JP7275569B2 - Method for producing nickel sulfate - Google Patents

Method for producing nickel sulfate Download PDF

Info

Publication number
JP7275569B2
JP7275569B2 JP2018243027A JP2018243027A JP7275569B2 JP 7275569 B2 JP7275569 B2 JP 7275569B2 JP 2018243027 A JP2018243027 A JP 2018243027A JP 2018243027 A JP2018243027 A JP 2018243027A JP 7275569 B2 JP7275569 B2 JP 7275569B2
Authority
JP
Japan
Prior art keywords
nickel sulfate
polarization
measurement
concentration
leachate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018243027A
Other languages
Japanese (ja)
Other versions
JP2020105034A (en
Inventor
次郎 中西
公彦 冨士田
聡 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018243027A priority Critical patent/JP7275569B2/en
Publication of JP2020105034A publication Critical patent/JP2020105034A/en
Application granted granted Critical
Publication of JP7275569B2 publication Critical patent/JP7275569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、硫酸ニッケルの製造方法に関し、特に分極測定によるチオ硫酸濃度管理を含んだ硫酸ニッケルの製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing nickel sulfate, and more particularly to a method for producing nickel sulfate that includes thiosulfate concentration control by polarization measurement.

硫酸ニッケルは、ニッケルめっきのめっき液原料や、電池材料用の水酸化ニッケル粉末の原料等の様々な用途に使われている。硫酸ニッケルは、例えばHPAL法(High Pressure Acid Leaching)とも称する高圧酸浸出法によって作製される中間原料のニッケル・コバルト混合硫化物を経て湿式法により作製することができる。 Nickel sulfate is used for various purposes such as a raw material for plating solution for nickel plating and a raw material for nickel hydroxide powder for battery materials. Nickel sulfate can be produced by a wet process, for example, via an intermediate nickel-cobalt mixed sulfide produced by a high pressure acid leaching process, also called the HPAL process (High Pressure Acid Leaching).

すなわち、先ず上記高圧酸浸出法により、原料としてのニッケル酸化鉱石に硫酸を加えて高温高圧下で酸浸出処理し、得られたニッケル及びコバルトを含む浸出液を中和処理して鉄などの不純物を除去した後、不純物が除去された該浸出液に硫化水素ガス等の硫化剤を添加する。これにより、硫化反応を生じさせてミックスサルファイド(MS)とも称するニッケル・コバルト混合硫化物を生成させる。 That is, first, by the high-pressure acid leaching method, sulfuric acid is added to the nickel oxide ore as a raw material, acid leaching is performed under high temperature and high pressure, and the resulting leachate containing nickel and cobalt is neutralized to remove impurities such as iron. After removal, a sulfiding agent such as hydrogen sulfide gas is added to the leachate from which impurities have been removed. This causes a sulfidation reaction to produce nickel-cobalt mixed sulfides, also called mixed sulfides (MS).

次に、特許文献1に示されているように、このニッケル・コバルト混合硫化物に水を加えて調製したスラリーを高温高圧下で浸出処理することで下記式1及び式2で表される硫黄の酸化反応を生じさせて不純物を含む粗硫酸ニッケル水溶液を生成させる。この粗硫酸ニッケル水溶液から不純物を除去することで高純度硫酸ニッケル水溶液を得た後、晶析により硫酸ニッケル結晶を生成させる。
[式1]
NiS+2O→Ni2++SO 2-
[式2]
CoS+2O→Co2++SO 2-
Next, as shown in Patent Document 1, a slurry prepared by adding water to this nickel-cobalt mixed sulfide is leached under high temperature and pressure to produce sulfur represented by the following formulas 1 and 2. to produce a crude nickel sulfate aqueous solution containing impurities. After removing impurities from this crude nickel sulfate aqueous solution to obtain a high-purity nickel sulfate aqueous solution, nickel sulfate crystals are formed by crystallization.
[Formula 1]
NiS+2O 2 →Ni 2+ +SO 4 2−
[Formula 2]
CoS+2O 2 →Co 2+ +SO 4 2−

特開2017-149609号公報JP 2017-149609 A

しかしながら、上記の高温高圧下におけるニッケル・コバルト混合硫化物の浸出工程では、上記式1及び式2の硫黄の酸化反応の進行が不十分な場合は、下記式3に示すように硫酸イオン(SO 2-)だけでなくチオ硫酸イオン(S 2-)が生成する場合があった。
[式3]
NiS+Ni2+SO 2- 2-
However, in the nickel-cobalt mixed sulfide leaching process under high temperature and high pressure, if the oxidation reaction of sulfur in the above formulas 1 and 2 does not proceed sufficiently, sulfate ions (SO 4 2- ) as well as thiosulfate ions (S 2 O 3 2- ) in some cases.
[Formula 3]
6 NiS+ 7 O 26 Ni 2+ + 2 SO 4 2- + 2 S 2 O 3 2-

上記の浸出工程で生成したチオ硫酸イオンは、一般的な不純物除去工程では除去することが困難であるため、最終製品である硫酸ニッケル結晶に混入する可能性がある。このようなチオ硫酸が混入した硫酸ニッケル結晶を原料にしてニッケルめっきを行うと、めっきの表面品質が低下する問題が生じることがあった。本発明は上記事情に鑑みてなされたものであり、簡便且つ迅速にチオ硫酸濃度を分析することで、硫酸ニッケル結晶へのチオ硫酸の混入を抑制可能な硫酸ニッケルの製造方法を提供することを目的とする。 The thiosulfate ions generated in the leaching process described above are difficult to remove by a general impurity removal process, and may be mixed in the nickel sulfate crystals that are the final product. When nickel plating is performed using such nickel sulfate crystals mixed with thiosulfuric acid as a raw material, there is a problem that the surface quality of the plating deteriorates. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for producing nickel sulfate that can suppress contamination of nickel sulfate crystals with thiosulfuric acid by simply and quickly analyzing the concentration of thiosulfuric acid. aim.

上記目的を達成するため、本発明に係る硫酸ニッケルの製造方法は、ニッケル硫化物スラリーを高圧下で硫酸浸出処理及び酸化処理して不純物を含む粗硫酸ニッケル水溶液からなる浸出液を得る浸出工程と、該浸出液に含まれる不純物を除去する不純物除去工程と、該不純物除去工程によって得た高純度硫酸ニッケル水溶液から硫酸ニッケル結晶を晶析させる結晶工程とからなる硫酸ニッケルの製造方法であって、チオ硫酸濃度のみが異なる複数の硫酸ニッケル水溶液の各々に対して分極測定により分極曲線を作成し、得られた複数の分極曲線からチオ硫酸濃度とピーク面積との関係を表す第1の検量線及びチオ硫酸濃度とピーク電位との関係を表す第2の検量線をそれぞれ求めておき、測定対象の前記浸出液を分極測定することで測定用分極曲線を作成し、該測定用分極曲線のピーク面積を該第1の検量線に照合するか、又は該測定用分極曲線のピーク電位を該第2の検量線に照合することで該浸出液中のチオ硫酸濃度を求め、得られた前記浸出液のチオ硫酸濃度に基づいて前記不純物除去工程の処理条件を調整することを特徴とする。 In order to achieve the above object, the method for producing nickel sulfate according to the present invention includes a leaching step of obtaining a leachate comprising a crude nickel sulfate aqueous solution containing impurities by subjecting a nickel sulfide slurry to sulfuric acid leaching and oxidation treatment under high pressure; A method for producing nickel sulfate, comprising an impurity removal step of removing impurities contained in the leachate and a crystallization step of crystallizing nickel sulfate crystals from the high-purity nickel sulfate aqueous solution obtained by the impurity removal step, comprising: A polarization curve is prepared by polarization measurement for each of a plurality of aqueous solutions of nickel sulfate that differ only in concentration. A second calibration curve representing the relationship between the concentration and the peak potential is obtained, and a polarization curve for measurement is created by performing polarization measurement on the leachate to be measured. 1 calibration curve, or by comparing the peak potential of the polarization curve for measurement with the second calibration curve to determine the thiosulfuric acid concentration in the leachate, and the obtained thiosulfuric acid concentration in the leachate The processing conditions of the impurity removal step are adjusted based on the above.

