JP7279458B2 - Method for producing manganese oxide/conductive carrier composite - Google Patents

Method for producing manganese oxide/conductive carrier composite Download PDF

Info

Publication number
JP7279458B2
JP7279458B2 JP2019060187A JP2019060187A JP7279458B2 JP 7279458 B2 JP7279458 B2 JP 7279458B2 JP 2019060187 A JP2019060187 A JP 2019060187A JP 2019060187 A JP2019060187 A JP 2019060187A JP 7279458 B2 JP7279458 B2 JP 7279458B2
Authority
JP
Japan
Prior art keywords
manganese oxide
conductive carrier
manganese
composite
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019060187A
Other languages
Japanese (ja)
Other versions
JP2020158840A (en
Inventor
望水 井手
康浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2019060187A priority Critical patent/JP7279458B2/en
Publication of JP2020158840A publication Critical patent/JP2020158840A/en
Application granted granted Critical
Publication of JP7279458B2 publication Critical patent/JP7279458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、マンガン酸化物/導電性担体複合体の製造方法に関するものであり、より詳しくは、電池、例えば空気電池において、酸素還元/酸素発生触媒として使用されるマンガン酸化物/導電性担体複合体の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing a manganese oxide/conductive support composite, and more particularly to a manganese oxide/conductive support composite used as an oxygen reduction/oxygen evolution catalyst in a battery, such as an air battery. It relates to the manufacturing method of the body.

マンガン酸化物/導電性担体は、高価な貴金属元素や貴金属元素/カーボン担体等の酸素還元/酸素発生触媒の安価な代替品として種々検討行われていることが知られている。例えば非特許文献1では各種マンガン酸化物の酸素還元/酸素発生触媒能を評価しており、特許文献1では高純度ラムズデライト型二酸化マンガンをカーボンに担持し空気極触媒に用いた空気電池が検討されており、特許文献2では平均粒子径100nm以下のMnOx(x=4/3~8/5)を触媒として用いた空気電池用触媒が検討されている。 It is known that manganese oxides/conductive supports have been variously studied as inexpensive substitutes for oxygen reduction/oxygen evolution catalysts such as expensive noble metal elements and noble metal elements/carbon supports. For example, Non-Patent Document 1 evaluates the oxygen reduction/oxygen generation catalytic ability of various manganese oxides, and Patent Document 1 examines an air battery in which high-purity ramsdellite-type manganese dioxide is supported on carbon and used as an air electrode catalyst. In Patent Document 2, an air battery catalyst using MnOx (x=4/3 to 8/5) having an average particle size of 100 nm or less is studied.

一方、高効率なマンガン酸化物の製造方法として非特許文献2では、電極上にマンガン酸化物を電着させずに電解を実施する方法が提案されている。 On the other hand, as a highly efficient method for producing manganese oxide, Non-Patent Document 2 proposes a method of performing electrolysis without electrodepositing manganese oxide on an electrode.

特許第5211858号公報Japanese Patent No. 5211858 特開2002-93425号公報JP-A-2002-93425

J.Am.Chem.Soc.2014,136,11452-11464J. Am. Chem. Soc. 2014, 136, 11452-11464 Electrochemistry of Manganese dioxide and Manganese dioxide batteries Chapter7 p115-p122Electrochemistry of Manganese Dioxide and Manganese Dioxide Batteries Chapter 7 p115-p122

非特許文献1の材料は、合成方法の煩雑さや導電性担体であるカーボンとの混合を、後工程で実施している点から導電性担体上にマンガン酸化物が高分散しにくいことに加え、工程数が多くなり工業的には効率が低いことが予想される。また、マンガンアルカリ塩を用いた合成かつ、アルカリを構造中に取り込んでしまう結晶構造であるため、触媒反応上不要なアルカリ金属を材料中に余分に含有してしまう問題点を有している。特許文献1は、触媒電極として使用する際のマンガン酸化物の分散性や二次粒子の状態については言及されておらず、有効に三相界面を形成できていないことが予想される。また、工程数も多くなる。特許文献2は、記載の平均粒子径は導電性担体に担持する前の一次粒子径であり、後工程で導電性担体と混合した際に、粒子が凝集していることが予想される。 In the material of Non-Patent Document 1, manganese oxide is difficult to disperse highly on the conductive support because the synthesis method is complicated and the mixing with carbon, which is the conductive support, is performed in a post-process. It is expected that the number of steps will increase and the efficiency will be low industrially. In addition, since it is synthesized using a manganese alkali salt and has a crystal structure that incorporates alkali into the structure, there is a problem that the material contains excess alkali metal unnecessary for the catalytic reaction. Patent document 1 does not refer to the dispersibility of manganese oxide or the state of secondary particles when used as a catalytic electrode, and it is expected that a three-phase interface cannot be effectively formed. Moreover, the number of steps is also increased. In Patent Document 2, the average particle size described is the primary particle size before being supported on the conductive carrier, and it is expected that the particles are aggregated when mixed with the conductive carrier in the subsequent step.

