JP7281181B2 - Dispersion liquid transfer device - Google Patents

Dispersion liquid transfer device Download PDF

Info

Publication number
JP7281181B2
JP7281181B2 JP2019122912A JP2019122912A JP7281181B2 JP 7281181 B2 JP7281181 B2 JP 7281181B2 JP 2019122912 A JP2019122912 A JP 2019122912A JP 2019122912 A JP2019122912 A JP 2019122912A JP 7281181 B2 JP7281181 B2 JP 7281181B2
Authority
JP
Japan
Prior art keywords
liquid
rotating body
circular pipe
pipe portion
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019122912A
Other languages
Japanese (ja)
Other versions
JP2021007914A (en
Inventor
益久 田
Original Assignee
株式会社田定工作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社田定工作所 filed Critical 株式会社田定工作所
Priority to JP2019122912A priority Critical patent/JP7281181B2/en
Publication of JP2021007914A publication Critical patent/JP2021007914A/en
Application granted granted Critical
Publication of JP7281181B2 publication Critical patent/JP7281181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mixers Of The Rotary Stirring Type (AREA)
  • Beans For Foods Or Fodder (AREA)

Description

本発明は、例えば、液体を送液する際に、この液体中に他の液体や微粒子粉を均一に混合分散することが可能な分散送液装置に関するものである。 The present invention relates to, for example, a dispersion liquid transfer apparatus capable of uniformly mixing and dispersing another liquid and fine particle powder in the liquid when the liquid is transferred.

回転時に容器等にぶつけた場合に破片や削りカスが生じることが少ない攪拌用回転体が提案されている(特許文献1参照)。この回転体は、外部に突起が少なく、回転軸に近い箇所に設けられた吸入口と、回転体の最外周部に設けられた吐出口とを繋ぐ流通路が、吸入口から回転軸方向に沿って直進した後に直角に曲がり、回転体本体の半径方向外側に向けて直進して吐出口に到達するように形成されているものである。 There has been proposed an agitating rotating body that hardly generates fragments or shavings when it collides with a container or the like during rotation (see Patent Document 1). This rotating body has few projections on the outside, and a flow path connecting an intake port provided near the rotating shaft and a discharge port provided on the outermost periphery of the rotating body extends from the suction port in the direction of the rotating shaft. After going straight along, it turns at a right angle, goes straight toward the outside in the radial direction of the main body of the rotor, and reaches the discharge port.

このため、液体中に攪拌用回転体を浸漬して回転させると、流通路内に進入した液体も回転体と共に回転する。これにより、流通路内の流体に遠心力が作用し、流通路内の流体が回転体の半径方向外側に向けて流動することにより、回転体の周囲に液流を生じさせる。これにより、溶液を撹拌するものである。 Therefore, when the agitating rotor is immersed in the liquid and rotated, the liquid entering the flow path also rotates together with the rotor. As a result, a centrifugal force acts on the fluid in the flow path, causing the fluid in the flow path to flow outward in the radial direction of the rotating body, thereby generating a liquid flow around the rotating body. This agitates the solution.

この回転体については、粘性の高い液体に他の液体や微粒子粉を混合する場合に、均一に撹拌することができる優れた特徴がある反面、発生する流れは流通路の容積に応じた大きさとなることは否めず、大容量の撹拌には不向きであった。このため、本出願人は、大量製造が容易で、尚且つ、大型で大容量の液体又は気体による流体を効率よく撹拌することのできる撹拌用回転体を提案した(特許文献2参照)。 This rotating body has the excellent feature of being able to uniformly agitate a highly viscous liquid when mixing it with another liquid or fine particle powder. Therefore, it is not suitable for stirring large volumes. For this reason, the applicant of the present application has proposed a stirring rotor that can be easily mass-produced and that can efficiently stir a large volume of liquid or gaseous fluid (see Patent Document 2).

この撹拌用回転体は、予め定められた平面に対して垂直な回転軸を中心に予め定められた回転方向に回転する回転体であって、内部に回転軸を取り巻く環状中空部を備えたドーナツ状本体部と、回転軸に近接するドーナツ状本体部に設けられ、本体部の回転方向に向かって開口した吸入口と、ドーナツ状本体部の最外周表面に設けられる1つ以上の吐出口とを備え、吸入口から環状中空部を介して吐出口まで連通されているものであり、回転軸に沿った螺旋状の流れを作る羽根がないため、キャビテーションの発生を起こさず効率よく撹拌することができる利点を奏するものである。 The rotating body for stirring is a rotating body that rotates in a predetermined rotating direction around a rotating shaft perpendicular to a predetermined plane, and is a doughnut having an annular hollow portion surrounding the rotating shaft. a suction port provided in the donut-shaped main body adjacent to the rotation shaft and opening in the direction of rotation of the main body; and one or more discharge ports provided on the outermost peripheral surface of the donut-shaped main body. , which communicates from the suction port to the discharge port through the annular hollow part, and since there are no blades that create a spiral flow along the rotation axis, it can efficiently agitate without causing cavitation. It has the advantage of being able to

一方、粘性の高い液体を送液しながらこの液体中に他の液体や微粒子粉を均一に分散することが望まれている。例えば、合成樹脂を固化させる際に、粘性の高い接着剤に硬化を促進させる硬化剤を均一に混合することや、豆腐の製造に際して、粘性の高い豆乳ににがり等の凝固剤を均一に混合する場合等では、少量であれば均一に混合することは容易い。 On the other hand, it is desired to uniformly disperse other liquids and fine particle powder in the highly viscous liquid while feeding the liquid. For example, when solidifying a synthetic resin, a highly viscous adhesive is uniformly mixed with a curing agent that accelerates curing, and when manufacturing tofu, a coagulant such as bittern is uniformly mixed with highly viscous soymilk. In some cases, it is easy to mix uniformly if the amount is small.