本発明によれば、簡便且つ迅速にチオ硫酸濃度を求めることが可能となり、よって、チオ硫酸をほとんど含まない硫酸ニッケルを製造することができる。 According to the present invention, it is possible to obtain the thiosulfate concentration simply and quickly, and thus nickel sulfate containing almost no thiosulfate can be produced.

本発明の実施形態に係る硫酸ニッケルの製造方法のプロセスフローである。1 is a process flow of a method for producing nickel sulfate according to an embodiment of the present invention; チオ硫酸濃度のみが異なる複数の硫酸ニッケル水溶液をそれぞれ分極測定することで得た分極曲線のグラフである。4 is a graph of polarization curves obtained by polarization measurement of a plurality of nickel sulfate aqueous solutions that differ only in thiosulfuric acid concentration. 図2の(a)、(f)~(h)における電位1.2V付近の分極曲線を拡大したグラフである。3 is an enlarged graph of the polarization curves near a potential of 1.2 V in (a), (f) to (h) of FIG. 2; 図2の(f)~(h)の分極曲線から求めた、電位+1.0Vから+1.4Vの範囲内のピーク面積とチオ硫酸濃度との関係を表す第1の検量線である。FIG. 3 is a first calibration curve showing the relationship between the peak area within the potential range of +1.0 V to +1.4 V and the thiosulfuric acid concentration obtained from the polarization curves (f) to (h) of FIG. 2; 図2の(b)~(h)の分極曲線から求めた、電位-0.8Vから-0.6Vの範囲内のピーク電位とチオ硫酸濃度との関係を表す第2の検量線である。FIG. 3 is a second calibration curve showing the relationship between the peak potential in the potential range of −0.8 V to −0.6 V and the thiosulfuric acid concentration obtained from the polarization curves (b) to (h) of FIG. 2. FIG.

1.硫酸ニッケルの製造方法
以下、本発明の実施形態に係る硫酸ニッケルの製造方法について図面を参照しながら説明する。この本発明の実施形態に係る硫酸ニッケルの製造方法は、図1に示すように、中間原料のニッケル硫化物スラリーから硫酸ニッケル結晶を作製する方法であり、該ニッケル硫化物スラリーの調製を行うスラリー調製工程S1と、該ニッケル硫化物スラリーに対して加圧下で浸出処理及び酸化処理を行って浸出液を得る浸出工程S2と、該浸出液に含まれる不純物を除去する不純物除去工程S3と、該不純物除去工程S3で得た高純度硫酸ニッケル水溶液から硫酸ニッケル結晶を晶析させる晶析工程S4とを備えている。以下、各工程について具体的に説明する。
1. Method for Producing Nickel Sulfate Hereinafter, a method for producing nickel sulfate according to an embodiment of the present invention will be described with reference to the drawings. The method for producing nickel sulfate according to the embodiment of the present invention is, as shown in FIG. 1, a method for producing nickel sulfate crystals from a nickel sulfide slurry as an intermediate raw material. A preparation step S1, a leaching step S2 in which the nickel sulfide slurry is subjected to leaching treatment and oxidation treatment under pressure to obtain a leachate, an impurity removal step S3 in which impurities contained in the leachate are removed, and the impurity removal. and a crystallization step S4 of crystallizing nickel sulfate crystals from the high-purity nickel sulfate aqueous solution obtained in step S3. Each step will be specifically described below.

(スラリー調製工程S1)
硫酸ニッケルの製造方法の原料には、ニッケル・コバルト混合硫化物に代表されるニッケル硫化物が用いられる。このニッケル硫化物は前述したようにニッケル酸化鉱石を高圧酸浸出して得た浸出液を中和処理及び硫化処理することで作製され、これにより例えばニッケル品位が50~60質量%程度、コバルト品位が4~6質量%程度、硫黄品位が30~34質量%程度のニッケル・コバルト混合硫化物が得られる。
(Slurry preparation step S1)
Nickel sulfides typified by nickel-cobalt mixed sulfides are used as raw materials in the method for producing nickel sulfate. As described above, this nickel sulfide is produced by neutralizing and sulfurizing the leachate obtained by high-pressure acid leaching of nickel oxide ore. A nickel-cobalt mixed sulfide having a sulfur content of about 4 to 6% by mass and a sulfur content of about 30 to 34% by mass is obtained.

スラリー調製工程S1では、このニッケル硫化物を必要に応じて粉砕及び分級し、水を添加してスラリー化することでニッケル硫化物スラリーを調製する。このニッケル硫化物スラリーの固形分濃度には特に限定はないが、100~300g/Lが好ましく、200g/L程度がより好ましい。この固形分濃度が300g/Lを超えると、スラリー粘度が高くなりすぎ、ポンプによる送液不良が発生するおそれがある。逆にこの固形分濃度が100g/L未満の場合は、固形分濃度が薄すぎるため、生産性が低下する。 In the slurry preparation step S1, nickel sulfide slurry is prepared by pulverizing and classifying the nickel sulfide as necessary and adding water to make slurry. The solid content concentration of this nickel sulfide slurry is not particularly limited, but is preferably 100 to 300 g/L, more preferably about 200 g/L. If the solid content concentration exceeds 300 g/L, the slurry viscosity becomes too high, and there is a risk that the pump will fail to deliver the liquid. Conversely, when the solid content concentration is less than 100 g/L, the productivity is lowered because the solid content concentration is too low.

