JP7281979B2 - Electrodes for magnetic particle flaw detectors - Google Patents

Electrodes for magnetic particle flaw detectors Download PDF

Info

Publication number
JP7281979B2
JP7281979B2 JP2019117919A JP2019117919A JP7281979B2 JP 7281979 B2 JP7281979 B2 JP 7281979B2 JP 2019117919 A JP2019117919 A JP 2019117919A JP 2019117919 A JP2019117919 A JP 2019117919A JP 7281979 B2 JP7281979 B2 JP 7281979B2
Authority
JP
Japan
Prior art keywords
inspected
magnetic particle
contact portion
magnetic
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019117919A
Other languages
Japanese (ja)
Other versions
JP2021004774A (en
Inventor
哲男 一本
俊 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marktec Corp
Original Assignee
Marktec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marktec Corp filed Critical Marktec Corp
Priority to JP2019117919A priority Critical patent/JP7281979B2/en
Publication of JP2021004774A publication Critical patent/JP2021004774A/en
Application granted granted Critical
Publication of JP7281979B2 publication Critical patent/JP7281979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、磁粉探傷装置用電極に関し、より詳細には、被検査物に通電し、あるいは磁場を加え、磁粉を用いて探傷を行う磁粉探傷検査における電極に関する。 TECHNICAL FIELD The present invention relates to an electrode for a magnetic particle flaw detector, and more particularly to an electrode for magnetic particle flaw detection, in which an object to be inspected is energized or a magnetic field is applied to perform flaw detection using magnetic particles.

磁粉探傷試験は、ビレット等の鋼材や自動車部品等の被検査物の表面の探傷検査に適用され、JIS-Z-2320に規格化されている。磁粉探傷試験では、被検査物の表面に磁粉を含有する磁粉分散液、すなわち磁粉液を適用するとともに、被検査物に磁場を加え、あるいは電流を流して、被検査物を磁化する。磁化された被検査物の表面にクラック等の傷がある場合には、この傷から磁束が漏洩するため、この漏洩磁束による磁粉指示模様が形成される。そして、この磁粉指示模様を観測することで欠陥を検査する。磁粉探傷試験には、きずの検出精度を向上させるために、蛍光体を含有した蛍光磁粉を用いる蛍光磁粉探傷試験も知られている。 The magnetic particle testing is applied to the surface testing of objects to be inspected, such as steel materials such as billets and automobile parts, and is standardized in JIS-Z-2320. In the magnetic particle flaw detection test, a magnetic particle dispersion containing magnetic particles, that is, a magnetic particle liquid, is applied to the surface of the object to be inspected, and a magnetic field is applied to the object to be inspected, or an electric current is applied to the object to be inspected to magnetize the object to be inspected. If there is a flaw such as a crack on the surface of the magnetized object to be inspected, magnetic flux leaks from the flaw, and a magnetic particle indication pattern is formed by this leaked magnetic flux. Defects are inspected by observing the magnetic particle indication pattern. As a magnetic particle test, a fluorescent magnetic particle test using fluorescent magnetic particles containing a phosphor is also known in order to improve the detection accuracy of flaws.

磁粉探傷検査の軸通電法では、被検査物に電流を流して通電方向と垂直に磁場を発生させ、被検査物を磁化する。この検査方法では、磁場に垂直な方向の傷を検出する事ができ、軸方向の傷に対して感度が良い。 In the axial energization method of magnetic particle inspection, a current is passed through an object to be inspected to generate a magnetic field perpendicular to the current direction, thereby magnetizing the object to be inspected. This inspection method can detect flaws in the direction perpendicular to the magnetic field, and is sensitive to flaws in the axial direction.

コイル法と軸通電法の交流または半波整流による複合磁化では、被検査物に電流を流すと同時に、外部から軸方向に磁場をかけ、合成された回転する磁場によって全方向の傷を検出する事ができる。 Composite magnetization by alternating current or half-wave rectification of the coil method and the axial current method detects flaws in all directions by applying a magnetic field in the axial direction from the outside at the same time that the current is applied to the object to be inspected. can do things

特許文献1には、長尺な四角柱状の鋼材を軸通電法で検査する際、長手方向の端面に製品管理用のラベルが貼られている鋼片について、ラベルを避ける様に切り欠きが設けられた電極が開示されている。また、電極は良電体の銅製である。 In Patent Document 1, when inspecting a long square pole-shaped steel material by the axial current method, a notch is provided so as to avoid the label on the steel piece with a label for product management attached to the end face in the longitudinal direction. An electrode is disclosed. Also, the electrodes are made of copper, which is a good conductor.

特開2006-322748号公報JP-A-2006-322748

特許文献1には、軸通電法において、電気的接触を良好にする為に、被検査物の端面にたいして傾斜した電極が開示されている。しかし、ここでは被検査物は四角柱状であり、円柱状の被検査物については考慮されていない。また、磁化方法は軸通電法のみであり、コイル法等による複合磁化について考慮されていない。 Patent Literature 1 discloses an electrode that is inclined with respect to the end surface of an object to be inspected in order to improve electrical contact in the axial current application method. However, here, the object to be inspected is in the shape of a quadrangular prism, and no consideration is given to a cylindrical object to be inspected. Moreover, the magnetization method is only the axial current method, and composite magnetization by the coil method or the like is not taken into consideration.

