anemometer (65d1, 65d2, 65d3) for detecting a drying air volume, and an anemometer (65d1, 65d2, 65d3), calculate the reduced air volume (Δq1, Δq2, Δq3) with respect to the air volume (q0) at the set rotation speed of the exhaust fan (10) of each grain dryer (D1, D2, D3) based on the detected air volume. Each grain dryer (D1, D2, D3) is provided with a control unit (Sd1, Sd2, Sd3) for
The control units (Sd1, Sd2, Sd3) of the respective grain dryers (D1, D2, D3) are connected to the management terminals (T) to communicate the operation information of the respective grain dryers (D1, D2, D3). make it possible
When a certain grain dryer (D3) detects a drop in air volume, the influence of the operating conditions of the other grain dryers is determined, and the drop in air volume (Δq) is an allowable drop or an abnormality due to other causes. The grain drying apparatus is characterized in that it can be determined from the operation information of each of the grain dryers whether it is in a state of decrease.
The second aspect of the present invention is the first invention configured to control the rotational speed of the exhaust fan (10) to increase based on the decreased air volume (Δq1, Δq2, Δq3) of each of the grain dryers (D1, D2, D3). is the grain drying apparatus of the present invention.
The third aspect of the present invention is the first aspect of the present invention configured to control the combustion amount of the combustion burner (7) to decrease based on the decreased air volume (Δq1, Δq2, Δq3) of each of the grain dryers (D1, D2, D3). 1 is a grain drying apparatus of the present invention;
A first invention related to the present invention is a grain drying apparatus in which a plurality of grain dryers D1, D2, and D3 are arranged in a building H, wherein each grain in the plurality of grain dryers (D1, D2, D3) The dryers D1, D2 and D3 are provided with decompression detection means 64d1, 64d2 and 64d3, and based on the decompression detection of the decompression detection means 64d1, 64d2 and d3, the set rotation of the exhaust fan 10 of each grain dryer D1, D2 and D3 is controlled. It is provided with control units Sd1, Sd2, Sd3 for calculating decreased air volumes Δq1, Δq2, Δq3 with respect to the air volume q0 in numbers.

本発明に関連する第発明は、本発明に関連する第発明において、各穀物乾燥機D1,D2,D3の低下風量Δq1,Δq2,Δq3に基づいて排風ファン10回転数を上昇制御するよう構成した。 In a second invention related to the present invention , in the first invention related to the present invention , the number of rotations of the exhaust fan 10 is increased based on the reduced air volumes Δq1, Δq2, Δq3 of the grain dryers D1, D2, D3. configured to control.

本発明に関連する第発明は、本発明に関連する第発明において、各穀物乾燥機D1,D2,D3の低下風量Δq1,Δq2,Δq3に基づいて燃焼バーナ7の燃焼量を低下制御するよう構成した。 In a third invention related to the present invention , in the first invention related to the present invention , the combustion amount of the combustion burner 7 is reduced based on the decreased air volumes Δq1, Δq2, Δq3 of the grain dryers D1, D2, D3. configured to control.

本発明によれば、作業者は各穀物乾燥機D1,D2,D3の乾燥風量の低下を適正に判断することができる。
本発明に関連する第発明によれば、減圧検出手段64d1,64d2,64d3の各検出出力によって排風ファン10の設定回転数での風量q0に対する低下風量Δq1,Δq2,Δq3を演算できるから、作業者は各穀物乾燥機D1,D2,D3の乾燥風量の低下を判断することができる。
According to the present invention, the operator can appropriately determine the decrease in the drying air volume of each grain dryer D1, D2, D3.
According to the first invention related to the present invention , it is possible to calculate the reduced air volume Δq1, Δq2, Δq3 with respect to the air volume q0 at the set rotational speed of the exhaust fan 10 from the respective detection outputs of the pressure reduction detection means 64d1, 64d2, 64d3. , the operator can determine the decrease in the drying air volume of each of the grain dryers D1, D2, and D3.

本発明に関連する第発明によると、本発明に関連する第の発明の効果に加え、制御部Sd1,Sd2,Sd3は,低下風量Δq1,Δq2,Δq3を演算し、その値に基づいて排風ファン10の回転数を上昇制御するよう構成するものであるから、低下した乾燥風量を上昇制御することによって、適正な乾燥運転を実行できる。 According to the second invention related to the present invention, in addition to the effects of the first invention related to the present invention , the control units Sd1, Sd2, Sd3 calculate the decreased air volumes Δq1, Δq2, Δq3, and based on the values Since the number of revolutions of the exhaust fan 10 is controlled to increase by controlling the rotation speed of the exhaust fan 10, a proper drying operation can be performed by controlling the increase of the reduced drying air volume.

本発明に関連する第発明によると、本発明に関連する第の発明の効果に加え、制御部Sd1,Sd2,Sd3は,低下風量Δq1,Δq2,Δq3を演算し、その値に基づいて燃焼バーナ7の燃焼量を低下すべく制御するものであるから、乾燥風量に対応した燃焼量のもとで、適正な乾燥運転を実行できる。 According to the third invention related to the present invention , in addition to the effects of the first invention related to the present invention , the control units Sd1, Sd2, Sd3 calculate the decreased air volumes Δq1, Δq2, Δq3, and based on the values Since the combustion amount of the combustion burner 7 is controlled so as to decrease, the proper drying operation can be performed under the combustion amount corresponding to the drying air amount.

建屋に配置の穀物乾燥機の斜視図である。1 is a perspective view of a grain dryer located in a building; FIG. 穀物乾燥機の正断面図である。It is a front sectional view of a grain dryer. 穀物乾燥機の乾燥室及び集穀室の側断面図である。Fig. 2 is a sectional side view of a drying chamber and a grain collecting chamber of the grain dryer; 操作盤正面図である。It is a control panel front view. 制御ブロック図である。It is a control block diagram. フローチャートである。It is a flow chart. 燃焼量-ファン回転数関係グラフである。It is a combustion amount-fan rotation speed relationship graph. フローチャートである。It is a flow chart. 水分値-仮想排風絶対湿度関係グラフである。It is a moisture value-virtual exhaust air absolute humidity relationship graph. (イ)複数穀物乾燥機配置図、(ロ)乾燥機導入直前の空気流速グラフ、(ハ)減圧状況グラフ、(ニ)排風ファン回転数に対する損失風量(低下風量)グラフ、である。(a) multiple grain dryer layout plan, (b) air velocity graph immediately before introduction of the dryer, (c) decompression status graph, and (d) loss air volume (decreased air volume) graph against exhaust fan rotation speed. 穀物乾燥機運転台数と減圧状況対応グラフである。It is a graph corresponding to the number of grain dryers in operation and the pressure reduction situation. 熱風温度変動比較図である。It is a hot-air temperature fluctuation comparison diagram. フローチャートである。It is a flow chart. 乾燥機と集塵装置接続状態を示す側面図である。It is a side view which shows a dryer and a dust collector connection state. 運転状況管理システム概要図である。1 is a schematic diagram of a driving situation management system; FIG.

本発明の実施の形態としての穀物乾燥機につき、図面に基づき説明する。 A grain dryer as an embodiment of the present invention will be described based on the drawings.

建屋H内に、以下に詳述する複数台(図例では3台)の穀物乾燥機D1,D2,D3を設置している。 In the building H, a plurality of grain dryers D1, D2, and D3 (three in the example shown) are installed, which will be described in detail below.