(浸出工程S2)
浸出工程S2では、上記のスラリー調製工程S1で調製したニッケル硫化物スラリーを高温高圧下で硫酸浸出処理することで浸出液を生成する。より詳細に説明すると、先ず、ニッケル硫化物スラリーを硫酸と共にオートクレーブとも称する圧力容器に供給する。このオートクレーブには更に酸化剤として空気などの酸素含有ガスを供給することで酸化反応を伴う浸出処理を行い、浸出液を生成させる。その際、該ニッケル硫化物スラリーの組成や粒度、滞留時間に影響する該ニッケル硫化物スラリーの供給流量、該ニッケル硫化物スラリーに対する硫酸及び酸化剤の供給割合、オートクレーブ内の温度及び圧力などの各種浸出条件を適宜調整する。
(Leaching step S2)
In the leaching step S2, the nickel sulfide slurry prepared in the slurry preparation step S1 is subjected to a sulfuric acid leaching treatment under high temperature and high pressure to produce a leaching solution. More specifically, the nickel sulfide slurry is first supplied to a pressure vessel, also called an autoclave, together with sulfuric acid. The autoclave is further supplied with an oxygen-containing gas such as air as an oxidizing agent to perform a leaching process accompanied by an oxidation reaction to produce a leaching solution. At that time, various factors such as the composition and particle size of the nickel sulfide slurry, the supply flow rate of the nickel sulfide slurry that affects the residence time, the supply ratio of sulfuric acid and oxidizing agent to the nickel sulfide slurry, the temperature and pressure in the autoclave, etc. Adjust the leaching conditions accordingly.

例えば、オートクレーブに高圧蒸気を吹き込むことで、オートクレーブ内の温度を150~180℃に調整し、圧力を1~2MPaGに調整するのが好ましい。本発明の実施形態の硫酸ニッケルの製造方法においては、このオートクレーブにおいて生成された浸出液に対して、分極測定により該浸出液のチオ硫酸濃度を測定し、その測定結果に基づいて後工程の不純物除去工程の処理条件を調整する。この分極測定については後で詳細に説明する。 For example, it is preferable to adjust the temperature in the autoclave to 150 to 180° C. and the pressure to 1 to 2 MPaG by blowing high-pressure steam into the autoclave. In the method for producing nickel sulfate according to the embodiment of the present invention, the concentration of thiosulfuric acid in the leachate produced in the autoclave is measured by polarization measurement, and based on the measurement result, the impurities are removed in the subsequent step. Adjust the processing conditions for This polarization measurement will be described later in detail.

(不純物除去工程S3)
上記浸出工程S2で生成される硫酸ニッケル水溶液からなる浸出液は、例えばニッケル濃度100~120g/L程度、コバルト濃度10g/L程度の組成を有している。この浸出液は上記のニッケルやコバルト等の有価金属のほか、鉄に代表される不純物を含んでいるため、粗硫酸ニッケル水溶液とも称される。この浸出液中の不純物を除去するため、不純物除去工程S3では、酸化中和法により不純物を沈殿除去したり、溶媒抽出法により不純物を除去したりすることが行われる。これにより、ある程度純度の高い硫酸ニッケル水溶液が得られるものの、上記の酸化中和法や溶媒抽出法では、チオ硫酸イオンはほとんど除去されない。
(Impurity removal step S3)
The leaching solution composed of the nickel sulfate aqueous solution produced in the leaching step S2 has a composition of, for example, a nickel concentration of approximately 100 to 120 g/L and a cobalt concentration of approximately 10 g/L. Since this leachate contains valuable metals such as nickel and cobalt as described above as well as impurities typified by iron, it is also referred to as a crude nickel sulfate aqueous solution. In order to remove the impurities in the leachate, in the impurity removal step S3, the impurities are precipitated and removed by an oxidative neutralization method, or the impurities are removed by a solvent extraction method. As a result, an aqueous solution of nickel sulfate having a relatively high purity can be obtained, but thiosulfate ions are hardly removed by the oxidation neutralization method or the solvent extraction method.

そこで、上記浸出工程S2で生成される浸出液の分極測定によるチオ硫酸の濃度測定の結果、チオ硫酸が検出された場合は、追加の酸化処理を行うことでこのチオ硫酸の酸化分解が行われる。これにより、製品となる硫酸ニッケル結晶へのチオ硫酸の混入を防ぐことができる。上記追加の酸化処理による硫酸ニッケル溶液中のチオ硫酸の具体的な酸化分解法としては、硫酸ニッケル溶液への空気吹き込み(以下、エアレーションとも記載する)、酸素吹き込み、過酸化水素水の添加等を挙げることができる。この酸化処理後に再度分極測定によりチオ硫酸濃度を測定し、その測定結果に基づいて上記の空気や酸素の吹き込み量、過酸化水素水の添加量等を調整してもよい。これにより、酸化剤の添加量に過不足を生じさせることなく極めて効率的に酸化処理を行うことが可能となる。 Therefore, when thiosulfuric acid is detected as a result of measuring the concentration of thiosulfuric acid by polarization measurement of the leachate produced in the leaching step S2, the oxidative decomposition of the thiosulfuric acid is performed by performing an additional oxidation treatment. As a result, it is possible to prevent thiosulfuric acid from being mixed into nickel sulfate crystals as a product. Specific methods for oxidatively decomposing thiosulfuric acid in the nickel sulfate solution by the additional oxidation treatment include blowing air into the nickel sulfate solution (hereinafter also referred to as aeration), blowing oxygen into the nickel sulfate solution, adding hydrogen peroxide solution, and the like. can be mentioned. After this oxidation treatment, the concentration of thiosulfuric acid may be measured again by polarization measurement, and the amount of air or oxygen to be blown, the amount of hydrogen peroxide to be added, and the like may be adjusted based on the measurement results. As a result, it is possible to carry out the oxidation treatment very efficiently without causing excess or deficiency in the amount of the oxidizing agent to be added.

(晶析工程S4)
晶析工程S4では、上記の不純物除去工程S3で不純物を除去することによって得た高純度硫酸ニッケル水溶液を晶析装置に装入し、該高純度硫酸ニッケル水溶液を濃縮することで硫酸ニッケル結晶を晶析させる。この晶析工程S4で処理される高純度硫酸ニッケル水溶液はチオ硫酸イオンをほとんど含んでいないので、該チオ硫酸イオンが硫酸ニッケル水溶液中に残存することで生じる結晶中のチオ硫酸塩(チオ硫酸ニッケル(NiS)の形態の不純物)に起因する品質上の問題を防ぐことができる。
(Crystallization step S4)
In the crystallization step S4, the high-purity nickel sulfate aqueous solution obtained by removing impurities in the impurity removal step S3 is charged into a crystallizer, and the high-purity nickel sulfate aqueous solution is concentrated to obtain nickel sulfate crystals. Crystallize. Since the high-purity nickel sulfate aqueous solution treated in the crystallization step S4 contains almost no thiosulfate ions, the thiosulfate in the crystals (nickel thiosulfate (impurities in the form of NiS 2 O 3 )) can be prevented.

上記のように、本発明の実施形態の硫酸ニッケルの製造方法は、浸出工程S2で生成される浸出液に含まれるチオ硫酸の濃度を迅速且つ簡便に分析可能な分極測定により求めるので、その結果を、後工程の不純物除去工程S3において酸化剤の添加によるチオ硫酸の酸化分解に迅速に反映させることができる。よって、該酸化剤の添加量に過不足を生じさせることなくチオ硫酸の濃度管理を行うことができ、高品質の硫酸ニッケル結晶を極めて効率的に作製することが可能になる。次に、この分極測定について詳細に説明する。 As described above, in the method for producing nickel sulfate according to the embodiment of the present invention, the concentration of thiosulfuric acid contained in the leachate produced in the leaching step S2 is determined by polarization measurement, which enables quick and easy analysis. , the oxidative decomposition of thiosulfuric acid by the addition of an oxidizing agent in the subsequent impurity removal step S3 can be rapidly reflected. Therefore, the concentration of thiosulfuric acid can be controlled without causing excess or deficiency in the amount of the oxidizing agent to be added, and high-quality nickel sulfate crystals can be very efficiently produced. Next, this polarization measurement will be described in detail.