工業製品である被検査物の端面は表面の仕上げ精度や刻印などにより完全に平滑な面ではない場合がある。また、自動搬送などで被検査物が電極に対して斜めに搬送される場合もある。その場合、軸通電法にて磁化する場合、被検査物と電極が一点もしくは少ない面積で接触することとなり通電するとスパークが発生する場合がある。さらに、被検査物端面付近の電流密度の差が発生し周方向の検出力にムラが発生する。
また、銅製の接触部を用いて、コイル法と軸通電法の複合磁場で磁化した場合、コイル磁化の影響で被検査物端面付近に磁極が発生する。これにより、被検査物の端面付近に疑似模様が発生し周方向の検出力が低下するという問題があった。
The end face of an object to be inspected, which is an industrial product, may not be perfectly smooth due to the finishing accuracy of the surface, engraving, or the like. In some cases, the object to be inspected is conveyed obliquely with respect to the electrodes by automatic conveyance or the like. In that case, when magnetized by the axial current method, the object to be inspected and the electrode come into contact with each other at one point or a small area, and when the object is energized, a spark may occur. Furthermore, a difference in current density occurs near the end face of the object to be inspected, causing unevenness in the detection force in the circumferential direction.
In addition, when a copper contact portion is magnetized in a composite magnetic field of the coil method and the axial current method, magnetic poles are generated near the end face of the object under the influence of the coil magnetization. As a result, there is a problem that a pseudo pattern is generated near the end surface of the object to be inspected, and the detecting power in the circumferential direction is lowered.

そこで本発明の課題は、軸通電法による磁粉探傷検査を行う際、電極接触面で発生するスパークを防ぎ、被検査物や電極の損傷を軽減すること、さらに、コイル法と軸通電法の複合磁化時に被検査物の端面付近に発生するムラを無くし、検出感度を向上させることを課題とする。 Therefore, the object of the present invention is to prevent sparks generated on the electrode contact surface and reduce damage to the test object and electrodes when magnetic particle inspection is performed by the axial current method, and to combine the coil method and the axial current method. An object of the present invention is to eliminate unevenness generated near the end face of an object to be inspected during magnetization and to improve detection sensitivity.

上記課題を解決するために、本発明は、被検査物を、コイル法と軸通電法の交流または半波整流による複合磁化にて磁化する磁紛探傷装置において、
前記被検査物との接触部が鉄製で、所定の角度でテーパー状の凹みをつけた形状であることを特徴とする。
In order to solve the above problems, the present invention provides a magnetic particle flaw detection apparatus that magnetizes an object to be inspected with composite magnetization by alternating current or half-wave rectification by a coil method and an axial current method,
The contact portion with the object to be inspected is made of iron and has a tapered recess at a predetermined angle.

更に、前記テーパー状の凹みは、すり鉢状であることを特徴とする。 Further, the tapered recess is characterized by being mortar-shaped.

更に、前記被検査物は角柱状であり、前記テーパー状の凹みは、逆四角錐状であり、前記被検査物と前記接触部との接触は直線状であることを特徴とする。
Further, the object to be inspected has a prism shape, the tapered recess has an inverted quadrangular pyramid shape, and the contact between the object to be inspected and the contact portion is linear .

更に、前記所定の角度は25度以上45度以下であることを特徴とする。 Further, the predetermined angle is 25 degrees or more and 45 degrees or less.

発明によれば、被検査物を、コイル法と軸通電法の交流または半波整流による複合磁化にて磁化する磁紛探傷装置において、
被検査物との接触部が鉄製で、所定の角度でテーパー状の凹みをつけた形状であるので、被検査物と接触部が良好に接触し、スパークの発生を抑制し、さらに、被検査物の接触する端部に磁場が集中することがなく、均一に被検査物を磁化することが可能になる。
According to the present invention, in a magnetic particle flaw detection apparatus that magnetizes an object to be inspected with composite magnetization by alternating current or half-wave rectification by a coil method and an axial current method,
The part that comes into contact with the object to be inspected is made of iron and has a shape with a tapered dent at a predetermined angle, so that the object to be inspected and the contact part are in good contact, suppressing the generation of sparks, and furthermore, It is possible to uniformly magnetize the object to be inspected without concentrating the magnetic field on the contacting end of the object.

更に、本発明によれば、テーパー状の凹みは、すり鉢状であるので、円柱状の被検査物に対して、接触部が良好に接触し、スパークの発生を抑制して、均一に被検査物を磁化することができる。 Furthermore, according to the present invention, since the tapered recesses are mortar-shaped, the contact portions are in good contact with the cylindrical test object, suppressing the generation of sparks and uniformly inspecting the test object. It can magnetize things.

