JP7271697B2 - オプティカルフローの改善の早期終了 - Google Patents

オプティカルフローの改善の早期終了 Download PDF

Info

Publication number
JP7271697B2
JP7271697B2 JP2021549390A JP2021549390A JP7271697B2 JP 7271697 B2 JP7271697 B2 JP 7271697B2 JP 2021549390 A JP2021549390 A JP 2021549390A JP 2021549390 A JP2021549390 A JP 2021549390A JP 7271697 B2 JP7271697 B2 JP 7271697B2
Authority
JP
Japan
Prior art keywords
prediction
motion vector
block
unit
optical flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021549390A
Other languages
English (en)
Other versions
JP2022521748A (ja
Inventor
セミフ・エセンリク
スリラム・セトゥラマン
ジーヴァ・ラジ・エー
サーガル・コテチャ
Original Assignee
ホアウェイ・テクノロジーズ・カンパニー・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホアウェイ・テクノロジーズ・カンパニー・リミテッド filed Critical ホアウェイ・テクノロジーズ・カンパニー・リミテッド
Publication of JP2022521748A publication Critical patent/JP2022521748A/ja
Priority to JP2023071739A priority Critical patent/JP2023099561A/ja
Application granted granted Critical
Publication of JP7271697B2 publication Critical patent/JP7271697B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/557Motion estimation characterised by stopping computation or iteration based on certain criteria, e.g. error magnitude being too large or early exit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • H04N19/82Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop

Description

本発明は、ピクチャ処理の分野に関し、より詳細には、オプティカルフローの改善に関する。
ビデオコーディング(ビデオ符号化および復号)は、広範なデジタルビデオアプリケーション、たとえば、ブロードキャストデジタルTV、インターネットおよびモバイルネットワーク上のビデオ送信、ビデオチャットのようなリアルタイム会話アプリケーション、テレビ会議、DVDおよびブルーレイディスク、ビデオコンテンツ獲得および編集システム、ならびにセキュリティアプリケーションのカムコーダにおいて使用される。
比較的短いビデオでさえも描くために必要とされるビデオデータの量はかなり多くなり得、それが、データが限られた帯域幅の容量を有する通信ネットワークを介してストリーミングされるかまたはそれ以外の方法で伝達されるべきであるときに困難をもたらす可能性がある。したがって、ビデオデータは、概して、現代の通信ネットワークを介して伝達される前に圧縮される。メモリリソースが限られている可能性があるので、ビデオがストレージデバイスに記憶されるとき、ビデオのサイズも問題となり得る。多くの場合、ビデオ圧縮デバイスは、送信または記憶の前にビデオデータをコーディングするために送信元においてソフトウェアおよび/またはハードウェアを使用し、それによって、デジタルビデオ画像を表現するために必要とされるデータの量を削減する。そして、圧縮されたデータが、ビデオデータを復号するビデオ解凍デバイスによって送信先において受信される。限られたネットワークリソースおよびより高いビデオ品質のますます増加する需要によって、ピクチャ品質をほとんどまたはまったく犠牲にせずに圧縮比を高める改善された圧縮および解凍技術が、望ましい。
最近、インター予測コーディングが、双予測の(bi-predictive)オプティカルフローの改善によって改良された。この技術は、コーディングされるピクチャの現在のブロックのインター予測の正確性を高める可能性がある。しかし、双予測のオプティカルフローの改善は、計算負荷の点で比較的高価である。したがって、正確なインター予測と計算負荷との間の妥協点が、見つけられなければならない。本発明は、この問題に対処する。
本出願の実施形態は、独立請求項による符号化および復号のための装置および方法を提供する。
上述のおよびその他の目的は、独立請求項の主題により達成される。さらなる実装の形態は、従属請求項、明細書、および図面から明らかである。
復号デバイスまたは符号化デバイスにおいて実施されるビデオコーディングの方法が提供され、方法は、
現在のブロック(たとえば、コーディングブロックまたは予測ブロックまたは下位ブロック(sub-block))に関する初期動きベクトルを取得するステップと、
初期動きベクトルに基づいて現在のブロック内のサンプル値に関する第1の予測(インター双予測(biprediction)に関する2つの予測値)を取得するステップと、
第1の予測に従って第1のマッチングコスト(たとえば、何らかの類似性(もしくは相違)の尺度からなる、または何らかの類似性(もしくは相違)の尺度を含む。下の詳細な説明も参照されたい)を計算するステップと、
少なくとも1つの予め設定された条件に従って、オプティカルフロー改善プロセスが実行されるべきか否かを判定するステップであって、少なくとも1つの予め設定された条件が、計算された第1のマッチングコストが閾値以上であるかどうかという条件を含む、ステップと、
オプティカルフロー改善プロセスが実行されるべきであると判定されるときに、現在のブロック内のサンプル値に関する最終的なインター予測を取得するためにオプティカルフロー改善プロセスを実行するステップと
を含む。
したがって、本発明によれば、オプティカルフローの改善、特に、双方向のオプティカルフローの改善が、条件付きで実行される。比較的高価なオプティカルフローの改善は、インター予測プロセス全体の正確性の好適な所望の向上を可能にする特定の状況下でのみ実行される。オプティカルフローの改善がオプティカルフローの改善を実行するために必要とされる比較的高い計算負荷に値するインター予測の正確性の向上をおそらくもたらさないと判定される場合、オプティカルフローの改善は、抑制される可能性がある。したがって、復号時間が、大幅に削減され得る。初期動きベクトルが、ビットストリーム内でシグナリングされる可能性がある。代替的に、動きベクトルの予測および動きベクトルの差の成分が、初期動きベクトルに関して提供される可能性がある。
たとえば、少なくとも1つの予め設定された条件は、現在のブロックがデコーダ側の動きベクトルの改善によって予測されることが可能であるという条件を含む。少なくとも1つの予め設定された条件に含まれるこの特定の条件は、不必要な計算量を避けるために最初に調べられる可能性がある。
特定の実施形態によれば、少なくとも1つの予め設定された条件のすべてが満たされると判定されるときに、オプティカルフロー改善プロセスが実行されるべきであると判定される。少なくとも1つの予め設定された条件は、原理上、1つまたは複数のさらなる条件を含む可能性がある。たとえば、少なくとも1つの予め設定された条件は、実行されているオプティカル改善プロセスを持つために特定のフラグが(たとえば1に)設定されるという条件を含む可能性がある。条件がすべて満たされない場合、計算需要を減らすために、特定の実施形態によれば、オプティカルフローの改善がまったく実行されない可能性がある。
現在のブロック内のサンプル値に関する第1の予測は、何らかのサブピクセルの精度を実現するために第1の補間フィルタに基づいて取得される可能性がある。特に、第1の補間フィルタは、高速なフィルタ処理を可能にする比較的単純なバイリニア補間フィルタである可能性がある。
復号デバイスまたは符号化デバイスにおいて実施されるビデオコーディングの発明の方法は、オプティカルフローの改善とは異なる何らかの動きベクトルの改善を含む可能性がある。したがって、方法は、初期動きベクトルおよび第1のマッチングコストに基づいて、改善された動きベクトルを取得するステップと、改善された動きベクトルに従って現在のブロック内のサンプル値に関する第2の予測を取得するステップと、オプティカルフロー改善プロセスが実行されるべきであると判定されるとき、(既に改善された予測を表す)第2の予測に基づいてオプティカルフローの改善を実行するステップとを含む可能性がある。インター予測プロセスの全体的な正確性が、改善された動きベクトルの使用によって高められる可能性がある。
第1の予測および第1のマッチングコストは、動きベクトルの改善のために既に計算されていることが留意される。したがって、オプティカルフロー改善プロセスの早期終了/抑制を判断するために余分な計算は、必要なく、動きベクトル改善プロセスに含まれる以前の計算の結果が、再利用され得る。
発明の方法の上述の実施形態の各々において、初期動きベクトルに基づいて現在のブロック内のサンプル値に関する第1の予測を取得するステップは、初期動きベクトルに基づいて候補のいくつかのペアを取得するステップと、候補のペアのうちの少なくとも1つに基づいて現在のブロック内のサンプル値に関する第1の予測を取得するステップとを含む可能性があり、第1の予測に従って第1のマッチングコストを計算するステップは、第1の予測に基づいて候補のペアの各々に関するマッチングコストを計算するステップと、決定されたマッチングコストのうちの最小のマッチングコストを第1のマッチングコストとして決定するステップとを含む可能性がある。
動きベクトルの改善の過程で、改善された動きベクトルに関する候補のいくつかのペアが、取得される可能性があり、ペアは、初期動きベクトルのペアを含む。たとえば、改善された動きベクトルに関する候補のペアは、初期動きベクトルのペア(MV0, MV1)およびペア(MV0 + (0,1), MV1 + (0,-1))、(MV0 + (1,0), MV1 + (-1,0))、(MV0 + (0,-1), MV1 + (0,1))、(MV0 + (-1,0), MV1 + (1,0))を含み、(1,-1)は、水平(またはx)方向の変位1および垂直(またはy)方向の変位-1を有するベクトルを表す。ペアの各々に関して、そのペアに対応するマッチングコストが、決定されることが可能であり、上述の第1のマッチングコストは、改善された動きベクトルに関する候補のペアに関して決定されたマッチングコストのうちの最小のマッチングコストであるように決定されることが可能である。特定の例によれば、第1のマッチングコストは、初期動きベクトルのペア(MV0, MV1)または改善された動きベクトルMV0'およびMV1'による(MV0' = MV0 + (0,1), MV1' = MV1 + (0,-1))に対応するマッチングコストであることが可能である。
その種の第1のマッチングコストの使用は、コーディング全体の観点で有利である可能性がある。
現在のブロック内のサンプル値に関する上述の第2の予測は、第2の補間フィルタに従って取得される可能性がある。この第2の補間フィルタは、比較的高価であるが、サブピクセルの精度の点で有利である6タップまたは8タップ補間フィルタである可能性がある。
上述の改善された動きベクトルは、インター予測のための改善された動きベクトルの好適さを制御するために第2のマッチングコストに従って取得される可能性がある。第2のマッチングコストの値が別の閾値以上であるとき、オプティカルフロー改善プロセスが実行されるべきであると判定される可能性がある。そうでない場合、いかなるオプティカルフロー改善プロセスも実行するに値しないと判定される可能性がある。
別の実施形態によれば、オプティカルフロー改善プロセスが実行されるべきでないと判定されるときにのみ、最終的なインター予測は、第2の予測の加重和によって取得される。比較的コストが高いオプティカルフロー改善プロセスを実行することが適切であるとみなされない場合、第2の予測の加重和が、十分であると考えられる可能性があるいくらかの正確性を提供する。
概して、閾値または別の閾値は、第1の予測のビット深度に基づいて計算される値である可能性がある。さらに、閾値は、第1の予測に従って第1のマッチングコストを計算するために使用される予測されたサンプルの数に従って取得される可能性がある。さらに、閾値は、現在のブロックのサイズ(ピクセル数で表された幅および高さ)に従って取得される可能性がある。たとえば、閾値は、thr = nCbW×nCbH×Kであることが可能であり、式中、Kは、ゼロよりも大きな値であり、nCbWおよびnCbHは、現在のブロックの幅および高さである。たとえば、K = 2である。
さらに、上述の第2のマッチングコストは、動きベクトルの改善中に評価されたマッチングコスト、および最小のマッチングコストの位置の近くのマッチングコストの形状に関する予め定義されたモデルを使用して取得された導出されたコストである可能性がある。この文脈の予め定義されたモデルは、線形結合モデルである可能性がある。最小のマッチングコストの位置の近くのマッチングコストの形状に関する予め定義されたモデルを使用することは、インター予測プロセスの正確性を高める可能性がある。
上述の実施形態のすべてによる方法は、現在のブロック内のサンプル値に関する最終的なインター予測を含むインター予測ブロックを生成するステップをさらに含む可能性がある。
さらに、上述の実施形態のいずれか1つによる方法を実行するための何らかの処理回路を含む、エンコーダまたはデコーダが、提供される。さらに、上述の実施形態のいずれか1つによる方法を実行するためのプログラムコードを含む、コンピュータプログラム製品が、提供される。
ビデオコーディングの方法の上述の変化形のすべては、デコーダまたはエンコーダにおいて実施され得る。したがって、1つまたは複数のプロセッサと、プロセッサに結合され、プロセッサによって実行するためのプログラミングを記憶する非一時的コンピュータ可読ストレージ媒体とを含み、プログラミングが、プロセッサによって実行されるときに、上述の実施形態のいずれか1つによる方法を実行するようにデコーダを構成する、デコーダまたはエンコーダが提供される。
ビデオコーディングの方法の上述の変化形のすべては、上述の必要に対処するために画像エンコーダおよび/または画像デコーダにおいて使用するためのデバイスにおいて実施され得る。したがって、画像エンコーダおよび/または画像デコーダにおいて使用するためのデバイスが提供され、デバイスは、現在のブロック(たとえば、コーディングブロックまたは予測ブロックまたは下位ブロック)に関する初期動きベクトルを取得するように構成された初期動きベクトルユニットと、初期動きベクトルに基づいて現在のブロック内のサンプル値に関する第1の予測を取得するように構成された第1の予測ユニットと、第1の予測に従って第1のマッチングコスト(たとえば、類似性または相違の尺度)を計算するように構成された第1のマッチングコスト計算ユニットと、少なくとも1つの予め設定された条件に従って、オプティカルフロー改善プロセスが実行されるべきか否かを判定するように構成されたオプティカルフロー改善プロセス判定ユニットであって、少なくとも1つの予め設定された条件が、計算された第1のマッチングコストが閾値以上であるかどうかという条件を含む、オプティカルフロー改善プロセス判定ユニットと、オプティカルフロー改善プロセスが実行されるべきであると判定されるときに、現在のブロック内のサンプル値に関する最終的なインター予測を取得するためにオプティカルフロー改善プロセスを実行するように構成されたオプティカルフロー改善プロセス実行ユニットとを含む。
上で説明され、その変化形が下で説明されるこのデバイスは、上述の方法と同じ利点を提供する。
少なくとも1つの予め設定された条件は、現在のブロックがデコーダ側の動きベクトルの改善によって予測されることが可能であるという条件を含む可能性がある。
オプティカルフロー改善プロセス判定ユニットは、少なくとも1つの予め設定された条件のすべてが満たされると判定されるときに、オプティカルフロー改善プロセスが実行されるべきであると判定するように構成される可能性がある。
デバイスは、第1の補間フィルタ(たとえば、バイリニア補間フィルタ)を含む可能性があり、第1の予測ユニットは、第1の補間フィルタによって現在のブロック内のサンプル値に関する第1の予測を取得するように構成される可能性がある。
デバイスは、初期動きベクトルおよび第1のマッチングコストに基づいて、改善された動きベクトルを取得するように構成された改善された動きベクトルユニットと、
改善された動きベクトルに従って現在のブロック内のサンプル値に関する第2の予測を取得するように構成された第2の予測ユニットと
をさらに含む可能性があり、
オプティカルフロー改善プロセス実行ユニットは、オプティカルフロー改善プロセスが実行されるべきであるとオプティカルフロー改善プロセス判定ユニットによって判定されるときに第2の予測に基づいてオプティカルフローの改善を実行するように構成される可能性がある。
デバイスの上述の実施形態において、第1の予測ユニットは、初期動きベクトルに基づいて候補のいくつかのペアを取得することと、候補のペアのうちの少なくとも1つに基づいて現在のブロック内のサンプル値に関する第1の予測を取得することとによって、初期動きベクトルに基づいて現在のブロック内のサンプル値に関する第1の予測を取得するように構成される可能性がある。さらに、第1のマッチングコスト計算ユニットは、第1の予測に基づいて候補のペアの各々に関するマッチングコストを決定することと、決定されたマッチングコストのうちの最小のマッチングコストを第1のマッチングコストとして決定することとによって、第1の予測に従って第1のマッチングコストを計算するように構成される可能性がある。
実施形態によれば、デバイスは、第2の補間フィルタ(たとえば、比較的高いサブピクセルの精度の比較的高価な6タップまたは8タップ補間フィルタ)をさらに含む可能性があり、第2の予測ユニットは、第2の補間フィルタによって現在のブロック内のサンプル値に関する第2の予測を取得するように構成される可能性がある。
別の実施形態によれば、デバイスは、第2のマッチングコストを計算するように構成された第2のマッチングコスト計算ユニットをさらに含み、改善された動きベクトルユニットは、第2のマッチングコストに従って改善された動きベクトルを取得するように構成される。この場合、オプティカルフロー改善プロセス判定ユニットは、第2のマッチングコストの値が別の閾値以上であるとき、オプティカルフロー改善プロセスが実行されるべきであると判定するように構成される可能性がある。
デバイスは、オプティカルフロー改善プロセスが実行されるべきでないとオプティカルフロー改善プロセス判定ユニットによって判定されるときにのみ、第2の予測の加重和によって最終的なインター予測を取得するように構成された加重和予測ユニットをさらに含む可能性がある。
さらに、デバイスは、第1の予測のビット深度に基づいて閾値または別の閾値を計算するように構成された閾値計算ユニットを含む可能性がある。また、デバイスは、第1のマッチングコスト計算ユニットによって第1の予測に従って第1のマッチングコストを計算するために使用される予測されたサンプルの数に従って閾値を計算するように構成された閾値計算ユニットをさらに含む可能性がある。また、デバイスは、現在のブロックのサイズに従って閾値を計算するように構成された閾値計算ユニットをさらに含む可能性がある。たとえば、閾値は、thr = nCbW×nCbH×Kであることが可能であり、式中、Kは、ゼロよりも大きな値であり、nCbWおよびnCbHは、現在のブロックの幅および高さである。たとえば、K = 2である。
