JP7278979B2 - NON-CONTACT VIBRATION MEASURING DEVICE AND NON-CONTACT VIBRATION MEASURING METHOD - Google Patents

NON-CONTACT VIBRATION MEASURING DEVICE AND NON-CONTACT VIBRATION MEASURING METHOD Download PDF

Info

Publication number
JP7278979B2
JP7278979B2 JP2020000448A JP2020000448A JP7278979B2 JP 7278979 B2 JP7278979 B2 JP 7278979B2 JP 2020000448 A JP2020000448 A JP 2020000448A JP 2020000448 A JP2020000448 A JP 2020000448A JP 7278979 B2 JP7278979 B2 JP 7278979B2
Authority
JP
Japan
Prior art keywords
measured
vibration
laser
laser beam
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020000448A
Other languages
Japanese (ja)
Other versions
JP2021110555A (en
Inventor
摂 山本
岳志 星
あずさ 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020000448A priority Critical patent/JP7278979B2/en
Publication of JP2021110555A publication Critical patent/JP2021110555A/en
Application granted granted Critical
Publication of JP7278979B2 publication Critical patent/JP7278979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

本発明の実施形態は、非接触振動計測装置および非接触振動計測方法に関する。 An embodiment of the present invention relates to a non-contact vibration measuring device and a non-contact vibration measuring method.

レーザを用いた超音波計測法、いわゆるレーザ超音波法は、従来実験室的な測定に用途が限られてきたが、大出力の受信用レーザ光源や粗面に強い干渉計測装置が開発され始めたことにより、急速に工業現場への適用が進んでいる。その最大の強みは非接触での計測が可能な点にあり、触れられないほど脆い、小さい、狭い、高温であるなどのプローブ接触が困難な対象、もしくは対象物への性能影響や対象物大きさから、水などの媒質に浸漬できない対象等に適用が期待されている。 Ultrasonic measurement methods using lasers, so-called laser ultrasonic methods, have traditionally been limited to laboratory measurements, but the development of high-power receiving laser light sources and interference measurement devices that are resistant to rough surfaces has begun. As a result, it is rapidly being applied to industrial sites. Its greatest strength lies in its ability to measure without contact. Therefore, it is expected to be applied to objects that cannot be immersed in a medium such as water.

一方で、超音波の受信にレーザ干渉計測を用いるという特性上、超音波の受信にかかわる装置が大掛かりかつ高価となる。また、計測自体が不安定であり光源や干渉計そのものの安定性向上が必要となる。これらの問題点が、広範な普及への妨げとなってきた。 On the other hand, due to the characteristics of using laser interferometry for receiving ultrasonic waves, the apparatus involved in receiving ultrasonic waves is large and expensive. Moreover, the measurement itself is unstable, and it is necessary to improve the stability of the light source and the interferometer itself. These problems have hindered their widespread use.

上述の課題を解決すべく、レーザ超音波法のロバスト化については色々な取組が成されてきた。測定対象の表面凹凸が生み出すスペックルノイズを低減するため、干渉計における受光用ダイオードをアレイ化したり、反射光が自己干渉を行うファブリペロー干渉計を用いたり、反射光と参照光の破面を揃えるフォトリフラクティブ効果のある結晶を途中に導入するたりすることで、感度の安定化が一定の効果を上げてきた。しかし、それでももともと用いるレーザ光のコヒーレンシを上げるために安定化された大型のレーザ光源を用いたり、テーブルトップサイズの干渉計を組んだりする必要があった。 In order to solve the above problems, various efforts have been made to make the laser ultrasonic method robust. In order to reduce the speckle noise generated by the surface unevenness of the measurement object, we used an array of light-receiving diodes in the interferometer, used a Fabry-Perot interferometer in which the reflected light self-interferences, and used a fractured surface between the reflected light and the reference light. By introducing a crystal with a photorefractive effect in the middle of the array, stabilization of sensitivity has achieved a certain effect. However, it was still necessary to use a stabilized large-sized laser light source in order to increase the coherency of the originally used laser light, or to construct a table-top size interferometer.

それらと異なるアプローチとして、マイクロチップの薄型レーザ結晶で発生させたレーザを対象に照射し、反射してきた光を再びマイクロチップレーザの結晶に戻し、発生するレーザ光の乱れから粒子計測を行う技術が提案されている。これにより、レーザとは別に干渉計を用いる必要はなくなり、また光源としても安価なものが利用できるため上記問題の一部分は解決されると想定される。しかし当該技術は、受信光の周波数ゆらぎを測定対象とした粒子特性装置であり、安定して周波数を計測するためにビームスプリッタと測定対象の前に光音響変調素子を挿入することが実質的に必須項目である。そのため、本技術では超音波帯域の振動計測を行うには不十分であり、装置構成も冗長化が避けられない。 As a different approach, there is a technology that irradiates a target with a laser generated by a thin laser crystal in a microchip, returns the reflected light to the crystal of the microchip laser, and measures particles from the disturbance of the generated laser light. Proposed. This eliminates the need to use an interferometer separately from the laser, and allows the use of an inexpensive light source. However, this technology is a particle characteristic device for measuring the frequency fluctuation of received light, and in order to stably measure the frequency, it is practical to insert a photoacoustic modulation element in front of the beam splitter and the measurement target. This is a required item. Therefore, the present technology is insufficient to measure vibrations in the ultrasonic band, and redundant device configurations are inevitable.

特許第6050619号Patent No. 6050619

C.B.Scruby and L.E.Drain, Laser Ultrasonic:Techniques and Applications (Adam Hilger,Bristol,1990)C.B. Scruby and L. E. Drain, Laser Ultrasonic: Techniques and Applications (Adam Hilger, Bristol, 1990)

上述した公知技術を踏まえたうえで、本発明の目的は、光音響変調素子等を用いず、安価な装置構成で超音波振動が計測可能な非接触振動計測装置および非接触振動計測方法を提供することにある。 Based on the above-mentioned known technology, the object of the present invention is to provide a non-contact vibration measuring device and a non-contact vibration measuring method that can measure ultrasonic vibration with a low-cost device configuration without using a photoacoustic modulator or the like. to do.