特許第4418019号公報Japanese Patent No. 4418019 特開2015-171684号公報JP 2015-171684 A

しかしながら、大量に混合する必要がある場合には、一つの撹拌槽内で撹拌することを想定すると、大容量の槽では、粘性の高い液体を均一に撹拌するには時間がかかる。このため、分散によって凝固等の液体の物性が変更される状況では、大容量の槽での分散ではムラが生じることとなる。 However, when it is necessary to mix a large amount, assuming stirring in one stirring tank, it takes time to uniformly stir a highly viscous liquid in a large-capacity tank. Therefore, in a situation where the physical properties of the liquid are changed by coagulation or the like due to dispersion, dispersion in a large-capacity tank causes unevenness.

このため、粘性の高い液体を送液する間に、他の液体や微粒子粉を均一に分散する分散送液装置が望まれている。加えて、他の液体や微粒子粉を均一に分散するに際して、粘性の高い液体であってもキャビテーションを起こし難い撹拌手段を備えた分散送液装置が更に望まれている。 Therefore, there is a demand for a dispersion liquid transfer device that uniformly disperses other liquids and fine particle powder while transferring highly viscous liquids. In addition, there is a further demand for a dispersion/liquid-feeding device equipped with a stirring means that does not easily cause cavitation even when a highly viscous liquid is used to uniformly disperse other liquids or fine particle powders.

本発明は、通常の水に近い粘性の液体は勿論のこと粘性の高い液体であっても、液体を送液する間に他の液体や微粒子粉を均一に分散することができ、更に、キャビテーションを起こし難い撹拌手段を備えた分散送液装置を得ることを目的とする。 The present invention is capable of uniformly dispersing other liquids and fine particle powder while feeding not only liquids with a viscosity close to that of normal water but also highly viscous liquids. An object of the present invention is to obtain a dispersing liquid feeding device equipped with a stirring means that is less likely to cause a

請求項1に記載された発明に係る分散送液装置は、液体を送液するための円管部と、この円管部内へ前記液体が導入される上流側開口部と、前記液体が前記円管部外へ送り出される下流側開口部とを有する送液管と、
前記円管部を塞ぐように配置され、上流側から下流側へ前記液体を送液可能な連通路と、前記円管部の内壁径に接することのない外径とを備えた回転体と、
この回転体を円管部の軸心同軸上に回動させる回動手段と、
前記回転体の上流側又は下流側の送液管内を流れる液体に被分散液又は被分散微粒子粉を供給して含有させる供給手段とを備えた分散送液装置であって、
前記回転体の連通路は、
上流側端面に設けられる1つ以上の吸入口と、
この吸入口に連通する下流側端面に設けられる1つ以上の吐出口とに連通するものであり、
前記吸入口は前記吐出口よりも前記回転体の回動軸心に近い位置に配置され、
前記吐出口は前記吸入口よりも前記回動軸心から半径方向外側の位置に配置されることを特徴とするものである。
The dispersion liquid transfer device according to the invention described in claim 1 includes a circular pipe portion for feeding a liquid, an upstream opening through which the liquid is introduced into the circular pipe portion, and a a liquid-sending tube having a downstream opening that is sent out of the tube;
a rotating body disposed so as to block the circular pipe portion and having a communication passage capable of feeding the liquid from the upstream side to the downstream side, and an outer diameter that does not come into contact with the inner wall diameter of the circular pipe portion;
a rotating means for rotating the rotating body coaxially with the axis of the circular tube;
A dispersion liquid feeding device comprising a supply means for supplying a liquid to be dispersed or a fine particle powder to be dispersed into a liquid flowing in a liquid feeding pipe on the upstream side or downstream side of the rotating body,
The communication passage of the rotating body is
one or more inlets provided on the upstream end surface;
It communicates with one or more discharge ports provided on the downstream end face communicating with the suction port,
the suction port is arranged at a position closer to the rotational axis of the rotating body than the discharge port;
The discharge port is arranged radially outward from the rotation axis relative to the suction port.

請求項2に記載された発明に係る分散送液装置は、請求項1に記載の回転体が、配置された前記円管部の内壁面に一定の間隙を隔てた側面部とを備えた円筒体であることを特徴とするものである。 A dispersion liquid transfer device according to the invention described in claim 2 is a cylinder having a side surface with a certain gap on the inner wall surface of the circular tube part in which the rotating body according to claim 1 is arranged. It is characterized by being a body.

本発明は、通常の水に近い粘性の液体は勿論のこと粘性の高い液体であっても、液体を送液する間に他の液体や微粒子粉を均一に分散することができ、更に、キャビテーションを起こし難い撹拌手段を備えた分散送液装置を得ることができるという効果がある。 The present invention is capable of uniformly dispersing other liquids and fine particle powder while feeding not only liquids with a viscosity close to that of normal water but also highly viscous liquids. There is an effect that it is possible to obtain a dispersing liquid feeding device equipped with a stirring means that is less likely to cause turbulence.

