JP7278445B2 - 光コヒーレンストモグラフィ画像を用いた3次元解析 - Google Patents

光コヒーレンストモグラフィ画像を用いた3次元解析 Download PDF

Info

Publication number
JP7278445B2
JP7278445B2 JP2022030645A JP2022030645A JP7278445B2 JP 7278445 B2 JP7278445 B2 JP 7278445B2 JP 2022030645 A JP2022030645 A JP 2022030645A JP 2022030645 A JP2022030645 A JP 2022030645A JP 7278445 B2 JP7278445 B2 JP 7278445B2
Authority
JP
Japan
Prior art keywords
data
segmentation
dimensional
volume
preprocessed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022030645A
Other languages
English (en)
Other versions
JP2022082541A (ja
Inventor
メイ・ソン
マオ・ザイシン
スイ・シン
ワング・ゼングォ
チャン・キンプイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Publication of JP2022082541A publication Critical patent/JP2022082541A/ja
Application granted granted Critical
Publication of JP7278445B2 publication Critical patent/JP7278445B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10101Optical tomography; Optical coherence tomography [OCT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20092Interactive image processing based on input by user
    • G06T2207/20108Interactive selection of 2D slice in a 3D data set
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30041Eye; Retina; Ophthalmic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Ophthalmology & Optometry (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Quality & Reliability (AREA)
  • Geometry (AREA)
  • Eye Examination Apparatus (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、光コヒーレンストモグラフィ画像を用いた3次元解析に関する。
光コヒーレンストモグラフィー(OCT)は、様々な生体組織の(例えば、2次元スライス及び/又は3次元ボリュームとしての)インビボイメージング及び解析のための技術である。3次元(3D)ボリュームOCTデータから作成された画像は、画像化された組織の更なる要素の異なる見え方/明るさを示す。更なる解析及び/又は可視化のために、それらの要素をこの違いに基づき画像からセグメント化することができる。例えば、脈絡膜血管系は、OCT画像において、脈絡膜間質よりも暗く見える。したがって、OCT画像における脈絡膜血管系は、強度閾値を適用することによってセグメント化することができる。しかし、OCTイメージングの固有の性質のため、閾値を画像に直接に適用すると、血管のセグメンテーションにアーチファクトが発生する。このようにして、OCTデータの要素をセグメント化するための他の技術が開発されてきたが、これらにおいても様々な欠陥や限界が問題となっている。
例えば、局所二値化法によって脈絡膜の内腔領域及び間質領域を決定する場合、解析される深さにおいて十分な品質を達成し、且つ、利用されるOCTシステムのタイプに応じて生じるノイズを回避するためには、特殊な画像収集プロトコルと平均化されたラインスキャンとが要求される。更に、最終的な閾値は手作業で適用される。2次元(2D)投影画像における脈絡膜血管密度測定を用いると、深さ分解能が不足し、シャドウアーチファクトが問題となる可能性がある。同様に、血管境界の自動検出(機械学習を用いる場合においても)は、シャドウアーチファクトの影響を受ける可能性があることに加え、2次元(2D)Bスキャンのみに適用が限定され、また、大きな血管への適用に限定される。更に、ボリューム全体にセグメンテーションが適用されるのではなく、ボリューム内の各Bスキャンに対してセグメンテーションが繰り返されるため、セグメント化された血管の連続性が悪化する可能性がある。このため、セグメント化されたボリュームを生成するためには、セグメント化されたBスキャンのそれぞれをスプライシングするか、又は他の方法でつなぎ合わせなければならないことがある。他のセグメンテーション技術は、正常眼(非疾患眼)にのみ適用可能であり、また、疾患により網膜構造が変化した場合にはエラーを生じる。更に、いくつかのセグメンテーションは、基礎となるデータへのノイズ低減フィルタの適用に関連した不正確性を生じる。
要するに、ノイズ除去(ノイズ低減)を行わずに、脈絡膜血管系が適切にセグメント化され得るデータを生成するためには、繰り返し実行されたBスキャンの平均化又は深さ方向に沿った平均化が必要である。その結果、セグメンテーションは、次元及び位置によって制限され得る。更に、3Dデータへの適用においては、計算時間が非常に長くなり、解析可能なデータが限られてしまう。