特定の実施形態によれば、第2のマッチングコスト計算ユニットは、改善された動きベクトルユニットによって実行される動きベクトルの改善中に評価されたマッチングコスト、および最小のマッチングコストの位置の近くのマッチングコストの形状に関する予め定義されたモデル(たとえば、線形結合モデル)を使用して取得された導出されたコストとして第2のマッチングコストを計算するように構成される。
上述の実施形態のいずれかによるデバイスは、現在のブロック内のサンプル値に関する最終的なインター予測を含むインター予測ブロックを生成するように構成されたインター予測ブロック生成ユニットをさらに含む可能性がある。
1つまたは複数の実施形態の詳細が、添付の図面および以下の説明に記載されている。その他の特徴、目的、および利点は、明細書、図面、および特許請求の範囲から明らかになるであろう。
以下で、本発明の実施形態が、添付の図および図面を参照してより詳細に説明される。
本発明の実施形態を実装するように構成されたビデオコーディングシステムの例を示すブロック図である。 本発明の実施形態を実装するように構成されたビデオコーディングシステムの別の例を示すブロック図である。 本発明の実施形態を実装するように構成されたビデオエンコーダの例を示すブロック図である。 本発明の実施形態を実装するように構成されたビデオデコーダの例示的な構造を示すブロック図である。 符号化装置または復号装置の例を示すブロック図である。 符号化装置または復号装置の別の例を示すブロック図である。 オプティカル改善プロセスの実施形態を示す流れ図である。 オプティカル改善プロセスの別の実施形態を示す流れ図である。 オプティカル改善プロセスの別の実施形態を示す流れ図である。 オプティカル改善プロセスの別の実施形態を示す流れ図である。 本発明の実施形態による復号デバイスまたは符号化デバイスにおいて実施されるビデオコーディングの方法を示す流れ図である。 本発明の実施形態による画像エンコーダおよび/または画像デコーダにおいて使用するためのデバイスを示す図である。
以下で、同一の参照符号は、別途明記されない場合、同一のまたは少なくとも機能的に等価な特徴を指す。
以下の説明においては、本開示の一部を形成し、本発明の実施形態の特定の態様または本発明の実施形態が使用される可能性がある特定の態様を例として示す添付の図面が参照される。本発明の実施形態は、その他の態様において使用され、図面に示されない構造的または論理的変更を含む可能性があることが理解される。したがって、以下の詳細な説明は、限定的意味に理解されるべきでなく、本発明の範囲は、添付の特許請求の範囲によって定義される。
たとえば、説明される方法に関連する開示は、方法を実行するように構成された対応するデバイスまたはシステムにも当てはまる可能性があり、その逆の可能性もあることが理解される。たとえば、1つまたは複数の特定の方法のステップが説明される場合、対応するデバイスは、説明される1つまたは複数の方法のステップを実行するための1つまたは複数のユニット、たとえば、機能ユニット(たとえば、1つもしくは複数のステップを実行する1つのユニット、または複数のステップのうちの1つもしくは複数をそれぞれが実行する複数のユニット)を、たとえそのような1つまたは複数のユニットが明示的に説明されないかまたは図に示されないとしても含む可能性がある。一方、たとえば、特定の装置が1つまたは複数のユニット、たとえば、機能ユニットに基づいて説明される場合、対応する方法は、1つまたは複数のユニットの機能を実行するための1つのステップ(たとえば、1つもしくは複数のユニットの機能を実行する1つのステップ、または複数のユニットのうちの1つもしくは複数の機能をそれぞれが実行する複数のステップ)を、たとえそのような1つまたは複数のステップが明示的に説明されないかまたは図に示されないとしても含む可能性がある。さらに、本明細書において説明される様々な例示的な実施形態および/または態様の特徴は、そうでないことが明記されない限り互いに組み合わされる可能性があることが理解される。
ビデオコーディングは、概して、ビデオまたはビデオシーケンスを形成するピクチャのシーケンスの処理を指す。用語「ピクチャ」の代わりに、用語「フレーム」または「画像」が、ビデオコーディングの分野において同義語として使用される可能性がある。ビデオコーディング(または概してコーディング)は、2つの部分、ビデオ符号化およびビデオ復号を含む。ビデオ符号化は、送信元の側で実行され、概して、(より効率的な記憶および/または送信のために)ビデオピクチャを表現するために必要とされるデータの量を減らすために元のビデオピクチャを(たとえば、圧縮によって)処理することを含む。ビデオ復号は、送信先の側で実行され、概して、ビデオピクチャを再構築するためにエンコーダと比べて逆の処理を含む。ビデオピクチャ(または概してピクチャ)の「コーディング」に言及する実施形態は、ビデオピクチャまたはそれぞれのビデオシーケンスの「符号化」または「復号」に関すると理解される。符号化部分と復号部分との組合せは、コーデック(コーディングおよびデコーディング)とも呼ばれる。
可逆ビデオコーディングの場合、(記憶または送信中に送信損失またはその他のデータ損失がないと仮定して)元のビデオピクチャが再構築されることが可能であり、つまり、再構築されたビデオピクチャは元のビデオピクチャと同じ品質を有する。不可逆ビデオコーディングの場合、ビデオピクチャを表現するデータの量を減らすために、たとえば、量子化によるさらなる圧縮が実行され、これは、デコーダにおいて完全に再構築され得ず、つまり、再構築されたビデオピクチャの品質は、元のビデオピクチャの品質に比べてより低いまたはより悪い。
いくつかのビデオコーディング規格は、「不可逆ハイブリッドビデオコーデック」のグループに属する(つまり、サンプル領域(sample domain)における空間および時間予測と変換領域(transform domain)において量子化を適用するための2D変換コーディングとを組み合わせる)。ビデオシーケンスの各ピクチャは、概して、1組の重なり合わないブロックに区分けされ、コーディングは、概して、ブロックレベルで実行される。言い換えると、エンコーダにおいて、ビデオは、概して、たとえば、空間(イントラピクチャ)予測および/または時間(インターピクチャ)予測を使用して予測ブロック(prediction block)を生成し、現在のブロック(現在処理されている/処理されるブロック)から予測ブロックを差し引いて残差ブロックを取得し、残差ブロックを変換し、変換領域において残差ブロックを量子化して送信されるデータの量を削減する(圧縮)ことによってブロック(ビデオブロック)レベルで処理され、つまり、符号化され、一方、デコーダにおいては、表現するために現在のブロックを再構築するために、エンコーダと比べて逆の処理が、符号化されたまたは圧縮されたブロックに適用される。さらに、エンコーダは、後続のブロックを処理する、つまり、コーディングするために両方が同一の予測(たとえば、イントラおよびインター予測)ならびに/または再構築を生成するようにデコーダの処理ループを複製する。
以下で、ビデオコーディングシステム10、ビデオエンコーダ20およびビデオデコーダ30の実施形態が、図1から図3に基づいて説明される。
図1Aは、本出願の技術を利用する可能性がある例示的なコーディングシステム10、たとえば、ビデオコーディングシステム10(または短くコーディングシステム10)を示す概略的なブロック図である。ビデオコーディングシステム10のビデオエンコーダ20(または短くエンコーダ20)およびビデオデコーダ30(または短くデコーダ30)は、本出願において説明される様々な例による技術を実行するように構成される可能性があるデバイスの例を示す。
図1Aに示されるように、コーディングシステム10は、符号化されたピクチャデータ13を復号するために、たとえば、送信先デバイス14に符号化されたピクチャデータ21を提供するように構成された送信元デバイス12を含む。
送信元デバイス12は、エンコーダ20を含み、追加的に、つまり、任意選択で、ピクチャソース16、プリプロセッサ(または前処理ユニット)18、たとえば、ピクチャプリプロセッサ18、および通信インターフェースまたは通信ユニット22を含む可能性がある。
ピクチャソース16は、任意の種類のピクチャ撮影デバイス、たとえば、実世界のピクチャを撮影するためのカメラ、ならびに/または任意の種類のピクチャ生成デバイス、たとえば、コンピュータによってアニメーションされるピクチャを生成するためのコンピュータグラフィックスプロセッサ、または実世界のピクチャ、コンピュータによって生成されたピクチャ(たとえば、画面コンテンツ(screen content)、仮想現実(VR)ピクチャ)、および/もしくはそれらの任意の組合せ(たとえば、拡張現実(AR)ピクチャ)を取得および/もしくは提供するための任意の種類のその他のデバイスを含むかまたはそのようなデバイスである可能性がある。ピクチャソースは、上述のピクチャのいずれかを記憶するための任意の種類のメモリまたはストレージである可能性がある。
プリプロセッサ18および前処理ユニット18によって実行される処理と区別して、ピクチャまたはピクチャデータ17は、生ピクチャまたは生ピクチャデータ17とも呼ばれる可能性がある。
プリプロセッサ18は、(生)ピクチャデータ17を受け取り、ピクチャデータ17に対して前処理を実行して前処理されたピクチャ19または前処理されたピクチャデータ19を取得するように構成される。プリプロセッサ18によって実行される前処理は、たとえば、トリミング、(たとえば、RGBからYCbCrへの)カラーフォーマット変換、色補正、または雑音除去を含む可能性がある。前処理ユニット18は、任意の構成要素である可能性があることが理解され得る。
ビデオエンコーダ20は、前処理されたピクチャデータ19を受け取り、符号化されたピクチャデータ21を提供するように構成される(さらなる詳細が、下で、たとえば、図2に基づいて説明される)。
送信元デバイス12の通信インターフェース22は、符号化されたピクチャデータ21を受け取り、符号化されたピクチャデータ21(またはその任意のさらに処理されたバージョン)を、記憶するかまたは直接再構築するために別のデバイス、たとえば、送信先デバイス14または任意のその他のデバイスに通信チャネル13を介して送信するように構成される可能性がある。
送信先デバイス14は、デコーダ30(たとえば、ビデオデコーダ30)を含み、追加的に、つまり、任意選択で、通信インターフェースまたは通信ユニット28、ポストプロセッサ32(または後処理ユニット32)、およびディスプレイデバイス34を含む可能性がある。
送信先デバイス14の通信インターフェース28は、たとえば、送信元デバイス12から直接、または任意のその他のソース、たとえば、ストレージデバイス、たとえば、符号化されたピクチャデータのストレージデバイスから符号化されたピクチャデータ21(またはその任意のさらに処理されたバージョン)を受信し、符号化されたピクチャデータ21をデコーダ30に提供するように構成される。
通信インターフェース22および通信インターフェース28は、送信元デバイス12と送信先デバイス14との間の直接通信リンク、たとえば、直接有線もしくはワイヤレス接続を介して、あるいは任意の種類のネットワーク、たとえば、有線もしくはワイヤレスネットワークもしくはそれらの任意の組合せ、または任意の種類のプライベートおよびパブリックネットワーク、またはそれらの任意の種類の組合せを介して符号化されたピクチャデータ21または符号化されたデータ13を送信または受信するように構成される可能性がある。
通信インターフェース22は、たとえば、符号化されたピクチャデータ21を適切なフォーマット、たとえば、パケットにパッケージングする、および/または通信リンクもしくは通信ネットワークを介して送信するための任意の種類の送信の符号化もしくは処理を使用して符号化されたピクチャデータを処理するように構成される可能性がある。
通信インターフェース22の相手先を形成する通信インターフェース28は、たとえば、送信されたデータを受信し、任意の種類の対応する送信の復号もしくは処理および/またはパッケージングの解除を使用して送信データを処理して符号化されたピクチャデータ21を取得するように構成される可能性がある。
通信インターフェース22と通信インターフェース28との両方が、送信元デバイス12から送信先デバイス14の方を指す図1Aの通信チャネル13に関する矢印によって示される単方向通信インターフェース、または双方向通信インターフェースとして構成される可能性があり、たとえば、接続をセットアップし、通信リンクおよび/またはデータ送信、たとえば、符号化されたピクチャデータの送信に関連する任意のその他の情報を確認し、やりとりするために、たとえば、メッセージを送信および受信するように構成される可能性がある。
デコーダ30は、符号化されたピクチャデータ21を受信し、復号されたピクチャデータ31または復号されたピクチャ31を提供するように構成される(さらなる詳細が、下で、たとえば、図3または図5に基づいて説明される)。
送信先デバイス14のポストプロセッサ32は、復号されたピクチャデータ31(再構築されたピクチャデータとも呼ばれる)、たとえば、復号されたピクチャ31を後処理して後処理されたピクチャデータ33、たとえば、後処理されたピクチャ33を取得するように構成される。後処理ユニット32によって実行される後処理は、たとえば、(たとえば、YCbCrからRGBへの)カラーフォーマット変換、色補正、トリミング、またはリサンプリング、またはたとえばディスプレイデバイス34による表示のためにたとえば復号されたピクチャデータ31を準備するための任意のその他の処理を含む可能性がある。
送信先デバイス14のディスプレイデバイス34は、たとえば、ユーザまたは視聴者に対してピクチャを表示するために後処理されたピクチャデータ33を受け取るように構成される。ディスプレイデバイス34は、再構築されたピクチャを示すための任意の種類のディスプレイ、たとえば、一体型または外部ディスプレイもしくはモニタであるかまたはそのようなディスプレイもしくはモニタを含む可能性がある。ディスプレイは、たとえば、液晶ディスプレイ(LCD)、有機発光ダイオード(OLED)ディスプレイ、プラズマディスプレイ、プロジェクタ、マイクロLEDディスプレイ、液晶オンシリコン(LCoS: liquid crystal on silicon)、デジタル光プロセッサ(DLP: digital light processor)、または任意の種類のその他のディスプレイを含む可能性がある。
図1Aは送信元デバイス12および送信先デバイス14を別々のデバイスとして示すが、デバイスの実施形態は、両方または両方の機能、送信元デバイス12または対応する機能および送信先デバイス14または対応する機能を含む可能性もある。そのような実施形態において、送信元デバイス12または対応する機能および送信先デバイス14または対応する機能は、同じハードウェアおよび/もしくはソフトウェアを使用してまたは別々のハードウェアおよび/もしくはソフトウェアまたはそれらの任意の組合せによって実装される可能性がある。
説明に基づいて当業者に明らかになるように、異なるユニットの機能または図1Aに示される送信元デバイス12および/もしくは送信先デバイス14内の機能の存在および(厳密な)分割は、実際のデバイスおよびアプリケーションに応じて変わる可能性がある。
エンコーダ20(たとえば、ビデオエンコーダ20)またはデコーダ30(たとえば、ビデオデコーダ30)またはエンコーダ20とデコーダ30との両方は、1つまたは複数のマイクロプロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、ディスクリート論理、ハードウェア、それらのビデオコーディングに専用のまたは任意の組合せなどの、図1Bに示された処理回路によって実装される可能性がある。エンコーダ20は、図2のエンコーダ20および/または本明細書において説明される任意のその他のエンコーダシステムもしくはサブシステムに関連して検討される様々なモジュールを具現化するために処理回路46によって実装される可能性がある。デコーダ30は、図3のデコーダ30および/または本明細書において説明される任意のその他のデコーダシステムもしくはサブシステムに関連して検討される様々なモジュールを具現化するために処理回路46によって実装される可能性がある。処理回路は、後で検討される様々な動作を実行するように構成される可能性がある。図5に示されるように、技術が部分的にソフトウェアで実装される場合、デバイスは、好適な非一時的コンピュータ可読ストレージ媒体にソフトウェアのための命令を記憶する可能性があり、本開示の技術を実行するために1つまたは複数のプロセッサを使用するハードウェアにおいて命令を実行する可能性がある。ビデオエンコーダ20およびビデオデコーダ30のどちらかが、たとえば、図1Bに示されるように単一のデバイス内の組み合わされたエンコーダ/デコーダ(コーデック)の一部として組み込まれる可能性がある。
送信元デバイス12および送信先デバイス14は、任意の種類のハンドヘルドまたは固定デバイス、たとえば、ノートブックまたはラップトップコンピュータ、モバイル電話、スマートフォン、タブレットまたはタブレットコンピュータ、カメラ、デスクトップコンピュータ、セットトップボックス、テレビ、ディスプレイデバイス、デジタルメディアプレーヤー、ビデオゲームコンソール、(コンテンツサービスサーバまたはコンテンツ配信サーバなどの)ビデオストリーミングデバイス、放送受信機デバイス、放送送信機デバイスなどを含む広範なデバイスのいずれかを含む可能性があり、オペレーティングシステムを使用しないかまたは任意の種類のオペレーティングシステムを使用する可能性がある。場合によっては、送信元デバイス12および送信先デバイス14は、ワイヤレス通信に対応している可能性がある。したがって、送信元デバイス12および送信先デバイス14は、ワイヤレス通信デバイスである可能性がある。
場合によっては、図1Aに示されたビデオコーディングシステム10は、例であるに過ぎず、本開示の技術は、符号化デバイスと復号デバイスとの間のいかなるデータ通信も含むとは限らないビデオコーディングの状況(たとえば、ビデオの符号化またはビデオの復号)に適用される可能性がある。その他の例においては、データが、ローカルメモリから取り出される、またはネットワークを介してストリーミングされる、などである。ビデオ符号化デバイスが、データを符号化し、メモリに記憶する可能性があり、および/またはビデオ復号デバイスが、メモリからデータを取り出し、復号する可能性がある。いくつかの例において、符号化および復号が、互いに通信せず、単にメモリにデータを符号化し、および/またはメモリからデータを取り出し、復号するデバイスによって実行される。
説明の便宜上、本発明の実施形態は、たとえば、高効率ビデオコーディング(HEVC: High-Efficiency Video Coding)、または多目的ビデオコーディング(VVC: Versatile Video coding)、ITU-Tビデオコーディング専門家グループ(VCEG: Video Coding Experts Group)およびISO/IEC動画専門家グループ(MPEG: Motion Picture Experts Group)のビデオコーディングに関する共同作業チーム(JCT-VC: Joint Collaboration Team on Video Coding)によって開発された次世代ビデオコーディング規格の参照ソフトウェアを参照することによって本明細書において説明される。当業者は、本発明の実施形態がHEVCまたはVVCに限定されないことを理解するであろう。
エンコーダおよび符号化方法