穀物乾燥機D1,D2,D3は同形態であって、箱体1の内部には上部から下部に穀物を貯留する貯留室2と、穀物を乾燥する乾燥室3と、集穀室4を設ける。 Grain dryers D1, D2, and D3 have the same configuration, and a storage chamber 2 for storing grains from top to bottom, a drying chamber 3 for drying grains, and a grain collection chamber 4 are provided inside a box 1. .

箱体1の前側には穀物を揚穀する昇降機5と、バーナケース6を設け、バーナケース6内に熱風を生成する燃焼バーナ7を設ける。箱体1の後側には排風室8と連通する排風ダクト9を設け、排風ダクト9の後側面に排風ファン10を設ける。排風ファン10の上面には排風戻しダクト11の一端始端側を連結し、排風戻しダクト11の他端終端側を箱体1に連結する。排風戻しダクト11の排風流入口12を排風ファン10の内部と連通し、終端側の排風供給口13を後記熱風室14の上部後ろ側部に連通している。 An elevator 5 for raising grains and a burner case 6 are provided on the front side of the box 1, and a combustion burner 7 for generating hot air is provided in the burner case 6. - 特許庁An exhaust duct 9 communicating with an exhaust chamber 8 is provided on the rear side of the box 1, and an exhaust fan 10 is provided on the rear side surface of the exhaust duct 9. - 特許庁One end start side of the exhaust air return duct 11 is connected to the upper surface of the exhaust fan 10 , and the other end end side of the exhaust air return duct 11 is connected to the box 1 . The exhaust air inlet 12 of the exhaust air return duct 11 communicates with the inside of the exhaust fan 10, and the exhaust air supply port 13 on the terminal side communicates with the upper rear portion of the hot air chamber 14 described later.

箱体1の上部には昇降機5で揚穀された穀物を横搬送する上部ラセン樋15を設ける。 An upper spiral gutter 15 for laterally conveying the grains lifted by the elevator 5 is provided on the upper part of the box 1. - 特許庁

前記貯留室2の下方の乾燥室3に、左右に区分された貯留室2内の穀物をさらに左右に区分する一対の断面Y型穀物流下通路19を形成する。該乾燥室3上半部には左右一対の上側に副排風室8aが形成される。また、乾燥室3の左右中央部には熱風室14を設け、熱風室14内部には遠赤外線放射体16を前後方向に沿うように設けている。熱風室14の左右両側に穀物が流下する前記穀物流下通路19,19が配置され、穀物流下通路19,19の左右外側には排風室8,8を設ける。 In the drying chamber 3 below the storage chamber 2, a pair of grain flow-down passages 19 having a Y-shaped cross section are formed to further divide the grains in the left and right storage chamber 2 into left and right. In the upper half of the drying chamber 3, a pair of left and right auxiliary exhaust chambers 8a are formed on the upper side. A hot air chamber 14 is provided in the left-right central portion of the drying chamber 3, and a far-infrared radiator 16 is provided inside the hot air chamber 14 so as to extend in the front-rear direction. The grain flow-down passages 19, 19 through which the grains flow down are arranged on both left and right sides of the hot air chamber 14, and exhaust chambers 8, 8 are provided on the left and right outer sides of the grain flow-down passages 19, 19.例文帳に追加

穀物流下通路19の下端の左右合流部には穀物を繰り出すロータリバルブ17を設け、ロータリバルブ17の下方には穀物を昇降機5へ搬送する下部ラセン18を設ける。 A rotary valve 17 for feeding grain is provided at the left and right confluence portion at the lower end of the grain flow-down passage 19 , and a lower spiral 18 for conveying the grain to the elevator 5 is provided below the rotary valve 17 .

前記バーナケース6は外気取り入れ用の外気取り入れスリットを多数形成している。燃焼バーナ7は本実施形態では間欠燃焼型のガンタイプのバーナ7を搭載している。 The burner case 6 is formed with a large number of outside air intake slits for taking in outside air. The combustion burner 7 is equipped with an intermittent combustion gun type burner 7 in this embodiment.

排風ファン10は、外筒24内に前後方向に沿った横軸心の回転軸20aにより回転する回転翼20と、回転翼20から排出された排風を整流する固定翼21と、回転翼20を軸支する内筒25と、回転翼20により排出された排風を排風戻しダクト11側に案内する排風案内板22とにより構成している。 The exhaust fan 10 includes rotary blades 20 rotating in an outer cylinder 24 by a horizontal axis of rotation 20a extending in the front-rear direction, fixed blades 21 for rectifying the exhaust air discharged from the rotary blades 20, and rotary blades. 20, and an exhaust air guide plate 22 for guiding the exhaust air discharged by the rotor blades 20 to the exhaust air return duct 11 side.

固定翼21は回転翼20の排風側後方に位置し、捻れ形状の排風整流面を左右両側に備え、背面視で放射状に設定間隔毎に多数設けている。固定翼21の外端は外筒24に取り付け、固定翼21の内端は内筒25に取り付けている。 The fixed blades 21 are positioned behind the rotary blades 20 on the exhaust side, and have twisted exhaust air rectifying surfaces on both left and right sides. The outer end of the fixed wing 21 is attached to the outer cylinder 24 and the inner end of the fixed wing 21 is attached to the inner cylinder 25 .

排風戻しダクト11内には排風戻しダクト11内に流入する排風量を増減調節する排風調節弁26を設ける。排風調節弁26は排風調節弁モータ27で左右方向の横軸心回りに回動角度調整可能に構成している(戻し排風量調節手段)。排風戻しダクト11は、排風ファン10の上面から上方向に延びる第一ダクト部11aと、第一ダクト部11aの上端部と箱体1の背面とを接続する前後方向に延びる第二ダクト部11bとから構成し、第一ダクト部11a内に排風調節弁26を設ける。第二ダクト部11bは前広がり状に開口面積を順次大きくする構成としている。 An exhaust air control valve 26 is provided in the exhaust air return duct 11 for increasing or decreasing the amount of exhaust air flowing into the exhaust air return duct 11 . The exhaust air control valve 26 is configured to be able to adjust the rotation angle about the horizontal axis in the left-right direction by the exhaust air control valve motor 27 (return exhaust air amount adjusting means). The exhaust air return duct 11 includes a first duct portion 11 a extending upward from the upper surface of the exhaust fan 10 and a second duct extending in the front-rear direction connecting the upper end portion of the first duct portion 11 a and the rear surface of the box 1 . 11b, and an exhaust control valve 26 is provided in the first duct portion 11a. The second duct portion 11b is configured such that the opening area is gradually enlarged in a forward-broadening manner.

遠赤外線放射体16は、大径の第一円筒部30と、小径の第二円筒部31とで構成している。第一円筒部30の後部を狭窄部30aに構成し、該狭窄部に始端側屈曲部を介して接続して第二円筒部31を上方へ導き、前側に折り返し接続している。第一円筒部30と第二円筒部31は共に中空状で、第一円筒部30の上方に所定空間を介して第二円筒鯛31を前後方向平行状に上方に配置している。 The far-infrared radiator 16 is composed of a large-diameter first cylindrical portion 30 and a small-diameter second cylindrical portion 31 . The rear portion of the first cylindrical portion 30 is configured as a constricted portion 30a, which is connected to the constricted portion via the bent portion on the starting end side, guides the second cylindrical portion 31 upward, and is folded back and connected to the front side. Both the first cylindrical portion 30 and the second cylindrical portion 31 are hollow, and the second cylindrical sea bream 31 is arranged above the first cylindrical portion 30 in parallel with the front-rear direction via a predetermined space.