これらの制限のために、多くの臨床的に価値のある脈絡膜血管系の可視化及び定量化を提供することは、実用的ではなく、及び/又は可能でさえなかった。例えば、3Dボリューメトリックデータ又は結果として得られる画像に対して定量的解析が実行されても、その結果として得られる計量(メトリック)は3D情報を単一の値に圧縮するものである。これは、データの価値を大幅に低下させ、データを完全に利用しないものである。他の例では、定量化は、解析を正確に行うにはノイズが残り過ぎているOCTデータから得られ、多くのボリュームから取得された平均を利用しており、それはやはりノイズの悪影響を受けており且つ(平均が取られる反復的なボリューム形態それぞれについて)スキャン時間の増加が必要とされ、又は比較的小さな関心領域に限定されている(例えば、単一のBスキャンにおいて中心窩の下方1.5ミリメートル)。したがって、医療従事者は、臨床的に適切な情報を取得可能な3DボリューメトリックOCTデータを完全に理解することができていない。
本発明の目的の一つは、3次元ボリューメトリックOCTデータの臨床的に価値のある解析及び可視化を提供することにある。
実施形態の3次元定量化方法は、被検者の対象の3次元光コヒーレンストモグラフィボリューメトリックデータを1回のスキャンによって取得するステップと、前記3次元光コヒーレンストモグラフィボリューメトリックデータに複数の前処理法を用いた前処理を施すことによって前処理データを生成するステップと、前記前処理データに複数のセグメンテーション法を用いたセグメンテーションを適用することで前記対象の生理学的要素を前記前処理データからセグメント化することによって3次元セグメントデータを生成するステップと、前記3次元セグメントデータを解析することによって前記3次元光コヒーレンストモグラフィボリューメトリックデータの2次元メトリックを求めるステップと、前記2次元メトリックの可視化を行うステップとを含み、前記複数のセグメンテーション法は、前記前処理データから得られたBスキャン画像に対する第1の局所閾値処理セグメンテーション法と、前記前処理データから得られたCスキャン画像に対する第2の局所閾値処理セグメンテーション法とを含む。
例示的な実施形態によれば、3次元ボリューメトリックOCTデータの臨床的に価値のある解析及び可視化を提供することが可能である。
本開示による例示的な方法のフローチャートを示す。 本開示による前処理及びセグメンテーションの適用例を示す。 本開示にしたがって生成された合成画像の例を示す。 本開示による可視化の例を示す。 本開示による可視化の例としての脈絡血管の2次元ボリュームマップの例を示す。 本開示による可視化の例としての脈絡血管の2次元ボリュームマップの例を示す。 本開示による可視化の例としての脈絡膜ボリュームのトレンドを示す。 本開示による可視化の例としての血管ボリュームを示す。
本開示は、既知の技術では以前には実用的でなく及び/又は不可能であった3次元(3D)ボリューメトリックOCTデータの臨床的に価値のある解析及び可視化に関するものである。そのような解析及び可視化は、疾患の診断、監視、及び治療管理を行う当業者の能力を改善し得る。簡単に言えば、一連の前処理に続いて、3次元における関心要素(例えば、脈絡膜血管系)についてのOCTデータをセグメント化することによって解析が実行され、可視化が行われる。前処理に続いてデータにセグメンテーションを適用することができ、その後、所望の要素の最終的且つ完全な3次元セグメンテーションを生成するために合成することができる。その後、セグメント化された要素に対して、スムージング技術のような後処理を適用してもよい。本明細書ではOCTデータの脈絡膜血管系について特に論じるが、本開示はこれに限定されるものではない。
本開示による臨床的に価値のある解析及び可視化を行うための例示的な方法を図1に示す。同図に示すように、3DボリューメトリックOCTデータが取得され、且つ、対応する生画像が、被検眼の撮像(100)によって生成される。画像はグラフィック形成の基礎となるデータ表現であることに鑑み、以下、用語「画像」及び用語「データ」を互換的に使用する。撮像に続いて、個々の2次元画像(又は、3次元ボリュームとしてひとまとめにされる多数の2次元画像)に前処理が適用される(102)。この前処理(102)は、例えば、ディープラーニングに基づくノイズ低減法を適用することによってデータ及び画像のスペックル及び他のノイズに対処するものであってよい。このノイズ低減法は、例えば、2020年2月21日に出願された「Image Quality Improvement Methods for Optical Coherence Tomography(光コヒーレンストモグラフィのための画像品質改善方法)」と題する米国特許出願16/797848号に記載されたものであってよい。米国特許出願16/797848号の内容は、本開示の一部を構成するものとして、その全体が参照により援用される。更に、シャドウ(影)アーチファクト及びプロジェクション(投影)アーチファクトについては、画像処理及び/又はディープラーニング技術を適用することによって低減することができる。このアーチファクト低減法は、例えば、2019年9月28日に出願された「3D Shadow Reduction Signal Processing Method for Optical Coherence Tomography (OCT) Images(OCT画像のための3D影低減信号処理方法)」と題する米国特許出願16/574453号に記載されたものであってよい。米国特許出願16/574453号の内容は、本開示の一部を構成するものとして、その全体が参照により援用される。もちろん、他のノイズ除去技術を適用してもよい。
深さの次元(深さ方向)に沿った強度減衰については、強度補償技術及びコントラスト強調技術を適用することによって対処することができる。そのような技術は、例えば、所望の深さ及び関心領域(2D又は3D)における局所ラプラシアンフィルターとして、局所的に適用されてもよい。これに加えて、又はこれに代えて、コントラスト制限適応ヒストグラム均等化法(contrast-limited adaptive histogram equalization、CLAHE)を、コントラストを強調するために用いてもよい。もちろん、他のコントラスト強調技術(局所的又は大域的に適用される)及び/又は他の前処理技術を適用してもよい。