実施形態の非接触振動計測装置は、光源と、前記光源から出力される光源レーザ光をシードとして、被測定対象表面に照射する発振レーザ光を発振するレーザ発振器と、レーザ光を所定の比率に分岐するビームスプリッタと、前記ビームスプリッタにより分岐された前記発振レーザ光と、前記被測定対象表面から前記レーザ発振器への散乱帰還レーザ光により変調され前記ビームスプリッタにより分岐された変調発振レーザ光とを受光し電気的な受信信号に変換する光検出部と、前記光検出部により変換された前記発振レーザ光もしくは前記変調発振レーザ光の強度である前記受信信号を解析する信号処理部とを備え、前記信号処理部は、前記レーザ発振器からの前記発振レーザ光の固有振動数を前記受信信号から除外する周波数フィルタを有する。 A non-contact vibration measuring device according to an embodiment includes a light source, a laser oscillator that irradiates a surface of an object to be measured with a light source laser beam output from the light source as a seed, and a laser beam at a predetermined ratio. a branching beam splitter, the oscillation laser beam split by the beam splitter, and the modulated oscillation laser beam modulated by the scattered feedback laser beam from the surface of the object to be measured to the laser oscillator and split by the beam splitter a photodetector that receives light and converts it into an electrical received signal; and a signal processor that analyzes the received signal, which is the intensity of the oscillating laser light or the modulated oscillating laser light converted by the photodetector, The signal processing section has a frequency filter that excludes the natural frequency of the oscillation laser light from the laser oscillator from the received signal.

第1実施形態に係る非接触振動計測装置の構成を示す図。The figure which shows the structure of the non-contact vibration measuring device which concerns on 1st Embodiment. 受信信号の強度と受信信号のゆらぎの周波数分布の例を示すグラフ。A graph showing an example of frequency distribution of received signal strength and received signal fluctuation. 受信信号の強度と受信信号のゆらぎの周波数分布の例を示すグラフ。A graph showing an example of frequency distribution of received signal strength and received signal fluctuation. フィルタ帯域の例と、受信信号の例を示すグラフ。Graphs showing example filter bandwidths and example received signals. 第2実施形態に係る非接触振動計測装置の構成を示す図。The figure which shows the structure of the non-contact vibration measuring device which concerns on 2nd Embodiment. 超音波信号を加えた場合の例を説明するための図。FIG. 4 is a diagram for explaining an example when an ultrasonic signal is added; 超音波信号を加えた場合の他の例を説明するための図。FIG. 5 is a diagram for explaining another example when an ultrasonic signal is added; 走査機構を加えた非接触振動計測装置の構成を説明するための図。FIG. 2 is a diagram for explaining the configuration of a non-contact vibration measuring device to which a scanning mechanism is added; 欠陥検出を行う超音波探傷を行う場合の構成を説明するための図。FIG. 2 is a diagram for explaining a configuration when performing ultrasonic flaw detection for defect detection;

以下、図面を参照して、実施形態に係る非接触振動計測装置および非接触振動計測方法について説明する。 Hereinafter, a non-contact vibration measuring device and a non-contact vibration measuring method according to embodiments will be described with reference to the drawings.

(第1実施形態)
図1は、第1実施形態に係る非接触振動計測装置の構成を模式的に示す図である。なお、図1では、同軸で描画するべき光路について、説明性のために平行に描画している場合がある。
(First embodiment)
FIG. 1 is a diagram schematically showing the configuration of the non-contact vibration measuring device according to the first embodiment. Incidentally, in FIG. 1, the optical paths that should be drawn coaxially may be drawn in parallel for ease of explanation.

基本的な構成としては、光源レーザ光10を発振するための光源1と、光源1から出力される光源レーザ光10をシードとして被測定対象21表面に照射する発振レーザ光11を発振するレーザ発振器2と、分岐された発振レーザ光11、ならびに被測定対象21表面からレーザ発振器2への散乱帰還レーザ光12により変調された変調発振レーザ光13を受光し電圧信号である受信信号14に変換する光検出部3と、発振レーザ光11、変調発振レーザ光13ならびに散乱帰還レーザ光12を所定の比率に分岐するビームスプリッタ6と、光検出部3により変換された発振レーザ光11および変調発振レーザ光13の両方もしくは片方の強度である受信信号14を解析する信号処理部4とを備えている。 The basic configuration includes a light source 1 for oscillating a light source laser beam 10 and a laser oscillator for oscillating an oscillation laser beam 11 that irradiates the surface of an object 21 to be measured using the light source laser beam 10 output from the light source 1 as a seed. 2 receives the branched oscillating laser beam 11 and the modulated oscillating laser beam 13 modulated by the scattered feedback laser beam 12 from the surface of the object 21 to be measured to the laser oscillator 2 and converts it into a received signal 14 which is a voltage signal. A photodetector 3, a beam splitter 6 for splitting the oscillating laser beam 11, the modulated oscillating laser beam 13, and the scattered feedback laser beam 12 at a predetermined ratio, the oscillating laser beam 11 converted by the photodetector 3, and the modulated oscillating laser. A signal processing unit 4 for analyzing a received signal 14 which is the intensity of either or both of the lights 13 is provided.