更に、本発明によれば、被検査物は角柱状であり、テーパー状の凹みは、逆四角錐状であり、被検査物と接触部との接触は直線状であるので、角柱状の被検査物に対して、接触部が良好に接触し、スパークの発生を抑制して、均一に被検査物を磁化することができる。


Furthermore, according to the present invention, the object to be inspected is prismatic, the tapered recesses are in the shape of an inverted square pyramid, and the contact between the object to be inspected and the contact portion is linear . The contact portion is in good contact with the object to be inspected, the generation of sparks is suppressed, and the object to be inspected can be uniformly magnetized.


さらに、本発明によれば、所定の角度は25度以上45度以下であるので、被検査物と接触部が良好に接触し、スパークの発生を抑制して、均一に被検査物を磁化することが可能となる。 Furthermore, according to the present invention, since the predetermined angle is 25 degrees or more and 45 degrees or less, the object to be inspected and the contact portion are in good contact, the generation of sparks is suppressed, and the object to be inspected is uniformly magnetized. becomes possible.

本実施形態に係る磁粉探傷装置の接触部と被検査物である。They are the contact portion and the object to be inspected of the magnetic particle flaw detector according to the present embodiment. 本実施形態に係る磁粉探傷装置の接触部の斜視図である。It is a perspective view of the contact portion of the magnetic particle flaw detector according to the present embodiment. (A)従来の磁粉探傷装置の接触部と、端面が斜めの被検査物である。(B)本実施形態に係る磁粉探傷装置の接触部と、端面が斜めの被検査物である。(A) A contact portion of a conventional magnetic particle flaw detector and an object to be inspected with an oblique end face. (B) A contact portion of the magnetic particle flaw detector according to the present embodiment and an object to be inspected with an oblique end face. (A)従来の磁粉探傷装置の接触部と、傾斜した被検査物である。(B)本実施形態に係る磁粉探傷装置の接触部と、傾斜した被検査物である。(A) A contact portion of a conventional magnetic particle flaw detector and an inclined object to be inspected. (B) A contact portion of the magnetic particle flaw detector according to the present embodiment and an inclined object to be inspected. 別の実施形態に係る磁粉探傷装置の接触部の斜視図である。It is a perspective view of a contact portion of a magnetic particle flaw detector according to another embodiment.

以下、図面を参照しつつ、本発明の実施形態を詳細に説明する。図1は、本実施形態に係る磁粉探傷装置用の鉄製の接触部1と鉄などの強磁性体の被検査物2である。接触部1はテーパー状に成形されており、被検査物2に二点以上の接触点で接触している。また斜視図を図2に示す。接触部1はすり鉢状に凹みをつけた形状である。この様な形状の接触部1を磁粉探傷装置に用いることで、被検査物2を安定に保持し、二点以上で接触する為に安定に電流を流す事が可能であり、さらに、鉄製であるため、被検査物2の両端に磁極ができず、安定に磁場をかける事が可能になる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an iron contact portion 1 and an inspection object 2 of a ferromagnetic material such as iron for a magnetic particle flaw detector according to this embodiment. The contact portion 1 is formed in a tapered shape and contacts the object 2 to be inspected at two or more contact points. A perspective view is shown in FIG. The contact portion 1 has a mortar-like concave shape. By using the contact portion 1 having such a shape in a magnetic particle flaw detector, it is possible to stably hold the object 2 to be inspected and to stably pass an electric current since the object to be inspected 2 is in contact with two or more points. Therefore, magnetic poles are not formed at both ends of the object 2 to be inspected, and a magnetic field can be stably applied.

接触部1は一対となっており、被検査物2の左右からはさみ込む様にして、被検査物2を固定する。接触部1は被検査物2よりも大きい。この様な構成で、接触部1は被検査物2を確実に固定する事ができ、安定に電流を流す事が可能であり、また、安定に磁場をかける事が可能であり、精度の良い磁粉探傷検査を行う事が出来る。 The contact portions 1 are paired and fix the object 2 to be inspected so as to sandwich the object 2 to be inspected from the left and right sides. The contact portion 1 is larger than the object 2 to be inspected. With such a configuration, the contact portion 1 can securely fix the object 2 to be inspected, allow a stable current to flow, and can stably apply a magnetic field, resulting in high accuracy. Magnetic particle inspection can be performed.

軸通電法によって被検査物2に電流を流す場合、接触部1は電極となる。また、コイル法によって被検査物2に磁場をかける場合、接触部1は磁極となる。さらに、軸通電法とコイル法を同時に行い、交流をかけ、複合磁化による方法もある。
本特許の発明は、これらの方法に用いる接触部であるが、名称はこれらを総称し、「磁粉探傷装置用電極」とした。
When an electric current is passed through the object 2 to be inspected by the axial energization method, the contact portion 1 becomes an electrode. Further, when applying a magnetic field to the object 2 to be inspected by the coil method, the contact portion 1 becomes a magnetic pole. Furthermore, there is also a method in which the axial energization method and the coil method are performed simultaneously, an alternating current is applied, and composite magnetization is used.
The invention of this patent is a contact part used in these methods, and the name is generically called "electrode for magnetic particle flaw detector".