2.分極測定によるチオ硫酸濃度測定
従来、ニッケル硫化物を浸出処理することで得られる硫酸ニッケル水溶液に含まれるチオ硫酸の濃度を定量分析する場合は、高木誠司著の「定性分析化学」(南江堂)の「第3章、チオ硫酸」に記載されているような、ヨウ素-ヨウ化物-デンプン試薬を脱色する反応を用いた滴定法が用いられてきた。しかし、この滴定法で正確な濃度分析を行うには熟練を要するうえ、分析結果が得られるまでに1時間程度かかるため、分析結果を硫酸ニッケルの製造方法にタイミングよく反映させにくかった。その結果、浸出液中のチオ硫酸濃度が高いことが判明しても、既に硫酸ニッケル結晶中にチオ硫酸塩が混入してしまう問題が生ずることがあった。
2. Measurement of thiosulfuric acid concentration by polarization measurement Conventionally, when quantitatively analyzing the concentration of thiosulfuric acid contained in an aqueous nickel sulfate solution obtained by leaching nickel sulfide, the method described in Seiji Takagi's "Qualitative Analysis Chemistry" (Nankodo) is used. Titration methods using decolorizing iodine-iodide-starch reagents have been used, as described in "Chapter 3, Thiosulfate". However, this titration method requires skill to perform an accurate concentration analysis, and it takes about an hour to obtain the analysis results. As a result, even if the concentration of thiosulfuric acid in the leachate was found to be high, there was a problem that the thiosulfate was already mixed in the nickel sulfate crystals.

また、浸出工程で生成されるチオ硫酸の量をある程度想定して、例えばこの想定した量のチオ硫酸を除去するために必要な量の酸化剤を浸出工程の後工程において添加して酸化処理を行うことが考えられるが、この場合は実際に生成したチオ硫酸の量が想定した量よりも多いと酸化剤の量が不足することになるので硫酸ニッケル結晶製品にチオ硫酸が混入してしまい、逆に実際に生成したチオ硫酸の量が想定した量より少ないと酸化剤が過剰に添加されることになるので不経済となる。従って、実際に生成したチオ硫酸に対して過不足のない酸化処理を行うためには、チオ硫酸濃度の迅速な定量分析が必要となる。 In addition, assuming the amount of thiosulfuric acid generated in the leaching process to some extent, for example, the amount of oxidizing agent necessary to remove the assumed amount of thiosulfuric acid is added in the post-leaching process to perform the oxidation treatment. However, in this case, if the amount of thiosulfuric acid actually produced is larger than the expected amount, the amount of oxidizing agent will be insufficient, so thiosulfuric acid will be mixed in the nickel sulfate crystal product, Conversely, if the amount of thiosulfuric acid actually produced is less than the expected amount, the oxidizing agent will be added excessively, which is uneconomical. Therefore, rapid quantitative analysis of the concentration of thiosulfuric acid is required in order to properly oxidize the actually produced thiosulfuric acid.

かかる実情に鑑み、本発明者らは、ニッケル硫化物の硫酸浸出処理により生成される浸出液中のチオ硫酸濃度の迅速な測定方法について鋭意検討を行ったところ、電気化学的測定法である分極測定によって該浸出液中のチオ硫酸濃度を迅速且つ簡便に測定可能であることを見出した。なお、分極測定とは、測定対象の溶液に電極を浸漬させ、該電極の電位を掃引しながら電流を計測することで定性分析及び定量分析を行うことが可能な電気化学的分析法であり、矩形波状の電位を直線状の電位に重ねて印加することで電位掃引を行う矩形波ボルタンメトリー(SWV)、一定の掃引速度で電位を増減させるサイクリックボルタンメトリー(SV)等を挙げることができる。 In view of such circumstances, the present inventors have made extensive studies on a method for rapidly measuring the thiosulfuric acid concentration in the leachate produced by the sulfuric acid leaching treatment of nickel sulfide. It was found that the concentration of thiosulfuric acid in the leachate can be measured quickly and easily. Polarization measurement is an electrochemical analysis method that allows qualitative analysis and quantitative analysis by immersing an electrode in a solution to be measured and measuring the current while sweeping the potential of the electrode. Examples include rectangular wave voltammetry (SWV), in which a rectangular wave potential is superimposed on a linear potential to sweep the potential, and cyclic voltammetry (SV), in which the potential is increased or decreased at a constant sweep rate.

すなわち、本発明の硫酸ニッケルの製造方法の実施形態においては、チオ硫酸濃度のみが異なる複数の硫酸ニッケル水溶液の各々に対して、分極測定を行ってその分極曲線を作成し、これら複数の硫酸ニッケル水溶液に対応する複数の分極曲線から、チオ硫酸濃度とピーク面積との関係を表す第1の検量線及びチオ硫酸濃度とピーク電位との関係を表す第2の検量線をそれぞれ求めておく。そして、測定対象の浸出液を分極測定することで測定用分極曲線を作成し、該測定用分極曲線のピーク面積を該第1の検量線に照合するか、又は該測定用分極曲線のピーク電位を該第2の検量線に照合することで該浸出液中のチオ硫酸濃度を求めるものである。 That is, in the embodiment of the method for producing nickel sulfate of the present invention, polarization measurement is performed for each of a plurality of nickel sulfate aqueous solutions that differ only in thiosulfate concentration to create a polarization curve, and these nickel sulfate A first calibration curve representing the relationship between thiosulfuric acid concentration and peak area and a second calibration curve representing the relationship between thiosulfuric acid concentration and peak potential are obtained from a plurality of polarization curves corresponding to aqueous solutions. Then, a polarization curve for measurement is prepared by measuring the polarization of the leachate to be measured, and the peak area of the polarization curve for measurement is collated with the first calibration curve, or the peak potential of the polarization curve for measurement is measured. The concentration of thiosulfuric acid in the leachate is obtained by comparing with the second calibration curve.

この分極測定による浸出液のチオ硫酸の濃度測定について、該分極測定が矩形波ボルタンメトリーである場合を例に挙げて、図2~4を参照しながら詳細に説明する。なお、以下の説明においては、測定感度が高くて測定時間が短い矩形波ボルタンメトリー(SWV法)について説明するが、サイクリックボルタンメトリー(CV)を用いてもよい。 The measurement of the concentration of thiosulfuric acid in the leachate by this polarization measurement will be described in detail with reference to FIGS. In the following description, rectangular wave voltammetry (SWV method) with high measurement sensitivity and short measurement time will be described, but cyclic voltammetry (CV) may be used.