第一円筒部30の前端開口部を燃焼バーナ7の燃焼部と対向配置し、第二円筒部31の前端を板体で閉鎖し、第二円筒部31の終端側である前側下部に左右両側に向けて開口する開口部31aを所定間隔毎に設けている。 The front end opening of the first cylindrical portion 30 is arranged to face the combustion portion of the combustion burner 7, the front end of the second cylindrical portion 31 is closed with a plate, and the left and right sides are located at the front lower portion, which is the terminal end side of the second cylindrical portion 31. Openings 31a are provided at predetermined intervals.

前記バーナケース6の前側面には制御部Sを内蔵した操作パネルUを設けている。操作パネルUの正面側には、図3に示すように張込スイッチ32・通風スイッチ33・乾燥スイッチ34・排出スイッチ35・停止スイッチ36の各運転スイッチを設けている。また、乾燥運転中の熱風温度・測定水分値・乾燥運転の終了までの残時間を順次切換え表示する液晶運転表示パネル45を設けている。 An operation panel U having a built-in control unit S is provided on the front side surface of the burner case 6 . On the front side of the operation panel U, as shown in FIG. 3, operation switches such as a loading switch 32, a ventilation switch 33, a drying switch 34, a discharge switch 35, and a stop switch 36 are provided. In addition, a liquid crystal operation display panel 45 is provided for sequentially switching displays of hot air temperature, measured moisture value, and remaining time until the end of the drying operation.

また、張込量を設定するための張込量スイッチ37・到達目標水分値を設定する水分設定スイッチ38・張込量スイッチ37及び水分設定スイッチ38の設定数値を表示する設定表示パネル39、設定表示パネル39の設定値を変更する数値増減スイッチ40を設けている。また、乾燥対象の穀物種類を設定する穀物設定スイッチ41・乾燥速度を設定する乾燥速度設定スイッチ42を設けている。 In addition, a charging amount switch 37 for setting the charging amount, a moisture setting switch 38 for setting the target moisture value to be reached, a setting display panel 39 for displaying the setting values of the charging amount switch 37 and the moisture setting switch 38, setting A numerical value increase/decrease switch 40 for changing the setting value of the display panel 39 is provided. A grain setting switch 41 for setting the grain type to be dried and a drying speed setting switch 42 for setting the drying speed are also provided.

前記熱風室14には熱風室14内の温度を検出する熱風温度検出センサ43を、操作パネルUの適所には外気温度を検出する外気温度センサ44を設けている。
図5に示すように、制御部Sの入力側には入力インターフェースを経由して各種スイッチ,センサが接続され、出力側には出力インターフェイスを経由して各種モータ,駆動手段が接続されている。
A hot-air temperature sensor 43 for detecting the temperature inside the hot-air chamber 14 is provided in the hot-air chamber 14, and an outside air temperature sensor 44 for detecting the outside air temperature is provided at an appropriate place on the operation panel U. As shown in FIG.
As shown in FIG. 5, various switches and sensors are connected to the input side of the controller S via an input interface, and various motors and driving means are connected to the output side via an output interface.

次に、穀物の乾燥運転について図6のフローチャートに基づき概要説明する。 Next, the grain drying operation will be briefly described with reference to the flow chart of FIG.

オペレータが張込スイッチ32をON操作すると、昇降機5及び上部ラセン15が駆動されて張込穀物を順次貯留室2内に張込む。そして、張込運転が終了すると、オペレータは張込量スイッチ37で張込穀粒量を設定し、水分設定スイッチ38で到達目標水分値(例えば14%)を設定し、穀物設定スイッチ41で対象穀物を設定し、乾燥速度設定スイッチ42で乾燥速度を設定する(S101)。
次いで、乾燥スイッチ34をON操作すると(S102)乾燥運転が開始され、ロータリバルブ17、下部ラセン18、昇降機5、上部ラセン15の循環系が駆動を開始すると共に(S103)、燃焼バーナ7が燃焼を開始する(S104)。
When the operator turns on the stocking switch 32, the elevator 5 and the upper spiral 15 are driven to sequentially stock the stocked grains into the storage chamber 2.例文帳に追加When the charging operation is completed, the operator sets the amount of grains to be charged with the charging amount switch 37, sets the target moisture value (for example, 14%) with the moisture setting switch 38, and uses the grain setting switch 41 to set the target moisture content. The grain is set, and the drying speed is set with the drying speed setting switch 42 (S101).
Next, when the drying switch 34 is turned ON (S102), the drying operation is started, and the circulation system of the rotary valve 17, the lower spiral 18, the elevator 5, and the upper spiral 15 starts to drive (S103), and the combustion burner 7 burns. is started (S104).

そして、燃焼バーナ7で生成される熱風は排風ファン10の吸引作用で遠赤外線放射体16の内部を通過し、第二円筒部31の終端側前側部の開口部31a,31a…から熱風室14に流入する。そして、熱風室14から網体で形成される穀物流下通路19内に流入し、穀物に作用する。そして、穀物から水分を奪った熱風は排風室8へ流入し、次いで排風ダクト9を経て排風ファン10により機外へ排風として排出される。 熱と水分を帯びた排風の一部は排風戻しダクト11を経て熱風室14に供給され、乾燥作業に再利用される。穀物は熱風と、遠赤外線放射体16から発生する遠赤外線の作用と、排風戻しダクト11から戻された排風により乾燥される。 The hot air generated by the combustion burner 7 passes through the interior of the far-infrared radiator 16 by the suction action of the exhaust fan 10, and passes through the openings 31a, 31a, . . . Flow into 14. Then, the hot air flows from the hot air chamber 14 into the grain flow-down passage 19 formed of a net and acts on the grain. The hot air that has dehydrated the grains flows into the exhaust chamber 8, then passes through the exhaust duct 9 and is discharged outside the machine by the exhaust fan 10. - 特許庁A part of the exhaust air with heat and moisture is supplied to the hot air chamber 14 through the exhaust air return duct 11 and reused for the drying operation. The grains are dried by hot air, the action of far infrared rays emitted from the far infrared radiator 16, and the exhaust air returned from the exhaust air return duct 11. - 特許庁

さらに図6に基づき説明すると、制御部Sは、各部スイッチ操作情報やセンサの検出情報を読み込み(S105)、燃焼量制御運転を実行し(S106)、併せて排風調節弁制御手段Aを実行する(S107)。通常に乾燥制御し、そして、水分計54による検出水分値が予め設定した仕上水分値を下回ると(S108)、各部のモータを停止し乾燥終了する(S109)。 Further, referring to FIG. 6, the controller S reads switch operation information and sensor detection information (S105), executes combustion amount control operation (S106), and executes the exhaust control valve control means A at the same time. (S107). Drying is controlled normally, and when the moisture value detected by the moisture meter 54 falls below the preset finish moisture value (S108), the motors of each part are stopped to complete the drying (S109).

ここで、バーナの燃焼量制御について説明する。 Here, the burner combustion amount control will be described.