軸通電法では、被検査物2に電流を流し、円周方向に磁場を発生させ、被検査物2を磁化する。被検査物2に流す電流は50~5000Aであり、大電流である。電圧は5~20Vであり、この電流を3~10秒間流す。従って、接触部1と被検査物2の電気的な接触が悪い場合、または、点接触の場合、スパークし正確な磁粉指示模様が得られない。
コイル法では、被検査物2に外部から発生させた磁場を、軸方向にかける。外部コイルにより発生させる磁場は0.5~2テスラである。このコイル法では、接触部1と被検査物2が良好に接触すると同時に、接触部1が鉄製であることが望ましい。銅製の場合、通電性は良好だが、強磁性体ではないので、被検査物2の端部が磁極となり、端部近傍で、正確な磁粉指示模様が得られない。接触部1が鉄製であることで外部コイルとの間に良好な磁気回路が形成され、被検査物2の端部近傍の検出精度が向上する。
In the axial energization method, an electric current is passed through the object 2 to be inspected, a magnetic field is generated in the circumferential direction, and the object 2 to be inspected is magnetized. A current of 50 to 5000 A is applied to the object 2 to be inspected, which is a large current. The voltage is 5-20V and this current is passed for 3-10 seconds. Therefore, if the electrical contact between the contact portion 1 and the test object 2 is poor, or if there is a point contact, sparking will occur and an accurate magnetic particle pointing pattern cannot be obtained.
In the coil method, an externally generated magnetic field is applied to the object 2 to be inspected in the axial direction. The magnetic field generated by the external coil is 0.5-2 Tesla. In this coil method, it is desirable that the contact portion 1 and the object 2 are in good contact with each other and that the contact portion 1 is made of iron. In the case of copper, the electrical conductivity is good, but since it is not a ferromagnetic material, the ends of the object to be inspected 2 become magnetic poles, and an accurate magnetic powder indication pattern cannot be obtained near the ends. Since the contact portion 1 is made of iron, a good magnetic circuit is formed between the contact portion 1 and the external coil, and the detection accuracy near the edge portion of the object to be inspected 2 is improved.

被検査物2が円柱形状である場合、図2に示した様に、接触部1はすり鉢状であることが好ましい。接触部1の凹みの角度は図1のθであらわされ、5度以上60度以下が望ましく、さらにより望ましくは25度以上45度以下がより好適である。 When the test object 2 has a columnar shape, it is preferable that the contact portion 1 has a mortar shape as shown in FIG. The angle of the depression of the contact portion 1 is represented by θ in FIG. 1, and is preferably 5 degrees or more and 60 degrees or less, more preferably 25 degrees or more and 45 degrees or less.

接触部1の凹みの角度が25度未満である場合には、圧着圧力が弱い場合に電極内で被検査物2が滑らず、複数点接触する位置に被検査物2が動かなくなる。さらに、この角度が45度を超えると、必要以上に接触部1が長くなり、使い勝手が悪くなる。 If the angle of the depression of the contact portion 1 is less than 25 degrees, the object 2 to be inspected does not slip within the electrode when the crimping pressure is weak, and the object 2 to be inspected does not move to the position where multiple points are contacted. Furthermore, if this angle exceeds 45 degrees, the contact portion 1 becomes longer than necessary, resulting in poor usability.

従来の接触部は図3(A)に示す様に平板状であった。図3(A)の被検査物12は端面が接触部11と平行でない。この為、接触は点接触になってしまい、被検査物12と接触部11との間に隙間13ができてしまう。これに電流を流すと、スパークが発生して、被検査物12や接触部11を損傷するおそれがある。また、正確な磁粉指示模様が得られない。
一方、本発明の接触部1は図3(B)に示す様に、すり鉢状に凹んでいるので、被検査物2の端面が斜めになっていても、接触部1を上下に移動する事で良好に接触する事が可能になる。接触部1と被検査物2との接触は線接触、あるいは、2点以上の接触となる。
A conventional contact portion has a flat plate shape as shown in FIG. 3(A). The end surface of the test object 12 shown in FIG. 3A is not parallel to the contact portion 11 . Therefore, the contact becomes a point contact, and a gap 13 is formed between the object 12 to be inspected and the contact portion 11 . When a current is passed through this, a spark is generated, which may damage the object to be inspected 12 and the contact portion 11 . Also, an accurate magnetic powder indication pattern cannot be obtained.
On the other hand, as shown in FIG. 3B, the contact portion 1 of the present invention is recessed in the shape of a mortar. It is possible to make good contact with The contact between the contact portion 1 and the test object 2 is line contact or contact at two or more points.