前処理(102)は、画像又はボリュームの全体に適用されてもよいし、選択された関心領域のみに適用されてもよい。その結果、前処理(102)に入力された生画像又はボリュームのそれぞれについて、複数の前処理画像を生成することができる。換言すると、生ボリューメトリックOCTデータから得られたBスキャン又はCスキャンのそれぞれに対して異なる前処理法を適用することで、複数の前処理画像を生成することができる。前処理(102)に続いて、前処理画像(又は画像の基礎となるデータ)は、画像/データの所望の要素(例えば、脈絡膜血管系)についてセグメント化される(104)。セグメンテーション(104)は、1つ以上の異なる技術を利用してもよい。この場合、適用される各セグメンテーション法は、個別に、比較的単純且つ高速に実行されてよく、異なる長所及び短所を有してよい。
例えば、いくつかのセグメンテーション法は、異なる閾値レベルを利用してもよく、及び/又は、異なるビュー(例えば、Bスキャン又はCスキャン)の解析に基づくものであってもよい。より詳細には、Cスキャンに対してセグメンテーションを実行する場合、各Cスキャン画像がボリュームの視野全体の情報を含むので、Bスキャンにセグメンテーションを施す場合と比べて血管の連続性を向上させることが可能である。これは更に、Bスキャンでのセグメンテーションに比べてより小さい血管のセグメンテーションを可能にするとともに、ユーザが行うセグメンテーションの手動検証を容易にする。しかしながら、Cスキャンのセグメンテーションは、ボリューメトリックデータを平坦化するために使用される先行のブルッフ膜のセグメンテーションの正確度に依存することがある。
上記を考慮すると、複数の前処理画像のうちの1つ以上に対して、異なるセグメンテーション技術を選択的に適用することができる。更に、上述したように、ノイズ及び減衰(例えば、アーチファクトを引き起こすもの)の影響により、OCTボリューム全体に対して大域的なセグメンテーションを施すことは、実用上、不可能であった。しかしながら、上述した前処理の適用に続いて、ボリュームから得られた個々のBスキャン又はCスキャンではなく、OCTボリューム全体に対してセグメンテーションを適用してもよい。いずれにしても、各々のセグメンテーションは、前処理画像/データにおける所望の要素をセグメント化するものである。ボリューム全体に適用されるセグメンテーションは、複数のセグメンテーションをつなぎ合わせる必要がないため、セグメンテーションの接続性を更に向上させることができるが、そのような複数のセグメンテーションは、比較的低いコントラストを有するボリュームの局所領域に対する感度が低いかもしれない。ただし、上述した深度補償技術及びコントラスト強調技術によってこれを軽減し得る。
一つの例示的な実施形態では、個別に前処理が施された画像/データに対して各セグメンテーション法を適用してもよい。他の実施形態では、異なる関心領域に対応する画像/データに対して複数のセグメンテーション法を選択的に適用してもよい。例えば、第1のセグメンテーション法にしたがって第1の2つの前処理画像をセグメント化しつつ、第2のセグメンテーション法にしたがって第2の2つの前処理画像をセグメント化することができる。他の実施形態では、3DボリューメトリックOCTデータの前処理を任意個数の手法にしたがって実行した後、脈絡膜血管系の第1の決定を得るために、前処理された3DボリューメトリックOCTデータから得られたBスキャン画像に対して局所閾値処理セグメンテーション法が適用され、脈絡膜血管系の第2の決定を得るために、前処理された3DボリューメトリックOCTデータから得られたCスキャン画像に局所的な閾値処理法が適用され、更に、脈絡膜血管系の第3の決定を得るために、前処理された3Dボリューメトリックデータの全体に大域的な閾値処理法が適用される。
適用される前処理法及びセグメンテーション法の個数にかかわらず、これらのセグメンテーションは、合成セグメント画像又はデータを生成するために組み合わされる。この合成セグメント画像又はデータは、解析(108)の一部として異なる定量的メトリックを求めるための処理と、セグメンテーション及び/又はメトリックの可視化(110)との両方について十分な品質を有し、且つ、アーチファクトを含まないものである。このようにして、合成画像は、前処理法及びセグメンテーション法の全てを含んでもよく、結合(union)、交差(intersection)、重み付け(weighting)、投票(voting)などの任意の方法にしたがって結合されてもよい。セグメンテーション(104)に続いて、例えば平滑化のための後処理をセグメント画像又はデータに対して更に施してもよい。
上記した前処理とセグメンテーションとの組み合わせが図2に模式的に示されている。図2に示す例は、それぞれが共通の3DボリューメトリックOCTデータセットに由来する、生画像/生データの2つのサブセットを用いる。画像/データのこれらのサブセットは、関心領域、ビュー(例えば、Bスキャン及びCスキャン)などにしたがって分けられてよい。図2の例によれば、第1のサブセット200は第1の前処理202を受け、第2のサブセット204は第2の前処理206を受ける。図2に破線で示した他の実施形態では、各サブセット200、204は、利用可能な前処理202、206のいずれかに供されてよい。このようにして、第1のサブセット200に関連付けられたデータは少なくとも1つの前処理データサブセットをもたらし、第2のサブセット204に関連付けられたデータは少なくとも2つの前処理データサブセットをもたらす。前処理に続いて、結果として得られるデータセットのそれぞれが、任意の利用可能なセグメンテーション法(図2には3つのセグメンテーション法が例示されている)によって同様にセグメント化される。図示されているように、それぞれの前処理の結果は、異なるセグメンテーション法208、210、212によって別々にセグメント化されるが、破線で示した他の実施形態では、セグメンテーション法208、210、212のうちの1つ以上が、複数の前処理画像/複数の前処理データのうちのいずれかに適用されてよい。最後に、各セグメンテーション法208、210、212の出力が、上述したように合成されて(214)、合成セグメンテーションが生成される。上記を考慮すると、生画像/生データが由来する3DボリューメトリックOCTデータの単一の合成セグメンテーションを生成するための方法の一部として、異なる前処理及び/又はセグメンテーション技術を共通の生画像/生データに適用してもよい。