本発明の分散送液装置の一実施例の構成を示す説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing the configuration of an embodiment of a dispersion liquid transfer device of the present invention; 図1の分散送液装置の送液管内の流れの計算モデルの概観を示す説明図である。FIG. 2 is an explanatory diagram showing an overview of a calculation model of a flow in a liquid-sending pipe of the dispersion liquid-sending device of FIG. 1; 送液管内の計算セルの断面を示す説明図である。FIG. 4 is an explanatory diagram showing a cross section of a computational cell in a liquid-sending pipe; 回転体内の計算セルの断面を示す説明図である。FIG. 4 is an explanatory diagram showing a cross section of a computational cell in a body of revolution; 送液管内の流れの流線状態を示す説明図であり、a図は回転体の回転速度が500rpm、b図は回転体の回転速度が1000rpmを示す。It is explanatory drawing which shows the streamline state of the flow in a liquid-sending pipe, FIG. a shows the rotational speed of a rotor at 500 rpm, and FIG. 図2の500rpmの管軸に垂直な断面での断面速度の大きさ及びベクトルと管軸方向速度の大きさとを示す説明図であり、A図はz=0.1m、B図はz=0.08m、C図はz=0.06m、D図は0.04m、E図は0.02m、F図は0.015mにおける断面速度の大きさ及びベクトルと管軸方向速度の大きさとを示す。FIG. 2 is an explanatory diagram showing the magnitude and vector of cross-sectional velocity in a cross section perpendicular to the tube axis at 500 rpm and the magnitude of velocity in the direction of the tube axis. , Figure C shows the magnitude and vector of cross-sectional velocity at z = 0.06 m, Figure D at z = 0.04 m, Figure E at 0.02 m, and Figure F at 0.015 m, and the magnitude of velocity in the tube axial direction. 図6に引き続く図2の500rpmにおける管軸に垂直な断面での断面速度の大きさ及びベクトルと管軸方向速度の大きさとを示す説明図であり、G図はz=0.01m、H図はz=0.005m、I図はz=-0.001m、J図はz=-0.005m、K図はz=-0.01m、L図はz=-0.02mにおける断面速度の大きさ及びベクトルと管軸方向速度の大きさとを示す。FIG. 6 is an explanatory view showing the magnitude and vector of the cross-sectional velocity in the cross section perpendicular to the tube axis and the magnitude of the tube axis direction velocity at 500 rpm in FIG. z = 0.005 m, z = -0.001 m in I diagram, z = -0.005 m in J diagram, z = -0.01 m in K diagram, and z = -0.02 m in L diagram. and the magnitude of the axial velocity. 図2のz=60mmにおける500rpmの流れの速度分布を示す説明図であり、a図は断面速度の大きさ及びベクトルを示し、b図は管軸方向速度の大きさを示す。FIG. 3 is an explanatory diagram showing the velocity distribution of the flow at 500 rpm at z=60 mm in FIG. 図2のz=60mmにおける1000rpmの流れの速度分布を示す説明図であり、a図は断面速度の大きさとベクトルを示し、b図は管軸方向速度の大きさを示す。FIG. 3 is an explanatory diagram showing the velocity distribution of the flow at 1000 rpm at z=60 mm in FIG.

本発明においては、液体を送液するための円管部と、この円管部内へ液体が導入される上流側開口部と、液体が円管部外へ送り出される下流側開口部とを有する送液管と、円管部を塞ぐように配置され、上流側から下流側へ液体を送液可能な連通路と、円管部の内壁径に接することのない外径とを備えた回転体と、この回転体を円管部の軸心同軸上に回動させる回動手段と、回転体の上流側又は下流側の送液管内を流れる液体に被分散液又は被分散微粒子粉を供給して含有させる供給手段とを備えた分散送液装置である。 In the present invention, a delivery device has a circular pipe portion for feeding a liquid, an upstream opening through which the liquid is introduced into the circular pipe portion, and a downstream opening through which the liquid is discharged out of the circular pipe portion. A rotating body having a liquid pipe, a communication passage arranged to block the circular pipe portion and capable of transferring the liquid from the upstream side to the downstream side, and an outer diameter that does not come into contact with the inner wall diameter of the circular pipe portion. a rotating means for rotating the rotating body coaxially with the axis of the circular pipe portion; It is a dispersing liquid feeding device provided with a supply means for containing.

回転体の連通路は、上流側端面に設けられる1つ以上の吸入口と、この吸入口に連通する下流側端面に設けられる1つ以上の吐出口とに連通するものであり、吸入口は吐出口よりも回転体の回動軸心に近い位置に配置され、吐出口は吸入口よりも回動軸心から半径方向外側の位置に配置されてるものである。これにより、通常の水に近い粘性の液体は勿論のこと粘性の高い液体であっても、液体を送液する間に他の液体や微粒子粉を均一に分散することができ、更に、キャビテーションを起こし難い利点を奏する。 The communication passage of the rotating body communicates with one or more suction ports provided on the upstream end surface and one or more discharge ports provided on the downstream end surface communicating with the suction ports. The discharge port is arranged at a position closer to the rotation axis of the rotating body than the discharge port, and the discharge port is arranged at a position radially outward from the rotation shaft center than the suction port. As a result, it is possible to uniformly disperse other liquids and fine particle powder while the liquid is being fed, not only for liquids with a viscosity close to that of normal water, but also for liquids with high viscosity, and furthermore, cavitation can be prevented. It has an advantage that is difficult to cause.

即ち、円管部を塞ぐように配置され、上流側から下流側へ液体を送液可能な連通路と、円管部の内壁径に接することのない外径とを備えた回転体について、回転体の連通路は、上流側端面に設けられる1つ以上の吸入口と、この吸入口に連通する下流側端面に設けられる1つ以上の吐出口とに連通するものであり、吸入口は吐出口よりも回転体の回動軸心に近い位置に配置され、吐出口は吸入口よりも回動軸心から半径方向外側の位置に配置されている。従って、回転体を回動することにより、吐出口が円筒状の回転体の側面近傍に配されているため、吐出口内部に存在する流体への遠心力の方が吸入口内部に存在する流体への遠心力よりも大きくなる。 That is, for a rotating body having a communication passage arranged to block a circular tube portion and capable of feeding liquid from the upstream side to the downstream side, and an outer diameter that does not come into contact with the inner wall diameter of the circular tube portion, The communication passage of the body communicates with one or more suction ports provided on the upstream end face and one or more discharge ports provided on the downstream end face communicating with the suction ports. The outlet is arranged at a position closer to the rotation axis of the rotating body than the outlet, and the discharge port is arranged at a position radially outward from the rotation axis than the suction port. Therefore, by rotating the rotator, the discharge port is arranged near the side surface of the cylindrical rotator. greater than the centrifugal force to