さらに、図4には、被検査物が斜めになっている場合を示した。図4(A)は従来例であり、被検査物12と接触部11との間に隙間13ができてしまい、接触は点接触になる。
一方、本発明の接触部1は図4(B)に示す様に、すり鉢状に凹んでいるので、被検査物2が斜めになっていても、接触部1を上下に移動する事で良好に接触する事が可能になる。
Furthermore, FIG. 4 shows a case where the object to be inspected is oblique. FIG. 4A shows a conventional example, in which a gap 13 is formed between the object 12 to be inspected and the contact portion 11, and the contact becomes a point contact.
On the other hand, as shown in FIG. 4B, the contact portion 1 of the present invention is recessed in the shape of a mortar. becomes possible to come into contact with

被検査物の形状は角柱状であっても良い。この場合の凹み形状は、図5に示す様に、逆四角錐状であれば良い。この形状の接触部を用いれば、被検査物と接触部との接触は直線状になり、軸通電法において、スパークの発生を抑制し、さらにコイル法と軸通電法の交流による複合磁化において、良好に磁粉探傷検査を行うことができる。 The shape of the object to be inspected may be prismatic. In this case, the shape of the recess may be an inverted quadrangular pyramid, as shown in FIG. By using the contact part of this shape, the contact between the object to be inspected and the contact part becomes linear, suppressing the generation of sparks in the axial current method, and furthermore, in the composite magnetization by the coil method and the axial current method, Magnetic particle flaw detection can be performed satisfactorily.

被検査物を磁化する方法として、コイル法と軸通電法の交流による複合磁化がある。磁粉探傷検査では、加えた磁場の方向に対して直角の向きの傷を検出できる。コイル法は被検査物の軸方向に磁場を発生する方法であり、軸通電法はこれとは直角方向に磁場を発生させる。さらに交流による複合磁化では、二つの方法による磁場を合成する事で、方向性が回転する磁場を発生することができ、回転する磁場によって全方向の傷を検出する事が可能になる。 As a method for magnetizing an object to be inspected, there is composite magnetization by alternating current between a coil method and an axial current method. Magnetic particle inspection can detect flaws oriented perpendicular to the direction of the applied magnetic field. The coil method is a method of generating a magnetic field in the axial direction of the object to be inspected, and the axial current method is a method of generating a magnetic field in a direction perpendicular to this. Furthermore, in the composite magnetization by alternating current, by synthesizing the magnetic field by the two methods, it is possible to generate a magnetic field whose directionality rotates, and it becomes possible to detect flaws in all directions by the rotating magnetic field.

磁粉探傷検査法は、鉄鋼材料などの強磁性体の表面に開口した傷やクラックを検出する非破壊検査法である。強磁性体の被検査材料に磁場を加えた際、被検査物の表面や内部に磁束を遮断する欠陥があると、欠陥の両端に磁極が表れ、材料の表面に磁束が漏洩する。ここに、蛍光物質が付着した蛍光磁粉からなる磁粉液を塗布すると傷部に対応する漏洩磁場に磁粉が吸着される。ここで、紫外線を照射すると、傷部に吸着された磁粉の蛍光物質が発光して蛍光磁粉指示模様が形成され、傷部を検出できる。 Magnetic particle testing is a non-destructive testing method for detecting flaws and cracks on the surface of ferromagnetic materials such as steel. When a magnetic field is applied to a ferromagnetic material to be inspected, if there is a defect that blocks the magnetic flux on the surface or inside of the inspected material, magnetic poles appear at both ends of the defect, and the magnetic flux leaks to the surface of the material. When a magnetic powder liquid consisting of fluorescent magnetic particles to which a fluorescent substance is adhered is applied here, the magnetic particles are attracted to the leakage magnetic field corresponding to the scratched portion. Here, when ultraviolet rays are irradiated, the fluorescent substance of the magnetic particles adsorbed to the scratched portion emits light to form a fluorescent magnetic particle indicating pattern, and the scratched portion can be detected.

磁粉探傷検査法では、まず、鉄鋼などの強磁性体の被検査物の表面を溶剤などで清浄にした後、乾燥させる。次に、電磁石等により強磁性体を磁化する。磁化している最中に磁粉を掛ける連続法と、磁場を除いた後に検出する残留法がある。磁粉は、空気中に磁粉を散布して振り掛ける乾式法と、水や有機溶媒を用いる湿式法がある。蛍光物質を付着させた磁粉を振り掛ける。磁粉を振り掛けたところに傷部があり、漏洩磁場があると、そこに磁粉がとどまる。紫外線を照射すると磁粉に付けられた蛍光物質が発光して、傷部の指示模様が得られる。傷部の判定は、目視による。あるいは、撮像装置によって画像化し、コンピューターにより自動的に判定する。傷部が検出された箇所にはマーキングを行い、印を付ける場合がある。コンピューターによる自動判定の場合、自動的にマーキングすることで効率良く傷部が確認できる。 In the magnetic particle inspection method, first, the surface of a ferromagnetic material such as steel is cleaned with a solvent or the like, and then dried. Next, the ferromagnetic material is magnetized by an electromagnet or the like. There is a continuous method in which magnetic particles are applied while magnetized, and a residual method in which detection is performed after the magnetic field is removed. There are two types of magnetic powder: a dry method, in which magnetic powder is dispersed in the air, and a wet method, in which water or an organic solvent is used. Sprinkle magnetic powder to which a fluorescent substance is attached. If there is a scratch where the magnetic powder is sprinkled and there is a leakage magnetic field, the magnetic powder will stay there. When irradiated with ultraviolet light, the fluorescent substance attached to the magnetic powder emits light, and a pattern indicating the scratch is obtained. Determination of the damaged part is based on visual observation. Alternatively, it is imaged by an imaging device and automatically determined by a computer. A mark may be applied to the location where the wound is detected. In the case of automatic judgment by computer, the wound can be confirmed efficiently by marking automatically.