上述したように、単一の複雑な前処理及びセグメンテーションを実行するのではなく、複数の前処理法及び複数のセグメンテーション法を用いて合成結果を生成することによって、前処理及びセグメンテーションの総時間及び計算量が低減される。それにもかかわらず、同等の品質を達成することが可能であり、且つ、3Dボリュームの全体にセグメンテーションを適用することが可能である。したがって、結果として得られるセグメンテーションは、ノイズ及びシャドウアーチファクトを無くすことができ、可視化及び定量化のために十分な品質を提供することができる(後述)。上記の例にしたがう例示的な合成画像を図3に示す。図3の合成画像には、3DボリューメトリックOCTデータからセグメント化された脈絡膜血管が3Dビューで描出されている。
図1を再び参照する。合成画像又はボリュームは、次に、ボリュームの定量解析のために以前に使用されたBスキャンの2次元データではなく、ボリューメトリックOCTデータ全体に基づいて、多数の定量可能なメトリック108を生成して解析するために処理されてもよい。これらのメトリックは、上述の前処理が施されセグメント化されたOCTデータから生成されるので、メトリックは、従来の技術にしたがってOCTデータから得られたものよりも有意に正確性が高くなるであろう。更に、メトリック(及び図3に示すようなセグメント化された可視化、及びメトリックから生成された任意の可視化)は、ボリューム又はボリューム全体の複数の2D画像にわたる比較的大きな領域(例えば、単一のBスキャンの1.5mmよりも大きい領域)に関して決定されてよく、且つ、(複数のスキャンの平均ではなく、単一のスキャンから取得された)単一のOCTボリュームから決定されてもよい。
例えば、3次元ボリューム内において、合成セグメント画像内のセグメント化されたデータをセグメント化されていないデータと比較することによって、血管系の空間ボリューム(及び、それに関連して、密度は、血管系又は同様のセグメント化された要素に相当する所定の領域内のボリューム全体の割合である)、直径、長さ、体積比(インデックスとも呼ばれる)などを特定することができる。例えば、セグメント化されたピクセルの個数を数えることで、関心領域内の血管系の量(例えば、体積又は密度)の指標を提供することができる。それらのメトリックのみを深さなどの1次元に投影(例えば、最大値、最小値、平均値、和などを演算)することにより、体積マップ、直径マップ、インデックスマップなどを生成することができる。このようなマップにより、網膜上の各位置についてのメトリックの定量化された値を視覚的に示すことが可能である。更に、それらのメトリックを(例えば、マップ全体にわたって)一つの次元方向に総計することにより、全体の体積、代表的なインデックスなどを特定することが可能である。単一のOCTボリュームからそのようなメトリックを広い範囲にわたって定量化することにより、被検者間におけるボリューメトリックOCTデータの比較や、個々の被検者の経時的な比較といった、従来は不可能であった比較が可能になる。
これらのメトリックは、比較によるもの(相対的なもの)であってもよい。例えば、比較メトリックの基になるOCTボリュームのメトリックは、異なる時間に単一の被検者から取得されたもの、異なる眼(例えば、単一の被検者の右眼及び左眼)から取得されたもの、(例えば、個体群を代表する集合的個体のそれぞれの間の)複数の被検者から取得されたもの、又は、同じ眼の異なる関心領域(例えば、異なる層)から得られたものであってよい。これらの比較は、比較の各要素についてのメトリックを決定して任意の統計的比較手法を適用することによって行うことができる。例えば、比較メトリックは、比較データの比、比較データ間の差、比較データの平均、比較データの合計などのいずれかであってよい。比較は、一般的にボリューメトリックデータ全体に対して行われてもよいし、場所ごとに行われてもよい(例えば、比較マップのピクセル位置ごとに行われてよい)。
共通の関心領域から得られたメトリックを比較する場合、比較される要素(異なるデータセット、画像、ボリューム、メトリックなど)は、好ましくは、同様の比較を行うことができるように、互いに位置合わせ(レジストレーション)される。言い換えれば、レジストレーションを行うことによって、各要素の対応する部分を比較することが可能になる。いくつかの例では、例えば、脈絡膜血管系の変化を比較する場合、血管系が各要素において必ずしも同一ではないため、血管系自体に基づくレジストレーションが行われなくてよい(例えば、比較される期間にわたる治療に起因する)。より一般的に言えば、レジストレーションは、好ましくは、要素間で異なる可能性がある情報、又は比較されるメトリックにおいて使用される情報に基づいて実行されない。これを考慮して、いくつかの実施形態では、レジストレーションは、比較される各要素の生のOCTボリューム(例えば、前処理が施されていないOCTボリューム)から生成されたアンファス画像(en face image、正面画像)に基づいて実行されてもよい。これらのアンファス画像は、レジストレーションのために使用される領域内の各Aラインに沿った強度を加算、平均化などすることによって生成されてもよい。網膜血管は影(シャドウ)を投影することがあり、したがってOCTアンファス画像上に影を生じることがあるので、アンファス画像はレジストレーションに有用であり、比較的安定した状態のままでいる暗い網膜血管系をランドマークとして用いることができる。更に、本来、任意のメトリック、脈絡膜血管系画像、又はOCTボリュームから生成される同様の画像は、アンファス画像とともにレジストレーションされる。これは、それらが同じボリュームに由来するからである。例えば、第1のボリューム内の表面血管と第2のボリューム内の表面血管とをレジストレーションすることができ、第1のボリューム内の脈絡膜血管(又は、脈絡膜血管のメトリック)と第2のボリューム内の脈絡膜血管とを比較することができる。
その後、これらのメトリックの可視化が実行されて表示に表示されてもよく(110)、後で参照するために保存されてもよい。すなわち、本開示に係る技術は、ボリューメトリックOCTデータのセグメント化された要素(例えば、脈絡膜血管)の可視化だけでなく、そのセグメント化された要素に関連する定量化されたメトリックの可視化(例えば、マップ、グラフ)を生成することも可能である。これらの定量化されたメトリックの可視化は、上述の比較を更に単純化するものである。そのような可視化は、3Dボリューメトリック情報を表すメトリックの2D表現、並びに/又は、2以上のOCTボリューム間の変化及び/若しくは相違(差分)を表す比較メトリックの表現であってよい。上述のメトリックを考慮すると、可視化は、例えば、脈絡膜血管インデックスマップ、脈絡膜厚さマップ、若しくは血管体積マップ、及び/又は、これらのいずれかの比較であってよい。