図2は、本出願の技術を実装するように構成される例示的なビデオエンコーダ20の概略的なブロック図を示す。図2の例において、ビデオエンコーダ20は、入力201(または入力インターフェース201)、残差計算ユニット204、変換処理ユニット206、量子化ユニット208、量子化解除ユニット210、逆変換処理ユニット212、再構築ユニット214、ループフィルタユニット220、復号ピクチャバッファ(DPB: decoded picture buffer)230、モード選択ユニット260、エントロピー符号化ユニット270、および出力272(または出力インターフェース272)を含む。モード選択ユニット260は、インター予測ユニット244、イントラ予測ユニット254、および区分けユニット262を含む可能性がある。インター予測ユニット244は、動き推定ユニットおよび動き補償ユニット(図示せず)を含む可能性がある。図2に示されたビデオエンコーダ20は、ハイブリッドビデオエンコーダまたはハイブリッドビデオコーデックによるビデオエンコーダとも呼ばれる可能性がある。
残差計算ユニット204、変換処理ユニット206、量子化ユニット208、モード選択ユニット260は、エンコーダ20の順方向信号経路を形成するとみなされる可能性があり、一方、量子化解除ユニット210、逆変換処理ユニット212、再構築ユニット214、バッファ216、ループフィルタ220、復号ピクチャバッファ(DPB)230、インター予測ユニット244、およびイントラ予測ユニット254は、ビデオエンコーダ20の逆方向信号経路を形成するとみなされる可能性があり、ビデオエンコーダ20の逆方向信号経路は、デコーダの信号経路(図3のビデオデコーダ30を参照されたい)に対応する。量子化解除ユニット210、逆変換処理ユニット212、再構築ユニット214、ループフィルタ220、復号ピクチャバッファ(DPB)230、インター予測ユニット244、およびイントラ予測ユニット254は、ビデオエンコーダ20の「内蔵デコーダ」を形成するともみなされる。
ピクチャ&ピクチャの区分け(ピクチャ&ブロック)
エンコーダ20は、たとえば、入力201を介してピクチャ17(またはピクチャデータ17)、たとえば、ビデオまたはビデオシーケンスを形成するピクチャのシーケンスのピクチャを受け取るように構成される可能性がある。受け取られたピクチャまたはピクチャデータは、前処理されたピクチャ19(または前処理されたピクチャデータ19)である可能性もある。簡単にするために、以下の説明は、ピクチャ17に言及する。ピクチャ17は、(特に、ビデオコーディングにおいて、現在のピクチャをその他のピクチャ、たとえば、同じビデオシーケンス、つまり、現在のピクチャも含むビデオシーケンスの既に符号化されたおよび/または復号されたピクチャと区別するために)現在のピクチャまたはコーディングされるピクチャとも呼ばれる可能性がある。
(デジタル)ピクチャは、強度(intensity)値を有するサンプルの2次元配列または行列とみなされるかまたはみなされ得る。配列のサンプルは、ピクセル(ピクチャエレメントの短縮形)またはペルとも呼ばれる可能性がある。配列またはピクチャの水平および垂直方向(または軸)のサンプル数は、ピクチャのサイズおよび/または解像度を定義する。色の表現のために、概して、3つの色成分が使用され、つまり、ピクチャが表現されるかまたは3つのサンプル配列を含む可能性がある。RBGフォーマットまたは色空間で、ピクチャは、対応する赤、緑、および青のサンプル配列を含む。しかし、ビデオコーディングにおいて、各ピクセルは、概して、輝度(luminance)およびクロミナンス(chrominance)フォーマットまたは色空間、たとえば、Y(代わりにLが使用されることもある)によって示される輝度成分ならびにCbおよびCrによって示される2つのクロミナンス成分を含むYCbCrで表される。輝度(または短くルマ(luma))成分Yは、明るさまたは(たとえば、グレースケールピクチャと同様の)グレーレベルの強度を表し、一方、2つのクロミナンス(または短くクロマ(chroma))成分CbおよびCrは、色度または色情報成分を表す。したがって、YCbCrフォーマットのピクチャは、輝度サンプル値(Y)の輝度サンプル配列およびクロミナンス値(CbおよびCr)の2つのクロミナンスサンプル配列を含む。RGBフォーマットのピクチャは、YCbCrフォーマットに変換される(converted)または変換される(transformed)可能性があり、その逆の可能性があり、プロセスは、色変換(transformation)または変換(conversion)としても知られる。ピクチャがモノクロである場合、ピクチャは、輝度サンプル配列のみを含む可能性がある。したがって、ピクチャは、たとえば、モノクロフォーマットにおいてはルマサンプルの配列であり、または4:2:0、4:2:2、および4:4:4カラーフォーマットにおいてはルマサンプルの配列およびクロマサンプルの2つの対応する配列である可能性がある。
ビデオエンコーダ20の実施形態は、ピクチャ17を複数の(通常は重なり合わない)ピクチャブロック203に区分けするように構成されたピクチャ区分けユニット(図2に示さず)を含む可能性がある。これらのブロックは、ルートブロック、マクロブロック(H.264/AVC)、またはコーディングツリーブロック(CTB: coding tree block)もしくはコーディングツリーユニット(CTU: coding tree unit)(H.265/HEVCおよびVVC)とも呼ばれる可能性がある。ピクチャ区分けユニットは、ビデオシーケンスのすべてのピクチャおよびブロックサイズを定義する対応するグリッドに関して同じブロックサイズを使用するか、あるいはピクチャまたはピクチャのサブセットもしくはグループの間でブロックサイズを変更し、各ピクチャを対応するブロックに区分けするように構成される可能性がある。
さらなる実施形態において、ビデオエンコーダは、ピクチャ17のブロック203、たとえば、ピクチャ17を形成する1つの、いくつかの、またはすべてのブロックを直接受け取るように構成される可能性がある。ピクチャブロック203は、現在のピクチャブロックまたはコーディングされるピクチャブロックとも呼ばれる可能性がある。
ピクチャ17と同様に、ピクチャブロック203は、ピクチャ17よりも寸法が小さいが、強度値(サンプル値)を有するサンプルの2次元配列または行列とやはりみなされるかまたはみなされ得る。言い換えると、ブロック203は、適用されるカラーフォーマットに応じて、たとえば、1つのサンプル配列(たとえば、モノクロピクチャ17の場合はルマ配列、またはカラーピクチャの場合はルマもしくはクロマ配列)、あるいは3つのサンプル配列(たとえば、カラーピクチャ17の場合はルマおよび2つのクロマ配列)、あるいは任意のその他の数および/または種類の配列を含む可能性がある。ブロック203の水平および垂直方向(または軸)のサンプル数は、ブロック203のサイズを定義する。したがって、ブロックは、たとえば、サンプルのMxN(M列×N行)配列または変換係数のMxN配列である可能性がある。
図2に示されたビデオエンコーダ20の実施形態は、ピクチャ17をブロック毎に符号化するように構成される可能性があり、たとえば、符号化および予測が、ブロック203毎に実行される。
図2に示されるビデオエンコーダ20の実施形態は、スライス(ビデオスライスとも呼ばれる)を使用することによってピクチャを区分けするおよび/または符号化するようにさらに構成される可能性があり、ピクチャは、1つもしくは複数の(概して重なり合わない)スライスに区分けされるかまたは1つもしくは複数の(概して重なり合わない)スライスを使用して符号化される可能性があり、各スライスは、1つまたは複数のブロック(たとえば、CTU)を含む可能性がある。
図2に示されるビデオエンコーダ20の実施形態は、タイルグループ(ビデオタイルグループとも呼ばれる)および/またはタイル(ビデオタイルとも呼ばれる)を使用することによってピクチャを区分けするおよび/または符号化するようにさらに構成される可能性があり、ピクチャは、1つもしくは複数の(概して重なり合わない)タイルグループに区分けされるかまたは1つもしくは複数の(概して重なり合わない)タイルグループを使用して符号化される可能性があり、各タイルグループは、たとえば、1つもしくは複数のブロック(たとえば、CTU)または1つもしくは複数のタイルを含む可能性があり、各タイルは、たとえば、長方形の形をしている可能性があり、1つまたは複数のブロック(たとえば、CTU)、たとえば、完全なまたは断片的な(fractional)ブロックを含む可能性がある。
残差の計算
残差計算ユニット204は、たとえば、サンプル毎に(ピクセル毎に)ピクチャブロック203のサンプル値から予測ブロック265のサンプル値を差し引いてサンプル領域において残差ブロック205を取得することによって、ピクチャブロック203および予測ブロック265(予測ブロック265についてのさらなる詳細は後で与えられる)に基づいて残差ブロック205(残差205とも呼ばれる)を計算するように構成される可能性がある。
変換
変換処理ユニット206は、残差ブロック205のサンプル値に対して変換、たとえば、離散コサイン変換(DCT)または離散サイン変換(DST)を適用して変換領域において変換係数207を取得するように構成される可能性がある。変換係数207は、変換残差係数とも呼ばれ、変換領域において残差ブロック205を表現する可能性がある。
変換処理ユニット206は、H.265/HEVCのために規定された変換などのDCT/DSTの整数近似を適用するように構成される可能性がある。直交DCT変換と比較して、そのような整数近似は、概して、特定の率でスケーリングされる。順および逆変換によって処理される残差ブロックのノルム(norm)を維持するために、追加的な倍率(scaling factor)が、変換プロセスの一部として適用される。倍率は、概して、倍率がシフト演算のために2の累乗であること、変換係数のビット深度、正確さと実装コストとの間のトレードオフなどのような特定の制約に基づいて選択される。たとえば、特定の倍率が、たとえば、逆変換処理ユニット212による逆変換(およびたとえば、ビデオデコーダ30における逆変換処理ユニット312による対応する逆変換)のために指定され、たとえば、エンコーダ20の変換処理ユニット206による順変換のための対応する倍率が、それに応じて指定される可能性がある。
ビデオエンコーダ20(それぞれ、変換処理ユニット206)の実施形態は、たとえば、ビデオデコーダ30が変換パラメータを受信し、復号のために使用する可能性があるように、たとえば、そのままであるかまたはエントロピー符号化ユニット270によって符号化されるかもしくは圧縮される変換パラメータ、たとえば、ある種の1つの変換または複数の変換を出力するように構成される可能性がある。
量子化
量子化ユニット208は、たとえば、スカラー量子化またはベクトル量子化を適用することによって変換係数207を量子化して量子化された係数209を取得するように構成される可能性がある。量子化された係数209は、量子化された変換係数209または量子化された残差係数209とも呼ばれる可能性がある。
量子化プロセスは、変換係数207の一部またはすべてに関連するビット深度を削減する可能性がある。たとえば、nビットの変換係数が、量子化中にmビットの変換係数に切り捨てられる可能性があり、nは、mよりも大きい。量子化の度合いは、量子化パラメータ(QP: quantization parameter)を調整することによって修正される可能性がある。たとえば、スカラー量子化に関して、より細かいまたはより粗い量子化を達成するために異なるスケーリングが適用される可能性がある。より小さな量子化ステップサイズは、より細かい量子化に対応し、一方、より大きな量子化ステップサイズは、より粗い量子化に対応する。適用可能な量子化ステップサイズが、量子化パラメータ(QP)によって示される可能性がある。量子化パラメータは、たとえば、適用可能な量子化ステップサイズの予め定義された組へのインデックスである可能性がある。たとえば、小さな量子化パラメータが、細かい量子化(小さな量子化ステップサイズ)に対応する可能性があり、大きな量子化パラメータが、粗い量子化(大きな量子化ステップサイズ)に対応する可能性があり、またはその逆である可能性がある。量子化は、量子化ステップサイズによる除算を含む可能性があり、たとえば、量子化解除ユニット210による対応するおよび/または逆量子化解除は、量子化ステップサイズによる乗算を含む可能性がある。一部の規格、たとえば、HEVCによる実施形態は、量子化パラメータを使用して量子化ステップサイズを決定するように構成される可能性がある。概して、量子化ステップサイズは、除算を含む等式の固定小数点近似(fixed point approximation)を使用して量子化パラメータに基づいて計算される可能性がある。量子化ステップサイズおよび量子化パラメータに関する等式の固定小数点近似において使用されるスケーリングが原因で修正される可能性がある残差ブロックのノルムを復元するために、量子化および量子化解除に関して追加的な倍率が導入される可能性がある。1つの例示的な実装においては、逆変換および量子化解除のスケーリングが、組み合わされる可能性がある。代替的に、カスタマイズされた量子化テーブルが使用され、たとえば、ビットストリーム内でエンコーダからデコーダにシグナリングされる可能性がある。量子化は
、不可逆演算であり、損失は、量子化ステップサイズが大きくなるにつれて増加する。
ビデオエンコーダ20(それぞれ、量子化ユニット208)の実施形態は、たとえば、ビデオデコーダ30が量子化パラメータを受信し、復号のために適用する可能性があるように、たとえば、そのままであるかまたはエントロピー符号化ユニット270によって符号化される量子化パラメータ(QP)を出力するように構成される可能性がある。
量子化解除
量子化解除ユニット210は、たとえば、量子化ユニット208と同じ量子化ステップサイズに基づいてまたはそれを使用して、量子化ユニット208により適用された量子化方式の逆を適用することによって、量子化された係数に量子化ユニット208の量子化解除を適用して量子化解除された係数211を取得するように構成される。量子化解除された係数211は、量子化解除された残差係数211とも呼ばれ、--量子化による損失が原因で概して変換係数と同一ではないが--変換係数207に対応する可能性がある。
逆変換
逆変換処理ユニット212は、変換処理ユニット206によって適用された変換の逆変換、たとえば、逆離散コサイン変換(DCT)または逆離散サイン変換(DST)またはその他の逆変換を適用してサンプル領域において再構築された残差ブロック213(または対応する量子化解除された係数213)を取得するように構成される。再構築された残差ブロック213は、変換ブロック(transform block)213とも呼ばれる可能性がある。
再構築
再構築ユニット214(たとえば、加算器または合算器214)は、たとえば、再構築された残差ブロック213のサンプル値と予測ブロック265のサンプル値とを--サンプル毎に--足すことによって予測ブロック265に変換ブロック213(すなわち、再構築された残差ブロック213)を足してサンプル領域において再構築されたブロック215を取得するように構成される。
フィルタリング
ループフィルタユニット220(または短く「ループフィルタ」220)は、再構築されたブロック215をフィルタリングしてフィルタリングされたブロック221を取得する、または概して、再構築されたサンプルをフィルタリングしてフィルタリングされたサンプルを取得するように構成される。ループフィルタユニットは、たとえば、ピクセルの遷移を平滑化するかまたはそれ以外の方法でビデオの品質を改善するように構成される。ループフィルタユニット220は、デブロッキングフィルタ、サンプル適応オフセット(SAO: sample-adaptive offset)フィルタ、または1つもしくは複数のその他のフィルタ、たとえば、バイラテラルフィルタ、適応ループフィルタ(ALF: adaptive loop filter)、鮮鋭化、平滑化フィルタ、もしくは共同フィルタ(collaborative filter)、もしくはこれらの任意の組合せなどの1つまたは複数のループフィルタを含む可能性がある。ループフィルタユニット220は図2にループ内フィルタであるものとして示されるが、その他の構成において、ループフィルタユニット220は、ループ後フィルタとして実装される可能性がある。フィルタリングされたブロック221は、フィルタリングされた再構築されたブロック221とも呼ばれる可能性がある。
ビデオエンコーダ20(それぞれ、ループフィルタユニット220)の実施形態は、たとえば、デコーダ30が同じループフィルタのパラメータまたはそれぞれのループフィルタを受信し、復号のために適用する可能性があるように、たとえば、そのままであるかまたはエントロピー符号化ユニット270によって符号化される(サンプル適応オフセット情報などの)ループフィルタのパラメータを出力するように構成される可能性がある。
復号ピクチャバッファ
復号ピクチャバッファ(DPB)230は、ビデオエンコーダ20によってビデオデータを符号化するための参照ピクチャまたは概して参照ピクチャデータを記憶するメモリである可能性がある。DPB230は、同期DRAM(SDRAM)を含むダイナミックランダムアクセスメモリ(DRAM)、磁気抵抗RAM(MRAM)、抵抗変化型RAM(RRAM: resistive RAM)、またはその他の種類のメモリデバイスなどの様々なメモリデバイスのいずれかによって形成される可能性がある。復号ピクチャバッファ(DPB)230は、1つまたは複数のフィルタリングされたブロック221を記憶するように構成される可能性がある。復号ピクチャバッファ230は、同じ現在のピクチャまたは異なるピクチャ、たとえば、既に再構築されたピクチャのその他の既にフィルタリングされたブロック、たとえば、既に再構築され、フィルタリングされたブロック221を記憶するようにさらに構成される可能性があり、たとえば、インター予測のために、完全な既に再構築された、つまり、復号されたピクチャ(および対応する参照ブロックおよびサンプル)ならびに/または部分的に再構築された現在のピクチャ(および対応する参照ブロックおよびサンプル)を提供する可能性がある。復号ピクチャバッファ(DPB)230は、たとえば、再構築されたブロック215がループフィルタユニット220によってフィルタリングされない場合、1つもしくは複数のフィルタリングされていない再構築されたブロック215もしくは概してフィルタリングされていない再構築されたサンプルを記憶し、または再構築されたブロックもしくはサンプルの任意のその他のさらに処理されたバージョンを記憶するようにも構成される可能性がある。
モード選択(区分け&予測)
モード選択ユニット260は、区分けユニット262、インター予測ユニット244、およびイントラ予測ユニット254を含み、元のピクチャデータ、たとえば、元のブロック203(現在のピクチャ17の現在のブロック203)と、再構築されたピクチャデータ、たとえば、同じ(現在の)ピクチャの、および/またはたとえば復号ピクチャバッファ230もしくはその他のバッファ(たとえば、図示されていないラインバッファ)からの1つもしくは複数の既に復号されたピクチャからのフィルタリングされたおよび/またはフィルタリングされていない再構築されたサンプルまたはブロックとを受け取るかまたは取得するように構成される。再構築されたピクチャデータは、予測ブロック265または予測子(predictor)265を取得するための予測、たとえば、インター予測またはイントラ予測のための参照ピクチャデータとして使用される。
モード選択ユニット260は、(区分けを含まない)現在のブロックの予測モードのための区分けおよび予測モード(たとえば、イントラまたはインター予測モード)を決定するかまたは選択し、残差ブロック205の計算および再構築されたブロック215の再構築のために使用される対応する予測ブロック265を生成するように構成される可能性がある。
モード選択ユニット260の実施形態は、最良の一致もしくは言い換えると最小の残差(最小の残差は送信もしくは記憶のためのより優れた圧縮を意味する)または最小のシグナリングオーバーヘッド(最小のシグナリングオーバーヘッドは送信もしくは記憶のためのより優れた圧縮を意味する)を提供する、あるいはそれら両方を考慮するかまたは釣り合いを取る区分けおよび予測モードを(たとえば、モード選択ユニット260によってサポートされるかまたはモード選択ユニット260が利用可能な区分けおよび予測モードから)選択するように構成される可能性がある。モード選択ユニット260は、レート歪み最適化(RDO)に基づいて区分けおよび予測モードを決定する、つまり、最小のレート歪みを提供する予測モードを選択するように構成される可能性がある。この文脈の「最良の」、「最小の」、「最適な」などのような用語は、必ずしも全体の「最良の」、「最小の」、「最適な」などを指さず、値が閾値を超えることもしくは下回ることのような終了もしくは選択の基準、または潜在的に「準最適な選択」につながるが、複雑さおよび処理時間を削減するその他の制約を満たすことをも指す可能性もある。