一方、非特許文献2では、アルカリ電池の材料として求められる粒子密度を高めることができず、工業化には至っていない。また、アルカリ電池向け材料として検討されていることから、導電性担体との複合化、酸素還元、発生触媒としての検討等は行われていない。 On the other hand, in Non-Patent Document 2, the particle density required as a material for alkaline batteries cannot be increased, and industrialization has not yet been achieved. In addition, since it is being studied as a material for alkaline batteries, it has not been studied as a composite with a conductive carrier, oxygen reduction, or as a generation catalyst.

本発明の目的は、電解により導電性担体の表面に、マンガン酸化物を担持させることで、簡便なマンガン酸化物/導電性担体複合体の製造方法を提供することである。 An object of the present invention is to provide a simple method for producing a manganese oxide/conductive carrier composite by supporting manganese oxide on the surface of a conductive carrier by electrolysis.

本発明者は、特に酸素還元・酸素発生用触媒として使用されるマンガン酸化物/導電性担体複合体の製造方法について鋭意検討を重ねた結果、マンガン塩水溶液中の電解により導電性担体表面に、マンガン酸化物を担持させることで、微細なマンガン酸化物粒子が導電性担体に高分散したマンガン酸化物/導電性担体複合体を効率よく製造できることを見出し、本発明を完成するに至った。すなわち、本発明は、マンガン塩水溶液に導電性担体を懸濁させて得られた導電性担体懸濁マンガン塩水溶液を用いて電解を行い、導電性担体表面に、マンガン酸化物を担持させる、MnOx(x=1.3~2.05)又はMnOOHで表される粒子径0.01μm以上50μm以下のマンガン酸化物が導電性担体の表面に担持しており、アルカリ金属元素の含有量が1.0wt%未満であるマンガン酸化物/導電性担体複合体の製造方法である。 As a result of intensive studies on a method for producing a manganese oxide/conductive support composite, which is used as a catalyst for oxygen reduction/oxygen generation, the present inventors found that electrolysis in an aqueous manganese salt solution produces the following: The inventors have found that by supporting manganese oxide, a manganese oxide/conductive carrier composite in which fine manganese oxide particles are highly dispersed in a conductive carrier can be efficiently produced, leading to the completion of the present invention. That is, in the present invention, electrolysis is performed using a conductive carrier-suspended manganese salt aqueous solution obtained by suspending a conductive carrier in a manganese salt aqueous solution, and manganese oxide is supported on the surface of the conductive carrier, MnOx (x=1.3 to 2.05) or manganese oxide having a particle size of 0.01 μm or more and 50 μm or less represented by MnOOH is supported on the surface of the conductive carrier, and the content of the alkali metal element is 1.0 μm. A method for producing a manganese oxide/conductive support composite that is less than 0 wt%.

以下、本発明について詳細に説明する。 The present invention will be described in detail below.

本発明のマンガン酸化物/導電性担体複合体の製造方法は、マンガン塩水溶液に導電性担体を懸濁させて得られた導電性担体懸濁マンガン塩水溶液を用いて電解を行い、導電性担体の表面に、マンガン酸化物を担持させるものである。 In the method for producing a manganese oxide/conductive carrier composite of the present invention, electrolysis is performed using a conductive carrier-suspended manganese salt aqueous solution obtained by suspending a conductive carrier in an aqueous manganese salt solution, Manganese oxide is supported on the surface of .