可視化において情報が様々な形態で符号化されてもよい。例えば、可視化における各ピクセルの強度は、そのピクセルに対応する位置におけるメトリックの値を示してよく、また、色は、その値のトレンドを示してよい(又は、トレンドの表現に強度を使用し、値の表現に色を使用してもよい)。更に他の実施形態では、異なるメトリック情報を識別するために異なるカラーチャネルを使用してもよい(例えば、メトリックごとに異なる色を使用し、そのメトリックのトレンド又は値を強度で示す)。更に他の実施形態では、様々な形態の色相(色調)、彩度、及び値(HSV)でのエンコーディング、及び/又は、色相(色調)、彩度、及び光(HSL)でのエンコーディングを利用してもよい。更に他の実施形態では、付加的な情報をエンコードするために透明度を用いてもよい。例示的な可視化を図4~図7に示す。
図4は、本開示に係る第1の例示的な可視化を示す。図4の可視化は、脈絡膜血管の2D画像であり、各ピクセルの強度は、メトリックに対応し、且つ、色は、以前のスキャンとの比較としてのメトリックの局所的なトレンドを示す。例えば、各ピクセルの強度は、3次元ボリューメトリックデータの血管体積、血管長、血管厚、又は同様の測定値に対応していてよい。色は、以前に取得された3Dボリューメトリックデータに基づく以前のメトリック測定との比較としての各ピクセルの変化を示していてもよい。例えば、赤色は、以前の測定から得られた血管系測定結果の拡大を示すために使用されてよく、紫色は、血管系測定結果の縮小を示すために使用されてよい。青及び緑は、比較的一貫した測定結果(すなわち、変化がほとんどないか、又は全くない)を示してよい。図4の白黒画像には色が明確に示されていないので、縮小(例えば、紫として識別される)及び拡大(例えば、赤として識別される)に対応する例示的な領域が、参考のために明示的に示されている。以前の測定値との比較は、単純な差、複数の測定値の平均に対する相対的な変化、標準偏差、及び/又は、同様の統計演算として求められてよい。もちろん、色と変化との間の相関関係は別途に設定されてもよい。
図5A及び5Bは、それぞれ、本開示に係る例示的な可視化としての例示的な脈絡膜血管2Dボリュームマップを示す。3Dボリューメトリックデータセットの脈絡膜血管のボリュームは、3Dボリュームデータの各Aラインについての脈絡膜血管に対応するピクセルの個数に各ピクセルの解像度を乗算したものとして決定されてよい。この積算(累算)が深さにわたって行われる場合、ボリュームマップの各ピクセルは、3次元ボリュームデータセットの1つのAラインに対応する。図4の例と同様に、ボリュームマップの各ピクセルの強度は、対応する位置での血管体積に相当し、色は、以前のスキャンとの比較としてのこの血管体積の局所的なトレンドに相当する。同様に、セグメント化されたピクセルの個数を脈絡膜(又は他の領域)のピクセルの総数と比較することによって、その領域にわたる血管密度(又は、他の要素の密度)の定量化を提供することができる。一般に、体積及び密度は、ともに増加及び減少するであろう。
上述したように、2D可視化マップを生成するために使用されるメトリックは、更なる解析のために、関心領域にわたって更に累算されてもよい。例えば、中心窩(半径1mm程度)、傍中心窩(上方、鼻側、下方、耳側)(中心窩からの半径1-3mm程度)、周中心窩(上方、鼻側、下方、耳側)(中心窩からの半径3-5mm程度)、及び/又は、同様の領域について、メトリック値及び/又はピクセル強度を累算してもよい。累算は、加算、標準偏差などの任意の統計演算によって求めることができる。累算された数値が異なる複数の時点について収集された場合、トレンド解析を行い、対応するトレンドの可視化を生成することができる。累算された数値を患者間で比較することや、累算された数値を標準値(normative value(s))と比較することも可能である。
中心窩及び周中心窩鼻側のそれぞれにおける脈絡膜体積トレンドの例示的な可視化を図6に示す。同図から分かるように、4週間の期間にわたって毎週、中心窩領域及び周中心窩鼻側領域のそれぞれにおいて、脈絡膜体積が集められた。この可視化から明らかなように、この被検者について、第1週目と第2週目の間に周中心窩鼻側において脈絡膜体積が増加を呈し、同じく第1週目と第2週目の間において中心窩における体積が対応する減少を呈していることが分かる。しかしながら、第3週目から中心窩での血管体積が増加し始めると、周中心窩鼻側における体積は元の値より減少している。第3週目から第4週目にかけては、双方の部位の体積が増加している。
別の例の可視化を図7に示す。この可視化には、脈絡膜血管の総体積が、脈絡膜の異なるセクターについて示されている:中心窩(中心)、鼻側-上方(NS)、鼻側(N)、鼻側-下方(NI)、耳側-下方(TI)、耳側(T)、及び、耳側-上方(TS)。これらの総体積は、各セクター内の脈絡膜血管系ピクセルの総数を合計することによって決定されてよい。更に、3Dデータの解像度に基づいて、ピクセルの総数を物理的な寸法(立方ミリメートルなど)に変換してもよい。図7の可視化によれば、患者の治療前、治療の1ヶ月後、及び治療の1年後の体積が示されている。これから分かるように、治療後の各セクターにおいて血管系の体積が大きく減少している。
もちろん、異なるメトリクスについて同様の2Dマップ及びトレンド可視化を生成してもよい。例えば、3Dボリューメトリックデータセットの各Aラインについて脈絡膜血管系ピクセルの総数を求めることにより、血管厚マップ及びトレンドの可視化を生成してもよい。また、領域(脈絡膜など)内の非血管ピクセルの総数を求めることにより、非血管インデックスマップ及びトレンドの可視化を生成してもよい。
上述した態様は、プロセッサによってハードウェア及び/又はソフトウェアを介して実装されることが想定される。プロセッサは、例えば、抵抗器、トランジスタ、コンデンサ、インダクタなどを含む、任意の数の電気部品で構成される任意の電気回路、又はその一部であってもよい。回路は、例えば、集積回路、集積回路の集合体、マイクロコントローラ、マイクロプロセッサ、プリント回路基板(PCB)上のディスクリート電子部品の集合体などを含む任意の形態であってもよい。プロセッサは、ランダムアクセスメモリ、フラッシュメモリ、デジタルハードディスクなどのような揮発性又は不揮発性の形態のメモリに格納されたソフトウェア命令を実行可能であってよい。このプロセッサは、OCT等の撮像システムにおけるプロセッサと一体化されていてもよいが、単独で設けられもよいし、画像データの処理以外の動作に使用されるコンピュータの一部であってもよい。