このため、吐出口から流体が吐出され、連通路を介して吸入口により液体が浸入される。回転体は回動軸で回転しているため、吐出口から連続して吐出する液体の流れは回動軸周りに回りながら流れ、通常の水に近い粘性の液体は勿論のこと粘性の高い液体であっても、液体を送液する間に他の液体や微粒子粉を均一に分散することができる。円管部内の流れについては、回転体によって回動軸周りに回りながら流れるため、層流でも乱流でも良好に他の液体や微粒子粉を均一に分散することができる。多くの場合には、乱流状態で円管部内を流れる状態であっても回転体によって回動軸周りに回りながら流れる。加えて、回転軸に沿った螺旋状の流れを作る羽根がないため、キャビテーションの発生を起こさず効率よく他の液体や微粒子粉を均一に分散することができる利点を奏する。 Therefore, the fluid is discharged from the discharge port, and the liquid enters from the suction port through the communicating passage. Since the rotating body rotates on the rotary shaft, the liquid continuously discharged from the discharge port flows while rotating around the rotary shaft, and not only liquids with a viscosity close to normal water but also highly viscous liquids can be discharged. Even so, it is possible to uniformly disperse the other liquid and the fine particle powder while the liquid is being fed. As for the flow in the circular pipe portion, since it flows while rotating around the rotation axis by the rotating body, it is possible to uniformly disperse other liquids and fine particle powder even in a laminar flow or a turbulent flow. In many cases, even in a state of turbulent flow in the cylindrical portion, the fluid flows while being rotated around the rotation axis by the rotating body. In addition, since there are no blades that create a spiral flow along the rotation axis, there is an advantage that other liquids and fine particle powder can be efficiently and uniformly dispersed without causing cavitation.

本発明の分散送液装置で送液される液体としては、粘度の高い液体でも液送中に回転体で良好に他の液体や微粒子粉を均一に分散することができる。例えば、通常の水に近い粘性の液体を送液する際に、液体や微粒子粉を均一に分散することは勿論のこと、接着剤を固化させる際に、粘性の高い合成樹脂に硬化を促進させる硬化剤を均一に混合することや、豆腐の製造に際して、粘性の高い豆乳ににがり等の凝固剤を液送しながら均一に混合することができる。 As for the liquid to be fed by the dispersion liquid feeding apparatus of the present invention, even a highly viscous liquid can be satisfactorily and uniformly dispersed by the rotating body during liquid feeding. For example, when feeding a viscous liquid close to normal water, it not only disperses the liquid and fine particle powder uniformly, but also accelerates the hardening of the highly viscous synthetic resin when solidifying the adhesive. It is possible to uniformly mix the curing agent, and to uniformly mix the highly viscous soymilk with a coagulant such as bittern while feeding it.

本発明の分散送液装置で用いる回転体としては、液体を送液するための円管部と、この円管部内へ前記液体が導入される上流側開口部と、前記液体が前記円管部外へ送り出される下流側開口部とを有する送液管内の円管部を塞ぐように配置され、上流側から下流側へ前記液体を送液可能な連通路と、前記円管部の内壁径に接することのない外径を備えるものであればよく、好ましくは、配置された円管部の内壁面に一定の間隙を隔てた側面部とを備えた円筒体であるものが採用される。これにより、円筒体の回転体の側面部が、配置された円管部の内壁面と小さな間隙を介して配置されることができるため、間隙から入り込む液体を小さくすることができるため、吐出口から連続して吐出する液体の流れは回動軸周りに周りながら流れ、液体を送液する間に他の液体や微粒子粉を均一に分散することができる。 The rotating body used in the dispersion liquid transfer apparatus of the present invention includes a circular pipe portion for feeding a liquid, an upstream opening through which the liquid is introduced into the circular pipe portion, and the circular pipe portion where the liquid is introduced. A communication passage arranged to block a circular pipe portion in a liquid feeding pipe having a downstream opening for sending out to the outside, and capable of feeding the liquid from the upstream side to the downstream side, and the inner wall diameter of the circular pipe portion Any one having an outer diameter that does not come in contact with the inner wall surface of the circular tube portion is preferably used, and a cylindrical body having a side wall portion with a certain gap therebetween is adopted. As a result, since the side surface of the rotating body of the cylindrical body can be arranged with a small gap between it and the inner wall surface of the arranged circular pipe, the amount of liquid that enters through the gap can be reduced. The flow of the liquid continuously ejected from the nozzle flows while rotating around the rotation shaft, and other liquids and fine particle powder can be uniformly dispersed while the liquid is being fed.

本発明の吸入口については上流槽側端面に1つ以上設けられ、本発明の吐出口については吸入口に連通する下流槽側端面に1つ以上設けられればよく、吸入口は吐出口よりも回転体の回動軸心に近い位置に配置され、吐出口は吸入口よりも回動軸心から半径方向外側の位置に配置されるものであればよい。 One or more suction ports of the present invention are provided on the upstream tank side end face, and one or more discharge ports of the present invention are provided on the downstream tank side end face communicating with the suction port, and the suction port is provided more than the discharge port. It is sufficient that it is arranged at a position close to the rotation axis of the rotating body, and the discharge port is arranged at a position radially outward from the rotation axis than the suction port.

好ましい吸入口としては、上流槽側端面の回動軸心回りに均等に2つ以上配され、好ましい吐出口としては、下流槽側端面の円管壁面側に均等に吸入口と同数であればよく、一つの吸入口とこれに対応する一つの吐出口とを連絡する吸入口と同数の連通路を備えたものであればよい。後述する実施例では、吸入口と吐出口とが回動軸周りに均等に6つ配置されているものが開示されている。 Preferably, two or more suction ports are evenly arranged around the rotation axis on the end face on the upstream tank side, and preferably the discharge ports are the same number as the suction ports on the circular pipe wall surface side on the end face on the downstream tank side. It is sufficient if it has the same number of communication passages as the number of suction ports that connect one suction port and one corresponding discharge port. An embodiment described later discloses that six intake ports and six discharge ports are evenly arranged around the rotation shaft.