マンガン塩水溶液は電解槽内の電解液として用いるものである。マンガン塩に特に制限はないが、例えば、硝酸マンガン、塩化マンガン、硫酸マンガン等が例示できる。 The manganese salt aqueous solution is used as the electrolyte in the electrolytic cell. Manganese salts are not particularly limited, but examples include manganese nitrate, manganese chloride, and manganese sulfate.

導電性担体懸濁マンガン塩水溶液中の導電性担体の濃度は特に限定するものではないが、0.2g/L以上15.0g/L以下が好ましく、0.5g/L以上5.0g/L以下がさらに好ましい。 The concentration of the conductive carrier in the conductive carrier-suspended manganese salt aqueous solution is not particularly limited, but is preferably 0.2 g/L or more and 15.0 g/L or less, and 0.5 g/L or more and 5.0 g/L. More preferred are:

本発明のマンガン酸化物/導電性担体複合体の製造方法では、電解を行う前又は電解を行っている間に、導電性担体懸濁マンガン塩水溶液に酸を添加してもよい。酸としては、例えば、硝酸、塩酸、硫酸等が例示できる。添加する量は特に限定するものではないが、0.1g/L以上60g/L以下が好ましく、0.2g/L以上50g/L以下がより好ましい。 In the method for producing a manganese oxide/conductive carrier composite of the present invention, an acid may be added to the conductive carrier-suspended aqueous manganese salt solution before or during electrolysis. Examples of acids include nitric acid, hydrochloric acid, sulfuric acid, and the like. Although the amount to be added is not particularly limited, it is preferably 0.1 g/L or more and 60 g/L or less, more preferably 0.2 g/L or more and 50 g/L or less.

本発明のマンガン酸化物/導電性担体複合体の製造方法では、電解を行う前又は電解を行っている間に、導電性担体懸濁マンガン塩水溶液に、さらにマンガン塩水溶液を添加してもよい。添加する量は特に限定するものではないが、3g/L以上140g/L以下が好ましく、5g/L以上130g/L以下がより好ましい。 In the method for producing a manganese oxide/conductive carrier composite of the present invention, an aqueous manganese salt solution may be added to the aqueous manganese salt solution suspended in the conductive carrier before or during electrolysis. . Although the amount to be added is not particularly limited, it is preferably 3 g/L or more and 140 g/L or less, more preferably 5 g/L or more and 130 g/L or less.

本発明のマンガン酸化物/導電性担体複合体の製造方法は、電析時の温度に特に制限はないが、マンガン塩水溶液の凝固・蒸発を抑える観点から1℃以上99℃以下が好ましく、さらに、マンガン酸化物生成の副反応を抑制する観点から1℃以上80℃以下がより好ましく、1℃以上60℃以下がさらに好ましい。 In the method for producing a manganese oxide/conductive carrier composite of the present invention, the temperature during electrodeposition is not particularly limited. From the viewpoint of suppressing the side reaction of manganese oxide formation, the temperature is more preferably 1° C. or higher and 80° C. or lower, and further preferably 1° C. or higher and 60° C. or lower.

本発明のマンガン酸化物/導電性担体複合体の製造方法では、電解の期間に特に制限はなく、任意の量、任意のマンガン酸化物/導電性担体複合体の割合の複合体が得られる時間(例えば、30分以上5日以下)でよい。 In the method for producing a manganese oxide/conductive support composite of the present invention, the period of electrolysis is not particularly limited, and the amount of time required to obtain a composite of any manganese oxide/conductive support composite ratio is obtained. (for example, 30 minutes or more and 5 days or less).

本発明のマンガン酸化物/導電性担体複合体の製造方法では、電流密度に特に制限はないが、電極一枚当たりのマンガン酸化物/導電性担体複合体の生産量を維持して、生産性を維持し、さらに、電極電位を低くして、電流効率を向上して、生産性を維持するため、0.5A/dm以上60A/dm以下が好ましく、0.8A/dm以上50A/dm以下がより好ましく、1.0A/dm以上40A/dm以下がさらに好ましい。 In the method for producing a manganese oxide/conductive carrier composite of the present invention, the current density is not particularly limited. Furthermore, in order to lower the electrode potential, improve current efficiency, and maintain productivity, 0.5 A / dm 2 or more and 60 A / dm 2 or less is preferable, 0.8 A / dm 2 or more and 50 A /dm 2 or less is more preferable, and 1.0 A/dm 2 or more and 40 A/dm 2 or less is even more preferable.