蛍光磁粉探傷検査が終わった被検査物は、消磁、洗浄、防錆などの後処理を行う。 After the fluorescent magnetic particle inspection has been completed, the inspected object undergoes post-treatment such as degaussing, cleaning, and rust prevention.

本発明の磁粉探傷装置用電極は、被検査物を、軸通電法をもちいて磁化する磁紛探傷装置において、被検査物との接触部(電極)が、所定の角度でテーパー状に凹みをつけた形状であることを特徴とする磁粉探傷装置用電極である。さらに、コイル法と軸通電法の交流による複合磁化にて磁化する磁紛探傷装置において、被検査物との接触部(磁極であるとともに電極である接触部)が鉄製で、所定の角度でテーパー状に凹みをつけた形状であることを特徴とする磁粉探傷装置用電極である。また、テーパー状の凹みは、すり鉢状または逆四角錐状であることを特徴とする磁粉探傷装置用電極である。 The electrode for a magnetic particle flaw detector of the present invention is a magnetic particle flaw detector that magnetizes an object to be inspected using an axial energization method. An electrode for a magnetic particle flaw detector characterized in that it has a curved shape. Furthermore, in the magnetic particle testing equipment that is magnetized by the composite magnetization by the alternating current of the coil method and the shaft energization method, the contact part (contact part that is both a magnetic pole and an electrode) with the object to be inspected is made of iron and is tapered at a predetermined angle. An electrode for a magnetic particle flaw detector characterized by having a concave shape. Further, in the electrode for a magnetic particle flaw detector, the tapered recess has a mortar shape or an inverted quadrangular pyramid shape.

次に、実施例を挙げて本発明を具体的に説明するが、これらの実施例は何ら本発明を制限するものではない。 EXAMPLES Next, the present invention will be specifically described with reference to examples, but these examples are not intended to limit the present invention in any way.

(実施例1)
本発明の実施形態の実施例1として、図1で示した、鉄製の磁粉探傷装置用電極である接触部1を作成した。直径4cm、高さ1.5cmで、テーパー角度はθ=30度であった。凹みはすり鉢状である。
被検査物2は直径3cm、長さ35cmの円柱状の鉄製ロッドである。被検査物2には、人工傷として、幅50μm、長さ5mm、深さ0.3mmの傷をレーザー加工法により作成した。傷は軸方向と周方向にそれぞれ作成した。
(Example 1)
As Example 1 of the embodiment of the present invention, the contact portion 1, which is an electrode for a magnetic particle flaw detector made of iron and shown in FIG. 1, was produced. It had a diameter of 4 cm and a height of 1.5 cm with a taper angle of θ=30 degrees. The dent is mortar-shaped.
The test object 2 is a cylindrical iron rod with a diameter of 3 cm and a length of 35 cm. An artificial flaw having a width of 50 μm, a length of 5 mm, and a depth of 0.3 mm was formed on the inspection object 2 by a laser processing method. Scratches were made in the axial and circumferential directions, respectively.

被検査物2を二つの接触部1で挟み込むと、周方向に、線状(円形)に接触した。まず軸通電法により磁化テストを行った。交流500Aの電流を5秒間流した。この際スパークなどは発生しなかった。次にコイル法による磁化テストを行った。外部コイルにより、被検査物の軸方向に1テスラの磁場を加えた。 When the object 2 to be inspected was sandwiched between the two contact portions 1, they were contacted linearly (circularly) in the circumferential direction. First, a magnetization test was performed by the axial current method. An alternating current of 500 A was passed for 5 seconds. At this time, no spark occurred. Next, a magnetization test was performed by the coil method. An external coil applied a magnetic field of 1 Tesla in the axial direction of the test object.

被検査物に蛍光磁粉液を塗布した。紫外線ブラックライトで照射すると、軸方向と周方向の傷それぞれに、蛍光磁粉が集積する様子が確認された。 A fluorescent magnetic powder solution was applied to the object to be inspected. When irradiated with an ultraviolet black light, it was confirmed that fluorescent magnetic particles accumulated in the axial and circumferential scratches.

(比較例1)
比較例1として、図3(A)に示した、鉄製の接触部11を作成した。直径4cm、高さ1cmの円柱状で平板状である。
被検査物12として、実施例1と同様の円柱状の鉄製ロッドを使用した。
(Comparative example 1)
As Comparative Example 1, an iron contact portion 11 shown in FIG. 3A was produced. It is cylindrical and flat with a diameter of 4 cm and a height of 1 cm.
As the object 12 to be inspected, a cylindrical iron rod similar to that used in Example 1 was used.