Claims (5)

  1. 被検者の対象の3次元光コヒーレンストモグラフィボリューメトリックデータを1回のスキャンによって取得するステップと、
    前記3次元光コヒーレンストモグラフィボリューメトリックデータに複数の前処理法を用いた前処理を施すことによって前処理データを生成するステップと、
    前記前処理データに複数のセグメンテーション法を用いたセグメンテーションを適用することで前記対象の生理学的要素を前記前処理データからセグメント化し、前記複数のセグメンテーション法で得られた複数のデータを合成することによって3次元セグメントデータを生成するステップと、
    前記3次元セグメントデータを解析することによって前記3次元光コヒーレンストモグラフィボリューメトリックデータの2次元メトリックを求めるステップと、
    前記2次元メトリックの可視化を行うステップと
    を含み、
    前記複数のセグメンテーション法は、
    前記前処理データから得られた第1の2次元画像であるBスキャン画像に対する第1の局所閾値処理セグメンテーション法と、
    前記前処理データから得られた第2の2次元画像であるCスキャン画像に対する第2の局所閾値処理セグメンテーション法と
    を含
    前記第1の局所閾値処理セグメンテーション法で前記Bスキャン画像から得られたデータと前記第2の局所閾値処理セグメンテーション法で前記Cスキャン画像から得られたデータとを含む複数のデータを合成することによって前記3次元セグメントデータを生成する、
    3次元定量化方法。
  2. 前記第1の局所閾値処理セグメンテーション法は、前記Bスキャン画像から前記生理学的要素のセグメントデータを生成し、
    前記第2の局所閾値処理セグメンテーション法は、前記Cスキャン画像から前記生理学的要素のセグメントデータを生成する、
    請求項1の方法。
  3. 前記複数のセグメンテーション法は、前記前処理データの全体に対する大域閾値処理セグメンテーション法を更に含む、
    請求項1又は2の方法。
  4. 前記大域閾値処理セグメンテーション法は、前記前処理データから前記生理学的要素のセグメントデータを生成する、
    請求項3の方法。
  5. 前記対象は、網膜であり、
    前記生理学的要素は、脈絡膜血管系である、
    請求項1~のいずれかの方法。
JP2022030645A 2020-04-10 2022-03-01 光コヒーレンストモグラフィ画像を用いた3次元解析 Active JP7278445B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/845,307 US20210319551A1 (en) 2020-04-10 2020-04-10 3d analysis with optical coherence tomography images
US16/845,307 2020-04-10
JP2020134831A JP2021167802A (ja) 2020-04-10 2020-08-07 光コヒーレンストモグラフィ画像を用いた3次元解析