本実施の形態の燃焼バーナ7はいわゆるガンタイプバーナであり、バーナ用送風ファン52で燃焼風を供給し、燃料タンク(図示せず)からポンプ50で繰り出した燃料をノズル49から噴霧し、イグナイタ51で発火し燃焼させる。なお、ポンプ50から燃焼バーナ7への燃料供給量は、比例制御弁53にて流量制御できる構成であり、穀物種類、予め設定スイッチ42で設定した乾燥速度と実際の乾燥速度の差、外気温度等に基づいて、制御部Sは所定単位時間毎にバーナの必要燃焼量を演算し、これに見合う燃料供給量を演算して上記比例制御弁53に燃料供給量指令信号を出力する構成である。なお、燃焼バーナ7は、機器固有の性能等によって予め設定されている燃料供給量Fa(リットル/時)を基準に、これよりも大なる燃料供給量を必要とする場合に、上記比例制御弁53に付与される制御信号に基づいて、必要な燃料供給量Fbに演算される構成としている(比例燃焼運転)。ところが、前記基準の燃料供給量Fa以下を必要とされる場合には、燃焼バーナ7は燃焼工程と燃焼停止工程を交互に行ういわゆる間欠燃焼運転に切り替えられる。そして、間欠燃焼運転における燃焼工程と停止工程の周期T(例えば60秒)を一定として、燃焼工程時間Tb、停止工程時間Tsを変更することによって基準の燃料供給量Fa以下の燃焼状態を調整できる構成としている。 The combustion burner 7 of the present embodiment is a so-called gun-type burner, in which combustion air is supplied by a burner blower fan 52, fuel drawn out from a fuel tank (not shown) by a pump 50 is sprayed from a nozzle 49, and an igniter Ignite and burn at 51. The amount of fuel supplied from the pump 50 to the combustion burner 7 can be controlled by the proportional control valve 53. The grain type, the difference between the drying speed preset by the setting switch 42 and the actual drying speed, the outside air temperature etc., the controller S calculates the required combustion amount of the burner every predetermined unit time, calculates the fuel supply amount corresponding to this calculation, and outputs a fuel supply amount command signal to the proportional control valve 53. . Note that the combustion burner 7 uses the fuel supply amount Fa (liters/hour) set in advance according to the performance specific to the equipment as a reference, and when a larger fuel supply amount than this is required, the proportional control valve Based on the control signal applied to 53, the necessary fuel supply amount Fb is calculated (proportional combustion operation). However, when less than the reference fuel supply amount Fa is required, the combustion burner 7 is switched to a so-called intermittent combustion operation in which the combustion process and the combustion stop process are alternately performed. By setting the period T (for example, 60 seconds) between the combustion process and the stop process in the intermittent combustion operation to be constant and changing the combustion process time Tb and the stop process time Ts, it is possible to adjust the combustion state below the reference fuel supply amount Fa. It is configured.

図7の燃焼量-ファン回転数関係グラフに一例を示すように、前記の燃焼バーナ7の比例燃焼運転においては、バーナ用送風ファン52の回転数も燃料供給量の大小変更と比例的に増減制御される構成としている。また、間欠燃焼運転時、燃焼工程においては、該燃焼量-ファン回転数表の最低回転数Raを選択して回転制御する構成である。そして、間欠燃焼運転における停止工程では、予め設定した回転数を選択して回転させる構成として、間欠燃焼運転中継続してバーナ用送風ファン52を回転連動するよう構成している。なお、間欠燃焼運転における燃焼工程と停止工程のファン回転数は同一回転でもよく、異なる回転数としてもよい。 As shown in an example of the combustion amount-fan rotation speed relationship graph in FIG. It is configured to be controlled. Further, during the intermittent combustion operation, in the combustion process, the rotation is controlled by selecting the lowest rotation speed Ra in the combustion amount-fan rotation speed table. In the stop step of the intermittent combustion operation, the rotation speed is selected in advance so that the burner blower fan 52 is continuously rotated during the intermittent combustion operation. Note that the fan rotation speeds in the combustion process and the stop process in the intermittent combustion operation may be the same or different.

次いで、図8のフローチャートに基づき、戻し排風量調節制御手段について説明する。排風調節弁26による排風戻し量は、排風絶対湿度によって演算でき、そして、図9に示すように仮想排風絶対湿度と水分値には密接な関係にあるとの知見に基づき、実施例では検出水分値から仮想排風絶対湿度を求め、この仮想排風絶対湿度から必要な排風戻し量を演算するよう構成している(S201~S203)。その結果現在の排風調節弁26位置(角度)に対して補正が必要であるか否か判定されるが(S204)、排風戻し量増加の必要があると判定されると(S205)、排風調節弁モータ26mを正転すべく出力する(S206)。S205で排風戻し量減少側の補正が必要と判定されると排風調節弁モータ26mを逆転すべく出力する(S207)。なお、図示省略するが、正転も逆転も必要ない場合も想定され、この場合には排風調節弁モータ26mへの正逆出力は出されない。 Next, the return exhaust air amount adjustment control means will be described based on the flow chart of FIG. Based on the knowledge that the exhaust air return amount by the exhaust air control valve 26 can be calculated from the exhaust air absolute humidity, and that there is a close relationship between the virtual exhaust air absolute humidity and the moisture value as shown in FIG. In the example, the virtual exhaust air absolute humidity is obtained from the detected moisture value, and the necessary exhaust air return amount is calculated from the virtual exhaust air absolute humidity (S201 to S203). As a result, it is determined whether or not the current position (angle) of the exhaust air control valve 26 needs to be corrected (S204). Output is made to rotate the exhaust control valve motor 26m forward (S206). If it is determined in S205 that correction for reducing the exhaust air return amount is necessary, an output is issued to reverse the exhaust air control valve motor 26m (S207). Although not shown, it is assumed that neither forward rotation nor reverse rotation is required, and in this case, forward and reverse output to the exhaust control valve motor 26m is not output.

なお、排風調節弁26は上例のように、排風絶対湿度との関係で調節制御されるほか、設定された張込穀物量及び乾燥速度と、水分計54で測定される穀物水分値、外気温度等の条件に基づいて調節動作がなされる。例えば、乾燥初期には穀温を上昇させるべく機外排風の排風戻しダクト11側へ戻す割合を高くし、乾燥運転の継続により、水分計53で測定される水分値が低下するにつれて排風戻しダクト11側へ戻す割合を徐々に低下させ、到達目標水分値に近づくとほとんど全ての排風を機外に排出するように排風調節弁26を制御する場合等である。 The exhaust air control valve 26 is regulated and controlled in relation to the absolute humidity of the exhaust air as in the above example. , outside air temperature, and other conditions. For example, at the beginning of drying, the ratio of the exhaust air from the machine to be returned to the exhaust return duct 11 side is increased in order to raise the grain temperature, and as the drying operation continues, the moisture value measured by the moisture meter 53 decreases. For example, the exhaust air control valve 26 is controlled such that the ratio of returning to the air return duct 11 side is gradually decreased, and almost all of the exhaust air is discharged out of the apparatus when the target moisture value is approached.

本実施の形態では、排風調節弁26が全開の場合、すなわち、最も多くの排風量を排風戻しダクト11を経て熱風室14に供給した場合でも、排風が排風案内板22のスリット22aを通過したり、排風案内板22を取り付けていない部分の固定翼21の間を通過するため、熱風室14に供給される戻り排風の割合は全機外排風量の約4割程度である。 In the present embodiment, even when the exhaust air control valve 26 is fully open, that is, even when the largest amount of exhaust air is supplied to the hot air chamber 14 via the exhaust air return duct 11, the exhaust air does not flow through the slit of the exhaust air guide plate 22. 22a or between the fixed blades 21 where the exhaust guide plate 22 is not attached, the ratio of the return exhaust air supplied to the hot air chamber 14 is about 40% of the total external exhaust air volume. is.