図1は本発明の分散送液装置の一実施例の構成を示す説明図である。図1に示す通り、本実施例の分散送液装置10は、送液管を構成する円管部上方の上流側開口部11と、その下方に回動軸14の軸受14aを介して配された円管部混合室13と、この円管部混合室13の側方に設けられた下流側開口部12とを備え、上流側開口部11と円管部混合室13との間に回動軸14で回動する円筒形状の回転体20が配されている。 FIG. 1 is an explanatory view showing the configuration of one embodiment of the dispersion liquid transfer apparatus of the present invention. As shown in FIG. 1, the dispersion liquid transfer apparatus 10 of the present embodiment is arranged with an upstream opening 11 above a circular tube portion constituting a liquid transfer tube and a bearing 14a of a rotary shaft 14 below the opening. and a downstream opening 12 provided on the side of the circular tube mixing chamber 13. A cylindrical rotating body 20 that rotates about a shaft 14 is arranged.

回転体20の外径は、回転体20の側面部と円管部混合室13の内壁との間隙が僅かであり、配されている円管状の円管部混合室13の内壁面に対して接することのない外径としている。尚、回転体20の円筒形の側面部と円管部混合室13の内壁面との間隙は、0.1mmとしている。尚、少なくとも1mm以下程度とすることにより、間隙からの円管部混合室13への流入を防ぎ、回転体20での分散を効率よく行うことができる。 The outer diameter of the rotating body 20 has a small gap between the side surface of the rotating body 20 and the inner wall of the circular tube mixing chamber 13, and the inner wall surface of the cylindrical tube mixing chamber 13 is arranged. It has an outer diameter that does not touch. The gap between the cylindrical side surface of the rotating body 20 and the inner wall surface of the cylindrical mixing chamber 13 is set to 0.1 mm. By setting the diameter to be at least about 1 mm or less, it is possible to prevent the particles from flowing into the circular tube portion mixing chamber 13 through the gap, and to efficiently disperse the particles in the rotating body 20 .

円筒形の回転体20には、上流側端面に回動軸14の軸心回りに均等に6つ設けられた吸入口21と、下流側端面に円管部混合室13の内壁面側に均等に6つ配された吐出口23とを備え、個々の吸入口21とこれに1つ対応する吐出口23とは連通路22で連通されている。個々の吐出口23は、吸入口21よりも回動軸から半径方向外側の位置に配置されている。 The cylindrical rotating body 20 has six intake ports 21 provided evenly around the axis of the rotary shaft 14 on the upstream end face, and evenly spaced on the inner wall surface side of the cylindrical mixing chamber 13 on the downstream end face. Each suction port 21 and one corresponding discharge port 23 are communicated with each other by a communication path 22 . Each discharge port 23 is arranged radially outward from the rotation shaft relative to the suction port 21 .

円管部混合室13の下方には連結室18を介して回動軸14を回動するモータ15が配され、連結室18内でモータ15の駆動軸16と回動軸14とを着脱可能にする連結部17で連結されている。円管部混合室13と連結室18との回動軸14の軸受14bについては、円管部混合室13内の液体が連結室18へ漏れ出ないように4つのシール部19が配されている。 A motor 15 that rotates a rotating shaft 14 via a connecting chamber 18 is arranged below the circular tube portion mixing chamber 13, and the driving shaft 16 of the motor 15 and the rotating shaft 14 can be attached and detached in the connecting chamber 18. It is connected by the connection part 17 which makes. The bearing 14b of the rotating shaft 14 between the circular pipe mixing chamber 13 and the connecting chamber 18 is provided with four seals 19 to prevent the liquid in the circular pipe mixing chamber 13 from leaking into the connecting chamber 18. there is

本実施例の分散送液装置10は、粘性の高い液体としての豆乳ににがり供給手段30で上流側開口部11ににがり(苦汁)を添加し、回転体20で吸入させつつ円管部混合室13側に吐出することにより、円管部混合室13内で混合分散させながら下流側開口部12へ送液する。下流側開口部12以降で凝固容器や凝固槽等で凝固させて豆腐とするものであるが、粘性の高い合成樹脂に硬化を促進させる硬化剤を均一に混合する分散送液装置でも同様の構成で行うことができる。 In the dispersion liquid feeding device 10 of the present embodiment, bittern (bitter) is added to the soymilk as a highly viscous liquid by the bittern supply means 30 to the upstream opening 11 and sucked by the rotating body 20 while being sucked into the cylindrical mixing chamber. By discharging to the 13 side, the liquid is sent to the downstream side opening 12 while being mixed and dispersed in the cylindrical mixing chamber 13 . After the downstream opening 12, tofu is coagulated in a coagulation container, coagulation tank, or the like, and a dispersing liquid feeding device that uniformly mixes a highly viscous synthetic resin with a curing agent that accelerates curing has the same configuration. can be done with

回転体20の吸入口21が回動軸14の近傍に、吐出口23が回転体20の側面近傍に配されているため、吐出口23内部に存在する流体への遠心力の方が吸入口21内部に存在する流体への遠心力よりも大きくなる。このため、吐出口23から流体が吐出され、連通路22を介して吸入口21により液体が浸入される。回転体20は回動軸14で回転しているため、吐出口23から連続して吐出する液体の流れは回動軸周りに回りながら流れる。 Since the suction port 21 of the rotating body 20 is arranged near the rotary shaft 14 and the discharge port 23 is arranged near the side surface of the rotating body 20, the centrifugal force exerted on the fluid existing inside the discharge port 23 is greater than that of the suction port. 21 is greater than the centrifugal force on the fluid present inside. Therefore, the fluid is discharged from the discharge port 23 and the liquid enters from the suction port 21 through the communicating path 22 . Since the rotating body 20 rotates about the rotating shaft 14, the liquid continuously ejected from the ejection port 23 flows while rotating around the rotating shaft.