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020134831A Division JP2021167802A (ja) 2020-04-10 2020-08-07 光コヒーレンストモグラフィ画像を用いた3次元解析

Publications (2)

Publication Number Publication Date
JP2022082541A JP2022082541A (ja) 2022-06-02
JP7278445B2 true JP7278445B2 (ja) 2023-05-19

Family

ID=70616956

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020134831A Pending JP2021167802A (ja) 2020-04-10 2020-08-07 光コヒーレンストモグラフィ画像を用いた3次元解析
JP2022030645A Active JP7278445B2 (ja) 2020-04-10 2022-03-01 光コヒーレンストモグラフィ画像を用いた3次元解析

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020134831A Pending JP2021167802A (ja) 2020-04-10 2020-08-07 光コヒーレンストモグラフィ画像を用いた3次元解析

Country Status (4)

Country Link
US (1) US20210319551A1 (ja)
EP (1) EP3893202B1 (ja)
JP (2) JP2021167802A (ja)
DE (1) DE20173442T1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004492A1 (en) * 2020-06-29 2022-01-06 Osaka University Medical diagnostic apparatus and method for evaluation of pathological conditions using 3d optical coherence tomography data and images
WO2022177028A1 (ja) * 2021-02-22 2022-08-25 株式会社ニコン 画像処理方法、画像処理装置、及びプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502354A (ja) 2005-07-28 2009-01-29 ベラソン インコーポレイテッド 心臓の画像化のシステムと方法
JP2013542840A (ja) 2010-11-17 2013-11-28 オプトビュー,インコーポレーテッド 光干渉断層法を用いた3d網膜分離検出