言い換えると、区分けユニット262は、たとえば、四分木区分け(QT)、二分区分け(BT)、または三分木区分け(TT)、またはこれらの任意の組合せを反復的に使用してブロック203を(やはりブロックを形成する)より小さなブロックの区画または下位ブロックに区分けし、たとえば、ブロックの区画または下位ブロックの各々に関して予測を実行するように構成される可能性があり、モード選択は、区分けされたブロック203の木構造の選択を含み、予測モードは、ブロックの区画または下位ブロックの各々に適用される。
以下で、例示的なビデオエンコーダ20によって実行される(たとえば、区分けユニット260による)区分けならびに(インター予測ユニット244およびイントラ予測ユニット254による)予測処理が、より詳細に説明される。
区分け
区分けユニット262は、現在のブロック203をより小さな区画、たとえば、正方形または長方形のサイズのより小さなブロックに区分けする(または分割する)可能性がある。これらのより小さなブロック(下位ブロックとも呼ばれる可能性がある)は、より一層小さな区画にさらに区分けされる可能性がある。これは、木区分けまたは階層的木区分けとも呼ばれ、たとえば、ルートツリーレベル0(階層レベル0、深さ0)のルートブロックが、再帰的に区分けされ、たとえば、次に低いツリーレベルの2つ以上のブロック、たとえば、ツリーレベル1(階層レベル1、深さ1)のノードに区分けされる可能性があり、これらのブロックが、次に低いレベル、たとえば、ツリーレベル2(階層レベル2、深さ2)の2つ以上のブロックに再び区分けされる可能性があり、たとえば、終了基準が満たされる、たとえば、最大のツリーの深さまたは最小のブロックサイズが達せられるので区分けが終了されるまで以下同様である。さらに区分けされないブロックは、木の葉ブロックまたは葉ノードとも呼ばれる。2つの区画への区分けを使用する木は、二分木(BT)と呼ばれ、3つの区画への区分けを使用する木は、三分木(TT)と呼ばれ、4つの区画への区分けを使用する木は、四分木(QT)と呼ばれる。
上述のように、本明細書において使用される用語「ブロック」は、ピクチャの一部分、特に、正方形または長方形の一部分である可能性がある。たとえば、HEVCおよびVVCに関連して、ブロックは、コーディングツリーユニット(CTU)、コーディングユニット(CU: coding unit)、予測ユニット(PU: prediction unit)、および変換ユニット(TU: transform unit)、ならびに/または対応するブロック、たとえば、コーディングツリーブロック(CTB)、コーディングブロック(CB: coding block)、変換ブロック(TB)、または予測ブロック(PB)であるかまたはそれらに対応する可能性がある。
たとえば、コーディングツリーユニット(CTU)は、ルマサンプルのCTB、3つのサンプル配列を有するピクチャのクロマサンプルの2つの対応するCTB、またはモノクロピクチャもしくはサンプルをコーディングするために使用される3つの別々の色平面(colour plane)およびシンタックス(syntax)構造を使用してコーディングされるピクチャのサンプルのCTBであるかまたはそれらを含む可能性がある。それに対応して、コーディングツリーブロック(CTB)は、構成要素のCTBへの分割が区分けであるようなNの何らかの値に関するサンプルのNxNのブロックである可能性がある。コーディングユニット(CU)は、ルマサンプルのコーディングブロック、3つのサンプル配列を有するピクチャのクロマサンプルの2つの対応するコーディングブロック、またはモノクロピクチャもしくはサンプルをコーディングするために使用される3つの別々の色平面およびシンタックス構造を使用してコーディングされるピクチャのサンプルのコーディングブロックであるかまたはそれらを含む可能性がある。それに対応して、コーディングブロック(CB)は、CTBのコーディングブロックへの分割が区分けであるようなMおよびNの何らかの値に関するサンプルのMxNのブロックである可能性がある。
たとえば、HEVCによる実施形態において、コーディングツリーユニット(CTU)は、コーディングツリーとして表される四分木構造を使用することによってCUに分割される可能性がある。インターピクチャ(時間)予測を使用してピクチャエリアをコーディングすべきかまたはイントラピクチャ(空間)予測を使用してピクチャエリアをコーディングすべきかの判断は、CUレベルで行われる。各CUは、PU分割タイプに従って1つ、2つ、または4つのPUにさらに分割され得る。1つのPU内では、同じ予測プロセスが適用され、関連する情報がPUに基づいてデコーダに送信される。PU分割タイプに基づいて予測プロセスを適用することによって残差ブロックを取得した後、CUは、CUに関するコーディングツリーと同様の別の四分木構造によって変換ユニット(TU)に区分けされ得る。
たとえば、多目的ビデオコーディング(VVC)と呼ばれる現在開発されている最新のビデオコーディング規格による実施形態においては、組み合わされた四分木および二分木(QTBT)区分けが、たとえば、コーディングブロックを区分けするために使用される。QTBTブロック構造において、CUは、正方形かまたは長方形かのどちらかの形状を持ち得る。たとえば、コーディングツリーユニット(CTU)が、まず、四分木構造によって区分けされる。四分木の葉ノードが、二分木または三分(ternary)(または三分(triple))木構造によってさらに区分けされる。区分けツリーの葉ノードは、コーディングユニット(CU)と呼ばれ、そのセグメント分けが、いかなるさらなる区分けもなしに予測および変換処理のために使用される。これは、CU、PU、およびTUがQTBTコーディングブロック構造において同じブロックサイズを有することを意味する。平行して、多区画、たとえば、三分木区画は、QTBTブロック構造と一緒に使用され得る。
一例において、ビデオエンコーダ20のモード選択ユニット260は、本明細書において説明される区分け技術の任意の組合せを実行するように構成される可能性がある。
上述のように、ビデオエンコーダ20は、1組の(たとえば、予め決定された)予測モードから最良のまたは最適な予測モードを決定するまたは選択するように構成される。1組の予測モードは、たとえば、イントラ予測モードおよび/またはインター予測モードを含む可能性がある。
イントラ予測
1組のイントラ予測モードは、たとえばHEVCにおいて定義された35個の異なるイントラ予測モード、たとえば、DC(もしくは平均)モードおよび平面モードのような非方向性モード、または方向性モードを含む可能性があり、あるいはたとえばVVCのために定義された67個の異なるイントラ予測モード、たとえば、DC(もしくは平均)モードおよび平面モードのような非方向性モード、または方向性モードを含む可能性がある。
イントラ予測ユニット254は、1組のイントラ予測モードのうちのイントラ予測モードによって、同じ現在のピクチャの近隣のブロックの再構築されたサンプルを使用してイントラ予測ブロック265を生成するように構成される。
イントラ予測ユニット254(または概してモード選択ユニット260)は、たとえば、ビデオデコーダ30が予測パラメータを受信し、復号のために使用する可能性があるように、符号化されたピクチャデータ21に含めるためにシンタックス要素266の形態でエントロピー符号化ユニット270にイントラ予測パラメータ(または概してブロックに関する選択されたイントラ予測モードを示す情報)を出力するようにさらに構成される。
インター予測
1組の(または可能な)インター予測モードは、利用可能な参照ピクチャ(つまり、たとえば、DBP230に記憶された前の少なくとも部分的に復号されたピクチャ)ならびにその他のインター予測パラメータ、たとえば、最もよく一致する参照ブロックを探索するために参照ピクチャ全体が使用されるのかもしくは参照ピクチャの一部のみ、たとえば、現在のブロックのエリアの周りの探索窓(search window)エリアのみが使用されるか、ならびに/またはたとえば、ピクセル補間、たとえば、半/セミペル(half/semi-pel)および/もしくは4分の1ペル補間が適用されるか否かに依存する。
上述の予測モードに加えて、スキップモードおよび/またはダイレクトモードが、適用される可能性がある。
インター予測ユニット244は、動き推定(ME)ユニットおよび動き補償(MC)ユニット(どちらも図2に示さず)を含む可能性がある。動き推定ユニットは、動き推定のために、ピクチャブロック203(現在のピクチャ17の現在のピクチャブロック203)および復号されたピクチャ231、または少なくとも1つのもしくは複数の既に再構築されたブロック、たとえば、1つもしくは複数のその他の/異なる既に復号されたピクチャ231の再構築されたブロックを受信するかまたは取得するように構成される可能性がある。たとえば、ビデオシーケンスは、現在のピクチャおよび既に復号されたピクチャ231を含む可能性があり、または言い換えると、現在のピクチャおよび既に復号されたピクチャ231は、ビデオシーケンスを形成するピクチャのシーケンスの一部であるかもしくはそのようなピクチャのシーケンスを形成する可能性がある。
エンコーダ20は、たとえば、複数のその他のピクチャのうちの同じまたは異なるピクチャの複数の参照ブロックから参照ブロックを選択し、参照ピクチャ(もしくは参照ピクチャインデックス)および/または参照ブロックの位置(x、y座標)と現在のブロックの位置との間のオフセット(空間オフセット)をインター予測パラメータとして動き推定ユニットに提供するように構成される可能性がある。このオフセットは、動きベクトル(MV)とも呼ばれる。
動き補償ユニットは、インター予測パラメータを取得、たとえば、受信し、インター予測パラメータに基づいてまたはインター予測パラメータを使用してインター予測を実行してインター予測ブロック265を取得するように構成される。動き補償ユニットによって実行される動き補償は、おそらくはサブピクセルの精度の補間を実行する動き推定によって決定された動き/ブロックベクトルに基づく予測ブロックのフェッチまたは生成を含む可能性がある。補間フィルタリングが、知られているピクセルサンプルから追加的なピクセルサンプルを生成する可能性があり、したがって潜在的に、ピクチャブロックをコーディングするために使用される可能性がある候補予測ブロックの数を増やす。現在のピクチャブロックのPUに関する動きベクトルを受信すると、動き補償ユニットは、参照ピクチャリストのうちの1つにおいて動きベクトルが指す予測ブロックを見つける可能性がある。
動き補償ユニットは、ビデオスライスのピクチャブロックを復号する際にビデオデコーダ30によって使用するためのブロックおよびビデオスライスに関連するシンタックス要素も生成する可能性がある。スライスおよびそれぞれのシンタックス要素に加えて、またはスライスおよびそれぞれのシンタックス要素の代替として、タイルグループおよび/またはタイルならびにそれぞれのシンタックス要素が、生成されるかまたは使用される可能性がある。
エントロピーコーディング
エントロピー符号化ユニット270は、たとえば、ビデオデコーダ30がパラメータを受信し、復号のために使用する可能性があるように、たとえば、符号化されたビットストリーム21の形態で出力272を介して出力され得る符号化されたピクチャデータ21を得るために、量子化された係数209、インター予測パラメータ、イントラ予測パラメータ、ループフィルタパラメータ、および/またはその他のシンタックス要素に対して、たとえば、エントロピー符号化アルゴリズムもしくは方式(たとえば、可変長コーディング(VLC: variable length coding)方式、コンテキスト適応VLC方式(CAVLC: context adaptive VLC)、算術コーディング方式、2値化、コンテキスト適応2値算術コーディング(CABAC: context adaptive binary arithmetic coding)、シンタックスに基づくコンテキスト適応2値算術コーディング(SBAC: syntax-based context-adaptive binary arithmetic coding)、確率間隔区分エントロピー(PIPE: probability interval partitioning entropy) コーディング、もしくは別のエントロピーコーディング方法もしくは技術)またはバイパス(bypass)(非圧縮)を適用するように構成される。符号化されたビットストリーム21は、ビデオデコーダ30に送信されるか、または後の送信またはビデオデコーダ30による取り出しのためにメモリに記憶される可能性がある。
ビデオエンコーダ20その他の構造の変化形が、ビデオストリームを符号化するために使用され得る。たとえば、変換に基づかないエンコーダ20は、特定のブロックまたはフレームに関して変換処理ユニット206なしに残差信号を直接量子化し得る。別の実装において、エンコーダ20は、単一のユニットに組み合わされた量子化ユニット208および量子化解除ユニット210を持ち得る。
デコーダおよび復号方法
図3は、本出願の技術を実装するように構成されるビデオデコーダ30の例を示す。ビデオデコーダ30は、復号されたピクチャ331を取得するために、たとえば、エンコーダ20によって符号化された符号化されたピクチャデータ21(たとえば、符号化されたビットストリーム21)を受信するように構成される。符号化されたピクチャデータまたはビットストリームは、符号化されたピクチャデータ、たとえば、符号化されたビデオスライス(および/またはタイルグループもしくはタイル)のピクチャブロックならびに関連するシンタックス要素を表すデータを復号するための情報を含む。
図3の例において、デコーダ30は、エントロピー復号ユニット304、量子化解除ユニット310、逆変換処理ユニット312、再構築ユニット314(たとえば、合算器314)、ループフィルタ320、復号ピクチャバッファ(DBP)330、モード適用ユニット360、インター予測ユニット344、およびイントラ予測ユニット354を含む。インター予測ユニット344は、動き補償ユニットであるかまたは動き補償ユニットを含む可能性がある。ビデオデコーダ30は、いくつかの例において、図2のビデオエンコーダ100に関連して説明された符号化パスと概して逆である復号パスを実行する可能性がある。
エンコーダ20に関連して説明されたように、量子化解除ユニット210、逆変換処理ユニット212、再構築ユニット214、ループフィルタ220、復号ピクチャバッファ(DPB)230、インター予測ユニット344、およびイントラ予測ユニット354は、ビデオエンコーダ20の「内蔵デコーダ」を形成するともみなされる。したがって、量子化解除ユニット310は、量子化解除ユニット110と機能的に同一である可能性があり、逆変換処理ユニット312は、逆変換処理ユニット212と機能的に同一である可能性があり、再構築ユニット314は、再構築ユニット214と機能的に同一である可能性があり、ループフィルタ320は、ループフィルタ220と機能的に同一である可能性があり、復号ピクチャバッファ330は、復号ピクチャバッファ230と機能的に同一である可能性がある。したがって、ビデオ20エンコーダのそれぞれのユニットおよび機能に関して与えられた説明が、ビデオデコーダ30のそれぞれのユニットおよび機能に準用される。
エントロピー復号
エントロピー復号ユニット304は、ビットストリーム21(または概して符号化されたピクチャデータ21)を解析し、たとえば、符号化されたピクチャデータ21にエントロピー復号を実行して、たとえば、量子化された係数309ならびに/あるいは復号されたコーディングパラメータ(図3に示さず)、たとえば、インター予測パラメータ(たとえば、参照ピクチャインデックスおよび動きベクトル)、イントラ予測パラメータ(たとえば、イントラ予測モードもしくはインデックス)、変換パラメータ、量子化パラメータ、ループフィルタパラメータ、および/またはその他のシンタックス要素のいずれかまたはすべてを取得するように構成される。エントロピー復号ユニット304は、エンコーダ20のエントロピー符号化ユニット270に関連して説明された符号化方式に対応する復号アルゴリズムまたは方式を適用するように構成される可能性がある。エントロピー復号ユニット304は、インター予測パラメータ、イントラ予測パラメータ、および/またはその他のシンタックス要素をモード適用ユニット360に提供し、その他のパラメータをデコーダ30のその他のユニットに提供するようにさらに構成される可能性がある。ビデオデコーダ30は、ビデオスライスのレベルおよび/またはビデオブロックのレベルでシンタックス要素を受信する可能性がある。スライスおよびそれぞれのシンタックス要素に加えて、またはスライスおよびそれぞれのシンタックス要素の代替として、タイルグループおよび/またはタイルならびにそれぞれのシンタックス要素が、受信されるおよび/または使用される可能性がある。
量子化解除
量子化解除ユニット310は、(たとえば、エントロピー復号ユニット304によって、たとえば、解析および/または復号することによって)符号化されたピクチャデータ21から量子化パラメータ(QP)(または概して量子化解除に関連する情報)および量子化された係数を受け取り、復号された量子化された係数309に対して量子化パラメータに基づいて量子化解除を適用して、変換係数311とも呼ばれる可能性がある量子化解除された係数311を取得するように構成される可能性がある。量子化解除プロセスは、量子化の度合いと、同様に、適用されるべき量子化解除の度合いとを決定するために、ビデオスライス(またはタイルまたはタイルグループ)内の各ビデオブロックに関してビデオエンコーダ20によって決定された量子化パラメータを使用することを含む可能性がある。
逆変換
逆変換処理ユニット312は、変換係数311とも呼ばれる量子化解除された係数311を受け取り、サンプル領域において再構築された残差ブロック213を取得するために、量子化解除された係数311に変換を適用するように構成される可能性がある。再構築された残差ブロック213は、変換ブロック213とも呼ばれる可能性がある。変換は、逆変換、たとえば、逆DCT、逆DST、逆整数変換、または概念的に同様の逆変換プロセスである可能性がある。逆変換処理ユニット312は、量子化解除された係数311に適用される変換を決定するために、(たとえば、エントロピー復号ユニット304によって、たとえば、解析および/または復号することによって)符号化されたピクチャデータ21から変換パラメータまたは対応する情報を受け取るようにさらに構成される可能性がある。
再構築
再構築ユニット314(たとえば、加算器または合算器314)は、たとえば、再構築された残差ブロック313のサンプル値と予測ブロック365のサンプル値とを足すことによって予測ブロック365に再構築された残差ブロック313を足してサンプル領域において再構築されたブロック315を取得するように構成される可能性がある。
フィルタリング
(コーディングループ内かまたはコーディングループの後かのどちらかの)ループフィルタユニット320は、たとえば、ピクセルの遷移を平滑化するかまたはそれ以外の方法でビデオの品質を改善するために再構築されたブロック315をフィルタリングしてフィルタリングされたブロック321を取得するように構成される。ループフィルタユニット320は、デブロッキングフィルタ、サンプル適応オフセット(SAO)フィルタ、または1つもしくは複数のその他のフィルタ、たとえば、バイラテラルフィルタ、適応ループフィルタ(ALF)、鮮鋭化、平滑化フィルタ、もしくは共同フィルタ、もしくはこれらの任意の組合せなどの1つまたは複数のループフィルタを含む可能性がある。ループフィルタユニット320は図3にループ内フィルタであるものとして示されるが、その他の構成において、ループフィルタユニット320は、ループ後フィルタとして実装される可能性がある。
復号ピクチャバッファ