信号処理部4は、予め把握しているレーザ発振器を構成する材料と結晶厚さを主パラメータとして定義されるレーザ光の固有振動数ω近傍の周波数を有する信号を受信信号14から除外する周波数フィルタ5を有する。周波数フィルタ5は、デジタル処理でもアナログ処理でもよく、それらを組合せて用いたり、増幅器と組合せたりしてもよい。例えばアナログ処理によってフィルタリングするもの等の場合、信号処理部4の前段に設けてもよい。 The signal processing unit 4 has a frequency filter that excludes from the received signal 14 a signal having a frequency near the natural frequency ω of the laser light defined with the material and crystal thickness of the laser oscillator that are grasped in advance as the main parameters. 5. The frequency filter 5 may be digital processing or analog processing, may be used in combination, or may be combined with an amplifier. For example, in the case of filtering by analog processing, it may be provided before the signal processing section 4 .

ここで、レーザ光の固有振動数ω近傍の周波数を有する信号を受信信号14から除外する周波数フィルタ5としては、受信信号14から固有振動数ωの2次高調波2ω、3次高調波3ω、n次高調波nωなど高次高調波成分のうち1つ以上を選択的に透過させるバンドパスフィルタを使用することができる。受信信号をデジタル化したり、周波数フィルタをかける若しくはフィルタ帯域を制御するといった信号処理および収録、受信信号のスペクトル解析等の処理は、全体制御部8に設けられた信号処理部4によって行われる。全体制御部8は波形や条件等を表示する表示部、マウスやキーボード、タッチパネルといったユーザインタフェースや、受信信号の波形、受信信号のスペクトル、フィルタ帯域値といった測定情報を表示する表示部を有してもよい。 Here, the frequency filter 5 for excluding a signal having a frequency near the natural frequency ω of the laser light from the received signal 14 includes the second harmonic 2ω, the third harmonic 3ω, and the natural frequency ω of the received signal 14. A bandpass filter that selectively transmits one or more of the higher harmonic components, such as the nth harmonic nω, can be used. Signal processing and recording such as digitizing the received signal, applying a frequency filter or controlling the filter band, and processing such as spectral analysis of the received signal are performed by the signal processing section 4 provided in the overall control section 8 . The overall control unit 8 has a display unit that displays waveforms, conditions, etc., a user interface such as a mouse, keyboard, and touch panel, and a display unit that displays measurement information such as received signal waveforms, received signal spectra, and filter band values. good too.

図1に示したように、光源1から発せられた光源レーザ光10は、レーザ発振器2に入射されレーザ発振器2は発振レーザ光11を生じる。発振レーザ光11はビームスプリッタ6で所定の比率で分割され、片方は被測定対象21表面に、他方は光検出部3に照射される。被測定対象21表面で反射された発振レーザ光は、散乱帰還レーザ光12となって再びビームスプリッタ6へ戻り、ビームスプリッタ6から透過した散乱帰還レーザ光12の成分がレーザ発振器2に再帰する。散乱帰還レーザ光12の一部は、ビームスプリッタ6から遮光機構に到達する。 As shown in FIG. 1, a light source laser beam 10 emitted from a light source 1 is incident on a laser oscillator 2, and the laser oscillator 2 generates an oscillation laser beam 11. As shown in FIG. The oscillation laser beam 11 is split at a predetermined ratio by the beam splitter 6 , one of which irradiates the surface of the object 21 to be measured and the other of which irradiates the photodetector 3 . The oscillation laser beam reflected by the surface of the object 21 to be measured returns to the beam splitter 6 again as the scattered feedback laser beam 12 , and the component of the scattered feedback laser beam 12 transmitted from the beam splitter 6 returns to the laser oscillator 2 . Part of the scattered feedback laser light 12 reaches the light blocking mechanism from the beam splitter 6 .

散乱帰還レーザ光12が再帰したレーザ発振器2は、散乱帰還レーザ光12が変調されていた場合、発振レーザ光11の固有振動に他の周波数帯域が乗じる変調発振レーザ光13となって発振される。この変調発振レーザ光13は、ビームスプリッタ6を通して光検出部3で電圧波形となる受信信号に変換される。 When the scattered feedback laser beam 12 is modulated, the laser oscillator 2 to which the scattered feedback laser beam 12 recurs oscillates as a modulated oscillation laser beam 13 in which the natural vibration of the oscillation laser beam 11 is multiplied by another frequency band. . The modulated oscillation laser light 13 is passed through the beam splitter 6 and converted into a reception signal having a voltage waveform by the photodetector 3 .

上記構成の非接触振動計測装置において、光源1から発せられる光源レーザ光10としては、代表的なダイオードレーザや、He-Ne等のレーザ、YAG等のレーザ、ファイバレーザ等が挙げられる。ここでは何かに限定されるものではなく、後述するレーザ発振器2と最も相性の良いものを用いることが好ましい。 In the non-contact vibration measuring device having the above configuration, the light source laser beam 10 emitted from the light source 1 includes typical diode lasers, lasers such as He—Ne, lasers such as YAG, and fiber lasers. Here, the material is not limited to anything, and it is preferable to use the material most compatible with the laser oscillator 2, which will be described later.