先ず、一般的なニッケル・コバルト混合硫化物の硫酸浸出処理により得られる浸出液とほぼ同一のNi、Co、及び硫酸の濃度を有する硫酸ニッケル水溶液を調製し、これを8つに小分けする。そして、これら小分けした8つのうち、1つにはチオ硫酸を添加せずにブランクの模擬液とし、残る7つの模擬液にはチオ硫酸濃度が0.1mg/Lから20mg/Lの範囲内でそれぞれ異なるようチオ硫酸を添加する。このようにして調製した8種類の模擬液の各々を、好適には純水により2倍希釈する。なお、このように2倍希釈しないと、ボルタンメトリーの際に副反応が起こりやすくなり、正確な測定ができなくなるおそれがある。逆に、3倍以上に希釈すると、濃度が薄くなりすぎて、分析精度が低下するので好ましくない。 First, a nickel sulfate aqueous solution having almost the same concentrations of Ni, Co, and sulfuric acid as a leachate obtained by sulfuric acid leaching of a nickel/cobalt mixed sulfide is prepared, and divided into eight portions. Then, one of the eight subdivided solutions was used as a blank simulated solution without adding thiosulfuric acid, and the remaining seven simulated solutions had a thiosulfuric acid concentration in the range of 0.1 mg / L to 20 mg / L. Thiosulfate is added differently for each. Preferably, each of the eight simulated liquids thus prepared is diluted twice with pure water. If the solution is not diluted two-fold in this manner, side reactions tend to occur during voltammetry, and accurate measurement may not be possible. Conversely, if diluted more than 3-fold, the concentration becomes too thin and the accuracy of analysis is lowered, which is not preferable.

上記の2倍希釈した8種類の模擬液の各々を、ボルタンメトリー用セルに10mL入れて液温度25℃に調整し、この液に作用電極、対極、及び参照電極の先端部を浸漬させる。この状態でこれら3つの電極をALS社製ALS2325バイポテンショスタットに接続し、下記表1に示すSWVの条件で分極測定を行う。 10 mL of each of the 8 types of 2-fold diluted simulant solutions is placed in a voltammetry cell, the solution temperature is adjusted to 25° C., and the tips of the working electrode, counter electrode, and reference electrode are immersed in this solution. In this state, these three electrodes are connected to an ALS2325 bipotentiostat manufactured by ALS, and polarization measurement is performed under the SWV conditions shown in Table 1 below.

Figure 0007275569000001
Figure 0007275569000001

これにより、図2(a)~(h)に示すような、チオ硫酸濃度のみが異なる8種類の硫酸ニッケル水溶液にそれぞれ対応する8つの分極曲線が得られる。これら図2(a)~(h)の分極曲線のうち、チオ硫酸濃度が5mg/L以上20mg/L以下の範囲内に対応する図2(f)~(h)の分極曲線は、図3に示すように、チオ硫酸濃度の変化に伴って電位+1.0Vから+1.4Vの範囲内で生じるピークが大きく変形している。 As a result, as shown in FIGS. 2(a) to 2(h), eight polarization curves corresponding to eight types of nickel sulfate aqueous solutions differing only in thiosulfate concentration are obtained. Among the polarization curves of FIGS. 2(a) to (h), the polarization curves of FIGS. , the peak occurring within the potential range of +1.0 V to +1.4 V is greatly deformed with the change in thiosulfuric acid concentration.

そこで、これらチオ硫酸濃度5mg/L以上20mg/L以下に対応する図2(f)~(h)の分極曲線から、図4に示すように、電位+1.0Vから+1.4Vの範囲内で生じるピークのピーク面積とチオ硫酸濃度との関係を表す第1の検量線を作成する。なお、ピーク面積とは、図2(h)のチオ硫酸濃度20mg/Lの分極曲線のグラフに示すように、電位+1.0Vから+1.4Vの範囲内におけるピーク曲線の軌跡とx軸との間の領域の面積から、バックグラウンドとなる図2(a)のチオ硫酸濃度ゼロの分極曲線の軌跡とx軸との間の領域の面積を減じたものである。 Therefore, from the polarization curves of FIGS. A first calibration curve representing the relationship between the peak area of the resulting peak and the thiosulfate concentration is constructed. The peak area is defined as the distance between the trajectory of the peak curve in the potential range of +1.0 V to +1.4 V and the x-axis, as shown in the graph of the polarization curve at a thiosulfuric acid concentration of 20 mg/L in FIG. The area of the region between the x-axis and the locus of the polarization curve at zero thiosulfuric acid concentration in FIG.

一方、チオ硫酸濃度0.1mg/L以上20mg/L以下の範囲内に対応する図2(b)~(h)の分極曲線は、チオ硫酸濃度の変化に伴って電位-0.8Vから-0.6Vで生じるピークのピーク電位がシフトしている。そこで、これらチオ硫酸濃度0.1mg/L以上20mg/L以下の範囲内に対応する図2(b)~(h)の分極曲線から、図5に示すように、電位-0.8Vから-0.6Vの範囲内で生じるピークのピーク電位とチオ硫酸濃度との関係を表す第2の検量線を作成する。この図5の曲線の傾きから、チオ硫酸濃度が0.1mg/L以上5mg/L未満の範囲内にある場合は、この第2の検量線を用いてチオ硫酸濃度を求めるのが好ましいことがわかる。なお、ピーク電位とは、図2(b)のチオ硫酸濃度0.1mg/Lの分極曲線のグラフに示すように、電流値が最大値を示す部分の電位のことである。 On the other hand, the polarization curves in FIGS. 2(b) to (h) corresponding to the thiosulfuric acid concentration range of 0.1 mg/L or more and 20 mg/L or less change the potential from -0.8 V to - The peak potential of the peak occurring at 0.6V is shifted. Therefore, from the polarization curves of FIGS. A second calibration curve is prepared representing the relationship between the peak potential of peaks occurring within the range of 0.6 V and the thiosulfate concentration. From the slope of the curve in FIG. 5, it is preferable to determine the thiosulfate concentration using this second calibration curve when the thiosulfate concentration is in the range of 0.1 mg/L or more and less than 5 mg/L. Recognize. The peak potential is the potential at the portion where the current value shows the maximum value, as shown in the graph of the polarization curve at a thiosulfuric acid concentration of 0.1 mg/L in FIG. 2(b).

次に、測定対象の浸出液を上記と同様の条件で分極測定し、測定用分極曲線を作成する。そして、該測定用分極曲線のピーク面積を上記の第1の検量線に照合するか、又は該測定用分極曲線のピーク電位を上記の第2の検量線に照合する。これにより、上記の浸出液中のチオ硫酸濃度を求めることができる。具体的に説明すると、例えばHPAL法で作製されたニッケル・コバルト混合硫化物のスラリーを加圧下のオートクレーブ内で硫酸浸出処理することで生成した浸出液を採取し、この採取した浸出液を純水により2倍に希釈した後、上記と同様の条件でSWVボルタンメトリーを行って測定用分極曲線を作成する。 Next, the leached solution to be measured is subjected to polarization measurement under the same conditions as above to create a polarization curve for measurement. Then, the peak area of the polarization curve for measurement is collated with the first calibration curve, or the peak potential of the polarization curve for measurement is collated with the second calibration curve. Thus, the concentration of thiosulfuric acid in the leachate can be obtained. Specifically, for example, a nickel-cobalt mixed sulfide slurry prepared by the HPAL method is subjected to sulfuric acid leaching in an autoclave under pressure to collect a leachate produced, and the collected leachate is diluted with pure water. After diluting 1-fold, SWV voltammetry is performed under the same conditions as above to create a polarization curve for measurement.