それから、ピクチャの復号されたビデオブロック321は、その他のピクチャに関するその後の動き補償のための参照ピクチャとしておよび/またはディスプレイ上にそれぞれ出力するために復号されたピクチャ331を記憶する復号ピクチャバッファ330に記憶される。
デコーダ30は、復号されたピクチャ311を、ユーザへの提示または視聴のために、たとえば、出力312を介して出力するように構成される。
予測
インター予測ユニット344は、インター予測ユニット244と(特に動き補償ユニットと)同一である可能性があり、イントラ予測ユニット354は、インター予測ユニット254と機能的に同一である可能性があり、(たとえば、エントロピー復号ユニット304によって、たとえば、解析および/または復号することによって)復号されたピクチャデータ21から受け取られた区分けおよび/または予測パラメータまたはそれぞれの情報に基づいて分割または区分けの判断および予測を実行する。モード適用ユニット360は、予測ブロック365を得るために、(フィルタリングされたまたはフィルタリングされていない)再構築されたピクチャ、ブロック、またはそれぞれのサンプルに基づいてブロック毎に予測(イントラまたはインター予測)を実行するように構成される可能性がある。
ビデオスライスがイントラコーディングされた(I)スライスとしてコーディングされるとき、モード適用ユニット360のイントラ予測ユニット354は、シグナリングされたイントラ予測モードおよび現在のピクチャの既に復号されたブロックからのデータに基づいて現在のビデオスライスのピクチャブロックに関する予測ブロック365を生成するように構成される。ビデオピクチャがインターコーディングされた(つまり、BまたはP)スライスとしてコーディングされるとき、モード適用ユニット360のインター予測ユニット344(たとえば、動き補償ユニット)は、エントロピー復号ユニット304から受け取られた動きベクトルおよびその他のシンタックス要素に基づいて現在のビデオスライスのビデオブロックに関する予測ブロック365を生成するように構成される。インター予測に関して、予測ブロックは、参照ピクチャリストのうちの1つの中の参照ピクチャのうちの1つから生成される可能性がある。ビデオデコーダ30は、DPB330に記憶された参照ピクチャに基づいてデフォルトの構築技術を使用して参照フレームリスト、List 0およびList 1を構築する可能性がある。同じまたは同様のことが、スライス(たとえば、ビデオスライス)に加えてまたはスライス(たとえば、ビデオスライス)の代替としてタイルグループ(たとえば、ビデオタイルグループ)および/またはタイル(たとえば、ビデオタイル)を使用する実施形態のためにまたはそのような実施形態によって適用される可能性があり、たとえば、ビデオは、I、P、またはBタイルグループおよび/またはタイルを使用してコーディングされる可能性がある。
モード適用ユニット360は、動きベクトルまたは関連する情報およびその他のシンタックス要素を解析することによって現在のビデオスライスのビデオブロックに関する予測情報を決定するように構成され、予測情報を使用して、復号されている現在のビデオブロックに関する予測ブロックを生成する。たとえば、モード適用ユニット360は、受信されたシンタックス要素の一部を使用して、ビデオスライスのビデオブロックをコーディングするために使用された予測モード(たとえば、イントラまたはインター予測)、インター予測のスライスタイプ(たとえば、Bスライス、Pスライス、またはGPBスライス)、スライスのための参照ピクチャリストのうちの1つまたは複数に関する構築情報、スライスのそれぞれのインターコーディングされたビデオブロックに関する動きベクトル、スライスのそれぞれのインターコーディングされたビデオブロックに関するインター予測のステータス、および現在のビデオスライス内のビデオブロックを復号するためのその他の情報を決定する。同じまたは同様のことが、スライス(たとえば、ビデオスライス)に加えてまたはスライス(たとえば、ビデオスライス)の代替としてタイルグループ(たとえば、ビデオタイルグループ)および/またはタイル(たとえば、ビデオタイル)を使用する実施形態のためにまたはそのような実施形態によって適用される可能性があり、たとえば、ビデオは、I、P、またはBタイルグループおよび/またはタイルを使用してコーディングされる可能性がある。
図3に示されるビデオデコーダ30の実施形態は、スライス(ビデオスライスとも呼ばれる)を使用することによってピクチャを区分けするおよび/または復号するように構成される可能性があり、ピクチャは、1つもしくは複数の(概して重なり合わない)スライスに区分けされるかまたは1つもしくは複数の(概して重なり合わない)スライスを使用して復号される可能性があり、各スライスは、1つまたは複数のブロック(たとえば、CTU)を含む可能性がある。
図3に示されるビデオデコーダ30の実施形態は、タイルグループ(ビデオタイルグループとも呼ばれる)および/またはタイル(ビデオタイルとも呼ばれる)を使用することによってピクチャを区分けするおよび/または復号するように構成される可能性があり、ピクチャは、1つもしくは複数の(概して重なり合わない)タイルグループに区分けされるかまたは1つもしくは複数の(概して重なり合わない)タイルグループを使用して復号される可能性があり、各タイルグループは、たとえば、1つもしくは複数のブロック(たとえば、CTU)または1つもしくは複数のタイルを含む可能性があり、各タイルは、たとえば、長方形の形をしている可能性があり、1つまたは複数のブロック(たとえば、CTU)、たとえば、完全なまたは断片的なブロックを含む可能性がある。
ビデオデコーダ30のその他の変化形が、符号化されたピクチャデータ21を復号するために使用され得る。たとえば、デコーダ30は、ループフィルタリングユニット320なしで出力ビデオストリームを生成し得る。たとえば、変換に基づかないデコーダ30は、特定のブロックまたはフレームに関して逆変換処理ユニット312なしに残差信号を直接量子化解除し得る。別の実装において、ビデオデコーダ30は、単一のユニットに組み合わされた量子化解除ユニット310および逆変換処理ユニット312を持ち得る。
エンコーダ20およびデコーダ30において、現在のステップの処理結果は、さらに処理され、それから次のステップに出力される可能性があることを理解されたい。たとえば、補間フィルタリング、動きベクトルの導出、またはループフィルタリングの後、Clipまたはシフトなどのさらなる演算が、補間フィルタリング、動きベクトルの導出、またはループフィルタリングの処理結果に対して実行される可能性がある。
さらなる演算が、(アフィンモードの制御点動きベクトル(control point motion vector)、アフィン、平面、ATMVPモードの下位ブロック動きベクトル、時間動きベクトル(temporal motion vector)などを含むがこれらに限定されない)現在のブロックの導出された動きベクトルに適用される可能性があることに留意されたい。たとえば、動きベクトルの値は、その表現ビットに従って所定の範囲に制約される。動きベクトルの表現ビットがbitDepthである場合、範囲は、-2^(bitDepth-1)~2^(bitDepth-1)-1であり、「^」は、累乗を意味する。たとえば、bitDepthが16に等しいように設定される場合、範囲は、-32768~32767であり、bitDepthが18に等しいように設定される場合、範囲は、-131072~131071である。たとえば、導出された動きベクトル(たとえば、1つの8×8ブロック内の4つの4×4下位ブロックのMV)の値は、4つの4×4下位ブロックのMVの整数部分の間の最大の差が1ピクセル以下などNピクセル以下であるように制約される。ここでは、bitDepthに応じて動きベクトルを制約するための2つの方法を提供する。
方法1: 流れる演算によってあふれ(overflow)MSB(最上位ビット)を削除する
ux = ( mvx+2bitDepth ) % 2bitDepth (1)
mvx = ( ux >= 2bitDepth-1 ) ? ( ux - 2bitDepth ) : ux (2)
uy= ( mvy+2bitDepth ) % 2bitDepth (3)
mvy = ( uy >= 2bitDepth-1 ) ? ( uy - 2bitDepth ) : uy (4)
式中、mvxは、画像ブロックまたは下位ブロックの動きベクトルの水平成分であり、mvyは、画像ブロックまたは下位ブロックの動きベクトルの垂直成分であり、uxおよびuyは、中間値を示す。
たとえば、mvxの値が-32769である場合、式(1)および(2)を適用した後、結果として得られる値は、32767である。コンピュータシステムにおいて、10進数は、2の補数として記憶される。-32769の2の補数は、1,0111,1111,1111,1111(17ビット)であり、そのとき、MSBが破棄され、したがって、結果として得られる2の補数は、0111,1111,1111,1111(10進数は32767)であり、これは、式(1)および(2)を適用することによる出力と同じである。
ux= ( mvpx + mvdx +2bitDepth ) % 2bitDepth (5)
mvx = ( ux >= 2bitDepth-1 ) ? (ux - 2bitDepth ) : ux (6)
uy= ( mvpy + mvdy +2bitDepth ) % 2bitDepth (7)
mvy = ( uy >= 2bitDepth-1 ) ? (uy - 2bitDepth ) : uy (8)
演算は、式(5)から(8)に示されるように、mvpとmvdとの合計中に適用される可能性がある。
方法2: 値をクリッピングすることによってあふれMSBを削除する
vx = Clip3(-2bitDepth-1, 2bitDepth-1 -1, vx)
vy = Clip3(-2bitDepth-1, 2bitDepth-1 -1, vy)
式中、vxは、画像ブロックまたは下位ブロックの動きベクトルの水平成分であり、vyは、画像ブロックまたは下位ブロックの動きベクトルの垂直成分であり、x、y、およびzは、MVのクリッピングプロセスの3つの入力値にそれぞれ対応し、関数Clip3の定義は、以下の通りである。
Figure 0007271697000001
図4は、本開示の実施形態によるビデオコーディングデバイス400の概略図である。ビデオコーディングデバイス400は、本明細書において説明されるように開示される実施形態を実装するのに好適である。実施形態において、ビデオコーディングデバイス400は、図1Aのビデオデコーダ30などのデコーダまたは図1Aのビデオエンコーダ20などのエンコーダである可能性がある。
ビデオコーディングデバイス400は、データを受信するための着信ポート410(または入力ポート410)および受信機ユニット(Rx)420、データを処理するためのプロセッサ、論理ユニット、または中央演算処理装置(CPU)430、データを送信するための送信機ユニット(Tx)440および発信ポート450(または出力ポート450)、ならびにデータを記憶するためのメモリ460を含む。ビデオコーディングデバイス400は、光または電気信号の発信または着信のために着信ポート410、受信機ユニット420、送信機ユニット440、および発信ポート450に結合された光-電気(OE)構成要素および電気-光(EO)構成要素も含む可能性がある。
プロセッサ430は、ハードウェアおよびソフトウェアによって実装される。プロセッサ430は、1つまたは複数のCPUチップ、コア(たとえば、マルチコアプロセッサとして)、FPGA、ASIC、およびDSPとして実装される可能性がある。プロセッサ430は、着信ポート410、受信機ユニット420、送信機ユニット440、発信ポート450、およびメモリ460と通信する。プロセッサ430は、コーディングモジュール470を含む。コーディングモジュール470は、上述の開示された実施形態を実装する。たとえば、コーディングモジュール470は、様々なコーディング動作を実装するか、処理するか、準備するか、または提供する。したがって、コーディングモジュール470を含むことは、ビデオコーディングデバイス400の機能を大幅に改善し、ビデオコーディングデバイス400の異なる状態への転換をもたらす。代替的に、コーディングモジュール470は、メモリ460に記憶され、プロセッサ430によって実行される命令として実装される。
メモリ460は、1つまたは複数のディスク、テープドライブ、およびソリッドステートドライブを含む可能性があり、プログラムが実行するために選択されるときにそのようなプログラムを記憶するためならびにプログラムの実行中に読まれる命令およびデータを記憶するためのオーバーフローデータストレージデバイス(over-flow data storage device)として使用される可能性がある。メモリ460は、たとえば、揮発性および/または不揮発性である可能性があり、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、3値連想メモリ(TCAM: ternary content-addressable memory)、および/またはスタティックランダムアクセスメモリ(SRAM)である可能性がある。
図5は、例示的な実施形態による、図1の送信元デバイス12および送信先デバイス14のどちらかまたは両方として使用される可能性がある装置500の簡略化されたブロック図である。
装置500のプロセッサ502は、中央演算処理装置であることが可能である。代替的に、プロセッサ502は、既存のまたは今後開発される、情報を操作または処理することができる任意のその他の種類の1つのデバイスまたは複数のデバイスであることが可能である。開示される実装は示されるように単一のプロセッサ、たとえば、プロセッサ502によって実施され得るが、2つ以上のプロセッサを使用することによって速度および効率面の利点が実現され得る。
装置500のメモリ504は、実装において、読み出し専用メモリ(ROM)デバイスまたはランダムアクセスメモリ(RAM)デバイスであることが可能である。任意のその他の好適な種類のストレージデバイスが、メモリ504として使用され得る。メモリ504は、バス512を使用してプロセッサ502によってアクセスされるコードおよびデータ506を含み得る。メモリ504は、オペレーティングシステム508およびアプリケーションプログラム510をさらに含むことが可能であり、アプリケーションプログラム510は、プロセッサ502が本明細書において説明される方法を実行すること可能にする少なくとも1つのプログラムを含む。たとえば、アプリケーションプログラム510は、本明細書において説明される方法を実行するビデオコーディングアプリケーションをさらに含むアプリケーション1からNを含み得る。
装置500は、ディスプレイ518などの1つまたは複数の出力デバイスも含み得る。ディスプレイ518は、一例において、ディスプレイをタッチ入力を感知するように動作可能であるタッチ感知要素と組み合わせるタッチ式ディスプレイである可能性がある。ディスプレイ518は、バス512を介してプロセッサ502に結合され得る。
ここでは単一のバスとして示されるが、装置500のバス212は、複数のバスから構成され得る。さらに、二次ストレージ514は、装置500のその他の構成要素に直接結合されることが可能であり、またはネットワークを介してアクセスされることが可能であり、メモリカードなどの単一の統合されたユニットもしくは複数のメモリカードなどの複数のユニットを含むことが可能である。したがって、装置500は、多種多様な構成で実装され得る。
動きベクトルの改善(MVR)
通常、動きベクトルは、エンコーダ側で少なくとも部分的に決定され、符号化されたビットストリーム内でデコーダにシグナリングされる。しかし、動きベクトルは、ビットストリーム内に示された初期動きベクトルから開始してデコーダにおいて(およびエンコーダにおいても)改善される可能性もある。そのような場合、たとえば、初期動きベクトルによって指し示された既に復号されたピクセルのパッチの間の類似性が、初期動きベクトルの正確性を向上させるために使用される可能性がある。そのような動きの改善は、シグナリングのオーバーヘッドを削減するという利点をもたらし、つまり、初期の動きの正確性が、エンコーダとデコーダとの両方において同じ方法で高められ、したがって、改善のための追加のシグナリングが、必要とされない。
改善前の初期動きベクトルは、最良の予測をもたらす最良の動きベクトルではない可能性があることが留意される。初期動きベクトルはビットストリーム内でシグナリングされるので、初期動きベクトルを(ビットレートを高くする)非常に高い正確性で表現することが不可能である可能性があり、したがって、動きベクトル改善プロセスが、初期動きベクトルをより良くするために利用される。初期動きベクトルは、たとえば、現在のブロックの近隣のブロックの予測において使用される動きベクトルである可能性がある。この場合、どの近隣のブロックの動きベクトルが現在のブロックによって使用されるかを示すインジケーションをビットストリーム内でシグナリングすれば十分である。そのような予測メカニズムは、初期動きベクトルを表すためのビット数を削減するのに非常に有効である。しかし、概して、2つの近隣のブロックの動きベクトルは同一であると予測されないので、初期動きベクトルの正確性は低い可能性がある。
シグナリングのオーバーヘッドのさらなる増加なしに動きベクトルの正確性をさらに高めるために、エンコーダ側で導出され、ビットストリーム内で提供される(シグナリングされる)動きベクトルをさらに改善することが、有益である可能性がある。動きベクトルの改善は、エンコーダからの支援なしにデコーダにおいて実行される可能性がある。エンコーダは、そのエンコーダのデコーダループ内で、デコーダにおいて利用可能である、対応する改善された動きベクトルを取得するための同じ改善を使用する可能性がある。現在のピクチャ内の再構築されている現在のブロックに関する改善は、再構築されたサンプルのテンプレートを決定し、現在のブロックのための初期動き情報の周辺の探索空間(search space)を決定し、探索空間内でテンプレートに最もよく一致する参照ピクチャの部分を見つけることによって実行される。最もよく一致する部分は、現在のブロックに関する改善された動きベクトルを決定し、そして、その改善された動きベクトルが、現在のブロック、つまり、再構築されている現在のブロックに関するインター予測されたサンプルを得るために使用される。
動きベクトルの改善は、図2のインター予測ユニット(244)および図3の344の一部である。
動きベクトルの改善は、以下のステップに従って実行される可能性がある。
概して、初期動きベクトルが、ビットストリーム内のインジケーションに基づいて決定され得る。たとえば、候補動きベクトルのリスト内の位置を示すインデックスが、ビットストリーム内でシグナリングされる可能性がある。別の例においては、動きベクトル予測子インデックスおよび動きベクトルの差の値が、ビットストリーム内でシグナリングされ得る。ビットストリーム内のインジケーションに基づいて決定される動きベクトルは、初期動きベクトルであるものとして定義される。現在のブロックに関するインター予測が2つの動きベクトルによって決定されるサンプルの予測されたブロックの重み付けされた組合せとして取得される双予測(bi-prediction)の場合、リストL0の第1の参照ピクチャ内の初期動きベクトルがMV0と表記され、リストL1の第2の参照ピクチャ内の初期動きベクトルがMV1と表記されるものとする。
初期動きベクトルを使用して、改善候補動きベクトル(MV)のペアが決定される。少なくとも、2つの改善候補のペアが、決定される必要がある。概して、改善候補動きベクトルのペアは、初期動きベクトルのペア(MV0, MV1)に基づいて決定される。さらに、候補MVのペアは、MV0およびMV1に小さな動きベクトルの差を足すことによって決定される。たとえば、候補MVのペアは、以下を含む可能性がある。
・(MV0, MV1)
・(MV0 + (0,1), MV1 + (0,-1))
・(MV0 + (1,0), MV1 + (-1,0))
・(MV0 + (0,-1), MV1 + (0,1))
・(MV0 + (-1,0), MV1 + (1,0))
・...