発振レーザ光11を生ずるレーザ発振器2としては、固体レーザを用いることが好ましく、光源レーザ光10をシードとして連続波を生じるものがよい。レーザ発振器2として色々な媒体が利用できるが、例えばNd:YVOやNd:YAG、TM:YVO、TM:YAG、Yb:YVO、Yb:YAG、Ti:サファイア等があり、サブmm~数mm程度の結晶厚さ(共振器厚さ)にマイクロチップ化して利用するものが好適と想定される。結晶板厚さとしては、0.05mm~5mm程度のものが好ましく、0.5mm~2mm程度のものがさらに好ましい。結晶厚さが薄くなると変調された散乱帰還レーザ光12に対して敏感になるが、薄くなり過ぎると熱による結晶の破損が生じる等物理的強度が不十分になる。一方結晶厚さが厚くなると発振が安定になるが変調された散乱帰還レーザ光12に対して鈍感になり振動計測が感度良く行えなくなる。例えば、Nd:YVOをレーザ発振器2として用いた場合は、光源レーザ光10の波長は808nm周辺が好適であり、これにあわせて光源1を選択することとなる。もちろん、ここで例示した以外の組合せでもよく、発振レーザ光11を生じる組合せであればよい。 As the laser oscillator 2 for generating the oscillating laser light 11, it is preferable to use a solid-state laser. Various media can be used as the laser oscillator 2. For example, Nd: YVO4 , Nd:YAG, TM: YVO4 , TM:YAG, Yb: YVO4 , Yb:YAG, Ti:sapphire, etc. are available. It is presumed that it is suitable to use a microchip with a crystal thickness (resonator thickness) of several millimeters. The thickness of the crystal plate is preferably about 0.05 mm to 5 mm, more preferably about 0.5 mm to 2 mm. When the crystal thickness is thin, it becomes sensitive to the modulated scattered feedback laser light 12, but when it is too thin, the physical strength becomes insufficient, for example, the crystal is damaged by heat. On the other hand, if the crystal thickness is increased, the oscillation becomes stable, but it becomes insensitive to the modulated scattered feedback laser beam 12, and vibration measurement cannot be performed with good sensitivity. For example, when Nd:YVO 4 is used as the laser oscillator 2, the wavelength of the light source laser light 10 is preferably around 808 nm, and the light source 1 is selected accordingly. Of course, combinations other than those exemplified here may be used as long as they generate oscillation laser light 11 .

ビームスプリッタ6は、主にハーフミラー等で代表される偏光に依存せずに光を一定割合に分岐させるものでもよいし、偏光ビームスプリッタ(ポーラライザ)のようにある位相に応じて透過と反射を分岐するものでもよい。ポーラライザを用いる場合には、ポーラライザの前段あるいは後段に位相情報を変化させるλ/2やλ/4の波長板を組み合わせて適宜挿入してもよい。 The beam splitter 6 may be a half mirror or the like that splits the light at a constant rate without depending on polarization, or a polarization beam splitter (polarizer) that performs transmission and reflection according to a certain phase. It may be branched. When a polarizer is used, a wave plate of λ/2 or λ/4 that changes phase information may be combined and inserted as appropriate before or after the polarizer.

被測定対象21は、例えば黒体のような発振レーザ光11を反射しない吸収効率が非常に高いもの、あるいは粗い繊維のように発振レーザ光11が明確な反射挙動を示さないものを除けば適用可能であり、材料の種類としては金属や複合材、樹脂、コンクリート、液体等、超音波が伝搬する材料が想定される。 The object to be measured 21 is applicable to objects other than those with very high absorption efficiency that do not reflect the oscillation laser beam 11, such as black bodies, or objects such as coarse fibers in which the oscillation laser beam 11 does not exhibit a clear reflection behavior. It is possible, and as the types of materials, materials through which ultrasonic waves propagate, such as metals, composite materials, resins, concrete, and liquids, are assumed.

被測定対象21表面に照射された発振レーザ光11は、被測定対象21表面が定常状態であれば、そのまま発振レーザ光11が反射し、そのまま散乱帰還レーザ光12としてレーザ発振器2に戻ってくる。ここで、被測定対象21表面が超音波等で代表されるように高速で振動していた場合、もしくは発振レーザ光11ないし散乱帰還レーザ光12の光路中に振動が生じていた場合、その振動が定常状態の発振レーザ光11に対して波長および位相変化した散乱帰還レーザ光12を生じることとなる。 If the surface of the object to be measured 21 is in a steady state, the oscillation laser beam 11 irradiated to the surface of the object to be measured 21 is reflected as it is and returns to the laser oscillator 2 as the scattered feedback laser beam 12 as it is. . Here, if the surface of the object 21 to be measured is vibrating at a high speed as typified by ultrasonic waves or the like, or if vibration occurs in the optical path of the oscillation laser beam 11 or scattered feedback laser beam 12, the vibration produces a scattered feedback laser beam 12 whose wavelength and phase are changed with respect to the steady-state oscillation laser beam 11 .

散乱帰還レーザ光12がレーザ発振器2の発振レーザ光の発振部に入射すると、発振レーザ光11に変化を生じる。散乱帰還レーザ光12が何の変調も受けていない状態であれば、図2(a)に示すように、発振レーザ光11の強度はレーザ光の固有振動数ωを中心に振動するのみだが、散乱帰還レーザ光12が何等かの変調を受けていた場合、発振レーザ光11は変調発振レーザ光13となり変調が生じた時間帯(例えばMHz帯域の超音波振動であれば、数μs程度)において、固有振動数ω以外の周波数成分が生じる。固有振動数ωは、レーザ発振器2を構成する材料と結晶厚さを主パラメータとして定義される。この固有振動数は、図2(b)に示すように、実際に測定することによっても求めることができる。また、固有振動数は、レーザ発振器2を構成する材料と結晶厚さ等の情報から知ることもできる。なお、図2(b)では、固有振動数ωがMHz帯域の場合を示しているが、これは一例に過ぎない。 When the scattered feedback laser beam 12 is incident on the oscillation portion of the laser oscillator 2 for the oscillation laser beam, the oscillation laser beam 11 is changed. If the scattered feedback laser beam 12 is not modulated, the intensity of the oscillation laser beam 11 will only oscillate around the natural frequency ω of the laser beam, as shown in FIG. 2(a). If the scattered feedback laser beam 12 is modulated in some way, the oscillating laser beam 11 becomes the modulated oscillating laser beam 13, and in the time period when the modulation occurs (for example, in the case of ultrasonic vibration in the MHz band, about several μs) , a frequency component other than the natural frequency ω is generated. The natural frequency ω is defined using the material and crystal thickness of the laser oscillator 2 as main parameters. This natural frequency can also be determined by actual measurement, as shown in FIG. 2(b). The natural frequency can also be known from information such as the material forming the laser oscillator 2 and the crystal thickness. Although FIG. 2B shows the case where the natural frequency ω is in the MHz band, this is only an example.