導電性担体懸濁マンガン塩水溶液に対する電流量は特に限定するものではないが、0.05A/L以上8.0A/L以下が好ましく、0.1A/L以上6.5A/L以下がより好ましく、0.12A/L以上5.0A/L以下がさらに好ましい。 The amount of electric current for the manganese salt aqueous solution suspended in the conductive carrier is not particularly limited, but is preferably 0.05 A/L or more and 8.0 A/L or less, more preferably 0.1 A/L or more and 6.5 A/L or less. , more preferably 0.12 A/L or more and 5.0 A/L or less.

本発明のマンガン酸化物/導電性担体複合体の製造方法で得られるマンガン酸化物/導電性担体複合体は、導電性担体の表面に特定のマンガン酸化物が担持しているものである。 The manganese oxide/conductive support composite obtained by the method for producing a manganese oxide/conductive support composite of the present invention has a specific manganese oxide supported on the surface of the conductive support.

導電性担体の表面に担持しているマンガン酸化物は、MnOx(式中、x=1.3以上2.05以下である)又はMnOOHで表されるもので、一方又は両方を含有する。マンガン酸化物がこれらの一般式に該当しないと、酸素還元、発生触媒としての活性は低く、大気中での構造安定性も低くなる。 The manganese oxide supported on the surface of the conductive carrier is represented by MnOx (where x is 1.3 or more and 2.05 or less) or MnOOH, and contains one or both of them. If the manganese oxide does not meet these general formulas, its activity as a catalyst for oxygen reduction and generation will be low, and its structural stability in the atmosphere will also be low.

導電性担体の表面に担持しているマンガン酸化物の粒子径は、0.01μm以上50μm以下である。マンガン酸化物の粒子径が50μmより大きいと、触媒表面が少なくなり、触媒活性が低くなる。マンガン酸化物の粒子径が0.01μmより小さいと、マンガン酸化物の凝集により、触媒表面が少なくなり、触媒活性が低くなる。触媒表面をより確保するため、0.02μm以上40μm以下が好ましく、0.03μm以上30μm以下がさらに好ましい。 The particle size of the manganese oxide supported on the surface of the conductive carrier is 0.01 μm or more and 50 μm or less. If the particle size of the manganese oxide is larger than 50 μm, the surface area of the catalyst becomes small, resulting in low catalytic activity. If the particle size of the manganese oxide is less than 0.01 μm, the manganese oxide aggregates to reduce the surface area of the catalyst and lower the catalytic activity. In order to secure the catalyst surface more, it is preferably 0.02 μm or more and 40 μm or less, more preferably 0.03 μm or more and 30 μm or less.

マンガン酸化物/導電性担体複合体は、アルカリ金属元素の含有量が1.0wt%未満である。アルカリ金属元素の含有量が1.0wt%以上であると、アルカリ金属がマンガン酸化物の触媒活性を阻害し、触媒活性が低くなる。触媒活性をより維持するため、0.7wt%以下が好ましく、0.5wt%以下がさらに好ましい。ここに、アルカリ金属とは、例えば、Li、Na、K等が例示され、Naが好ましい。また、アルカリ金属の含有量の測定は、ICP法により行われる。 The manganese oxide/conductive support composite has an alkali metal element content of less than 1.0 wt %. If the content of the alkali metal element is 1.0 wt % or more, the alkali metal inhibits the catalytic activity of the manganese oxide, resulting in low catalytic activity. 0.7 wt % or less is preferable, and 0.5 wt % or less is more preferable in order to maintain the catalytic activity. Alkali metals are exemplified by Li, Na, K and the like, with Na being preferred. Moreover, the measurement of content of an alkali metal is performed by ICP method.

マンガン酸化物/導電性担体複合体に含まれる導電性担体は、例えば、炭素材料、微細な金属粉、導電性金属酸化物等が例示される。炭素材料としては、炭素を含有し、マンガン酸化物を十分担持する表面があれば特に限定はないが、例えば、アセチレンブラック、カーボンブラック、グラファイト、ケッチェンブラック、活性炭素、カーボンナノチューブ、グラフェンシート等が例示され、カーボンブラック、ケッチェンブラックが好ましい。 Examples of the conductive carrier contained in the manganese oxide/conductive carrier composite include carbon materials, fine metal powders, and conductive metal oxides. The carbon material is not particularly limited as long as it contains carbon and has a surface that sufficiently supports manganese oxide. Examples include acetylene black, carbon black, graphite, ketjen black, activated carbon, carbon nanotubes, and graphene sheets. are exemplified, and carbon black and ketjen black are preferred.