ここで、(1,-1)は、水平(またはx)方向の変位1および垂直(またはy)方向の変位-1を有するベクトルを表す。
候補のペアの上のリストは、説明のための単なる例であり、本発明は、候補の特定のリストに限定されないことが留意される。
改善候補動きベクトル(MV)のペアは、動きベクトル改善プロセスの探索空間を形成する。
現在のブロックの双予測においては、リストL0のそれぞれの第1の動きベクトルおよびリストL1の第2の動きベクトルを使用して得られた2つの予測ブロックが、単一の予測信号へと組み合わされ、これは、単予測(uni-prediction)よりも元の信号により優れた適応をもたらすことができ、結果として、より少ない残差情報と、おそらくは、より効率的な圧縮とをもたらす。
動きベクトルの改善においては、候補MVのペアのそれぞれの第1の動きベクトルおよび第2の動きベクトルを使用して得られた2つの予測ブロックが、改善候補MVのペアの各々に関して類似性の測定基準に基づいて比較される。通常、最も高い類似性をもたらす候補MVのペアが、改善された動きベクトルとして選択される。リストL0の第1の参照ピクチャ内の改善された動きベクトルおよびリストL1の第2の参照ピクチャ内の改善された動きベクトルは、それぞれ、MV0'およびMV1'と表記される。言い換えると、候補動きベクトルのペアのリストL0の動きベクトルおよびリストL1の動きベクトルに対応する予測が得られ、それから、それらの予測が、類似性の測定基準に基づいて比較される。最も高い関連する類似性を有する候補動きベクトルのペアが、改善されたMVのペアとして選択される。
概して、改善プロセスの出力は、改善されたMVである。改善されたMVは、どの候補MVのペアが最も高い類似性を実現するかに応じて初期MVと同じである可能性がありまたは初期MVと異なる可能性があり、初期MVによって形成される候補MVのペアも、MVのペアの候補の中にある。言い換えると、最も高い類似性を実現する最も高い候補MVのペアが初期MVによって形成される場合、改善されたMVおよび初期MVは、互いに等しい。
類似性の測定基準を最大化する位置を選択する代わりに、別の方法は、相違の測定基準を最小化する位置を選択する。相違の比較の尺度は、SAD(差分絶対値和)、MRSAD(平均を引いた差分絶対値和: mean removed sum of absolute differences)、SSE(残差平方和)などである可能性がある。2つの予測ブロックの間のSADが、候補MVのペア(CMV0, CMV1)を使用して取得される可能性があり、SADは、以下のように計算され得る。
Figure 0007271697000002
式中、nCbHおよびnCbWは、予測ブロックの高さおよび幅であり、関数abs(a)は、引数aの絶対値を指定し、predSAmplesL0およびpredSAmplesL1は、(CMV0, CMV1)によって表される候補MVのペアによって得られる予測ブロックサンプルである。
代替的に、相違の比較の尺度は、計算の回数を減らすために予測ブロック内のサンプルのサブセットのみを評価することによって取得され得る。例は、以下であり、サンプルの行が、代替的にSAD計算に含められる(1行おきの行が評価される)。
Figure 0007271697000003
動きベクトルの改善の一例が、http://phenix.it-sudparis.eu/jvet/に公開されている(ITU-T SG 16 WP 3およびISO/IEC JTC 1/SC 29/WG 11の)JVETの文書JVET-M1001-v3、「Versatile Video Coding (Draft 4)」に説明されている。文書のセクション「8.4.3 Decoder side motion vector refinement process」が、動きベクトルの改善を例示する。
改善のための内部メモリの要件を下げるために、一部の実施形態において、動きベクトル改善プロセスは、ルマサンプル内の特定の予め決められた幅または予め決められた高さを超えるサンプルのコーディングされたブロックをルマの予め決められた幅および予め決められた高さ以下であるサンプルの下位ブロックに区分けすることによって得られたルマサンプルのブロックに対して独立して実行される可能性がある。区分けされたコーディングされたブロック内の各下位ブロックに関する改善されたMVのペアは、異なることが可能である。そして、ルマとクロマとの両方に関するインター予測が、各下位ブロックに関してその下位ブロックの改善されたMVのペアを使用して実行される。
初期MVのペアの各MVは、小数(fractional)ピクセルの精度を持ち得る。言い換えると、MVは、サンプルの現在のブロックと再サンプリングされた参照領域との間の変位を示し、この変位は、再構築された参照サンプルの整数グリッドから水平方向および垂直方向の小数位置を指し示し得る。概して、再構築された参照整数サンプルグリッド値の2次元補間が、小数サンプルオフセット位置のサンプル値を得るために実行される。候補MVのペアを使用して再構築された参照ピクチャから予測されたサンプルを取得するプロセスは、以下の方法のうちの1つによることができる。
・初期MVのペアの小数部を最も近い整数位置に丸め、再構築された参照ピクチャの整数グリッド値を得る。
・初期MVのペアによって示される小数ピクセルの正確性で予測されたサンプル値を得るために2タップ(たとえば、バイリニア)の分離可能なバイリニア補間を実行する。
・初期MVのペアによって示される小数ピクセルの正確性で予測されたサンプル値を得るためにより多いタップ(たとえば、8タップまたは6タップ)の分離可能な補間を実行する。
候補MVのペアは初期MVペアに対して任意のサブピクセルのオフセットを持ち得るが、一部の実施形態においては、探索を簡単にするために、初期MVのペアに対して整数ピクセルの距離の候補MVのペアが、選択される。そのような場合、すべての候補MVのペアの予測されたサンプルが、初期MVのペアの周りのすべての改善の位置を包含するように初期MVのペアの周りのサンプルのブロックに関する予測を実行することによって取得され得る。
一部の実施形態においては、初期MVのペアから整数の距離にあるすべての候補MVのペアにおける相違のコスト値が評価されると、最良のコスト値の位置からサブピクセルの距離オフセットにある追加の候補MVのペアが、追加される。予測されたサンプルが、上述の方法のうちの1つを使用してこれらの位置の各々に関して取得され、相違のコストが、最も低い相違の位置を得るために評価され、比較される。特定のその他の実施形態においては、最良のコストの整数の距離の位置の周りのそれぞれのサブピクセルの距離の位置に関するこの計算コストの高い予測プロセスを避けるために、評価された整数の距離のコスト値が、覚えられ、パラメトリック誤差曲面が、整数の距離の位置の近傍に当てはめられる。そして、この誤差曲面の最小値が、解析的に計算され、最小の相違を有する位置として使用される。そのような場合、相違のコスト値は、計算された整数の距離のコスト値から導出されると言われる。
サンプルの所与のコーディングされたブロックのための動きベクトルの改善の適用は、サンプルのコーディングされたブロックの特定のコーディングのプロパティによって条件付けられ得る。そのようなコーディングのプロパティのいくつかの例は、以下であることが可能である。
・現在のピクチャからサンプルのコーディングされたブロックの双予測のために使用される2つの参照ピクチャまでの(一様なフレームレートでサンプリングされるときの)ピクチャの数で表された距離が、等しく、現在のピクチャの両側で減少する。
・初期MVのペアを使用して得られた2つの予測されたブロックの間の初期の相違が、予め決められたサンプル毎の閾値未満である。
双予測のオプティカルフローの改善(BPOF)
双予測のオプティカルフローの改善は、双予測のためにシグナリングされる以外のビットストリーム内の明らかに追加的なシグナリングなしにブロックの双予測の正確性を高めるプロセスである。双予測のオプティカルフローの改善は、図2のインター予測ユニット(244)および図3の344の一部である。
双予測においては、2つのインター予測が、2つの動きベクトルに従って得られ、それから、予測が、加重平均の適用によって組み合わされる。組み合わされた予測は、2つの参照パッチ内の量子化雑音が打ち消されるので、削減された残差エネルギーをもたらすことができ、それによって、単予測よりも高いコーディング効率を提供する。双予測の重み付けされた組合せは、式
Bi-prediction = Prediction1 * W1 + Prediction2 * W2 + K
によって実行されることが可能であり、式中、W1およびW2は、ビットストリーム内でシグナリングされる可能性があり、またはエンコーダ側もしくはデコーダ側で予め定義される可能性がある重み係数である。Kは、やはりビットストリーム内でシグナリングされるかまたはエンコーダ側もしくはデコーダ側で予め定義される可能性がある加算因子である。例として、双予測は、
Bi-prediction = (Prediction1 + Prediction2)/2
を使用して得られる可能性があり、式中、W1およびW2は、1/2に設定され、Kは、0に設定される。
オプティカルフローの改善の目的は、双予測の正確性を高めることである。オプティカルフローは、2つの連続するフレーム間の画像オブジェクトの目に見える動きのパターンである。オプティカルフローは、オブジェクトまたはカメラの移動によって引き起こされる。オプティカルフロー改善プロセスは、オプティカルフローの式の適用(オプティカルフローの式を解くこと)によって双予測の正確性を高める。
例においては、ピクセルI(x,y,t)が、第1のフレーム内にある(xおよびyは、空間座標に対応し、tは、時間の次元に対応する)。ピクセルによって表されるオブジェクトが、時間dtの後に取得された次のフレームにおいて距離(dx,dy)だけ移動する。それらのピクセルは同じであり、強度が変わらないので、オプティカルフローの式は、
I(x,y,t) = I(x+dx, y+dy, t+dt)
によって与えられる。
I(x,y,t)は、座標(x,y,t)のピクセルの強度(サンプル値)を指定する。
別の例においては、小さな変位およびテイラー級数展開におけるより高次の項が無視され、オプティカルフローの式は
Figure 0007271697000004
のように記述されることも可能であり、式中、
Figure 0007271697000005
は、位置(x,y)における水平方向および垂直方向の空間的なサンプルの勾配であり、
Figure 0007271697000006
は、(x,y)における時間偏導関数である。
オプティカルフローの改善は、双予測の品質を高めるために上の原理を利用する。
オプティカルフローの改善の実装は、概して、以下のステップを含む。
1. サンプルの勾配を計算する
2. 第1の予測と第2の予測との間の差を計算する
3. オプティカルフローの式を使用して得られた2つの参照パッチの間の誤差Δ
Figure 0007271697000007
を最小化するピクセルまたはピクセルのグループの変位を計算し、式中、I(0)は、第1の予測のサンプル値に対応し、I(1)は、第2の予測のサンプル値であり、∂I(0)/∂xおよび∂I(0)/∂yは、-xおよび-y方向の勾配であり、τ1およびτ0は、参照ピクチャまでの距離を表し、第1の予測および第2の予測が、得られる。動きベクトル(vx, vy)が、最小化プロセスによって得られる。一部の手法は、残差平方和を最小化し、一方、一部の手法は、絶対誤差の和を最小化する。
4. 以下のようなオプティカルフローの式の実装を使用する。
predBIO = 1/2・(I(0) + I(1) + vx/2・(τ1∂I(1)/∂x - τ0∂I(0)/∂x) + vy/2・(τ1∂I(1)/∂y - τ0∂I(0)/∂y))
式中、predBIOは、オプティカルフロー改善プロセスの出力である修正された予測を指定する。
サンプルの勾配は、以下の式によって取得され得る。
・∂I(x, y, t)/∂x = I(x + 1, y, t) - I(x - 1, y, t)
・∂I(x, y, t)/∂y = I(x, y + 1, t) - I(x, y - 1, t)
一部の実施形態においては、各ピクセルに関する変位の推定の複雑さを減らすために、変位が、ピクセルのグループに関して推定される。一部の例においては、4×4ルマサンプルのブロックに関する改善された双予測を計算するために、変位が、サンプルの4×4ブロックをその中心として8×8ルマサンプルのブロックのサンプル値を使用して推定される。
オプティカルフロー改善プロセスの入力は、2つの参照ピクチャからの予測サンプルであり、オプティカルフローの改善の出力は、オプティカルフローの式によって計算される組み合わされた予測(predBIO)である。
オプティカルフローの改善の一例が、文書JVET-M1001、Versatile Video Coding (Draft 4)の8.4.7.4「Bidirectional optical flow prediction process」のセクションに説明されている。
オプティカルフローの改善、双予測のオプティカルフローの改善、および双方向のオプティカルフローの改善という用語は、用語が本質的に等価であるので本開示において交換可能であるように使用される。
例において、動きベクトルの改善およびオプティカルフローの改善は、以下のように連続して適用される。
ステップ0、図8の1010のように初期動きベクトルを取得する。
ステップ1、動きベクトルの改善が適用され1020、改善された動きベクトル1030が取得される。
ステップ2、予測が改善動きベクトルによって得られる1040。取得された予測は、I(0)およびI(1)であり、これらは、オプティカルフロー改善プロセスの入力である。
ステップ3、オプティカルフロー改善プロセスが、修正された予測を取得するために予測に適用される。修正された予測が、オプティカルフローの式によって得られ、predBIOと表記される。
しかし、オプティカルフロー改善プロセスは、計算負荷が高い。復号時間は、オプティカルフローの改善の適用により増やされる。
本発明の一実施形態においては、オプティカルフローの改善を適用すべきか否かを判断する方法は、開示されず、この判断は、動きベクトル改善プロセス中に実行される計算によってなされる可能性がある。
より詳細には、動きベクトル改善プロセス中に実行される計算の結果が、オプティカルフローの改善を適用すべきか否かを判定するために使用される。
本発明の目的は、平均復号時間が(必要な計算をスキップすることによって)削減されるように、指定された条件に従ってオプティカルフローの改善の適用をスキップすることである。
第1の例示的な実施形態によれば、以下のステップが、現在のコーディングブロックに関する予測を得るために適用される。
ステップ0: ビットストリーム内のインジケーション情報に基づいて初期動きベクトルを取得する。
ステップ1: 初期動きベクトルおよびMタップ補間フィルタに基づいて第1の予測を取得する。
ステップ2: 第1の予測によるマッチングコストを取得する。
ステップ3: 初期動きベクトルおよびマッチングコストに従って改善された動きベクトルを取得する。
ステップ4: 改善された動きベクトルおよびKタップ補間フィルタによって第2の予測を取得する。
ステップ5: マッチングコストに従ってオプティカルフロー改善プロセスを実行すべきかどうかを判定する。例において、マッチングコストは、閾値と比較され、オプティカルフロー改善プロセスは、マッチングコストの値が閾値以上であるときに実行される。ステップ5は、ステップ3またはステップ4の前に実行される可能性もある。
ステップ6: オプティカルフロー改善プロセスが実行される必要があると判定されるとき、オプティカルフローの改善が、第2の予測を入力とし、修正された第2の予測を出力として適用される。否定的に判定される場合、オプティカルフローの改善は、第2の予測に適用されない。言い換えると、オプティカルフロー改善プロセスが実行される必要があると判定されるとき、現在のコーディングブロックの最終的な予測は、第2の予測およびオプティカルフロー改善プロセスによって得られる。そうでない場合、現在のコーディングブロックの最終的な予測は、オプティカルフロー改善プロセスの適用なしに第2の予測によって得られる。
ステップの詳細な説明は、以下の通りである。
ステップ0において、2つの初期動きベクトルが、入力として取得される。初期動きベクトルは、ビットストリーム内のインジケーション情報に基づいて決定され得る。たとえば、インデックスが、ビットストリーム内でシグナリングされる可能性があり、インデックスは、候補動きベクトルのリスト内の位置を示す。別の例においては、動きベクトル予測子インデックスおよび動きベクトルの差の値が、ビットストリーム内でシグナリングされ得る。ビットストリーム内のインジケーション情報に基づいて決定される動きベクトルは、初期動きベクトルとして定義される。
別の例においては、参照ピクチャのインジケーションが、ビットストリームから取得されることが可能であり、初期動きベクトルは、参照ピクチャのインジケーションに基づいて取得される。参照ピクチャのインジケーションは、初期動きベクトルによって指し示される参照ピクチャを決定するために使用される。
ステップ1、ステップ2、およびステップ3は、上の例において説明されたように、動きベクトル改善プロセスに対応する。初期動きベクトルが、動きベクトルの改善によって改善される。一例において、マッチングコストは、動きベクトルの改善において使用される類似性の尺度である。
ステップ1によって、初期動きベクトルに対応する第1の予測が、取得される。例においては、動きベクトル改善プロセスにおいて、候補動きベクトルの少なくとも2つのペアが存在し、そのうちの1つは、通常、初期動きベクトルによって形成されたペア(MV0, MV1)である。言い換えると、候補動きベクトルの集合が、通常、2つ以上のペアを含み、ペアのうちの1つは、通常、(MV0, MV1)である。候補動きベクトルのその他のペアは、(上の例において説明されたように)動きベクトルに小さな乱れを加えることによって(MV0, MV1)に基づいて決定される。
ステップ1において、候補動きベクトルの各ペアに対応する第1の予測が、Mタップ補間フィルタに基づいて取得される。例として、MV0に対応する1つの予測は、参照ピクチャ(既にエンコーダにおいて符号化されているかまたはデコーダにおいて復号されているピクチャ)内の長方形ブロックの位置を特定することによって取得されることが可能であり、ブロックは、MV0によって指し示される。その後、有利なことに、補間フィルタが、MV0によって指し示されたブロック内のサンプルに適用される。より正確な動き推定を提供するために、参照ピクチャの解像度が、ピクセル間のサンプルを補間することによって高められる可能性がある。小数ピクセル補間が、最も近いピクセルの加重平均によって実行され得る。ここでは、Mタップフィルタは、概して、2、4、6、または8タップフィルタである可能性があり(これらの選択肢に限定されない)、つまり、フィルタは、M個の乗算の係数を有する。MV1に対応する予測は、同じまたは異なる参照ピクチャ内の長方形ブロックの位置を特定することによって同様に取得され得る。長方形のサイズは、現在のコーディングブロックのサイズに比例する。
ステップ2において、候補動きベクトルの各ペアに関連するマッチングコストが、第1の予測に従って決定される。
ステップ2によって、改善候補動きベクトル(MV)のペアのうちの1つに対応する少なくとも1つのマッチングコスト(たとえば、類似性の尺度)が、取得される。2つの予測ブロックの間の類似性が高いほど、マッチングコストは小さい。