ここで、異なる周波数成分は一例として、図3(b)に示すように、固有振動数ωの発振器固有振動数の2次高調波である2ω、発振器固有振動数の3次高調波である3ωといった整数倍の高次高調波(一般化して発振器固有振動数のn次高調波であるnω)である。 Here, as an example, the different frequency components are, as shown in FIG. (generally, nω, which is the nth harmonic of the oscillator's natural frequency).

図4(a)に示すように、発振レーザ光の固有振動数を受信信号から除外する周波数フィルタ5として、この高次高調波成分を中心として選択的に透過させるバンドパスフィルタを設けることで、図4(b)に示すように、振動の情報(振動発生時間及び強度の情報)を得ることができる。ここで得られる振動情報は発振レーザにおける固有振動数の変化から得られたものなので、実際に被測定対象21の表面が振動している周波数とは異なる値をもつ場合もある。例えば、発振器固有振動数ωが2MHzであり、被測定対象21の表面に3MHzのパルス振動が生じていたとすると、その振動によって得られる変調発振レーザ光13の受信信号はω、2ω、3ω…nωの周波数帯域にピークを持つ。そこでバンドパスフィルタを例えば2ωである4MHzを中心に設けた場合、フィルタ処理後の波形は4MHzを中心としたパルス振動となる。なお、上記した振動の情報(振動発生時間及び強度の情報)に加えて、振動の周波数と、得られる信号との相関関係を予め調べておくことにより、振動の周波数に関する情報も得られる可能性がある。 As shown in FIG. 4(a), by providing a band-pass filter that selectively transmits this high-order harmonic component as a frequency filter 5 that excludes the natural frequency of the oscillating laser light from the received signal, As shown in FIG. 4B, vibration information (vibration occurrence time and intensity information) can be obtained. Since the vibration information obtained here is obtained from changes in the natural frequency of the oscillation laser, it may have a value different from the frequency at which the surface of the object to be measured 21 actually vibrates. For example, if the eigenfrequency ω of the oscillator is 2 MHz and a pulse vibration of 3 MHz is generated on the surface of the object 21 to be measured, the reception signals of the modulated oscillation laser beam 13 obtained by the vibration are ω, 2ω, 3ω . has a peak in the frequency band of Therefore, if a band-pass filter is provided around 4 MHz, which is 2ω, for example, the waveform after filter processing will be a pulse oscillation centered around 4 MHz. In addition to the above vibration information (vibration occurrence time and intensity information), it is possible to obtain information on the vibration frequency by investigating the correlation between the vibration frequency and the obtained signal in advance. There is

ここで、光源レーザ光10、発振レーザ光11、散乱帰還レーザ光12、変調発振レーザ光13をそれぞれの後段に効率よく伝送するため、各々の1か所以上に、1つ以上の集光部7を設けてもよい。図1では、ビームスプリッタ6と光検出部3との間に集光部7を設けた例を示している。集光部7は、一般的なレンズやミラーの組合せでなるものから、非球面ミラーやレンズ等、所定の系で高い効率が得られるものを別途カスタマイズしてもよい。また、必ずしも空間伝送である必要はなく、途中でファイバを経由する構成としてもよい。 Here, in order to efficiently transmit the light source laser beam 10, the oscillation laser beam 11, the scattered feedback laser beam 12, and the modulated oscillation laser beam 13 to their subsequent stages, one or more condensing units are provided at one or more locations for each. 7 may be provided. FIG. 1 shows an example in which a condenser 7 is provided between the beam splitter 6 and the photodetector 3 . The light condensing unit 7 may be a combination of general lenses and mirrors, or may be separately customized, such as an aspherical mirror or lens, which can obtain high efficiency in a predetermined system. Also, the transmission does not necessarily have to be spatial transmission, and may be configured to pass through a fiber on the way.

上記構成により、別途レーザ干渉計を用いず非接触で振動計測が可能な体系を構築することができる。 With the above configuration, it is possible to construct a system capable of non-contact vibration measurement without using a separate laser interferometer.

(第2実施形態)
次に、第2実施形態について図5-9を参照して説明する。なお、これらの図において、図1に示した第1実施形態と対応する部分には同一の符号を付して重複した説明は省略する。
(Second embodiment)
Next, a second embodiment will be described with reference to FIGS. 5-9. In these drawings, portions corresponding to those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and overlapping descriptions are omitted.

図5は、第2実施形態に係る非接触振動計測装置の構成を模式的に示す図である。なお、図5(図8,9でも同じ。)では、同軸で描画するべき光路について、説明性のために平行に描画している場合がある。 FIG. 5 is a diagram schematically showing the configuration of a non-contact vibration measuring device according to the second embodiment. In addition, in FIG. 5 (the same applies to FIGS. 8 and 9), optical paths that should be drawn coaxially may be drawn in parallel for ease of explanation.

第2実形態では、振動計測における基礎構成を示した第1実形態実施に、超音波の発生源である振動励起源20を負荷することでアクティブな超音波計測、探傷技術を構成するものである。 In the second embodiment, an active ultrasonic measurement and flaw detection technology is configured by applying a vibration excitation source 20, which is an ultrasonic generation source, to the first embodiment, which shows the basic configuration of vibration measurement. be.