このため、回転体20の回動によって送液されるが、この回転体20だけの送液量で均一な分散状態が得られる場合には、回転体20だけの送液量で行う。粘性の高い液体を送液する場合等のように回転体20だけの送液量で不足する場合には、送液量を増加させるため、別途の送液ポンプを追加させてもよいし、上流側開口部11に連通する槽を上位高さ位置に配置し、下流側開口部12を下位高さ位置に配置して豆乳の高位から低位への流れを用いてもよい。また、豆乳の送液量に応じてにがりを添加する場合についても、豆乳の送液量を計測してこの総液量に見合った量のにがりを定量ポンプで添加することにより、均一な分散状態を得ることができる。 Therefore, the liquid is fed by the rotation of the rotating body 20. If the liquid feeding amount of the rotating body 20 alone is enough to obtain a uniform dispersed state, the liquid feeding amount of the rotating body 20 alone is used. If the amount of liquid sent by the rotating body 20 alone is insufficient, such as when a highly viscous liquid is to be sent, a separate liquid sending pump may be added to increase the amount of liquid sent. The tank communicating with the side opening 11 may be arranged at an upper height position, and the downstream opening 12 may be arranged at a lower height position to use the flow of soymilk from the high level to the low level. Also, in the case of adding bittern according to the amount of soymilk fed, by measuring the amount of soymilk fed and adding the amount of bittern corresponding to the total liquid amount with a metering pump, a uniform dispersion state can be obtained. can be obtained.

図1に示した分散送液装置の回転体20による撹拌流れをシミュレートして検証した。図2は図1の分散送液装置の送液管内の流れの計算モデルの概観を示す説明図である。図3は送液管内の計算セルの断面を示す説明図である。図4は回転体内の計算セルの断面を示す説明図である。円管部内に設置した回転体20によって生じる流れを、数値シミュレーションで予測した。計算環境としては、ソフトウェア:オープンソースCFD(Computational Fluid Dynamics)「ソフトウェァOpen FOAM v1806」を用いた。 The agitation flow by the rotor 20 of the dispersion liquid transfer apparatus shown in FIG. 1 was simulated and verified. FIG. 2 is an explanatory diagram showing an overview of a calculation model of the flow in the liquid-sending pipe of the dispersion liquid-sending apparatus of FIG. FIG. 3 is an explanatory diagram showing a cross section of a computational cell in a liquid transfer pipe. FIG. 4 is an explanatory diagram showing a cross section of a computational cell in a body of revolution. Numerical simulation was used to predict the flow generated by the rotating body 20 installed in the circular pipe. As a computing environment, software: open source CFD (Computational Fluid Dynamics) "software Open FOAM v1806" was used.

モデル全体像を示す図2に示す通り、流路全体を計算対象とした。計算領域全体に、回転体の回転を模擬する遠心力を考慮することで、計算領域全体の回転を再現した。一定回転速度で回る座標系から観察すると考える、定常現象として扱う。(SRF Simple Foam)パイプ壁面は静止し、回転体および固定軸が指定した回転数で回転することとなる。シミュレーションにおける流路入口は、回転体20の底面から100mm上流とし、 入口全体で一様な速度(流量/管路断面積)とした。また、流路出口は回転体20上面から200mm下流とした。 As shown in FIG. 2, which shows the overall model image, the entire flow path was used as a calculation target. By considering the centrifugal force that simulates the rotation of the rotating body in the entire computational domain, the rotation of the entire computational domain was reproduced. It is treated as a stationary phenomenon that is considered to be observed from a coordinate system that rotates at a constant rotational speed. (SRF Simple Foam) The wall surface of the pipe is stationary, and the rotor and fixed shaft rotate at the specified number of revolutions. The flow path inlet in the simulation was set 100 mm upstream from the bottom surface of the rotating body 20, and the velocity (flow rate/pipe cross-sectional area) was uniform throughout the inlet. Also, the outlet of the flow path was set 200 mm downstream from the upper surface of the rotating body 20 .

図3に円管内断面(z=60mm)の計算セルの概要を図4に回転体内の孔部断面の計算セルの概要を示す。基準となるセルの大きさ(1辺の長さ)は2mmである。必要に応じて、そのセルを2分の1に分割し、細分化した。壁面近傍には2層の境界層レイヤーを追加した。全体のセル数は結果的に約75万となった。 FIG. 3 shows an outline of a computational cell for a cross section inside a circular pipe (z=60 mm), and FIG. 4 shows an outline of a computational cell for a cross section of a hole in a rotating body. The reference cell size (length of one side) is 2 mm. If necessary, the cell was divided in half and subdivided. Two boundary layers were added near the walls. The total number of cells resulted in about 750,000.

計算条件は、次の通りである。流量Q は、50L/minとした。即ち、管入口面積S(回転軸分の面積減少を無視)とし、平均流速は Q/S(=4Q/PI/D^2)=0.4244m/s(管路入口に一様速度と付与)となった。尚、レイノルズ数 Re=2.6×10(乱流と考える)とした。回転体20の回転は、500rpm、または、1000rpmを想定した(500/60=8.3round per sec)。相当回転速度は半径0.01mで0.5m/s程度、半径0.025mで1.3m/s程度流体は水とした(動粘度0.8e-6m/s)。乱流モデルは、レイノルズ平均型 k-ω SST乱流モデル(旋回非考慮)とした。 Calculation conditions are as follows. The flow rate Q was set to 50 L/min. That is, the pipe inlet area is S (ignoring the reduction in the area of the rotating shaft), and the average flow velocity is Q/S (= 4Q/PI/D^2) = 0.4244 m/s (uniform velocity is given to the pipe inlet ). The Reynolds number Re=2.6×10 4 (considered as turbulent flow). The rotation of the rotor 20 was assumed to be 500 rpm or 1000 rpm (500/60=8.3 rounds per sec). The equivalent rotational speed was about 0.5 m/s at a radius of 0.01 m, and about 1.3 m/s at a radius of 0.025 m. The turbulence model was a Reynolds-averaged k-ω SST turbulence model (swirling not considered).

図5は送液管内の流れの流線状態を示す説明図であり、a図は回転体の回転速度が500rpm、b図は回転体の回転速度が1000rpmを示す。全体の流れとしては、図5に示す通り、回転体20より上流では、乱流であるため流れは主に管軸方向である。もし、回転体がない状態であれば、この乱流中に、例えばにがり供給手段30でにがり等を添加したとしても、均一な分散状態を得るには、相応の長さの流れが必要となる。 5A and 5B are explanatory diagrams showing the streamline state of the flow in the liquid feeding pipe, in which FIG. 5A shows the rotational speed of the rotating body at 500 rpm, and FIG. As for the overall flow, as shown in FIG. 5, upstream of the rotating body 20, the flow is mainly in the direction of the pipe axis because the flow is turbulent. If there is no rotating body, even if bittern or the like is added to the turbulent flow by the bittern supply means 30, a flow of a suitable length is required to obtain a uniformly dispersed state. .