そして、この測定用分極曲線と、上記の図2(a)のチオ硫酸濃度ゼロの検量線用分極曲線とを用いて電位+1.0Vから+1.4Vで生じるピークのピーク面積を求めると共に、該測定用分極曲線の電位-0.8Vから-0.6Vで生じるピークのピーク電位を読み取る。このようにして求めたピーク面積を上記の第1の検量線に照合するか、あるいは上記にて読み取ったピーク電位を上記の第2の検量線に照合することで、測定対象となる浸出液に含まれるチオ硫酸の濃度を求めることができる。 Then, using this polarization curve for measurement and the polarization curve for calibration curve with zero thiosulfuric acid concentration in FIG. The peak potential of the peak occurring at potentials -0.8V to -0.6V of the polarization curve for measurement is read. By comparing the peak area thus obtained with the above-described first calibration curve, or by comparing the peak potential read above with the above-described second calibration curve, It is possible to determine the concentration of thiosulfate added.

上記の分極測定においては、浸出液の採取から濃度を求めるまでにかかる時間は10分足らずであるので、前述した浸出工程S1の後工程の不純物除去工程S2において、主にチオ硫酸以外の不純物の除去処理に要する時間に比べて短時間で済ませることができる。よって、このチオ硫酸以外の不純物の除去処理の後段において行われる追加の酸化処理において、上記の分極測定の結果を反映させることができ、該追加の酸化処理において添加する酸化剤に過不足を生じさせることなく効率よくチオ硫酸を酸化分解することができる。 In the above polarization measurement, it takes less than 10 minutes to obtain the concentration of the leachate after collecting the leachate. It can be completed in a short time compared with the time required for processing. Therefore, in the additional oxidation treatment performed after the removal of impurities other than thiosulfuric acid, the results of the above polarization measurement can be reflected, and the oxidizing agent added in the additional oxidation treatment is excessive or insufficient. thiosulfuric acid can be efficiently oxidatively decomposed without

[実施例1]
図1に示すようなプロセスフローに沿ってニッケル・コバルト混合硫化物スラリーから硫酸ニッケル結晶を作製した後、無電解めっきによりニッケルめっき膜を作製して目視により評価した。具体的には、先ずスラリー調整工程S1において、公知のHPAL法により製造したNiを55質量%、Coを5.3質量%含むニッケル・コバルト混合硫化物に対して湿式粉砕及び目開き0.2mmの篩で篩別し、0.2mmオーバーの粗大粒子を除去した後、0.2mmアンダーの粒子に水を添加して原料スラリーを調製した。
[Example 1]
After producing nickel sulfate crystals from the nickel/cobalt mixed sulfide slurry along the process flow shown in FIG. 1, a nickel plating film was produced by electroless plating and visually evaluated. Specifically, first, in the slurry adjustment step S1, a nickel-cobalt mixed sulfide containing 55% by mass of Ni and 5.3% by mass of Co produced by a known HPAL method is subjected to wet pulverization and an opening of 0.2 mm. After removing coarse particles over 0.2 mm, water was added to the particles under 0.2 mm to prepare a raw material slurry.

次に、浸出工程S2において、上記原料スラリーをオートクレーブに装入し、温度165℃、圧力1.8MPaGに調整された条件下で、硫酸及び空気を供給して硫酸浸出処理を行った。このオートクレーブから抜き出した浸出液を採取して純水で2倍に希釈し、上記表1に示す条件で分極測定を行って測定用分極曲線を作成した。その結果、電位+1.0Vから+1.4Vで生じるピークのピーク面積は0.3×10-8A・Vであった。また該測定用分極曲線の電位-0.8Vから-0.6Vで生じるピークのピーク電位は-0.64Vであった。これら値をそれぞれ図4及び図5の検量線と照合することにより、浸出液のチオ硫酸濃度が5mg/Lであることがわかった。この浸出液の採取からそのチオ硫酸濃度が求まるまでに要した時間は8分であった。 Next, in the leaching step S2, the raw material slurry was charged into an autoclave, and sulfuric acid and air were supplied under conditions adjusted to a temperature of 165° C. and a pressure of 1.8 MPaG to carry out a sulfuric acid leaching treatment. The leachate extracted from the autoclave was sampled, diluted with pure water to 2-fold, and subjected to polarization measurement under the conditions shown in Table 1 above to prepare a polarization curve for measurement. As a result, the peak area of the peak generated at a potential of +1.0V to +1.4V was 0.3×10 −8 A·V. The peak potential of the peak occurring between -0.8V and -0.6V in the polarization curve for measurement was -0.64V. By comparing these values with the calibration curves of FIGS. 4 and 5, respectively, it was found that the thiosulfuric acid concentration of the leachate was 5 mg/L. The time required from collection of this leachate to determination of its thiosulfuric acid concentration was 8 minutes.

上記にて判明した浸出液内のチオ硫酸を分解するため、不純物除去工程S3において、直ちに浸出液1000cc当たり標準状態で10cc/minの流量の空気を60分間吹き込むエアレーションを行った。このエアレーション後に再度、上記と同じ条件で分極測定を行ってその分極曲線及び第1及び第2の検量線からチオ硫酸濃度を求めたところ、分析限界以下であった。このようにして不純物除去工程S3で不純物を除去することで得た高純度硫酸ニッケル水溶液に対して、晶析工程S4において濃縮することで硫酸ニッケル結晶を生成させた。 In order to decompose the thiosulfuric acid in the leachate found above, immediately in the impurity removal step S3, aeration was performed by blowing air at a flow rate of 10 cc/min per 1000 cc of the leachate for 60 minutes under standard conditions. After this aeration, the polarization measurement was performed again under the same conditions as above, and the concentration of thiosulfuric acid was obtained from the polarization curve and the first and second calibration curves, which was below the analytical limit. In the crystallization step S4, nickel sulfate crystals were generated by concentrating the high-purity nickel sulfate aqueous solution obtained by removing impurities in the impurity removal step S3 in this manner.

上記にて作製した硫酸ニッケル結晶を溶解し、得られた硫酸ニッケル水溶液にジ亜リン酸ナトリウムを添加して、硫酸ニッケル25g/L、ジ亜リン酸ナトリウム20g/Lとなるよう組成を調整しためっき液を作製した。このめっき液を容量1Lのビーカーに入れ、温度90±3℃、めっき時間10分の条件で5cm×5cmのステンレス製薄板上にニッケルめっき皮膜を形成させた。このめっき皮膜が形成された薄板をビーカーから取り出して水洗し、目視によりめっき皮膜の外観を評価したところ、平滑なめっき皮膜が形成されていた。 The nickel sulfate crystals prepared above were dissolved, and sodium diphosphite was added to the resulting nickel sulfate aqueous solution to adjust the composition to 25 g/L of nickel sulfate and 20 g/L of sodium diphosphite. A plating solution was prepared. This plating solution was placed in a 1 L beaker, and a nickel plating film was formed on a 5 cm×5 cm stainless steel thin plate under the conditions of 90±3° C. for 10 minutes. The thin plate with the plated film formed thereon was taken out from the beaker, washed with water, and the appearance of the plated film was visually evaluated. As a result, a smooth plated film was formed.