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11272865A (ja) * 1998-03-23 1999-10-08 Mitsubishi Electric Corp 画像セグメンテーション方法およびその装置
US8643641B2 (en) * 2008-05-12 2014-02-04 Charles G. Passmore System and method for periodic body scan differencing
JP2014527434A (ja) * 2011-08-09 2014-10-16 オプトビュー,インコーポレーテッド 光干渉断層法におけるフィーチャの動き補正及び正規化
JP6278295B2 (ja) * 2013-06-13 2018-02-14 国立大学法人 筑波大学 脈絡膜の血管網を選択的に可視化し解析する光干渉断層計装置及びその画像処理プログラム
CN105787924A (zh) * 2016-02-01 2016-07-20 首都医科大学 一种基于图像分割的脉络膜最大血管直径的测量方法
US10251550B2 (en) * 2016-03-18 2019-04-09 Oregon Health & Science University Systems and methods for automated segmentation of retinal fluid in optical coherence tomography
US10127664B2 (en) * 2016-11-21 2018-11-13 International Business Machines Corporation Ovarian image processing for diagnosis of a subject
CN108416793B (zh) * 2018-01-16 2022-06-21 武汉诺影云科技有限公司 基于三维相干断层成像图像的脉络膜血管分割方法及系统
JP7195745B2 (ja) * 2018-03-12 2022-12-26 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP7123606B2 (ja) * 2018-04-06 2022-08-23 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
DE112019002024T5 (de) * 2018-04-18 2021-01-07 Nikon Corporation Bildverarbeitungsverfahren, Programm und Bildverarbeitungsvorrichtung
CN109730633A (zh) * 2018-12-28 2019-05-10 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 基于光学相干断层成像体扫描的脉络膜血管造影方法及设备
US11257190B2 (en) * 2019-03-01 2022-02-22 Topcon Corporation Image quality improvement methods for optical coherence tomography
US11361481B2 (en) * 2019-09-18 2022-06-14 Topcon Corporation 3D shadow reduction signal processing method for optical coherence tomography (OCT) images

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502354A (ja) 2005-07-28 2009-01-29 ベラソン インコーポレイテッド 心臓の画像化のシステムと方法
JP2013542840A (ja) 2010-11-17 2013-11-28 オプトビュー,インコーポレーテッド 光干渉断層法を用いた3d網膜分離検出

Also Published As

Publication number Publication date
EP3893202B1 (en) 2024-05-08
EP3893202A1 (en) 2021-10-13
US20210319551A1 (en) 2021-10-14
DE20173442T1 (de) 2021-12-16
JP2021167802A (ja) 2021-10-21
JP2022082541A (ja) 2022-06-02
EP3893202C0 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
Abràmoff et al. Retinal imaging and image analysis
JP7278445B2 (ja) 光コヒーレンストモグラフィ画像を用いた3次元解析
US20210390696A1 (en) Medical image processing apparatus, medical image processing method and computer-readable storage medium
Bernardes et al. Digital ocular fundus imaging: a review
US7248736B2 (en) Enhancing images superimposed on uneven or partially obscured background
AU2019340215B2 (en) Methods and systems for ocular imaging, diagnosis and prognosis
EP1302163A2 (en) Method and apparatus for calculating an index of local blood flows
TW201903708A (zh) 數位減影血管攝影圖像的分析方法與系統
EP2869261B1 (en) Method for processing image data representing a three-dimensional volume
KR101141312B1 (ko) 영상의 융합 기법을 이용한 의료용 혈관영상 처리방법
CA2787859A1 (en) Registration method for multispectral retinal images
Kafieh et al. An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis
US9576376B2 (en) Interactive method of locating a mirror line for use in determining asymmetry of an image
Gao et al. An open-source deep learning network for reconstruction of high-resolution oct angiograms of retinal intermediate and deep capillary plexuses
CN112562058B (zh) 一种基于迁移学习的颅内血管模拟三维模型快速建立方法
CN109993731A (zh) 一种眼底病变分析方法及装置
WO2023063318A1 (ja) 診断支援プログラム
Dikkala et al. A comprehensive analysis of morphological process dependent retinal blood vessel segmentation
Kolar et al. Illumination correction and contrast equalization in colour fundus images
CN114972067A (zh) 一种x光小牙片图像增强方法
Abràmoff Image processing
JP4714228B2 (ja) 脳組織内毛細血管の血流動態に関するインデックス演算方法、装置及び記憶媒体
MacGillivray et al. A reliability study of fractal analysis of the skeletonised vascular network using the" box-counting" technique
Adiga Retinal Image Quality Improvement via Learning
WO2022004492A1 (en) Medical diagnostic apparatus and method for evaluation of pathological conditions using 3d optical coherence tomography data and images

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230509

R150 Certificate of patent or registration of utility model

Ref document number: 7278445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150