マンガン酸化物/導電性担体複合体は、高いマンガン酸化物の分散性と触媒面積から、高性能な酸素還元・酸素発生用電極として、電池、特に空気電池の作用極として好適に使用することができる。 The manganese oxide/conductive carrier composite can be suitably used as a high-performance electrode for oxygen reduction/oxygen generation and as a working electrode for batteries, particularly air batteries, due to the high dispersibility and catalytic area of manganese oxide. can.

電池用の作用極として使用する方法として特に限定はなく、例えば、特許第5211858号公報等に記載される既知の方法で添加物と混合して作用極合剤として用いることができる。例えば、マンガン酸化物/導電性担体複合体に導電性を付与するためのカーボン、結着剤を加えた混合粉末を調製し、金属メッシュに圧着して作用極とすることができる。 There is no particular limitation on the method of using the working electrode for a battery, and for example, it can be used as a working electrode mixture by mixing with an additive by a known method described in Japanese Patent No. 5211858 or the like. For example, a mixed powder may be prepared by adding carbon and a binder for imparting conductivity to the manganese oxide/conductive support composite, and pressing it against a metal mesh to form a working electrode.

使用する作用極に特に限定はなく、例えば、Ti、グラファイト、PbO、ダイヤモンド電極、Pt、金、鉛、銅等が例示できる。 The working electrode to be used is not particularly limited, and examples thereof include Ti, graphite, PbO 2 , diamond electrode, Pt, gold, lead, copper and the like.

また、対極に関しても特に限定はなく、例えば、グラファイト、Pt、金、鉛、銅等が例示できる。 Also, the counter electrode is not particularly limited, and examples thereof include graphite, Pt, gold, lead, and copper.

マンガン酸化物/導電性担体複合体は、高いマンガン酸化物の分散性と触媒面積を有するため、出力特性に優れた電池として使用することができる。電池とは、空気電池、特に亜鉛-空気電池、リチウム-空気電池等が例示できる。 Since the manganese oxide/conductive carrier composite has high dispersibility of manganese oxide and high catalyst area, it can be used as a battery with excellent output characteristics. Examples of batteries include air batteries, particularly zinc-air batteries, lithium-air batteries, and the like.

本発明のマンガン酸化物/導電性担体複合体の製造方法は触媒活性の高いマンガン酸化物/導電性担体複合体を効率よく生産できる。 The method for producing a manganese oxide/conductive support composite of the present invention can efficiently produce a manganese oxide/conductive support composite with high catalytic activity.

実施例1のマンガン酸化物/導電性担体複合体のSEM画像(×5,000)<上の図>およびMn元素マッピング(5,000倍)<下の図>である。FIG. 2 shows an SEM image (×5,000) <top view> and Mn elemental mapping (×5,000) of the manganese oxide/conductive carrier composite of Example 1 (bottom view).

以下、本発明を実施例及び比較例により詳細に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

<粒子径の測定>
粒子径の測定は「JIS H 7804:2005 電子顕微鏡による金属触媒の粒子径測定方法」に準拠した。すなわち、SEM-EDS(走査型電子顕微鏡)にて倍率5,000倍で観察した際のMn粒子の長径Lと短径Lを求め、以下の式により粒子径dを算出した。
<Measurement of particle size>
The particle size was measured according to "JIS H 7804:2005 Method for measuring particle size of metal catalyst by electron microscope". That is, the major axis L l and the minor axis L s of the Mn particles observed at a magnification of 5,000 with a SEM-EDS (scanning electron microscope) were determined, and the particle diameter d was calculated by the following formula.