振動励起源20は、被測定対象21の内部もしくは表面に超音波Uを発生させるものであって、通常の超音波探傷や板厚計測等に用いる圧電素子に電位差を印加して振動させる所謂探触子と呼ばれるものでよい。このほかには、パルスレーザによる断熱膨張/圧縮やアブレーションを用いた超音波励起、スピーカーによる音響放射、ハンマリングやブラスト、ピーニングといった打撃でもよい。 The vibration excitation source 20 generates ultrasonic waves U inside or on the surface of the object 21 to be measured. It may be something called a tentacle. In addition, adiabatic expansion/compression by a pulse laser, ultrasonic excitation using ablation, acoustic radiation by a speaker, hammering, blasting, and peening may be used.

図6(a)に示すように、振動励起源20が探触子であれば、圧電素子の厚さや印加電圧波形により、図6(b)に示すように、特定の中心周波数をもつ超音波を励起可能だが、図7(a)に示すように、例えばパルスレーザによる超音波励起を行うと、図7(b)に示すように、広帯域な超音波が励起される。ここでいう広帯域とは、例えば発振レーザ光11の固有振動数スペクトルの半値幅に対して2倍以上の半値幅を有する等、発振レーザ光11の固有振動数に対して十分広いものを指す。 As shown in FIG. 6(a), if the vibration excitation source 20 is a probe, the thickness of the piezoelectric element and the applied voltage waveform may produce an ultrasonic wave having a specific center frequency as shown in FIG. 6(b). However, as shown in FIG. 7(a), when ultrasonic excitation is performed by, for example, a pulse laser, a broadband ultrasonic wave is excited as shown in FIG. 7(b). The broadband referred to here means a band sufficiently broader than the natural frequency of the oscillating laser light 11 , such as having a half-value width that is at least twice the half-value width of the eigenfrequency spectrum of the oscillating laser light 11 .

また、図8に示すように、振動励起源20、被測定対象21、発振レーザ光11の射位置のうち1つ以上を走査させる走査機構23(図8では振動励起源20走査させる走査機構23)を設けることで、複数位置での測定もしくは複数位置で得た信号の合成処理(開口合成処理)による映像化等を行うこともできる。このとき、走査機構23は、直動、回転ステージやその組合せでもよいしロボットアームのような多軸機構でもよい。走査機構23は、振動励起源20を走査させるもの以外でも、発振レーザ光の照射位置、被測定対象を移動させるものでもよい。 Further, as shown in FIG. 8, a scanning mechanism 23 for scanning one or more of the oscillation excitation source 20, the object to be measured 21, and the irradiation position of the oscillating laser beam 11 (in FIG. 8, the scanning mechanism 23 for scanning the oscillation excitation source 20 is ), measurement at a plurality of positions or synthesis processing (aperture synthesis processing) of signals obtained at a plurality of positions can be performed for visualization. At this time, the scanning mechanism 23 may be a linear motion stage, a rotary stage, a combination thereof, or a multi-axis mechanism such as a robot arm. The scanning mechanism 23 may move the irradiation position of the oscillating laser light and the object to be measured, instead of scanning the vibration excitation source 20 .

振動励起源20から発生する超音波Uのもつ周波数特性は、発振器固有振動数ωと離れた値であることが望ましい。受信信号のフィルタリングには高次高調波の帯域を用いることから、例えば探触子で励起した図6(b)に示すようにωよりも高い周波数とするか、パルスレーザで励起した図7(b)のように高い周波数においても安定した帯域を持つものである方が、ωとの分離が容易になる場合がある。 The frequency characteristic of the ultrasonic wave U generated from the vibration excitation source 20 is desirably a value apart from the oscillator natural frequency ω. Since a high-order harmonic band is used for filtering the received signal, for example, the frequency is higher than ω as shown in FIG. As in b), having a stable band even at high frequencies may facilitate separation from ω.

振動励起源20から発生した超音波Uは、直接、もしくは被測定対象21の裏面や特定部位で反射し、発振レーザ光11が照射される被測定対象21表面に到達することで、受信信号14として測定される。この時、例えば直接伝搬した超音波Uが測定されるのであれば被測定対象21の表面欠陥探傷や表面の音速測定が可能となるし、被測定対象21の底面で反射した超音波Uが測定されるのであれば被測定対象21の裏面形状、板厚、バルク波音速が測定可能となる。図9に示すように、被測定対象21内の特定の割れやボイドといった欠陥22で反射した超音波Uが測定されるのであれば欠陥検出を行う超音波探傷が可能となる。 The ultrasonic wave U generated from the vibration excitation source 20 is reflected directly or at the back surface or a specific portion of the object 21 to be measured, and reaches the surface of the object 21 to be irradiated with the oscillation laser beam 11 to generate the received signal 14 . measured as At this time, for example, if the directly propagated ultrasonic wave U is measured, surface flaw detection and surface sound velocity measurement of the measured object 21 are possible, and the ultrasonic wave U reflected at the bottom surface of the measured object 21 can be measured. If so, the back surface shape, plate thickness, and bulk wave speed of the object 21 to be measured can be measured. As shown in FIG. 9, if ultrasonic waves U reflected by defects 22 such as specific cracks and voids in the object 21 to be measured can be measured, ultrasonic flaw detection for defect detection is possible.