(実施例2)
実施例1とは異なる日時に採取した浸出液を用いた以外は実施例1と同様に硫酸浸出処理し、該硫酸浸出処理で得た浸出液を採取して分極測定により測定用分極曲線を作成した。その結果、電位+1.0Vから+1.4Vで生じるピークのピーク面積は0.1×10-10A・Vであった。また該測定用分極曲線の電位-0.8Vから-0.6Vで生じるピークのピーク電位は-0.70Vであった。これら値をそれぞれ図4及び図5の検量線と照合することにより、浸出液のチオ硫酸濃度が1mg/Lであることがわかった。この浸出液の採取からそのチオ硫酸濃度が求まるまでに要した時間は8分であった。
(Example 2)
Sulfuric acid leaching was performed in the same manner as in Example 1 except that the leaching solution was collected on a different date and time than in Example 1. The leaching solution obtained by the sulfuric acid leaching treatment was sampled and a polarization curve for measurement was prepared by polarization measurement. As a result, the peak area of the peak generated at a potential of +1.0V to +1.4V was 0.1×10 −10 A·V. The peak potential of the peak occurring between -0.8V and -0.6V in the polarization curve for measurement was -0.70V. By comparing these values with the calibration curves of FIGS. 4 and 5, respectively, it was found that the thiosulfuric acid concentration of the leachate was 1 mg/L. The time required from collection of this leachate to determination of its thiosulfuric acid concentration was 8 minutes.

以降は、エアレーションの際の空気の流量を10cc/minに代えて2cc/minにした以外は実施例1と同様にして不純物除去工程S3、晶析工程S4、及びニッケルめっき皮膜の形成を行ったところ、エアレーション後に再度行った分極測定によるチオ硫酸濃度は分析限界以下であった。また、実施例1と同様の平滑なめっき皮膜が形成されていた。 After that, the impurity removal step S3, the crystallization step S4, and the formation of the nickel plating film were performed in the same manner as in Example 1, except that the air flow rate during aeration was changed from 10 cc/min to 2 cc/min. However, the concentration of thiosulfuric acid in the polarization measurement performed again after the aeration was below the analysis limit. Moreover, a smooth plating film similar to that of Example 1 was formed.

(比較例1)
実施例1及び実施例2とは異なる日時に採取した浸出液を用い、実施例1と同様に硫酸浸出処理した後、該硫酸浸出処理で得た浸出液に対して分極測定に代えてヨウ素滴定法によりチオ硫酸濃度測定した。その結果、チオ硫酸濃度が3mg/Lであることがわかった。このヨウ素滴定法は、ヨウ素添加後の未反応ヨウ素を逆滴定するため、測定に要した時間は60分であった。以降は、エアレーションの際の空気の流量を10cc/minに代えて6cc/minにした以外は実施例1と同様に不純物除去工程S3、晶析工程S4、及びニッケルめっき皮膜の形成を行ったところ、エアレーション後に再度行った滴定法によるチオ硫酸濃度は分析限界以下であった。
(Comparative example 1)
Using a leachate collected on a different date and time than in Examples 1 and 2, the same sulfuric acid leaching treatment as in Example 1 was performed. Thiosulfate concentration was measured. As a result, the thiosulfate concentration was found to be 3 mg/L. In this iodine titration method, unreacted iodine is back-titrated after the addition of iodine, so the time required for the measurement was 60 minutes. After that, the impurity removal step S3, the crystallization step S4, and the formation of the nickel plating film were performed in the same manner as in Example 1, except that the air flow rate during aeration was changed from 10 cc/min to 6 cc/min. The concentration of thiosulfuric acid determined by the titration method, which was repeated after aeration, was below the analytical limit.

しかしながら、無電解ニッケルめっき膜を目視にて評価したところ、微細な凹凸が発生しており、表面性状が実施例1や2に比べて悪化していた。これは、チオ硫酸の測定に要した時間が長かったため、浸出液に含まれるチオ硫酸が不純物除去工程S3において十分に酸化分解されず、このチオ硫酸を含んだ浸出液が次工程の晶析工程S4に流出したためと考えられる。 However, when the electroless nickel plating film was visually evaluated, fine unevenness was generated, and the surface properties were worse than those of Examples 1 and 2. This is because the thiosulfuric acid contained in the leachate was not sufficiently oxidized and decomposed in the impurity removal step S3 because the time required for measuring thiosulfuric acid was long, and the leachate containing this thiosulfuric acid was sent to the next crystallization step S4. Presumably because it leaked.

(参考例)
実施例1、2及び比較例1とは異なる日時に採取した浸出液を用いた以外は実施例1と同様に硫酸浸出処理し、該硫酸浸出処理で得た浸出液を採取して分極測定により測定用分極曲線を作成した。その結果、電位+1.0Vから+1.4Vで生じるピークのピーク面積は0.3×10-8A・Vであった。また該測定用分極曲線の電位-0.8Vから-0.6Vで生じるピークのピーク電位は-0.63Vであった。これら値をそれぞれ図4及び図5の検量線と照合することにより、浸出液のチオ硫酸濃度が5mg/Lであることがわかった。この浸出液の採取からそのチオ硫酸濃度が求まるまでに要した時間は8分であった。
(Reference example)
Sulfuric acid leaching was performed in the same manner as in Example 1 except that the leaching solution was collected on a different date and time than in Examples 1 and 2 and Comparative Example 1, and the leaching solution obtained by the sulfuric acid leaching treatment was collected and used for measurement by polarization measurement. A polarization curve was generated. As a result, the peak area of the peak generated at a potential of +1.0V to +1.4V was 0.3×10 −8 A·V. The peak potential of the peak occurring between -0.8V and -0.6V in the polarization curve for measurement was -0.63V. By comparing these values with the calibration curves of FIGS. 4 and 5, respectively, it was found that the thiosulfuric acid concentration of the leachate was 5 mg/L. The time required from collection of this leachate to determination of its thiosulfuric acid concentration was 8 minutes.

不純物除去工程S3において、エアレーションの際の空気の流量を実施例1と同様に10cc/minしたところ、エアレーション後に再度行った分極測定によるチオ硫酸濃度は0.5mg/Lであった。その後、エアレーション条件の調整を行わなかった。その結果、作製した硫酸ニッケル結晶を用いて実施例1と同様に形成した無電解ニッケルめっき膜を目視にて評価したところ、微細な凹凸が発生しており実施例1に比べて表面性状が悪化していた。 In the impurity removal step S3, when the flow rate of air during aeration was set to 10 cc/min as in Example 1, the thiosulfuric acid concentration was 0.5 mg/L according to the polarization measurement performed again after the aeration. After that, no adjustments were made to the aeration conditions. As a result, when the electroless nickel plating film formed in the same manner as in Example 1 using the produced nickel sulfate crystals was visually evaluated, fine unevenness was generated and the surface properties were worse than in Example 1. Was.