前記水分計54による水分検出は単粒測定可能に構成し、所定粒数毎に水分分布を判定できる構成としている。そして、所定粒数の水分ばらつき、例えば水分値分布幅を判定することによってばらつきの大小を判定し、この水分ばらつきが所定以上のときは、前記水分値-仮想排風絶対湿度関係グラフの標準ラインによる標準の排風戻し量に対して所定量少なく補正するよう構成する。このように構成すると、過剰な排風戻し量により結露の発生を防止できる。なお、図9に一例を示すが、標準ラインは水分ばらつきの無い又は所定以下の穀物を対象とし、ばらつき小(点線)、ばらつき大(一点鎖線)に示すように、ばらつきが大きくなるほど仮想排風絶対湿度を低下側補正している。
前記建屋Hにおいて壁部に吸気口63を備える。建屋H内で穀物乾燥機D1,D2又はD3を運転開始すると、排風ファン10の吸引作用でバーナケース6の外気取り入れ口から外気が取り込まれ、つまり、吸気口63から外気導入がなされ、一方穀物乾燥機D1,D2又はD3からの排風は穀物乾燥機D1,D2又はD3毎に建屋H壁部を貫通させた排風案内ダクト55d1,55d2,55d3にて建屋H外に排出される。ところで、穀物乾燥機D1,D2又はD3運転中、建屋H内においては稼働する穀物乾燥機D1,D2又はD3のバーナケース6の外気取り入れ口から外気を導入するとき、単一穀物乾燥機を稼働する場合には影響はないが、複数の穀物乾燥機の稼働の場合には外気取り入れ口からの導入空気流速・圧力・導入空気量に影響がある。例えば、穀物乾燥機D1が吸気口63に一番近く、次いで穀物乾燥機D2、最も遠い場所に穀物乾燥機D3が配置されている場合、穀物乾燥機D1、同D2、同D3の順に外気を取り込み易くなる。すなわち、図10に各種パラメータの傾向を示すように、吸気口63に近い側から穀物乾燥機D1,D2及びD3の順に設置し、これら全てを稼働しているものとすると、各穀物乾燥機に導入される直前の空気流速は、吸気口63に近い穀物乾燥機D1が最も影響を受け難いため流速(Vd1)は標準流速(Vd)に略近く、吸気口63からやや遠い穀物乾燥機D2、最も遠い穀物乾燥機D3の順に遅くなる(Vd2≒Vd-v2、Vd3≒Vd-v3、v2<v3)(同図(ロ))。この傾向より推定されることは、大気圧からの減圧Δp状況は、吸気口63に近い側が最も高く、穀物乾燥機D2、穀物乾燥機D3の順に低くなり(Δp1>Δp2>Δp3)(同図(ハ))、排風ファン10回転に対する導入空気損失量Δqは、穀物乾燥機D1から穀物乾燥機D2、D3の順に大となる(Δq1<Δq2<Δq3)(同図(ニ))。
Moisture content detection by the moisture meter 54 is configured to be capable of measuring a single grain, and is configured to determine the moisture distribution for each predetermined number of grains. Then, the water content variation of a predetermined number of grains, for example, the water content distribution width is determined to determine the size of the variation. It is configured to correct the standard exhaust air return amount by a predetermined amount less. With this configuration, it is possible to prevent condensation from occurring due to an excessive return amount of exhaust air. An example is shown in FIG. 9, the standard line targets grains with no moisture variation or less than a predetermined amount, and as shown by small variation (dotted line) and large variation (one-dot chain line), the larger the variation, the more virtual exhaust wind Absolute humidity is corrected on the lower side.
The wall of the building H is provided with an intake port 63 . When the operation of the grain dryer D1, D2 or D3 is started in the building H, outside air is taken in from the outside air intake port of the burner case 6 by the suction action of the exhaust fan 10, that is, outside air is introduced from the intake port 63. Exhaust air from the grain dryers D1, D2 or D3 is discharged outside the building H through exhaust air guide ducts 55d1, 55d2 and 55d3 penetrating the wall of the building H for each grain dryer D1, D2 or D3. By the way, while the grain dryers D1, D2 or D3 are in operation, when outside air is introduced from the outside air intake of the burner case 6 of the grain dryers D1, D2 or D3 in the building H, the single grain dryer is operated. There is no effect when multiple grain dryers are operated, but there is an effect on the flow rate, pressure, and amount of air introduced from the outside air intake. For example, if the grain dryer D1 is closest to the intake port 63, followed by the grain dryer D2, and farthest by the grain dryer D3, the outside air is supplied to the grain dryers D1, D2, and D3 in this order. easier to take in. That is, assuming that the grain dryers D1, D2, and D3 are installed in this order from the side closest to the intake port 63, and that all of these are in operation, as shown in FIG. The air flow velocity immediately before the introduction is least affected by the grain dryer D1 near the intake port 63, so the flow velocity (Vd1) is substantially close to the standard flow velocity (Vd). Grain dryer D3 is slowest in order of the farthest distance (Vd2≈Vd-v2, Vd3≈Vd-v3, v2<v3) ((b) in the figure). Presumed from this tendency, the state of pressure reduction Δp from the atmospheric pressure is highest on the side near the intake port 63, and decreases in the order of grain dryer D2 and grain dryer D3 (Δp1>Δp2>Δp3) (Fig. (C)), the amount of introduced air loss Δq for 10 rotations of the exhaust fan increases in order from the grain dryer D1 to the grain dryers D2 and D3 (Δq1<Δq2<Δq3) ((D) in the figure).

上記傾向に鑑みて、建屋H内適宜箇所、又は各穀物乾燥機D1~D3適所に減圧検出手段64d1,64d2,64d3、例えば風圧計65d1,65d2,65d3を設置し、検出出力を制御部Sd1,Sd2,Sd3にて演算処理し、減圧Δp1,Δp2,Δp3を算出する。すなわち、風圧計65d1,65d2,65d3の各検出出力p1,p2,p3によって排風ファン10の設定風量p0(D1,D2,D3のいずれも同じ能力の穀物乾燥機を設置する場合)に対する減圧Δp1(=p0-p1),Δp2(=p0-p2),Δp3(=p0-p3)を演算できる。この減圧状況から排風ファン10の設定回転数に対する導入空気損失量Δq1,Δq2,Δq3、換言すると設定風量に対する低下風量を演算できる。 In view of the above tendency, pressure reduction detection means 64d1, 64d2, 64d3, for example, anemometers 65d1, 65d2, 65d3 are installed at appropriate locations in the building H or at appropriate locations in each of the grain dryers D1 to D3, and the detection output is controlled by the control unit Sd1, Arithmetic processing is performed at Sd2 and Sd3 to calculate pressure reductions Δp1, Δp2 and Δp3. That is, the pressure reduction Δp1 with respect to the set air volume p0 of the exhaust fan 10 (when a grain dryer having the same capacity for D1, D2, and D3 is installed) is detected by the respective detection outputs p1, p2, and p3 of the anemometers 65d1, 65d2, and 65d3. (=p0-p1), Δp2 (=p0-p2) and Δp3 (=p0-p3) can be calculated. From this decompression state, it is possible to calculate the introduced air loss amounts Δq1, Δq2, Δq3 with respect to the set rotational speed of the exhaust fan 10, in other words, the reduced air volume with respect to the set air volume.