また、図8に示したように、走査機構23と組合せることにより、複数位置での測定もしくは複数位置で得た信号の合成処理(開口合成処理)による映像化等が可能となり、一つの測定位置では死角となる欠陥22が検出できたり、欠陥検出時の視認性が向上したりといった効果が得られる。なお、これまでの実施形態で示した構成は各構成の部分的な組み合わせで用いてもよい。また、前述したように、発振レーザ光11ないし散乱帰還レーザ光12の光路中に振動が生じていた場合、その振動が定常状態の発振レーザ光11に対して波長および位相変化した散乱帰還レーザ光12を生じることとなるので、光路となる空中や水中における衝撃波等の振動も検出することができる。 Further, as shown in FIG. 8, by combining with the scanning mechanism 23, measurement at a plurality of positions or visualization by synthesizing signals obtained at a plurality of positions (aperture synthesis processing) becomes possible. In the position, it is possible to detect the defect 22 which is a blind spot, and the effect of improving the visibility at the time of defect detection can be obtained. Note that the configurations shown in the above embodiments may be used by partially combining each configuration. Further, as described above, when oscillation occurs in the optical path of the oscillation laser beam 11 or the scattered feedback laser beam 12, the oscillation causes the scattered feedback laser beam to change in wavelength and phase with respect to the oscillation laser beam 11 in a steady state. 12, it is possible to detect vibrations such as shock waves in the air or in water, which are the optical paths.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the invention have been described above, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

1……光源、2……レーザ発振器、3……光検出部、4……信号処理部、5……周波数フィルタ、6……ビームスプリッタ、7……集光部、8……全体制御部、10……光源レーザ光、11……発振レーザ光、12……散乱帰還レーザ光、13……変調発振レーザ光、14……受信信号、20……振動励起源、21……被測定対象、22……欠陥、23……走査機構。 1 light source, 2 laser oscillator, 3 photodetector, 4 signal processor, 5 frequency filter, 6 beam splitter, 7 condenser, 8 overall controller , 10 Light source laser beam 11 Oscillation laser beam 12 Scattered feedback laser beam 13 Modulated oscillation laser beam 14 Received signal 20 Vibration excitation source 21 Object to be measured , 22 Defect, 23 Scanning mechanism.

Claims (9)

光源と、
前記光源から出力される光源レーザ光をシードとして、被測定対象表面に照射する発振レーザ光を発振するレーザ発振器と、
レーザ光を所定の比率に分岐するビームスプリッタと、
前記ビームスプリッタにより分岐された前記発振レーザ光と、前記被測定対象表面から前記レーザ発振器への散乱帰還レーザ光により変調され前記ビームスプリッタにより分岐された変調発振レーザ光とを受光し電気的な受信信号に変換する光検出部と、
前記光検出部により変換された前記発振レーザ光もしくは前記変調発振レーザ光の強度である前記受信信号を解析する信号処理部とを備え、
前記信号処理部は、前記レーザ発振器からの前記発振レーザ光の固有振動数に相当する信号を前記受信信号から除外する周波数フィルタを有する
ことを特徴とする非接触振動計測装置。
a light source;
a laser oscillator that uses the light source laser light output from the light source as a seed and oscillates the oscillation laser light that irradiates the surface of the object to be measured;
a beam splitter that splits laser light into a predetermined ratio;
receiving and electrically receiving the oscillating laser light split by the beam splitter and the modulated oscillating laser light split by the beam splitter after being modulated by the scattered feedback laser light from the surface of the object to be measured to the laser oscillator; a photodetector that converts into a signal;
a signal processing unit for analyzing the received signal, which is the intensity of the oscillating laser light or the modulated oscillating laser light converted by the photodetector;
The non-contact vibration measuring device, wherein the signal processing unit has a frequency filter that excludes a signal corresponding to the natural frequency of the oscillation laser light from the laser oscillator from the received signal.
前記周波数フィルタは、前記受信信号から前記固有振動数の2次高調波、もしくは3次高調波など高次高調波成分のうち1つ以上を選択して透過させる機能を有することを特徴とする
請求項1に記載の非接触振動計測装置。
The frequency filter has a function of selecting and transmitting one or more of high-order harmonic components such as second-order harmonics or third-order harmonics of the natural frequency from the received signal. Item 1. The non-contact vibration measuring device according to item 1.
前記被測定対象に振動を与える振動励起源を備え、前記振動励起源の励起する振動の中心周波数が、前記固有振動数と異なる帯域に中心周波数を有する
ことを特徴とする請求項1又は2に記載の非接触振動計測装置。
3. The apparatus according to claim 1, further comprising a vibration excitation source that vibrates the object to be measured, wherein the center frequency of the vibration excited by the vibration excitation source is in a band different from the natural frequency. A non-contact vibration measuring device as described.
前記被測定対象に振動を与える振動励起源を備え、前記振動励起源の励起する振動の周波数が前記固有振動数を含む広帯域のスペクトルを有する
ことを特徴とする請求項1又は2に記載の非接触振動計測装置。
3. The apparatus according to claim 1, further comprising a vibration excitation source that vibrates the object to be measured, wherein the frequency of vibration excited by the vibration excitation source has a broadband spectrum including the natural frequency. Contact vibration measuring device.
前記振動励起源を移動させる走査機構を有する
ことを特徴とする請求項3又は4に記載の非接触振動計測装置。
5. The non-contact vibration measuring device according to claim 3, further comprising a scanning mechanism for moving said vibration excitation source.
前記振動励起源から励起された振動を、前記被測定対象の内部若しくは表面に伝搬させ、前記被測定対象における被測定点からの振動を計測し、前記被測定対象の板厚計測、又は形状計測、又は欠陥検出に用いる
ことを特徴とする請求項3乃至5のいずれか1項に記載の非接触振動計測装置。
Propagating the vibration excited from the vibration excitation source to the inside or surface of the object to be measured, measuring the vibration from the point to be measured in the object to be measured, and measuring the thickness or shape of the object to be measured 6. The non-contact vibration measuring device according to any one of claims 3 to 5, wherein the non-contact vibration measuring device is used for detecting defects.
前記発振レーザ光の照射位置、前記被測定対象のうち1つ以上を移動させる走査機構を有する
ことを特徴とする請求項1乃至6のいずれか1項に記載の非接触振動計測装置。
The non-contact vibration measuring device according to any one of claims 1 to 6, further comprising a scanning mechanism for moving one or more of the irradiation position of the oscillation laser beam and the object to be measured.
光源から出力される光源レーザ光をシードとして、レーザ発振器により被測定対象表面に照射する発振レーザ光を発振する工程と、
ビームスプリッタにより分岐された一方の前記発振レーザ光を前記被測定対象表面に照射する工程と、
前記被測定対象表面から前記レーザ発振器への散乱帰還レーザ光により変調され前記ビームスプリッタにより分岐された変調発振レーザ光を受光し電気的な受信信号に変換する工程と、
前記受信信号から、前記レーザ発振器からの前記発振レーザ光の固有振動数に相当する信号を除外する工程と
を有することを特徴とする非接触振動計測方法。
a step of oscillating a laser beam emitted from a light source to irradiate a surface of an object to be measured with a laser oscillator using a light source laser beam as a seed;
a step of irradiating the surface of the object to be measured with one of the oscillation laser beams split by the beam splitter;
a step of receiving the modulated oscillation laser beam modulated by the scattered feedback laser beam from the surface of the object to be measured to the laser oscillator and split by the beam splitter, and converting the modulated oscillation laser beam into an electrical received signal;
A non-contact vibration measuring method comprising the step of excluding from the received signal a signal corresponding to the natural frequency of the oscillating laser light from the laser oscillator.
振動励起源から励起された振動を、前記被測定対象の内部若しくは表面に伝搬させ、前記被測定対象における被測定点からの振動を計測し、前記被測定対象の板厚計測、又は形状計測、又は欠陥検出に用いる
ことを特徴とする請求項8に記載の非接触振動計測方法。
Propagating vibration excited from a vibration excitation source to the inside or surface of the object to be measured, measuring vibration from a point to be measured in the object to be measured, and measuring the thickness or shape of the object to be measured; or used for defect detection.
JP2020000448A 2020-01-06 2020-01-06 NON-CONTACT VIBRATION MEASURING DEVICE AND NON-CONTACT VIBRATION MEASURING METHOD Active JP7278979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020000448A JP7278979B2 (en) 2020-01-06 2020-01-06 NON-CONTACT VIBRATION MEASURING DEVICE AND NON-CONTACT VIBRATION MEASURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020000448A JP7278979B2 (en) 2020-01-06 2020-01-06 NON-CONTACT VIBRATION MEASURING DEVICE AND NON-CONTACT VIBRATION MEASURING METHOD