しかしながら、回転体20への通過後には、500rpm及び1000rpm共に流路全体が回転する流れとなり、円管部内の全体に渡る旋回流が生じることが分かった。この全体に亘る旋回流によって均一な分散状態が得られるものと思われた。そのため、動粘度を水とした乱流状態でのシミュレートで円管部内の全体に渡る旋回流が生じているため、豆乳のように高い粘度のものであっても回転数を適宜変更することにより、円管部内の全体に渡る旋回流が生じることが予想された。 However, after passing through the rotating body 20, it was found that the entire flow path rotates at both 500 rpm and 1000 rpm, and a swirling flow occurs throughout the circular pipe portion. It was believed that this swirling flow over the whole would provide a uniform dispersion. Therefore, in a simulation of a turbulent flow with water as the kinematic viscosity, a swirling flow is generated throughout the circular pipe, so it is necessary to change the rotation speed as appropriate even for soy milk with high viscosity. Therefore, it was expected that a swirl flow would occur throughout the circular pipe.

図6は図2の500rpmの管軸に垂直な断面での断面速度の大きさ及びベクトルと管軸方向速度の大きさとを示す説明図であり、A図はz=0.1m、B図はz=0.08m、C図はz=0.06m、D図は0.04m、E図は0.02m、F図は0.015mにおける断面速度の大きさ及びベクトルと管軸方向速度の大きさとを示す。図7は図6に引き続く図2の500rpmの管軸に垂直な断面での断面速度の大きさ及びベクトルと管軸方向速度の大きさとを示す説明図であり、G図はz=0.01m、H図はz=0.005m、I図はz=-0.001m、J図はz=-0.005m、K図はz=-0.01m、L図はz=-0.02mにおける断面速度の大きさ及びベクトルと管軸方向速度の大きさとを示す。 FIG. 6 is an explanatory diagram showing the magnitude and vector of the cross-sectional velocity in the cross section perpendicular to the tube axis at 500 rpm in FIG. 2 and the magnitude of the velocity in the direction of the tube axis. = 0.08m, z = 0.06m in C, 0.04m in D, 0.02m in E, and 0.015m in F, the magnitude and vector of cross-sectional velocity, and the magnitude of velocity in the tube axial direction. FIG. 7 is an explanatory diagram showing the magnitude and vector of the cross-sectional velocity in the cross section perpendicular to the tube axis at 500 rpm in FIG. Figure H: z = 0.005 m, Figure I: z = -0.001 m, Figure J: z = -0.005 m, Figure K: z = -0.01 m, Figure L: z = -0.02 m. The vector and the magnitude of the tube axial velocity are shown.

管軸に垂直な断面での管軸方向の速度の大きさ、および、断面内方向の速度の大きさを示す図6及び図7に示す通り、回転体20への通過前は管軸方向に直進して流れる(L図、K図、J図)。回転体20の吸入口21に進入すると(I図)、流路面積が減少するため、流体の速度の大きさが増大することが判った。尚、この流れは連通路22に沿って流れる。 As shown in FIGS. 6 and 7, which show the magnitude of velocity in the direction of the tube axis and the magnitude of velocity in the inward direction of the cross section in a cross section perpendicular to the tube axis, before passing through the rotating body 20, It flows straight ahead (L diagram, K diagram, J diagram). It was found that when the fluid entered the inlet 21 of the rotating body 20 (Fig. I), the fluid flow area decreased, so that the velocity of the fluid increased. Incidentally, this flow flows along the communication path 22 .

回転体20の回転によって、この部分の流体は回転速度に応じた回転成分を得ることとなる(H図、G図、F図)。回転体20の吐出口23から出た流れは、その勢いを保ったまま、円管部内壁面へ衝突する(E図)。回転体20から離れると、回転成分はやや弱まるが、円管部内全体に渡る旋回流が生じていることが判った(D図、C図、B図、A図)。 Due to the rotation of the rotating body 20, the fluid in this portion obtains a rotation component corresponding to the rotation speed (Fig. H, Fig. G, Fig. F). The flow coming out of the discharge port 23 of the rotating body 20 collides with the inner wall surface of the cylindrical portion while maintaining its momentum (Fig. E). It was found that a swirling flow was generated throughout the circular tube portion, although the rotation component weakened slightly away from the rotating body 20 (Figs. D, C, B, and A).

図8は図2のz=60mmにおける500rpmの流れの速度分布を示す説明図であり、a図は断面速度の大きさ及びベクトルを示し、b図は管軸方向速度の大きさを示す。図9は図2のz=60mmにおける1000rpmの流れの速度分布を示す説明図であり、a図は断面速度の大きさとベクトルを示し、b図は管軸方向速度の大きさを示す。 FIG. 8 is an explanatory diagram showing the velocity distribution of the flow at 500 rpm at z=60 mm in FIG. FIG. 9 is an explanatory diagram showing the velocity distribution of the flow at 1000 rpm at z=60 mm in FIG.

回転数による比較としては、z=60mmの断面における速度分布の回転数による比較を示す図8及び図9に示す通り、回転数の増加によって、断面内の旋回速度が大きくなることが判った。 8 and 9, which show the comparison of the speed distribution in the cross section of z=60 mm, it was found that the turning speed in the cross section increased as the rotation speed increased.