前記風圧計65d1,65d2,65d3の各検出出力によって排風ファン10の設定風量q0に対する低下風量Δq1,Δq2,Δq3を演算できるから、作業者は各穀物乾燥機D1,D2,D3の乾燥風量の低下を判断することができる。 Since the reduced air volume Δq1, Δq2, Δq3 with respect to the set air volume q0 of the exhaust fan 10 can be calculated from the detection outputs of the anemometers 65d1, 65d2, 65d3, the operator can determine the drying air volume of each grain dryer D1, D2, D3. Decrease can be determined.

ところで、複数設置の穀物乾燥機D1,D2,D3の運転状況によって隣接する穀物乾燥機の減圧値に影響があり、図11に示すように、穀物乾燥機D1,D2,D3全部を運転する場合の減圧値Δp1,Δp2,Δp3とするとき、穀物乾燥機D1の運転OFFし穀物乾燥機D2,D3をONとすると、穀物乾燥機D2,D3の減圧状況Δp2´,Δp3´の関係は、図11(b)の一点鎖線で示すようにΔp1,Δp2を平行移動する状態と略等しくなる。また、穀物乾燥機D2の運転OFFし穀物乾燥機D1,D3をONとするときの、減圧状況Δp1″,Δp3″は、図11(c)の二点鎖線で示すように、Δp1″≒Δp1、Δp3´<Δp3″<Δp3の関係になる。なお、穀物乾燥機D3の運転OFFし穀物乾燥機D1,D2をONとするときの、減圧状況Δp2,Δp3は、全穀物乾燥機D1,D2,D3をONとするときの減圧ラインLに略一致する関係となる(図11(a)中点線)。 By the way, the operating conditions of the grain dryers D1, D2, and D3, which are installed in a plurality, affect the pressure reduction values of adjacent grain dryers, and as shown in FIG. When the pressure reduction values Δp1, Δp2, and Δp3 are set, the grain dryer D1 is turned off and the grain dryers D2 and D3 are turned on. 11(b), the state is substantially the same as the state in which .DELTA.p1 and .DELTA.p2 are translated as indicated by the dashed line in FIG. 11(b). Further, the decompression conditions Δp1″ and Δp3″ when the operation of the grain dryer D2 is turned off and the grain dryers D1 and D3 are turned on are Δp1″≈Δp1 as shown by the two-dot chain line in FIG. , Δp3′<Δp3″<Δp3. The decompression conditions Δp2 and Δp3 when the operation of the grain dryer D3 is turned off and the grain dryers D1 and D2 are turned on are approximately equal to the decompression line L when the whole grain dryers D1, D2 and D3 are turned on. A matching relationship is obtained (dotted line in FIG. 11(a)).

したがって、穀物乾燥機D1,D2,D3のそれぞれに設ける減圧検出手段64d1,64d2,64d3の減圧検出によって、他の穀物乾燥機の運転状況による影響を判定できる。 Therefore, the influence of the operating conditions of the other grain dryers can be determined by the pressure reduction detection means 64d1, 64d2, and 64d3 provided in each of the grain dryers D1, D2, and D3.

加えて、穀物乾燥機D1,D2,D3のそれぞれに設ける制御部Sd1,Sd2,Sd3に上記隣接の穀物乾燥機が運転状態にあるか否かを相互に情報連絡可能とすることによって当該穀物乾燥機の風量低下Δqは許容し得る低下状況か、あるいは他の原因による異常低下状況かを判定できる。 In addition, the control units Sd1, Sd2, and Sd3 provided in the grain dryers D1, D2, and D3, respectively, can communicate with each other whether or not the adjacent grain dryers are in an operating state. It is possible to determine whether the air volume drop Δq of the machine is in a permissible state or in an abnormal state due to some other cause.

穀物乾燥機D1,D2,D3にそれぞれ備えた制御部Sd1,Sd2,Sd3は,導入空気損失量すなわち低下風量Δq1,Δq2,Δq3を演算し、その値に基づいて排風ファン10の回転数を上昇制御するよう構成するものである。このように構成すると、低下した乾燥風量を上昇制御することによって、適正な乾燥運転を実行できる。 Control units Sd1, Sd2, and Sd3 provided in grain dryers D1, D2, and D3, respectively, calculate the introduced air loss amount, that is, the reduced air volume Δq1, Δq2, and Δq3, and adjust the rotation speed of the exhaust fan 10 based on the calculated value. It is configured to control the rise. With this configuration, proper drying operation can be performed by increasing the reduced amount of drying air.

また、低下風量Δqの値に基づいて燃焼バーナ7の燃焼量を低下させるよう構成するものである。このように構成すると、乾燥風量に対応した燃焼量に制御することによって、適正な乾燥運転を実行できる。 Also, the combustion amount of the combustion burner 7 is reduced based on the value of the reduced air amount Δq. With this configuration, proper drying operation can be performed by controlling the amount of combustion corresponding to the amount of drying air.

前記減圧検出手段64d1,64d2,64d3としては、前記風圧計65d1,65d2,65d3によって演算する際に、大気圧を加味することにより、減圧検出の精度ひいては風量低下演算の精度を向上できる。 The decompression detection means 64d1, 64d2, 64d3 can improve the accuracy of the decompression detection and thus the accuracy of the calculation of the decrease in air volume by taking into consideration the atmospheric pressure when calculating with the anemometers 65d1, 65d2, 65d3.

また、前記減圧検出手段64d1,64d2,64d3としては、前記風圧計65d1,65d2,65d3によって演算する方法のほかに、以下の風量低下判定手段56によって行うこともできる。つまり、図12につき説明すると、縦軸を温度の高低とし、横軸を側面から見た熱風室14の内部に見立て、正常な乾燥運転時における熱風室14内の温度分布を示す標準線H1と、風量が低下したときの温度分布を示す線H2のグラフである。標準線H1では熱風室14の後部の温度が高くなっており、H2では風量低下に起因して熱風室14の後部の温度が低くなると共に熱風室14の前部の温度が上昇していることを示す。 Further, as the decompression detection means 64d1, 64d2, 64d3, the following air volume reduction determination means 56 can be used in addition to the method of calculating by the anemometers 65d1, 65d2, 65d3. In other words, referring to FIG. 12, the vertical axis represents the temperature level, and the horizontal axis represents the inside of the hot air chamber 14 viewed from the side. , and a line H2 showing the temperature distribution when the air volume is reduced. The temperature at the rear portion of the hot-air chamber 14 is high at the standard line H1, and at H2, the temperature at the rear portion of the hot-air chamber 14 is low and the temperature at the front portion of the hot-air chamber 14 is rising due to the decrease in air volume. indicates

すなわち、入口側に配置の前側熱風温度センサ43fと、出口側に配置の後側熱風温度センサ43rと、外気温度センサ44とを設け、この外気温度センサ44による外気温度To基準の対外気熱風温度Tfo,Troについて、両熱風温度センサによる対外気熱風温度の基準比率Po=Tro/Tfoが所定の基準値αo以下であれば風量低下の判定結果を出力する風量低下判定手段56を設ける。 That is, a front hot-air temperature sensor 43f arranged on the inlet side, a rear hot-air temperature sensor 43r arranged on the outlet side, and an outside air temperature sensor 44 are provided. Regarding Tfo and Tro, an air volume reduction determination means 56 is provided for outputting a determination result of air volume reduction when the reference ratio Po=Tro/Tfo of the external hot air temperature detected by both hot air temperature sensors is equal to or less than a predetermined reference value αo.