Publications (2)

Publication Number Publication Date
JP2021110555A JP2021110555A (en) 2021-08-02
JP7278979B2 true JP7278979B2 (en) 2023-05-22

Family

ID=77059541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020000448A Active JP7278979B2 (en) 2020-01-06 2020-01-06 NON-CONTACT VIBRATION MEASURING DEVICE AND NON-CONTACT VIBRATION MEASURING METHOD

Country Status (1)

Country Link
JP (1) JP7278979B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138862A (en) 2005-12-01 2006-06-01 Electron & Photon Laboratory Inc Laser vibrometer
JP3874749B2 (en) 2003-08-19 2007-01-31 財団法人小林理学研究所 Target sound detection method and apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532738Y2 (en) * 1987-04-07 1993-08-20
JP3150239B2 (en) * 1993-08-31 2001-03-26 キヤノン株式会社 Measuring device for micro-periodic vibration displacement
JPH0732526U (en) * 1993-11-22 1995-06-16 グラフテック株式会社 Frequency conversion circuit of Doppler vibrometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3874749B2 (en) 2003-08-19 2007-01-31 財団法人小林理学研究所 Target sound detection method and apparatus
JP2006138862A (en) 2005-12-01 2006-06-01 Electron & Photon Laboratory Inc Laser vibrometer

Also Published As

Publication number Publication date
JP2021110555A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
US7474411B2 (en) System and method to reduce laser noise for improved interferometric laser ultrasound detection
JP6997779B2 (en) Acoustic resonance spectroscopy measurement method and system
US7667851B2 (en) Method and apparatus for using a two-wave mixing ultrasonic detection in rapid scanning applications
KR101242888B1 (en) Measuring Method and Measruting Apparatus of Poisson's Ratio
JP5951673B2 (en) Improved mid-infrared laser for generating ultrasound using a CO2 laser and harmonic generation
US4723448A (en) Method for remotely inspecting solid structures for discontinuities utilizing laser techniques
US6813951B2 (en) Laser-ultrasonic testing system
JP7278979B2 (en) NON-CONTACT VIBRATION MEASURING DEVICE AND NON-CONTACT VIBRATION MEASURING METHOD
JPH08285820A (en) Laser-ultrasonic inspection apparatus
KR100711353B1 (en) A Stabilizing Apparatus and Method of Laser-Interferometer for Ultrasonic Measurement
JP2003121423A (en) Laser ultrasonic inspection device and laser ultrasonic inspection method
US5042302A (en) Phase-accurate imaging and measuring of elastic wave fields with a laser probe
JP2013517490A5 (en)
JP2022077094A (en) Contactless oscillation measurement device and contactless oscillation measurement method
JPH09257755A (en) Laser ultrasonic inspection apparatus and method therefor
KR100733539B1 (en) Apparatus and method of laser-ultrasonic measurement for hot object
Kokkonen Laser interferometers in physical acoustics
Tanaka et al. Brillouin scattering measurement of optothermally excited phonon
JPH1183812A (en) Ultrasonic wave detecting method by laser beam and device therefor
JP4059418B2 (en) Laser ultrasonic inspection method
Mokryy et al. Stabilized detection scheme of surface acoustic waves by Michelson interferometer.
JP2003215110A (en) Laser ultrasonic inspection device and laser ultrasonic inspection method
JPH07286993A (en) Laser ultrasonic construction material measurement device
SU301558A1 (en) DEVICE FOR MEASURING SMALL VIBRATION DISPLACEMENTS
JPH11271280A (en) Laser ultrasonic inspection device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230510

R150 Certificate of patent or registration of utility model

Ref document number: 7278979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150