d=(L+L)/2
実施例1
2.0mol/Lの硫酸マンガン水溶液中に、1.0gのケッチェンブラックを懸濁させて得たケッチェンブラック懸濁硫酸マンガン水溶液(硫酸マンガン水溶液中のケッチェンブラック濃度:1.25g/L)を用いて、ホウ素ドープダイヤモンド電極(10cm)を作用極、対極をPt板とし、電流密度を20A/dm、ケッチェンブラック懸濁硫酸マンガン水溶液に対する電流量を2.5A/L、電解温度を10℃として、1時間半電解し、マンガン酸化物/導電性担体複合体を得た。電解後のマンガン酸化物/導電性担体複合体は、洗浄後、60℃で一晩乾燥させた。
d=(L l +L s )/2
Example 1
Ketjenblack-suspended manganese sulfate aqueous solution obtained by suspending 1.0 g of Ketjenblack in a 2.0 mol/L manganese sulfate aqueous solution (Ketjenblack concentration in manganese sulfate aqueous solution: 1.25 g/L ), a boron-doped diamond electrode (10 cm 2 ) was used as the working electrode and a Pt plate as the counter electrode, the current density was 20 A/dm 2 , the current amount for Ketjenblack-suspended manganese sulfate aqueous solution was 2.5 A/L, and electrolysis was performed. Electrolysis was carried out at a temperature of 10° C. for 1 hour and a half to obtain a manganese oxide/conductive carrier composite. The manganese oxide/conductive carrier composite after electrolysis was dried overnight at 60° C. after washing.

実施例1のマンガン酸化物/導電性担体複合体のSEM画像(×5,000)およびMn元素マッピング(5,000倍)を図1に示す。 An SEM image (×5,000) and Mn elemental mapping (×5,000) of the manganese oxide/conductive support composite of Example 1 are shown in FIG.

Mn元素マッピングは、エネルギー分散型X線分析(EDS)により、SEM画像上の特性X線の強度を調べることで含有元素の濃度を調べることで行った。 Mn element mapping was performed by examining the concentration of contained elements by examining the intensity of characteristic X-rays on the SEM image by energy dispersive X-ray spectroscopy (EDS).

得られたSEM画像から、担体上に1μmから5μm程度の粒子径のマンガン酸化物が分散していることが確認できた(マンガン酸化物の一般式:MnOOH、マンガン酸化物の粒子径:1~5μm、マンガン酸化物/導電性担体複合体中のアルカリ金属元素の含有量:0.1wt%)。 From the obtained SEM image, it was confirmed that manganese oxide with a particle size of about 1 μm to 5 μm was dispersed on the carrier (general formula of manganese oxide: MnOOH, particle size of manganese oxide: 1 to 5 μm, content of alkali metal element in manganese oxide/conductive support composite: 0.1 wt %).

得られたサンプルをエタノールに分散させ、RRDE評価装置(商品名:RRDE-3、BAS社製)用ディスク電極上に塗布し、走査速度5mV/sec、電極回転数1600rpmでリニアスイープボルタンメトリー測定を実施し、参照極には飽和カロメル電極を使用し、-0.3Vでの電流値を測定した。還元電流値は400μAであった。 The resulting sample is dispersed in ethanol, applied to a disk electrode for an RRDE evaluation device (trade name: RRDE-3, manufactured by BAS), and subjected to linear sweep voltammetry measurement at a scanning speed of 5 mV/sec and an electrode rotation speed of 1600 rpm. A saturated calomel electrode was used as a reference electrode, and the current value at -0.3 V was measured. The reduction current value was 400 μA.

比較例1
ケッチェンブラック1g、電解二酸化マンガンを2g、エタノール150mlを、ボールミルで4時間混合し、15分間超音波処理した後、乾燥して、マンガン酸化物/導電性担体複合体を得た(マンガン酸化物の一般式:MnO、マンガン酸化物の粒子径:18μm、マンガン酸化物/導電性担体複合体中のアルカリ金属元素の含有量:0.1wt%)。実施例1と同様の方法でリニアスイープボルタンメトリー測定を実施し、-0.3Vでの電流値を測定した。還元電流値は280μAであった。
Comparative example 1
1 g of Ketjenblack, 2 g of electrolytic manganese dioxide, and 150 ml of ethanol were mixed in a ball mill for 4 hours, ultrasonically treated for 15 minutes, and dried to obtain a manganese oxide/conductive carrier composite (manganese oxide general formula: MnO 2 , particle size of manganese oxide: 18 μm, content of alkali metal element in manganese oxide/conductive support composite: 0.1 wt %). A linear sweep voltammetry measurement was performed in the same manner as in Example 1 to measure the current value at -0.3V. The reduction current value was 280 μA.