被検査物12を二つの接触部11で挟むと、図3(A)に示した隙間13が形成されている事が判った。軸通電法により、電流を流すとスパークし、疑似模様が発生した。また、コイル法により磁場を軸方向に加えると、接触部11が鉄製であるため、被検査物12の端部に磁極は発生しなかったが、隙間があるため疑似模様が形成された。 It was found that the gap 13 shown in FIG. Sparks occurred when current was applied by the shaft current method, and a pseudo pattern was generated. When a magnetic field was applied in the axial direction by the coil method, no magnetic pole was generated at the end of the object 12 to be inspected because the contact portion 11 was made of iron, but a pseudo pattern was formed due to the presence of a gap.

(比較例2)
比較例2として、比較例1と同様の形状の平板状の接触部11を、銅で作成した。被検査物12は、実施例1、比較例1と同様である。
(Comparative example 2)
As Comparative Example 2, a plate-like contact portion 11 having the same shape as in Comparative Example 1 was made of copper. The inspected object 12 is the same as that of the first embodiment and the first comparative example.

被検査物12を二つの接触部11で挟むと、比較例1と同様に、隙間13が形成された。軸通電法により、電流を流すとスパークし、疑似模様が発生した。また、コイル法により磁場を軸方向に加えると、接触部11が銅製であるため、被検査物12の端部に磁極が発生し、疑似模様が形成された。 When the object 12 to be inspected was sandwiched between the two contact portions 11, a gap 13 was formed as in the first comparative example. Sparks occurred when current was applied by the shaft current method, and a pseudo pattern was generated. Further, when a magnetic field was applied in the axial direction by the coil method, since the contact portion 11 was made of copper, magnetic poles were generated at the ends of the object 12 to be inspected, forming a pseudo pattern.

Figure 0007281979000001
Figure 0007281979000001

(結果とまとめ)
磁粉探傷装置用電極として、実施例1として、鉄製のすり鉢状の接触部1を作成した。また、比較例1として鉄製の平板状の接触部11を作成し、さらに比較例2として銅製の平板状の接触部11を作成した。これらの電極を用いて、軸通電法とコイル法により磁粉探傷検査を行った結果、実施例1ではどちらも良好に磁場がかけられ、鮮明な磁粉指示模様が得られた。一方、比較例1では、軸通電法ではスパークし、端部に疑似模様が発生した。さらに、コイル法では、接触部11が鉄製なので被検査物12の端部は磁極にはならなかったが、接触部11と被検査物12との間に隙間があったため、端部に疑似模様が発生した。比較例2では、軸通電法ではスパークし、端部に疑似模様が発生した。コイル法では、接触部11が銅製なので被検査物12の端部は磁極になり、また、端部に疑似模様が発生した。
(Results and Summary)
As Example 1, a mortar-shaped iron contact portion 1 was prepared as an electrode for a magnetic particle flaw detector. Further, as Comparative Example 1, a flat plate-shaped contact portion 11 made of iron was produced, and as Comparative Example 2, a flat plate-shaped contact portion 11 made of copper was produced. Using these electrodes, magnetic particle inspection was performed by the axial current method and the coil method. On the other hand, in Comparative Example 1, sparks were generated by the axial current method, and pseudo patterns were generated at the ends. Furthermore, in the coil method, since the contact portion 11 is made of iron, the end portion of the object to be inspected 12 does not become a magnetic pole. There has occurred. In Comparative Example 2, sparks were generated by the axial current method, and pseudo patterns were generated at the ends. In the coil method, since the contact portion 11 is made of copper, the end of the object to be inspected 12 becomes a magnetic pole, and a pseudo-pattern occurs at the end.

本開示の磁粉探傷装置用電極は、軸通電法、コイル法、およびこの両者による複合磁化による磁粉探傷検査に用いることが出来る。電極は鉄製で、すり鉢状に凹んでいるので、特に被検査物が円柱状である場合、好適である。また、角柱状の被検査物に対しては、逆四角錐状に凹んだ鉄製の電極を作成して対応することができる。 The electrode for a magnetic particle flaw detector according to the present disclosure can be used for magnetic particle flaw detection by the axial current method, the coil method, and composite magnetization by both of them. Since the electrodes are made of iron and are recessed in the shape of a mortar, they are suitable especially when the object to be inspected is cylindrical. In addition, for a prismatic object to be inspected, it is possible to prepare an iron electrode recessed in the shape of an inverted quadrangular pyramid.