前記マッチングコストは、ステップ3の初期動きベクトルの改善において使用される。改善された動きベクトルが、前記マッチングコストに従って選択される。
ステップ4において、改善された動きベクトルおよびKタップ補間フィルタによって第2の予測が取得される。双予測の場合である2つの改善された動きベクトル(MV0'およびMV1')の場合、2つの第2の予測が取得される。
第2の予測は、第1の補間フィルタ(Mタップフィルタ)と同一である可能性があり、または同一でない可能性がある第2の補間フィルタ(Kタップフィルタ)の適用によって得られる。第2の予測は、第2の補間フィルタの適用によって、ならびに参照ピクチャ内のMV0'およびMV1'によって指し示されるブロックに従って、第1の予測と同様に取得される。
ステップ5において、前記マッチングコストが、以下によって、オプティカルフロー改善プロセスを実行すべきか否かを判定するために使用される。
マッチングコストの値が予め定義された閾値未満であるとき、オプティカルフローの改善は適用されない。マッチングコストの値が閾値以上であるとき、オプティカルフロー改善プロセスが実行される。オプティカルフロー改善プロセスが実行される場合、最終的な予測のサンプルが、修正される。
ステップ6において、ステップ5の出力に従って、マッチングコストが前記閾値以上である場合、オプティカルフロー改善プロセスが、第2の予測に適用され、第2の予測は、MV0'およびMV1'(改善された動きベクトル)によって得られる。現在のコーディングブロックに関する最終的な予測は、第2の予測に対してオプティカルフロー改善プロセスを実行することによって得られ、第2の予測は、MV0'およびMV1'によって指し示される。マッチングコストが前記閾値未満である場合、最終的な予測は、オプティカルフローの改善の適用なしにMV0'およびMV1'によって指し示された第2の予測によって得られ、つまり、ステップ6は、実行されない。
1つの実装において、ステップ2におけるマッチングコストは、(改善候補動きベクトル(MV)のペアのうちの1つである)初期動きベクトルのペアに対応するマッチングコストである。マッチングコストは、MV0、MV1のペアに対応する可能性がある。
別の実装において、ステップ2における前記マッチングコストは、改善候補動きベクトル(MV)のペアの中で最小のマッチングコストに等しいマッチングコストである。言い換えると、それぞれの改善候補動きベクトルのペアに対応するマッチングコストが、取得され、前記マッチングコストは、それらの中で最小のマッチングコストに等しい。一例においては、改善された動きベクトルのペア(MV0', MV1')が最小のマッチングコストを有するため、その改善された動きベクトルのペア(MV0', MV1')が選択されるので、前記マッチングコストは、改善された動きベクトルのペアMV0'およびMV1'に対応するマッチングコストである。
例として、MVのペアは、以下の方法によって構築され得る。
候補MVのペアが、MV0およびMV1に小さな動きベクトルの差を足すことによって決定される。たとえば、候補MVのペアは、以下を含む可能性がある。
(MV0, MV1)
(MV0 + (0,1), MV1 + (0,-1))
(MV0 + (1,0), MV1 + (-1,0))
本出願全体を通じて、MV0およびMV1は、初期動きベクトルであり、MV0'およびMV1'は、改善された動きベクトルである。
別の実装によれば、オプティカルフロー改善プロセスが実行されないとき、最終的な予測は、以下の式によって得られる。
Bi-prediction = Prediction1 * W1 + Prediction2 * W2 + K
式中、W1およびW2は、重み係数であり、W1およびW2は、ビットストリーム内でシグナリングされる可能性があり、またはW1およびW2は、エンコーダ側もしくはデコーダ側で予め定義される可能性がある。Kは、やはりビットストリーム内でシグナリングされるかまたはエンコーダ側もしくはデコーダ側で予め定義される可能性がある加算因子である。例において、双予測は、
Bi-prediction = (Prediction1 + Prediction2)/2
を使用して得られる可能性があり、式中、W1およびW2は、1/2に設定され、Kは、0に設定される。Prediction1およびPrediction2は、Kタップ補間フィルタリングによって得られる第2の予測であり、Prediction1は、第1の改善されたMV(MV0')に対応し、Prediction2は、第2の改善されたMV(MV1')に対応する。
上の式は、2つの予測の重み付けされた組合せを実現し、結果は、ブロックに関する最終的な予測である。
閾値は、予め定義された値であることが可能であり、閾値の値は、予測ブロックのサイズに依存する可能性がある。たとえば、閾値は、thr = nCbW×nCbH×Kであることが可能であり、式中、Kは、ゼロよりも大きな値であり、nCbWおよびnCbHは、予測ブロックの幅および高さである。
第1の実施形態は、図6の流れ図によってさらに例示される。
1つの実装において、Mタップフィルタは、タップのうちの1つがゼロに等しい2タップフィルタ(たとえば、バイリニアフィルタ)である。この実装において、Mタップフィルタは、2つの乗数係数を使用し、1つの係数の値が、常にゼロに等しい。どの係数がゼロに等しい値を有するかは、小数サンプル点、小数サンプル点が動きベクトルによって指し示されることに基づいて決定される。この場合、動きベクトルの小数成分に応じて、第1の乗数係数の値または第2の乗数係数の値がゼロである可能性がある。
1つがゼロである2つのタップを有するそのようなフィルタが、下の表によって例示され得る。
Figure 0007271697000008
小数サンプル位置(p)は、初期または改善された動きベクトルの成分に従って取得され得る。たとえば、動きベクトルの-x成分が、MV0xによって与えられる場合、小数サンプル位置は、p = MV0x%16として取得されることが可能であり、式中、「%」は、モジュロ演算である。概して、p = MV0x%Kであり、式中、Kは、2つのサンプル位置の間の小数サンプル位置の数を表す。上で例示された補間フィルタは、一度にフィルタタップのうちの1つのみが非ゼロになるので1タップフィルタとも呼ばれ得る。
1つの実装において、Kの値は、8に等しい。その他の例において、Mの値は、8未満である。
1つの実装において、Mの値およびKの値は、両方とも8に等しい。
動きベクトル改善ユニットの入力である初期動きベクトルが、710において得られる。探索空間が、動きベクトル改善ユニットによって初期動きベクトルの周りに構築される(740)。一例において、探索空間は、候補動きベクトルのペアからなり、ペアの第1の動きベクトルは、第1の参照ピクチャに対応し、ペアの第2の動きベクトルは、第2の参照ピクチャに対応する。それぞれの候補動きベクトルのペアに対応する第1の予測が、Mタップ補間フィルタの適用によってステップ710において得られる。動きベクトルの改善の一部として、探索空間内の動きベクトルのペアのうちの1つに対応するマッチングコストが、計算される(720)。前記マッチングコストは、2つのプロセスの一部として使用され、第1のプロセスは、どの動きベクトルのペアが改善された動きベクトルのペア(750)として選択されるかを判断するためにマッチングコストが使用される動きベクトルの改善(740)である。第2のプロセスは、オプティカルフローの改善(770)が適用されるか否かの判断である。改善された動きベクトルが取得された後、現在のブロックに関する第2の予測が、(760)によって得られる。マッチングコストが閾値以上である場合、オプティカルフローの改善が、適用され、760の予測が、修正された予測(780)を得るために770によって修正される。修正された予測は、概して、ステップ760の第2の予測とはサンプル値が異なる。
一例において、動きベクトル改善プロセスは、動きベクトルをさらに改善するために2回以上実行される。この例においては、まず、初期動きベクトルが、第1の改善された動きベクトルを得るために動きベクトル改善プロセスによって改善される。その後、動きベクトルの改善が、もう一度実行され、この場合、第1の改善された動きベクトルは、第2の動きベクトルの改善のための初期動きベクトルとみなされる。
第2の例示的な実施形態によれば、以下のステップが、現在のコーディングブロックに関する予測を得るために適用される。
ステップ0: ビットストリーム内のインジケーション情報に基づいて初期動きベクトルを取得する。
ステップ1: 初期動きベクトルおよびMタップ補間フィルタに基づいて第1の予測を取得する。
ステップ2: 第1の予測によるN個のマッチングコストを取得する。
ステップ3: 第1の関数に基づいて初期動きベクトルおよびN個のマッチングコストに従って改善された動きベクトルを取得する。
ステップ4: 改善された動きベクトルおよびKタップ補間フィルタによって第2の予測を取得する。
ステップ5: N個のマッチングコストに従ってオプティカルフロー改善プロセスを実行すべきかどうかを判定する。導出されるコストは、N個のマッチングコストおよび第2の関数によって得られる。例において、導出されたコストは、閾値と比較され、オプティカルフロー改善プロセスは、導出されたコストの値が閾値以上であるときに実行される。ステップ5は、ステップ3またはステップ4の前に実行される可能性もある。
ステップ6: オプティカルフロー改善プロセスが実行される必要があると判定されるとき、オプティカルフローの改善の適用によって現在のコーディングブロックの予測の少なくとも1つのサンプルを修正する。
オプティカルフロー改善プロセスが実行される必要があると判定されるとき、オプティカルフローの改善が、第2の予測を入力とし、修正された第2の予測を出力として適用される。否定的に判定される場合、オプティカルフローの改善は、第2の予測に適用されない。言い換えると、オプティカルフロー改善プロセスが実行される必要があると判定されるとき、現在のコーディングブロックの最終的な予測は、第2の予測およびオプティカルフロー改善プロセスによって得られる。そうでない場合、現在のコーディングブロックの最終的な予測は、オプティカルフロー改善プロセスの適用なしに第2の予測によって得られる。
ステップの詳細な説明は、以下の通りである。
ステップ0において、2つの初期動きベクトルが、入力として取得される。初期動きベクトルは、ビットストリーム内のインジケーション情報に基づいて決定され得る。たとえば、インデックスが、ビットストリーム内でシグナリングされる可能性があり、インデックスは、候補動きベクトルのリスト内の位置を示す。別の例においては、動きベクトル予測子インデックスおよび動きベクトルの差の値が、ビットストリーム内でシグナリングされ得る。ビットストリーム内のインジケーション情報に基づいて決定される動きベクトルは、初期動きベクトルとして定義される。
別の例においては、参照ピクチャのインジケーションが、ビットストリームから取得されることが可能であり、初期動きベクトルは、参照ピクチャのインジケーションに基づいて取得される。参照ピクチャのインジケーションは、初期動きベクトルによって指し示される参照ピクチャを決定するために使用される。
ステップ1、ステップ2、およびステップ3は、上の例において説明されたように、動きベクトル改善プロセスに対応する。初期動きベクトルが、動きベクトルの改善によって改善される。一例において、マッチングコストは、動きベクトルの改善において使用される類似性の尺度である。
ステップ1によって、初期動きベクトルに対応する第1の予測が、取得される。例においては、動きベクトル改善プロセスにおいて、候補動きベクトルの少なくとも2つのペアが存在し、そのうちの1つは、通常、初期動きベクトルによって形成されたペア(MV0, MV1)である。また、候補動きベクトルのその他のペアは、(上の例において説明されたように)動きベクトルに小さな乱れを加えることによって(MV0, MV1)に基づいて決定される。
ステップ1において、候補動きベクトルの各ペアに対応する第1の予測が、Mタップ補間フィルタに基づいて取得される。
ステップ2において、候補動きベクトルのN個のペアに関連するN個のマッチングコストが、第1の予測に従って決定される。
ステップ2によって、改善候補動きベクトル(MV)のペアのうちのN個に対応するN個のマッチングコスト(類似性の尺度)が、取得される。2つの予測ブロックの間の類似性が高いほど、マッチングコストは小さい。
前記N個のマッチングコストは、ステップ3の初期動きベクトルの改善において使用される。
改善された動きベクトルは、第1の関数およびN個のマッチングコストによって決定される。
一例において、改善された動きベクトルは、以下の関数によって取得され得る。
- (sad[ 3 ] + sad[5])が( sad[ 4 ] << 1 )に等しい場合、dmvOffset[ 0 ]が0に等しいように設定される
- そうでない場合、以下が適用される
dmvOffset[ 0 ] = ( ( sad[ 3 ] - sad[ 5 ] ) << 3 ) / ( sad[ 3 ] + sad[ 5 ] - ( sad[ 4 ] << 1 ) )
- ( sad[ 1 ] + sad[7])が( sad[ 4 ] << 1 )に等しい場合、dmvOffset[ 1 ]が0に等しいように設定される
- そうでない場合、以下が適用される
dmvOffset[ 1 ] = ( ( sad[ 1 ] - sad[ 7 ] ) << 3 ) / ( sad[ 1 ] + sad[ 7 ] - ( sad[ 4 ] << 1 ) )
式中、dmvOffset[0]およびdmvOffset[1]は、初期動きベクトルと改善された動きベクトルとの間の差を指定する。例において、dmvOffset[0]およびdmvOffset[1]は、改善された動きベクトルと初期動きベクトルとの間の差の-xおよび-y成分を指定する。sad[0]からsad[7]は、N個の候補動きベクトルのペアに対応するN個のマッチングコストである。改善された動きベクトルは、初期動きベクトルにdmvOffsetを足すことによって得られる。
N個のマッチングコストに従って改善された動きベクトルを決定するために使用される可能性があるその他の関数が、存在する可能性がある。本発明の第1の関数は、上の式に限定されない。
ステップ4において、改善された動きベクトルおよびKタップ補間フィルタによって第2の予測が取得される。双予測の場合である2つの改善された動きベクトル(MV0'およびMV1')の場合、2つの第2の予測が取得される。
第2の予測は、第1の補間フィルタ(Mタップフィルタ)と同一である可能性があり、または同一でない可能性がある第2の補間フィルタ(Kタップフィルタ)の適用によって得られる。第2の予測は、第2の補間フィルタの適用によって、ならびに参照ピクチャ内のMV0'およびMV1'によって指し示されるブロックに従って、第1の予測と同様に取得される。
ステップ5において、導出されるコストは、第2の関数および前記N個のマッチングコストによって得られる。導出されたコストは、オプティカルフロー改善プロセスを実行すべきか否かを判定するために使用される。前記導出されたコストの値が予め定義された閾値未満であるとき、オプティカルフロー改善プロセスは適用されない。導出されたコストの値が閾値以上であるとき、オプティカルフロー改善プロセスが実行される。オプティカルフロー改善プロセスが実行される場合、最終的な予測のサンプルが、修正される。
ステップ6において、ステップ5の出力に従って、導出されたコストが前記閾値よりも大きい場合、オプティカルフロー改善プロセスが、第2の予測に適用され、第2の予測は、MV0'およびMV1'(改善された動きベクトル)によって得られる。現在のコーディングブロックに関する最終的な予測は、第2の予測に対してオプティカルフロー改善プロセスを実行することによって得られ、第2の予測は、MV0'およびMV1'によって指し示される。マッチングコストが前記閾値未満である場合、最終的な予測は、オプティカルフローの改善の適用なしにMV0'およびMV1'によって指し示された第2の予測によって得られ、つまり、ステップ6は、実行されない。
別の実装によれば、オプティカルフロー改善プロセスが実行されないとき、最終的な予測は、以下の式によって得られる。
Bi-prediction = Prediction1 * W1 + Prediction2 * W2 + K
式中、W1およびW2は、重み係数であり、W1およびW2は、ビットストリーム内でシグナリングされる可能性があり、またはエンコーダ側もしくはデコーダ側で予め定義される可能性がある。Kは、やはりビットストリーム内でシグナリングされるかまたはエンコーダ側もしくはデコーダ側で予め定義される可能性がある加算因子である。例において、双予測は、
Bi-prediction = (Prediction1 + Prediction2)/2
を使用して得られる可能性があり、式中、W1およびW2は、1/2に設定され、Kは、0に設定される。Prediction1およびPrediction2は、Kタップ補間フィルタリングによって得られる第2の予測であり、Prediction1は、第1の改善されたMV(MV0')に対応し、Prediction2は、第2の改善されたMV(MV1')に対応する。
上の式は、2つの予測の重み付けされた組合せを実現し、結果は、ブロックに関する最終的な予測である。
閾値は、予め定義された値であることが可能であり、閾値の値は、予測ブロックのサイズに依存する。たとえば、閾値は、thr = nCbW×nCbH×Kであることが可能であり、式中、Kは、ゼロよりも大きな値であり、nCbWおよびnCbHは、予測ブロックの幅および高さである。
第2の実施形態は、図7の流れ図によってさらに例示される。
1つの実装において、Mタップフィルタは、タップのうちの1つがゼロに等しい2タップフィルタ(たとえば、バイリニアフィルタ)である。この実装において、Mタップフィルタは、2つの乗数係数を使用し、1つの係数の値が、常にゼロに等しい。ゼロに等しい係数は、動きベクトルによって指し示される小数サンプル点に基づいて決定される。この場合、動きベクトルの小数成分に応じて、第1の乗数係数の値または第2の乗数係数の値がゼロである可能性がある。
1つがゼロである2つのタップを有するそのようなフィルタが、下の表によって例示され得る。
Figure 0007271697000009
小数サンプル位置(p)は、初期または改善された動きベクトルの成分に従って取得され得る。たとえば、動きベクトルの-x成分が、MV0xによって与えられる場合、小数サンプル位置は、p = MV0x%16として取得されることが可能であり、式中、「%」は、モジュロ演算である。概して、p = MV0x%Kであり、式中、Kは、2つのサンプル位置の間の小数サンプル位置の数を表す。上で例示された補間フィルタは、一度にフィルタタップのうちの1つのみが非ゼロになるので1タップフィルタとも呼ばれ得る。
バイリニア補間フィルタの別の例は、下の通りであることが可能であり、その場合、フィルタ係数の両方が、非ゼロである。
Figure 0007271697000010
1つの実装において、Kの値は、8に等しい。その他の例において、Mの値は、8未満である。
1つの実装において、Mの値およびKの値は、両方とも8に等しい。
1つの実装において、第2の関数は、dmvOffsetに従ってN個のマッチングコストを線形結合するための関数であることが可能であり、dmvOffsetは、ステップ3において取得済みである。xおよびyの線形結合は、ax + byの形の任意の式であり、式中、aおよびbは、定数である。例において、定数aおよびbは、dmvOffsetに基づいて決定され得る。第2の関数の例が、下に与えられる。