比較例2
電解二酸化マンガンを四三酸化マンガン(Mn)に変更した以外は、比較例1と同様の方法により、マンガン酸化物/導電性担体複合体を得た(マンガン酸化物の一般式:Mn、マンガン酸化物の粒子径:25μm、マンガン酸化物/導電性担体複合体中のアルカリ金属元素の含有量:0.1wt%)。実施例1と同様の方法でリニアスイープボルタンメトリー測定を実施し、-0.3Vでの電流値を測定した。還元電流値は40μAであった。
Comparative example 2
A manganese oxide/conductive carrier composite was obtained in the same manner as in Comparative Example 1, except that the electrolytic manganese dioxide was changed to trimanganese tetraoxide (Mn 3 O 4 ) (general formula of manganese oxide: Mn 3 O 4 , particle size of manganese oxide: 25 μm, content of alkali metal element in manganese oxide/conductive support composite: 0.1 wt %). A linear sweep voltammetry measurement was performed in the same manner as in Example 1 to measure the current value at -0.3V. The reduction current value was 40 μA.

リニアスイープボルタンメトリーの結果に示されるように、実施例1で得られたマンガン酸化物/導電性担体複合体は比較例1、比較例2で得られた複合体と比較すると高い電流値を示した。これは、実施例1で得られたマンガン酸化物/導電性担体複合体において、マンガン酸化物が高分散しており、電解液、導電性担体、触媒の三相界面を形成しやすく、触媒活性が、比較例1、比較例2の粉砕混合品と比較し、高かったためであると考えられる。このことから、電池用の酸素還元・酸素発生用電極として考えた際に、優れた特性を示すことが分かった。 As shown in the results of linear sweep voltammetry, the manganese oxide/conductive carrier composite obtained in Example 1 showed a higher current value than the composites obtained in Comparative Examples 1 and 2. . This is because in the manganese oxide/conductive support composite obtained in Example 1, the manganese oxide is highly dispersed, and the three-phase interface of the electrolytic solution, the conductive support, and the catalyst is easily formed, and the catalytic activity was higher than the pulverized mixed products of Comparative Examples 1 and 2. From this, it was found that when considered as an electrode for oxygen reduction/oxygen generation for a battery, it exhibits excellent characteristics.

本発明のマンガン酸化物/導電性担体複合体の製造方法は、高い触媒活性を示すことが期待される電池用、酸素還元・酸素発生用電極に用いるマンガン酸化物/導電性担体複合体を簡便に製造することができる。 The method for producing a manganese oxide/conductive support composite of the present invention is a simple method for manufacturing a manganese oxide/conductive support composite for use in electrodes for oxygen reduction/oxygen generation, which is expected to exhibit high catalytic activity. can be manufactured to

Claims (2)

マンガン塩水溶液に導電性担体を懸濁させて得られた導電性担体懸濁マンガン塩水溶液を用いて、1℃以上60℃以下で電解を行い、導電性担体の表面に、マンガン酸化物を担持させることを特徴とする、MnOx(式中、x=1.3~2.05である)又はMnOOHで表される粒子径0.01μm以上50μm以下のマンガン酸化物が導電性担体の表面に担持しており、アルカリ金属元素の含有量が1.0wt%未満であるマンガン酸化物/導電性担体複合体の製造方法。 Using a conductive carrier-suspended manganese salt aqueous solution obtained by suspending a conductive carrier in a manganese salt aqueous solution , electrolysis is performed at 1 ° C. or higher and 60 ° C. or lower , and manganese oxide is supported on the surface of the conductive carrier. Manganese oxide having a particle size of 0.01 μm or more and 50 μm or less represented by MnOx (where x = 1.3 to 2.05) or MnOOH is supported on the surface of the conductive carrier. and the content of the alkali metal element is less than 1.0 wt%. 導電性担体懸濁マンガン塩水溶液中の導電性担体の濃度が0.2g/L以上15.0g/L以下であることを特徴とする請求項1に記載のマンガン酸化物/導電性担体複合体の製造方法。 The manganese oxide/conductive carrier composite according to claim 1, wherein the concentration of the conductive carrier in the aqueous manganese salt solution suspended in the conductive carrier is 0.2 g/L or more and 15.0 g/L or less. manufacturing method.
JP2019060187A 2019-03-27 2019-03-27 Method for producing manganese oxide/conductive carrier composite Active JP7279458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019060187A JP7279458B2 (en) 2019-03-27 2019-03-27 Method for producing manganese oxide/conductive carrier composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060187A JP7279458B2 (en) 2019-03-27 2019-03-27 Method for producing manganese oxide/conductive carrier composite