1 すり鉢状の接触部
11 平板状の接触部
2、12 円柱状の被検査物
3 逆四角錐状の接触部
13 隙間
θ テーパー角度
REFERENCE SIGNS LIST 1 mortar-shaped contact portion 11 flat plate-shaped contact portion 2, 12 cylindrical test object 3 inverted quadrangular pyramid-shaped contact portion 13 gap θ taper angle

Claims (4)

被検査物を、コイル法と軸通電法の交流または半波整流による複合磁化にて磁化する磁紛探傷装置において、
前記被検査物との接触部が鉄製で、所定の角度でテーパー状の凹みをつけた形状であることを特徴とする磁粉探傷装置用電極。
In a magnetic particle flaw detection device that magnetizes an object to be inspected with composite magnetization by alternating current or half-wave rectification of the coil method and the axial current method,
An electrode for a magnetic particle flaw detector, wherein the contact portion with the object to be inspected is made of iron and has a tapered recess at a predetermined angle.
前記テーパー状の凹みは、すり鉢状であることを特徴とする、
請求項1に記載の磁粉探傷装置用電極。
The tapered recess is mortar-shaped,
The electrode for a magnetic particle flaw detector according to claim 1 .
前記被検査物は角柱状であり、
前記テーパー状の凹みは、逆四角錐状であり、
前記被検査物と前記接触部との接触は直線状であることを特徴とする、
請求項1に記載の磁粉探傷装置用電極。
The object to be inspected has a prismatic shape,
The tapered recess has an inverted quadrangular pyramid shape,
The contact between the object to be inspected and the contact portion is linear ,
The electrode for a magnetic particle flaw detector according to claim 1 .
前記所定の角度は25度以上45度以下であることを特徴とする、
請求項1乃至のいずれかに記載の磁粉探傷装置用電極。
The predetermined angle is 25 degrees or more and 45 degrees or less,
The electrode for a magnetic particle flaw detector according to any one of claims 1 to 3 .
JP2019117919A 2019-06-25 2019-06-25 Electrodes for magnetic particle flaw detectors Active JP7281979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019117919A JP7281979B2 (en) 2019-06-25 2019-06-25 Electrodes for magnetic particle flaw detectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019117919A JP7281979B2 (en) 2019-06-25 2019-06-25 Electrodes for magnetic particle flaw detectors

Publications (2)

Publication Number Publication Date
JP2021004774A JP2021004774A (en) 2021-01-14
JP7281979B2 true JP7281979B2 (en) 2023-05-26

Family

ID=74097575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019117919A Active JP7281979B2 (en) 2019-06-25 2019-06-25 Electrodes for magnetic particle flaw detectors

Country Status (1)

Country Link
JP (1) JP7281979B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322748A (en) 2005-05-17 2006-11-30 Daido Steel Co Ltd Electrode part of magnetic powder flaw detector
JP2019028026A (en) 2017-08-03 2019-02-21 新日鐵住金株式会社 Magnetizing equipment for magnetic particle flaw detection of long material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO130802C (en) * 1972-10-10 1975-02-12 Schelderups Ind A S

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322748A (en) 2005-05-17 2006-11-30 Daido Steel Co Ltd Electrode part of magnetic powder flaw detector
JP2019028026A (en) 2017-08-03 2019-02-21 新日鐵住金株式会社 Magnetizing equipment for magnetic particle flaw detection of long material

Also Published As

Publication number Publication date
JP2021004774A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
KR102525200B1 (en) Magnetization device for non-destructive testing provided with concave-convex structure
KR20150138751A (en) Method and Magnetic Particle Inspection Equipment
CN110333283A (en) A kind of pinpoint wet magnetic powder detection method of metal lamination defect
JP7281979B2 (en) Electrodes for magnetic particle flaw detectors
JPH0399257A (en) Magnetic field intensity indicator
JP3152101B2 (en) Magnetizer for magnetic flux leakage inspection of circular cross section material
JP6852616B2 (en) Magnetizing device for magnetic particle flaw detection of long materials
JP2015203622A (en) Portable interpole-type magnetic particle flaw detector and operation method thereof
JPH1030994A (en) Magnetic flaw detecting method and apparatus therefor
JP6170081B2 (en) Magnetizer for steel pipe, magnetic particle flaw detector
Aguila-Munoz et al. Crack detection in steel using a GMR-based MFL probe with radial magnetization
KR200161232Y1 (en) Yoke type magnetic particle tester
KR101569951B1 (en) Nondestructive test equipment employing squid magnetic sensor
Azizzadeh et al. Three-dimensional finite element and experimental simulation of magnetic flux leakage-type NDT for detection of pitting corrosions
JP2013221743A (en) Scratch detection sensitivity adjustment method, magnetic particle inspection method, and magnetic particle inspection device in magnetic particle inspection
JPH09113674A (en) Remote inspection device and its inspection method
Zhou et al. Structural Optimization and Simulation of a Magnetic Leak Detection Device for Streak-like Defects in Oil Pipes
KR200161229Y1 (en) Yoke type magnetic particle tester
JP6985335B2 (en) Specimen for magnetic particle inspection and its manufacturing method
RU2548944C1 (en) Nondestructive method of product testing
Lee et al. Application of magneto-optical method for inspection of the internal surface of a tube
CN114264720A (en) Magnetic powder detection method for end surface cracks of semi-hollow shaft
Gao et al. Elucidation of magnetic flux leakage for welding defect detection at different magnetic field directions through alternating magnetic field measurement
Chady et al. Electromagnetic NDT System for Inspection of Train Hollow Axles
JPS59225348A (en) Magnetic flaw detecting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230516

R150 Certificate of patent or registration of utility model

Ref document number: 7281979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150