S1 スラリー調製工程
S2 浸出工程
S3 不純物除去工程
S4 晶析工程
S1 slurry preparation step S2 leaching step S3 impurity removal step S4 crystallization step

Claims (4)

ニッケル硫化物スラリーを高圧下で硫酸浸出処理及び酸化処理して不純物を含む粗硫酸ニッケル水溶液からなる浸出液を得る浸出工程と、該浸出液に含まれる不純物を除去する不純物除去工程と、該不純物除去工程によって得た高純度硫酸ニッケル水溶液から硫酸ニッケル結晶を晶析させる結晶工程とからなる硫酸ニッケルの製造方法であって、チオ硫酸濃度のみが異なる複数の硫酸ニッケル水溶液の各々に対して分極測定により分極曲線を作成し、得られた複数の分極曲線からチオ硫酸濃度とピーク面積との関係を表す第1の検量線及びチオ硫酸濃度とピーク電位との関係を表す第2の検量線をそれぞれ求めておき、測定対象の前記浸出液を分極測定することで測定用分極曲線を作成し、該測定用分極曲線のピーク面積を該第1の検量線に照合するか、又は該測定用分極曲線のピーク電位を該第2の検量線に照合することで該浸出液中のチオ硫酸濃度を求め、得られた前記浸出液のチオ硫酸濃度に基づいて前記不純物除去工程の処理条件を調整することを特徴とする硫酸ニッケルの製造方法。 The nickel sulfide slurry is subjected to sulfuric acid leaching and oxidation treatment under high pressure to obtain a leaching solution composed of a crude nickel sulfate aqueous solution containing impurities, an impurity removing step of removing impurities contained in the leaching solution, and an impurity removing step. and a crystallization step of crystallizing nickel sulfate crystals from the high-purity nickel sulfate aqueous solution obtained by the method for producing nickel sulfate, wherein each of a plurality of nickel sulfate aqueous solutions differing only in thiosulfate concentration is polarized by polarization measurement. A first calibration curve representing the relationship between the thiosulfate concentration and the peak area and a second calibration curve representing the relationship between the thiosulfate concentration and the peak potential are obtained from the plurality of polarization curves thus obtained. Then, a polarization curve for measurement is created by measuring the polarization of the leachate to be measured, and the peak area of the polarization curve for measurement is compared with the first calibration curve, or the peak potential of the polarization curve for measurement is compared with the second calibration curve to determine the thiosulfuric acid concentration in the leachate, and based on the obtained thiosulfuric acid concentration in the leachate, the processing conditions of the impurity removal step are adjusted. Method for producing nickel. 前記分極測定が、矩形波ボルタンメトリー(SWV)であることを特徴とする、請求項に記載の硫酸ニッケルの製造方法。 A method for producing nickel sulfate according to claim 1 , characterized in that the polarization measurement is square wave voltammetry (SWV). 前記第1の検量線は、前記複数の分極曲線の電位+1.0Vから+1.4V(参照電極Ag/AgCL電極)の範囲内で生じるピークのピーク面積を用いることを特徴とする、請求項に記載の硫酸ニッケルの製造方法。 2. The first calibration curve uses peak areas of peaks occurring within a potential range of +1.0 V to +1.4 V (reference electrode Ag/AgCL electrode) of the plurality of polarization curves. The method for producing nickel sulfate according to 1. 前記第2の検量線は、前記複数の分極曲線の電位-0.8Vから-0.6V(参照電極Ag/AgCL電極)の範囲内で生じるピークのピーク電位を用いることを特徴とする、請求項に記載の硫酸ニッケルの製造方法。 The second calibration curve uses the peak potential of the peak occurring within the potential range of -0.8 V to -0.6 V (reference electrode Ag/AgCL electrode) of the plurality of polarization curves. Item 3. A method for producing nickel sulfate according to item 2 .
JP2018243027A 2018-12-26 2018-12-26 Method for producing nickel sulfate Active JP7275569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018243027A JP7275569B2 (en) 2018-12-26 2018-12-26 Method for producing nickel sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243027A JP7275569B2 (en) 2018-12-26 2018-12-26 Method for producing nickel sulfate

Publications (2)

Publication Number Publication Date
JP2020105034A JP2020105034A (en) 2020-07-09
JP7275569B2 true JP7275569B2 (en) 2023-05-18

Family

ID=71450496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243027A Active JP7275569B2 (en) 2018-12-26 2018-12-26 Method for producing nickel sulfate

Country Status (1)

Country Link
JP (1) JP7275569B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114934183A (en) * 2022-05-30 2022-08-23 金川集团镍盐有限公司 Method for producing nickel sulfate solution by using waste nickel net

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141594A (en) 2015-02-02 2016-08-08 住友金属鉱山株式会社 Production method of nickel sulfate
JP2016210648A (en) 2015-05-08 2016-12-15 住友金属鉱山株式会社 Method of producing nickel sulfate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141594A (en) 2015-02-02 2016-08-08 住友金属鉱山株式会社 Production method of nickel sulfate
JP2016210648A (en) 2015-05-08 2016-12-15 住友金属鉱山株式会社 Method of producing nickel sulfate

Also Published As

Publication number Publication date
JP2020105034A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
EP3208352B1 (en) Method for recovering high-purity scandium
EP2179967A1 (en) Method for treatment of arsenic-containing nonferrous smelting intermediate product
JPH0688147A (en) Wet refining method
US4323541A (en) Selective two stage leaching of nickel from nickel-copper matte
JP6299620B2 (en) Method for producing nickel sulfate
US2722480A (en) Catalytic precipitation of nickel, cobalt and zinc sulfides from dilute acid solutions
JP7275569B2 (en) Method for producing nickel sulfate
EP3276015A1 (en) Method for recovering scandium
JP5786021B2 (en) Method for recovering valuable metals
JP7380118B2 (en) Method for producing nickel sulfate
CA2634876C (en) Methods of making and washing scorodite
JP3254501B2 (en) Method for removing arsenic from acidic solution containing arsenic and iron
JPH0762664B2 (en) Method for measuring and adjusting the electrochemical potential in a slurry
DE2605887C2 (en) Process for the extraction of copper from copper- and iron-containing sulphidic ore and concentrate by electrolysis
JP7172581B2 (en) Nickel sulfate production method including thiosulfate concentration control by polarization measurement
JP7273265B2 (en) Nickel sulfate production method including concentration control of oxidant component by polarization measurement
EP3508593A1 (en) Method for producing scandium compound, and scandium compound
CN103398893A (en) Determination method for trace ions in chromium salt
JP7404801B2 (en) Nickel sulfate manufacturing method including concentration control of oxidizing agent component by ORP measurement
DE112014005310T5 (en) Preparation of tungsten carbide compositions
EP0671965A1 (en) Separating zinc and manganese oxides
CN109573953A (en) A kind of preparation method of hydroxide
US20210262060A1 (en) Method for separating copper from nickel and cobalt
KR101827051B1 (en) Method of leaching metal oxide
Macolino et al. Manganese recovering from alkaline spent batteries by ammonium peroxodisulfate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R150 Certificate of patent or registration of utility model

Ref document number: 7275569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150