Publications (2)

Publication Number Publication Date
JP2020158840A JP2020158840A (en) 2020-10-01
JP7279458B2 true JP7279458B2 (en) 2023-05-23

Family

ID=72642077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060187A Active JP7279458B2 (en) 2019-03-27 2019-03-27 Method for producing manganese oxide/conductive carrier composite

Country Status (1)

Country Link
JP (1) JP7279458B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549943A (en) * 1984-11-01 1985-10-29 Union Carbide Corporation Suspension bath and process for production of electrolytic manganese dioxide

Also Published As

Publication number Publication date
JP2020158840A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
Sun et al. α-Fe 2 O 3 spherical nanocrystals supported on CNTs as efficient non-noble electrocatalysts for the oxygen reduction reaction
Sun et al. α-and γ-Fe 2 O 3 nanoparticle/nitrogen doped carbon nanotube catalysts for high-performance oxygen reduction reaction
Wu et al. Carbon-encapsulated nickel-iron nanoparticles supported on nickel foam as a catalyst electrode for urea electrolysis
JP6988822B2 (en) Electrode material and its manufacturing method
Li et al. NiCoSe2-x/N-doped C mushroom-like core/shell nanorods on N-doped carbon fiber for efficiently electrocatalyzed overall water splitting
CN108172849B (en) Manganese dioxide-carbon nanotube composite catalyst based on palladium monoatomic atom and preparation thereof
Vilian et al. High electrocatalytic performance of platinum and manganese dioxide nanoparticle decorated reduced graphene oxide sheets for methanol electro-oxidation
JP6736123B1 (en) Oxygen catalyst and electrode using the oxygen catalyst
Swesi et al. Enhancing electrocatalytic activity of bifunctional Ni3Se2 for overall water splitting through etching-induced surface nanostructuring
KR20180040389A (en) Manganese oxide nanostructure, preparing method of the same, and electrochemical catalyst including the same
WO2015093578A1 (en) Electrolytic manganese dioxide, method for producing same, and use of same
Mahmudi et al. Manganese dioxide nanoparticles synthesized by electrochemical method and its catalytic activity towards oxygen reduction reaction
Zhang et al. Controllable synthesis of two-dimensional tungsten nitride nanosheets as electrocatalysts for oxygen reduction reaction
Gatemala et al. Bifunctional electrocatalytic CoNi-doped manganese oxide produced from microdumbbell manganese carbonate towards oxygen reduction and oxygen evolution reactions
Dey et al. An easy synthesis of carbon-supported silver–cobalt bimetallic nanoparticles to study the electrocatalytic performance in alkaline borohydride fuel cell
Shendage et al. Electrochemical Deposition of Highly Dispersed Palladium Nanoparticles on Nafion‐Graphene Film in Presence of Ferrous Ions for Ethanol Electrooxidation
WO2019182088A1 (en) Method for producing low-valence titanium oxide powder
Alharbi et al. Designing CuSe-gCN nanocomposite as an active electrocatalyst for water oxidation
Karimi et al. Study of the effect of calcination temperature on the morphology and activity of iridium oxide electrocatalyst supported on antimony tin oxide (ATO) for PEM electrolyser technology
Xu et al. An Fe-doped Co-oxide electrocatalyst synthesized through a post-modification method toward advanced water oxidation
JP7279458B2 (en) Method for producing manganese oxide/conductive carrier composite
Cui et al. Fabrication of Pd/Mn3O4/plait-like carbon nanocoils catalyst: A highly active catalyst for ethanol electro-oxidation in alkaline media
Fatima et al. Perovskite-type samarium iron oxide adorned on reduced graphene oxide composite: A high-performance electrocatalyst for OER
JP7260092B2 (en) Manganese oxide/conductive carrier composite and use thereof
Vilian et al. The electrochemical synthesis of Pt particles on ZrO 2–ERGO modified electrodes with high electrocatalytic performance for methanol oxidation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R151 Written notification of patent or utility model registration

Ref document number: 7279458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151