10 …分散送液装置、
11 …上流側開口部、
12 …下流側開口部、
13 …円管部混合室(円管部)、
14 …回動軸、
14a…軸受、
14b…軸受、
15 …モータ、
16 …駆動軸、
17 …連結部、
18 …連結室、
19 …シール部、
20 …回転体、
21 …吸入口、
22 …連通路、
23 …吐出口、
30 …にがり供給手段(供給手段)、
10 ... Dispersion liquid transfer device,
11 ... upstream opening,
12 ... downstream opening,
13 … Circular pipe portion mixing chamber (circular pipe portion),
14 ... rotating shaft,
14a ... bearing,
14b ... bearing,
15 ... motor,
16 ... drive shaft,
17 ... connection part,
18 ... connection room,
19 ... seal part,
20 ... rotating body,
21 ... suction port,
22 ... communicating path,
23 ... discharge port,
30 bittern supply means (supply means),

Claims (2)

液体を送液するための円管部と、この円管部内へ前記液体が導入される上流側開口部と、前記液体が前記円管部外へ送り出される下流側開口部とを有する送液管と、
前記円管部を塞ぐように配置され、上流側から下流側へ前記液体を送液可能な連通路と、前記円管部の内壁径に接することのない外径とを備えた回転体と、
この回転体を円管部の軸心同軸上に回動させる回動手段と、
前記回転体の上流側又は下流側の送液管内を流れる液体に被分散液又は被分散微粒子粉を供給して含有させる供給手段とを備えた分散送液装置であって、
前記回転体の連通路は、
上流側端面に設けられる1つ以上の吸入口と、
この吸入口に連通する下流側端面に設けられる1つ以上の吐出口とに連通するものであり、
前記吸入口は前記吐出口よりも前記回転体の回動軸心に近い位置に配置され、
前記吐出口は前記吸入口よりも前記回動軸心から半径方向外側の位置に配置されることを特徴とする分散送液装置。
A liquid-sending tube having a circular pipe portion for feeding a liquid, an upstream opening through which the liquid is introduced into the circular pipe portion, and a downstream opening through which the liquid is sent out of the circular pipe portion. and,
a rotating body disposed so as to block the circular pipe portion and having a communication passage capable of feeding the liquid from the upstream side to the downstream side, and an outer diameter that does not come into contact with the inner wall diameter of the circular pipe portion;
a rotating means for rotating the rotating body coaxially with the axis of the circular tube;
A dispersion liquid feeding device comprising a supply means for supplying a liquid to be dispersed or a fine particle powder to be dispersed into a liquid flowing in a liquid feeding pipe on the upstream side or downstream side of the rotating body,
The communication passage of the rotating body is
one or more inlets provided on the upstream end surface;
It communicates with one or more discharge ports provided on the downstream end face communicating with the suction port,
the suction port is arranged at a position closer to the rotational axis of the rotating body than the discharge port;
The dispersion liquid feeding device, wherein the discharge port is arranged radially outward from the rotation axis relative to the suction port.
前記回転体が、配置された前記円管部の内壁面に一定の間隙を隔てた側面部とを備えた円筒体であることを特徴とする請求項1に記載の分散送液装置。 2. The dispersion liquid transfer apparatus according to claim 1, wherein the rotating body is a cylindrical body having a side wall portion with a certain gap on the inner wall surface of the arranged circular tube portion.
JP2019122912A 2019-07-01 2019-07-01 Dispersion liquid transfer device Active JP7281181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019122912A JP7281181B2 (en) 2019-07-01 2019-07-01 Dispersion liquid transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019122912A JP7281181B2 (en) 2019-07-01 2019-07-01 Dispersion liquid transfer device

Publications (2)

Publication Number Publication Date
JP2021007914A JP2021007914A (en) 2021-01-28
JP7281181B2 true JP7281181B2 (en) 2023-05-25

Family

ID=74199009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019122912A Active JP7281181B2 (en) 2019-07-01 2019-07-01 Dispersion liquid transfer device

Country Status (1)

Country Link
JP (1) JP7281181B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518843A (en) 1997-04-11 2001-10-16 テセゼク・リミテッド Mixing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018598A (en) * 1973-11-28 1977-04-19 The Steel Company Of Canada, Limited Method for liquid mixing
JPH0247278Y2 (en) * 1987-05-15 1990-12-12
JPH05123560A (en) * 1991-11-08 1993-05-21 Ebara Corp Powder supply method in powder-liquid mixing and dispersing machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518843A (en) 1997-04-11 2001-10-16 テセゼク・リミテッド Mixing device

Also Published As

Publication number Publication date
JP2021007914A (en) 2021-01-28

Similar Documents

Publication Publication Date Title
US6749330B2 (en) Cement mixing system for oil well cementing
US8092074B2 (en) Rotary pump, hydrodynamic mixer with a rotary pump, and also the use of the rotary pump for the processing of fluids
WO2008038763A1 (en) Swirling flow producing apparatus, method of producing swirling flow, vapor phase generating apparatus, microbubble generating apparatus, fluid mixer and fluid injection nozzle
JPH08266880A (en) Apparatus for mixing liquid and solid
CN1927437B (en) Method and apparatus for granulating by mixing powder and liquid continuously
JP6845797B2 (en) Mixer with built-in delivery pump
CN108393008A (en) Rabbling mechanism and pulping device
CN211612398U (en) Big monomer mixing stirring equipment
KR101667492B1 (en) Apparatus for generating micro bubbles
KR101455629B1 (en) One pass type dispersing and emulsifying apparatus
JP7281181B2 (en) Dispersion liquid transfer device
CN1939581B (en) Continuous power/liquid mixing apparatus
JP2013031797A (en) Suction type mixing system
JP2007038158A (en) Muddy water treating apparatus
WO2015137411A1 (en) Stirring device
JP5263877B2 (en) Mixing apparatus and mixing system
JP5302265B2 (en) Rotating body for stirring and stirring device
JP5760205B2 (en) Mixing method, mixing apparatus, and mixed fluid
JP4902770B2 (en) Rotating body for stirring and stirring device
JP5385480B2 (en) Rotating body for stirring and stirring device
CN107261911A (en) A kind of high viscosity liquid stirring dispersion machine
JP2001029764A (en) In-line type fluid stirrer
CN206304979U (en) Froth breaker and curtain coater
JP7240652B2 (en) Stirring rotator and stirrer
JP2009045598A (en) Fluid stirring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 7281181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150