なお、上記の風量低下判定手段56としては、外気温度を対象外とした基準比率P=Tr/Tfが所定の基準値α以下で風量低下を判定することもできる。 It should be noted that the air volume reduction determining means 56 can also determine the air volume reduction when the reference ratio P=Tr/Tf, excluding the outside air temperature, is equal to or less than a predetermined reference value α.

また、風量低下判定手段56としては、上記のほか、感知アクチュエータとポテンショメータとからなる風圧センサ形態としてもよい。 In addition to the above, the air volume reduction determining means 56 may be in the form of an air pressure sensor composed of a sensing actuator and a potentiometer.

風量低下判定手段56によると、乾燥室3ない流通の熱風の状況から低下風量を演算するものであるから、より適正な風量低下を検出できる。 According to the air volume reduction judging means 56, since the reduced air volume is calculated from the state of the hot air flowing through the drying chamber 3, the air volume reduction can be detected more appropriately.

次いで、穀物乾燥機に共通の集塵装置を接続した構成について、図14に基づき説明する。穀物乾燥機D1,D2,D3の各排風案内ダクト55d1,55d2,55d3を集合させた集合ダクト55Tから案内された排風は、集塵装置57の入り口部に構成されるミスト発生手段58によるミストによって含まれる塵埃が捕集され、塵埃の除去された排風は排風口59から解放され、捕集された塵埃は底部の水槽に落下する構成としている。そして、集合ダクト55T途中には風量検出手段60を配置する。風量検出手段60の風量が変動する場合以下のような事態と判断することができる。例えば、穀物乾燥機D1,D2,D3の運転台数を確認し、インバータ付き集塵ファン61の回転数を最適風量が保てるよう制御するものである。 Next, a configuration in which a common dust collector is connected to the grain dryer will be described with reference to FIG. Exhaust air guided from a collective duct 55T in which the exhaust air guide ducts 55d1, 55d2, and 55d3 of the grain dryers D1, D2, and D3 are collected is generated by mist generating means 58 configured at the inlet of the dust collector 57. The dust contained in the mist is collected, the dust-removed exhaust air is released from the air discharge port 59, and the collected dust falls into the water tank at the bottom. An air volume detection means 60 is arranged in the middle of the collecting duct 55T. When the air volume detected by the air volume detection means 60 fluctuates, it can be determined that the following situations occur. For example, the number of operating grain dryers D1, D2, and D3 is confirmed, and the number of revolutions of the inverter-equipped dust collecting fan 61 is controlled so as to maintain the optimum air volume.

また、乾燥作業に伴って集塵装置57を作動すると、排風案内ダクト55内の風量検出手段60は所定風量を検出することができるが、何らの原因で排風案内ダクト55や集塵装置57側に不具合が生じて円滑な排風流通が阻害されると、風量低下を来し、風量検出手段60は風量低下を出力する。このような場合には、熱風室14の風量低下同様に、排風調節弁制御と風量低下時対応乾燥制御を行うことによって、乾燥機本体内に過剰な排風量を戻すことによる不具合を防止でき、適正な乾燥作業を継続できる。風量検出手段60としては、例えば感知アクチュエータとポテンショメータとからなる風圧センサ形態とする。 Further, when the dust collector 57 is operated in conjunction with the drying work, the air volume detection means 60 in the exhaust air guide duct 55 can detect a predetermined air volume. If a problem occurs on the 57 side and smooth exhaust air circulation is hindered, the air volume will decrease, and the air volume detection means 60 will output a decrease in air volume. In such a case, as in the case of a decrease in air volume in the hot air chamber 14, by performing exhaust air control valve control and drying control corresponding to a decrease in air volume, it is possible to prevent problems caused by returning an excessive amount of exhaust air into the dryer main body. , it is possible to continue proper drying work. The air volume detection means 60 may be in the form of an air pressure sensor comprising, for example, a sensing actuator and a potentiometer.

図15は、穀物乾燥機D1,D2,D3の夫々に配設された制御部Sd1,Sd2,Sd3の情報を授受できる運転情報管理システムを示すものである。前記穀物乾燥機D1,D2,D3が運転状態であるか否かの運転台数情報、ON状態の穀物乾燥機から運転経過情報や穀物水分情報等の運転情報を確認できる。 FIG. 15 shows an operation information management system capable of exchanging information of control units Sd1, Sd2 and Sd3 provided in grain dryers D1, D2 and D3, respectively. It is possible to confirm operation information such as operation progress information and grain moisture information from the grain dryers in the ON state, information on the number of operating grain dryers D1, D2, and D3 indicating whether or not they are in operation.

一台のタブレット等の管理用携帯端末Tと前記制御部Sd1,Sd2,Sd3とを近距離無線通信手段で通信可能に設ける。管理用携帯端末Tが接続する前記制御部Sd1,Sd2,Sd3を順次選択する構成であり、穀物乾燥機1台ずつ運転情報を収集するようになっている。 A management portable terminal T such as a tablet and the control units Sd1, Sd2 and Sd3 are provided so as to be able to communicate with each other by short-range wireless communication means. The control units Sd1, Sd2, and Sd3 connected to the management terminal T are sequentially selected, and the operation information is collected for each grain dryer.

管理用携帯端末Tに入力された複数の穀物乾燥機D1,D2,D3の運転情報は作業者が所持する携帯端末W1,W2にインターネット等の無線通信回線Mを介して送信される。このような運転情報管理システムを利用することで、複数の穀物乾燥機D1,D2,D3の運転情報を離れた位置で取得することができる。 The operation information of the plurality of grain dryers D1, D2, and D3 input to the management mobile terminal T is transmitted to the mobile terminals W1 and W2 carried by the workers via a wireless communication line M such as the Internet. By using such an operation information management system, the operation information of the plurality of grain dryers D1, D2 and D3 can be acquired at remote locations.

9 燃焼バーナ
10 排風ファン
64d1 減圧検出手段
64d2 減圧検出手段
64d3 減圧検出手段
D1 穀物乾燥機
D2 穀物乾燥機
D3 穀物乾燥機
H 建屋
Sd1 制御部
Sd2 制御部
Sd3 制御部
q0 設定風量
Δq1 低下風量
Δq2 低下風量
Δq3 低下風量
9 Combustion burner 10 Exhaust fan 64d1 Pressure reduction detection means 64d2 Pressure reduction detection means 64d3 Pressure reduction detection means D1 Grain dryer D2 Grain dryer D3 Grain dryer H Building Sd1 Control unit Sd2 Control unit Sd3 Control unit q0 Set air volume Δq1 Reduced air volume Δq2 Decrease Air volume Δq3 Decreased air volume

Claims (3)

吸気口(63)を設ける建屋(H)内に吸気口(63)から近い側から遠い側に向かって複数の穀物乾燥機(D1,D2,D3)を配置し、各穀物乾燥機(D1,D2,D3)からそれぞれ排風案内ダクト(55d1,55d2,55d3)が建屋(H)壁部を貫通して建屋(H)外に排風を排出する穀物乾燥装置において、
前記複数の穀物乾燥機(D1,D2,D3)の内の各穀物乾燥機(D1,D2,D3)に乾燥風量を検出する風圧計(65d1,65d2,65d3)を設け、風圧計(65d1,65d2,65d3)風量検出に基づいて前記各穀物乾燥機(D1,D2,D3)の排風ファン(10)の設定回転数における風量(q0)に対する低下風量(Δq1,Δq2,Δq3)を演算する制御部(Sd1,Sd2,Sd3)を各穀物乾燥機(D1,D2,D3)にそれぞれ備え
該各穀物乾燥機(D1,D2,D3)の制御部(Sd1,Sd2,Sd3)はそれぞれ管理用端末(T)と接続して各穀物乾燥機(D1,D2,D3)の運転情報を連絡可能とし、
ある穀物乾燥機(D3)が風量低下を検出した場合に、他の穀物乾燥機の運転状況による影響を判定すると共に、風量低下(Δq)は許容し得る低下状況か、または他の原因による異常低下状況かを前記各穀物乾燥機の運転情報から判定可能に構成したことを特徴とする穀物乾燥装置。
A plurality of grain dryers (D1, D2, D3) are arranged in a building (H) in which an air intake (63) is provided, from the side closer to the air intake (63) toward the far side , and each grain dryer (D1, D2, D3), respectively, exhaust air guide ducts (55d1, 55d2, 55d3) penetrate the wall of the building (H) and discharge the exhaust air outside the building (H),
Each grain dryer (D1, D2, D3) among the plurality of grain dryers (D1, D2, D3) is provided with an anemometer (65d1, 65d2, 65d3) for detecting a drying air volume , and an anemometer (65d1, 65d2, 65d3) , calculate the reduced air volume (Δq1, Δq2, Δq3) with respect to the air volume (q0) at the set rotation speed of the exhaust fan (10) of each grain dryer (D1, D2, D3) based on the detected air volume. Each grain dryer (D1, D2, D3) is provided with a control unit (Sd1, Sd2, Sd3) for
The control units (Sd1, Sd2, Sd3) of the respective grain dryers (D1, D2, D3) are connected to the management terminals (T) to communicate the operation information of the respective grain dryers (D1, D2, D3). make it possible
When a certain grain dryer (D3) detects a drop in air volume, the influence of the operating conditions of the other grain dryers is determined, and the drop in air volume (Δq) is an allowable drop or an abnormality due to other causes. A grain drying apparatus characterized in that it is configured such that it is possible to determine whether or not it is in a state of decrease from the operation information of each of the grain dryers .
前記各穀物乾燥機(D1,D2,D3)の低下風量(Δq1,Δq2,Δq3)に基づいて前記排風ファン(10)回転数を上昇制御するよう構成した請求項1に記載の穀物乾燥装置。 2. The grain drying apparatus according to claim 1, wherein the rotation speed of the exhaust fan (10) is controlled to increase based on the decreased air volume ([Delta]q1, [Delta]q2, [Delta]q3) of each of the grain dryers (D1, D2, D3). . 前記各穀物乾燥機(D1,D2,D3)の低下風量(Δq1,Δq2,Δq3)に基づいて燃焼バーナ(7)の燃焼量を低下制御するよう構成した請求項1に記載の穀物乾燥装置。 2. The grain drying apparatus according to claim 1, wherein the combustion amount of the combustion burner (7) is controlled to decrease based on the decreased air volume ([Delta]q1, [Delta]q2, [Delta]q3) of each of the grain dryers (D1, D2, D3).
JP2019102961A 2019-05-31 2019-05-31 grain drying equipment Active JP7287122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019102961A JP7287122B2 (en) 2019-05-31 2019-05-31 grain drying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019102961A JP7287122B2 (en) 2019-05-31 2019-05-31 grain drying equipment

Publications (2)

Publication Number Publication Date
JP2020197335A JP2020197335A (en) 2020-12-10
JP7287122B2 true JP7287122B2 (en) 2023-06-06

Family

ID=73649793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019102961A Active JP7287122B2 (en) 2019-05-31 2019-05-31 grain drying equipment

Country Status (1)

Country Link
JP (1) JP7287122B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264703A (en) 2008-04-28 2009-11-12 Kubota Corp Treatment facility
JP2018004109A (en) 2016-06-28 2018-01-11 井関農機株式会社 Operational control system of grain dryer
JP2019052844A (en) 2018-11-12 2019-04-04 井関農機株式会社 Operation information management system for crop dryers

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109767A (en) * 1982-12-15 1984-06-25 井関農機株式会社 Controller for drying of cereal grain drier
JPS6014089A (en) * 1983-07-06 1985-01-24 静岡製機株式会社 Temperature controller for cereal drier
JPS62112980A (en) * 1985-11-08 1987-05-23 井関農機株式会社 Exhausting controller for drier
JPS63306387A (en) * 1987-06-08 1988-12-14 井関農機株式会社 Drying air-quantity controller for cereal drier
JPH0833279B2 (en) * 1988-03-10 1996-03-29 株式会社佐竹製作所 Gun type burner in grain dryer
JPH0614856B2 (en) * 1988-07-13 1994-03-02 フルタ電機株式会社 How to control the humidity control of a Nori dryer via natural and forced ventilation
JPH02236436A (en) * 1989-03-09 1990-09-19 Iseki & Co Ltd Detection of impurity in grain drier and drying control system
JPH087354Y2 (en) * 1989-12-07 1996-03-04 金子農機株式会社 Wind pressure damper device for exhaust duct in drying facility
JP2525399Y2 (en) * 1990-09-03 1997-02-12 金子農機株式会社 Centralized exhaust system for grain dryers in a communal drying facility
JPH09101082A (en) * 1995-10-04 1997-04-15 Kaneko Agricult Mach Co Ltd Control method in grain drier
JPH102670A (en) * 1996-06-17 1998-01-06 Oshima Noki Kk Pressure reducing type crop particle drying machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264703A (en) 2008-04-28 2009-11-12 Kubota Corp Treatment facility
JP2018004109A (en) 2016-06-28 2018-01-11 井関農機株式会社 Operational control system of grain dryer
JP2019052844A (en) 2018-11-12 2019-04-04 井関農機株式会社 Operation information management system for crop dryers

Also Published As

Publication number Publication date
JP2020197335A (en) 2020-12-10

Similar Documents

Publication Publication Date Title
US20100330512A1 (en) Multi-boiler and control method thereof for preventing back flow of exhaust gas
KR101253567B1 (en) Air-Conditioning Apparatus With Ventilation Operation And Thereof Method
US20120094590A1 (en) Ventilation system
JP6459337B2 (en) Grain dryer
JP6365167B2 (en) Grain dryer
JP7287122B2 (en) grain drying equipment
JP2014035116A (en) Grain drier
JP6828732B2 (en) Grain dryer
JP7063127B2 (en) Grain dryer
JP2009127884A (en) Grain drier
JP6828731B2 (en) Grain dryer
KR20090064979A (en) Duct type air conditioner and controlling method of the same of
JP7163999B2 (en) crop dryer
JP3153438B2 (en) Hot air heater
KR20100137205A (en) Method for controlling a blower
JP6933089B2 (en) Crop dryer
JP6244947B2 (en) Grain dryer
JP5264592B2 (en) Drying heater
KR100225651B1 (en) Operating control apparatus of air conditioner and method therefor
JP4985064B2 (en) Grain dryer
JP3610652B2 (en) Rotation control method of burner moda in grain dryer.
JP2021014942A (en) Grain dryer
JP2021099186A (en) Grain dryer
JPH0712464A (en) Displaying system for operation of grain dryer
JPH0476384A (en) Drying control system for grain dryer

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 7287122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150