1つの実装において、第2の関数は、以下であることが可能である。
・Sad[1]*A + Sad[2]*B + Sad[3]*C + Sad[4]*D、式中、A、B、C、およびDは、ゼロ以上である。一例において、A、B、C、およびDは、0と1との間であり、合計で1になる(つまり、A+B+C+D=1)数である可能性がある。別の例において、A、B、C、およびDは、0以上であり、合計で予め定義された決まった数Pになる数である可能性があり、Pは、1、2、4、8、16などに等しい可能性がある。
・A、B、C、およびDは、予め定義された決まった数である可能性がある。
・A、B、C、およびDは、dmvOffset[ 0 ]およびdmvOffset[ 1 ]に従って導出される可能性がある。例においては、A = dmvOffset[ 0 ]、B = P1 - dmvOffset[ 0 ]、C = dmvOffset[ 1 ]、D = P2 - dmvOffset[ 1 ]である。式中、P1およびP2は、1、4、8、16などに等しい可能性がある。
・上の式は、例として与えられる。式は、導出されたコストを得るための4つのマッチングコストの線形結合を表す。式においては、ステップ3で取得される可能性があるdmvOffsetが使用される。dmvOffsetは、改善された動きベクトルと初期動きベクトルとの間の差を表す。1つの特定の実装において、dmvOffsetは、MV0とMV0'との間の差として定義される。より詳細には、dmvOffset[0]は、MV0およびMV0'の-x成分の間の差である可能性があり、一方、dmvOffset[1]は、MV0およびMV0'の-y成分の間の差である可能性がある。
別の実装において、第2の関数は、以下であることが可能である。
・Sad[1]*A + Sad[2]*B + Sad[3]*C、式中、A、B、およびCは、ゼロ以上である。一例において、A、B、およびCは、0と1との間であり、合計で1になる(つまり、A+B+C=1)数である可能性がある。別の例において、A、B、およびCは、0以上であり、合計で予め定義された決まった数Pになる数である可能性があり、Pは、1、2、4、8、16などに等しい可能性がある。
・A、B、およびCは、予め定義された決まった数であることが可能である。
・A、B、およびCは、dmvOffset[ 0 ]およびdmvOffset[ 1 ]に従って導出される可能性がある。例においては、A = P - dmvOffset[ 0 ] - dmvOffset[ 1 ]、B = dmvOffset[ 0 ]、C = dmvOffset[ 1 ]である。式中、Pは、1、4、8、16などに等しい可能性がある。
・上の式は、例として与えられる。式は、導出されたコストを得るための3つのマッチングコストの線形結合を表す。式においては、ステップ3で取得される可能性があるdmvOffsetが使用される。dmvOffsetは、改善された動きベクトルと初期動きベクトルとの間の差を表す。一例において、dmvOffsetは、MV0とMV0'との間の差として定義される。より詳細には、dmvOffset[0]は、MV0およびMV0'の-x成分の間の差である可能性があり、一方、dmvOffset[1]は、MV0およびMV0'の-y成分の間の差である可能性がある。
別の実装において、導出されたコストを得るための第2の関数は、以下であることが可能である。
・改善されたMVのペアおよび改善されたMVのペアから整数の距離にある候補MVのペアの5つの評価された相違のコスト値(たとえば、SAD値)を使用して、パラメトリック誤差曲面関数
E(x,y) = A*(x - x0)2 + B*(y - y0)2 + C
が当てはめられ、(x0, y0)は、2つの参照パッチの間の相違が最小化される位置に対応し、Cは、(x0, y0)におけるコストの値であり、A、Bは、モデル係数である。これらの5つの未知数は、5つのコスト値が利用可能である場合、厳密に解かれ得る。言い換えると、E(x,y)の式は、最小マッチングコストの位置の近くの空間的位置の関数としてのマッチングコストの形が放物線の形であると仮定する。
一実施形態においては、1整数ピクセルの距離の、改善されたMVのペアの左、上、右、および下の候補MVのペアが、使用される。この場合、(x,y)位置(0,0)、(-1,0)、(0,-1)、(1,0)、および(0,1)のE(x,y)の評価された値ならびにE(x,y)のパラメトリック方程式が与えられると、5つの未知数A、B、C、x0、y0は、以下のように解かれ得る。
Figure 0007271697000011
一方、6個以上の位置のコスト値が利用可能である場合、5つの未知数は、最小二乗法または同様の手法を使用して解かれ得る。そのとき、Cの得られた値が、導出されたコストとなる。
1つの実装において、第2の関数は、以下の通りであることが可能である。
Figure 0007271697000012
式中、Kは、0よりも大きいスカラーであり、sad[0]からsad[4]は、N個のマッチングコストである。
一例において、動きベクトル改善プロセスは、動きベクトルをさらに改善するために2回以上実行される。この例においては、まず、初期動きベクトルが、第1の改善された動きベクトルを得るために動きベクトル改善プロセスによって改善される。その後、動きベクトルの改善が、もう一度実行され、この場合、第1の改善された動きベクトルは、第2の動きベクトルの改善のための初期動きベクトルとみなされる。
動きベクトル改善ユニットの入力である初期動きベクトルが、925において得られる。探索空間が、動きベクトル改善ユニットによって初期動きベクトルの周りに構築される(930)。一例において、探索空間は、候補動きベクトルのペアからなり、ペアの第1の動きベクトルは、第1の参照ピクチャに対応し、ペアの第2の動きベクトルは、第2の参照ピクチャに対応する。それぞれの候補動きベクトルのペアに対応する第1の予測が、Mタップ補間フィルタの適用によってステップ910において得られる。動きベクトルの改善の一部として、探索空間内のN個の動きベクトルのペアに対応するマッチングコストが、計算される(915)。前記N個のマッチングコストは、2つのプロセスの一部として使用され、第1のプロセスは、N個のマッチングコストを入力として受け取る関数によって改善された動きベクトルのペア(935)を計算するためにマッチングコストが使用される動きベクトルの改善(930)である。第2のプロセスは、オプティカルフローの改善(950)が適用されるか否かの判断であり、判断は、945によって行われる。改善された動きベクトルが取得された後、現在のブロックに関する第2の予測が、(940)によって得られる。マッチングコストが閾値よりも大きい場合、オプティカルフローの改善が、適用され、940の予測が、修正された予測(955~960)を得るために950によって修正される。修正された予測は、概して、ステップ940の第2の予測とはサンプル値が異なる。マッチングコストが閾値未満である場合、オプティカルフローの改善は、適用されず、第2の予測が、出力(現在のブロックの最終的な予測)として設定される。
本発明の第3の例示的な実施形態によれば、以下のステップが、現在のコーディングブロックに関する予測を得るために適用される。
ステップ0: ビットストリーム内のインジケーション情報に基づいて初期動きベクトルのペアを取得する。
ステップ1: 初期MVのペアおよびMタップ補間フィルタに基づいて予測されたサンプルの第1の集合を取得する。
ステップ2: 予測されたサンプルの第1の集合を使用して初期MVのペアに対応する第1のマッチングコストを取得する。
ステップ3: 現在のコーディングブロックが動きベクトルの改善を実行するのに適格であるかどうかを判定する。
ステップ4: ステップ3において現在のコーディングブロックがMVRを実行するのに適格であると判定される場合、
ステップ4a: 動きベクトル改善プロセスを使用して初期MVのペアおよびマッチングコストに従って改善されたMVのペアおよび改善されたMVのペアに対応するマッチングコストを取得する。
ステップ4b: 改善されたMVのペアおよびKタップ補間フィルタによって予測されたサンプルの第2の集合を取得する。
ステップ4c: 第2のマッチングコストに従ってオプティカルフロー改善プロセスを実行すべきかどうかを判定する。例において、マッチングコストは、閾値と比較され、オプティカルフロー改善プロセスは、マッチングコストの値が閾値以上であるときに実行される。
ステップ5: そうでない場合(ステップ3において現在のコーディングブロックがMVRを実行するのにふさわしくないと判定される場合)、
ステップ5a: 初期MVのペアおよびKタップ補間フィルタによって予測されたサンプルの第2の集合を取得する。
ステップ5b: 第1のマッチングコストに従ってオプティカルフロー改善プロセスを実行すべきかどうかを判定する。例において、マッチングコストは、閾値と比較され、オプティカルフロー改善プロセスは、マッチングコストの値が閾値以上であるときに実行される。
ステップ6: (ステップ4cかまたはステップ5bかのどちらかにおいて)オプティカルフロー改善プロセスが実行される必要があると判定されるとき、オプティカルフローの改善が、第2の予測を入力とし、修正された第2の予測を出力として適用される。否定的に判定される場合、オプティカルフローの改善は、第2の予測に適用されない。言い換えると、オプティカルフロー改善プロセスが実行される必要があると判定されるとき、現在のコーディングブロックの最終的な予測は、第2の予測およびオプティカルフロー改善プロセスによって得られる。そうでない場合、現在のコーディングブロックの最終的な予測は、オプティカルフロー改善プロセスの適用なしに第2の予測によって得られる。
この実施形態は、図9の流れ図にさらに示される。ブロック1110は、参照L0およびL1における予測のための現在のコーディングブロックに関する初期MVのペアを受け取る。ブロック1110は、ステップ1に対応し、初期MVのペアおよびピクチャL0およびL1の再構築された参照サンプルを使用して、予測されたサンプルの第1の集合が、取得される。ブロック1120は、ステップ2に対応し、(背景のMVRのセクションにおいて説明されたように)初期MVのペアに対応するサンプルの予測されたブロックの第1の集合の間で第1のマッチングコスト(またはSADなどの相違の測定基準)が評価される。ブロック1130は、ステップ3に対応し、MVRを実行する現在のコーディングブロックのふさわしさに関する条件が調べられる。ブロック1140は、ステップ4aに対応し、現在のコーディングブロックがMVRを実行するのに適格であると分かる場合、改善されたMVのペアが、(背景のMVRのセクションにおいて説明されたように)MVRを実行することによって取得され、改善されたMVのペアに対応する第2のマッチングコスト(または相違の測定基準)が、取得される。ブロック1150は、ステップ4bに対応し、予測されたサンプルの第2の集合が、改善されたMVのペアを使用して(水平方向および垂直方向に)Kタップ補間フィルタを使用して取得される。ブロック1160は、ステップ4cに対応し、第2のマッチングコストが予め決められた閾値未満であるかどうかが調べられ、閾値未満では、双予測のオプティカルフローに基づく改善および双予測が、スキップされる。ブロック1180は、ステップ5aに対応し、現在のコーディングブロックが、MVRをスキップし、初期MVのペアを使用してKタップ補間フィルタを使用して、予測されたサンプルの第2の集合を取得する。ブロック1185は、ステップ5bに対応し、第1のマッチングコストが予め決められた閾値未満であるかどうかが調べられ、閾値未満では、BPOFが、スキップされる。ブロック1170および1195は、ステップ6の一部に対応し、ステップ4cまたはステップ5bのチェックが、第2のまたは第1のマッチングコストがそれぞれ予め決められた閾値未満であることを示し、閾値未満でBPOFがスキップされる場合、BPOFなしの双予測の加重平均が、予測されたサンプルの第2の集合を使用して実行される。ブロック1175は、ステップ6の一部に対応し、ステップ4cまたはステップ5bのチェックが、第2のまたは第1のマッチングコストが予め決められた閾値未満ではないことを示し、閾値未満でBPOFがスキップされる場合、推定されたオプティカルフローが、取得され、最終的な双予測が、予測されたサンプルの第2の集合、予測されたサンプルの第2の集合の勾配、および推定されたオプティカルフローを使用して取得される。
双予測のオプティカルフローに基づく改善プロセスの早期終了を決定するために、動きベクトル改善プロセスによって必要とされる現在のコーディングユニット内のサンプルのサブブロックに関して計算される第1のまたは第2のマッチングコストを使用することによって、BPOFをスキップするかまたは実行するかの判断が、コーディングユニット内のMVRの下位ブロック毎に変わり得ることに留意されたい。BPOFは、ステップ4cまたはステップ5において実行された判定に基づいて、下位ブロック内のすべてのBPOF適用ユニット(BPOF application unit)(たとえば、ピクセルレベル、またはサンプルレベルの4×4ブロック)に関して適用されるかまたはスキップされる。
特定の実施形態においては、MVRの下位ブロック内の各BPOF適用ユニットに対応する部分的なマッチングコストを取得することによって、下位ブロック内の各BPOF適用ユニットに関してさらなる早期終了を実行することが可能である。
予め決められた閾値は、概して、第1の予測または予測されたサンプルの第1の集合のビット深度に依存するサンプル毎の閾値として選択される。たとえば、バイリニア(2タップ)補間を使用して得られた第1の予測サンプル値がビット深度bであるように制約され、サンプル毎の閾値がk*2(b-10)であるように計算され、マッチングコストが計算されるサンプルの数がNである場合、現在の下位ブロックに関するマッチングコストが比較される予め決められた閾値は、k*N*2(10-b)である。kに関するサンプル値は、(ビット深度10に関して)2であり、Nは、8×16=128であり、bは、8である。所与の候補MVのペアのマッチングコストが第1の予測されたサンプルの大幅に縮小された集合を用いて計算され得るので、Nの値は、それに応じて使用されるべきである。たとえば、予測されたサンプルの8×16ブロックの1つおきの行が使用される場合、Nは、8×8 = 64と計算される。
本発明の実施形態によれば、早期終了の方法が、オプティカルフロー改善プロセスの適用を条件付きでスキップするために提供され、オプティカルフロー改善プロセスの適用は、計算負荷が高いと考えられる。結果として、平均復号時間が、削減される。
さらに、オプティカルフローの適用を条件付きでスキップするための条件が、(動きベクトル改善プロセスの過程でマッチングコストを計算する)別のプロセスによって計算されるパラメータに基づいて決定される。既に計算された値が使用されるので、追加の計算が実行される必要がない。
特に、図10に示されるように復号デバイスまたは符号化デバイスにおいて実施されるビデオコーディングの方法が、提供される。方法は、所与の順序で実行される可能性がある以下のステップを含む。初期動きベクトルが、現在のブロックに関して取得される1210。現在のブロックは、現在のコーディングブロックである可能性がある。現在のブロック内のサンプル値に関する第1の予測が、初期動きベクトルに基づいて取得される1220。マッチングコストが、第1の予測に従って計算される1230。
第1のマッチングコストが取得された後、少なくとも1つの予め設定された条件に従って、オプティカルフロー改善プロセスが実行されるべきか否かが判定され1240、少なくとも1つの予め設定された条件は、計算されたマッチングコスト(たとえば、類似性の尺度による。上の説明参照)が予め定義された閾値以上であるかどうかという条件を含む。オプティカルフロー改善プロセスが実行されるべきであると判定されるとき、現在のブロック内のサンプル値に関する最終的なインター予測を得るためのオプティカルフロー改善プロセスが実行される1250。オプティカルフロー改善プロセスが実行されるべきでないと判定されるとき、オプティカルフロー改善プロセスをスキップすることによって計算コストが節約され得る。
この方法は、図1aから図5を参照して上で説明された装置において実施され得る。
特に、方法は、デコーダ側の動きベクトル改善プロセスの文脈で実施され得る。そのようなプロセスの入力は、以下である。
現在のピクチャの左上のルマサンプルに対する現在のコーディング下位ブロック(subblock)の左上のサンプルを指定するルマ位置(xSb, ySb)
現在のコーディング下位ブロックの幅をルマサンプルで指定する変数sbWidth
現在のコーディング下位ブロックの高さをルマサンプルで指定する変数sbHeight
1/16の小数サンプル精度のルマ動きベクトルmvL0およびmvL1
選択されたルマ参照ピクチャサンプル配列refPicL0LおよびrefPicL1L
このプロセスの出力は、デルタルマ動きベクトル(delta luma motion vector)dMvL0およびdMvL、ならびに第1の予測の最小の差分絶対値和(上述のSAD計算参照)を指定する変数dmvrSadである。
デルタルマ動きベクトルdMvL0は、dMvL0[ 0 ] += 16 * intOffXおよびdMvL0[ 1 ] += 16 * intOffYによって導出される可能性があり、式中、intOffXおよびintOffYは、それぞれ、xおよびy方向の整数サンプルオフセットである。さらに、デルタルマ動きベクトルdMvLは、dMvL1[ 0 ] = -dMvL0[ 0 ]およびdMvL1[ 1 ] = -dMvL0[ 1 ]として計算される可能性がある。
第1の予測ルマサンプル値が、小数サンプルのバイリニア補間によって導出される。インター予測されたブロックの復号プロセスにおいて、双方向のオプティカルフローのサンプル予測プロセスが、適用される可能性があり、または適用されない可能性がある。双方向のオプティカルフローのサンプル予測プロセスが適用されない場合、重み付けされたサンプル予測プロセスが、改善された動きベクトルに基づいて取得された改善された第2の予測に適用される。双方向のオプティカルフローのサンプル予測プロセスが適用される場合、双方向のオプティカルフローのサンプル予測プロセスは、入力と同様に改善された動きベクトルに基づいて取得された第2の予測を受け取り、最終的な予測を出力する。
双方向のオプティカルフローのサンプル予測プロセスが適用され得るか否かをシグナリングするために、フラグが使用される可能性がある。たとえば、フラグがTRUEであることが、双方向のオプティカルフローのサンプル予測プロセスが実行されるための必要条件と考えられる可能性がある。しかし、この必要条件は、双方向のオプティカルフローのサンプル予測プロセスが実行されるための十分条件ではない可能性がある。十分条件は、フラグがTRUEであることと、上述のマッチングコストが予め定義された閾値以上であることとの両方である可能性がある。たとえば、マッチングコストは、第1の予測の最小の差分絶対値和を指定する変数dmvrSadに基づいて決定され得る。
一方、フラグがFALSEである場合、それは、オプティカルフローのサンプル予測プロセスを実行せず、重み付けされたサンプル予測プロセスを実行するための十分条件と考えられる可能性がある。
さらに、図11に示されるように画像エンコーダおよび/または画像デコーダにおいて使用するためのデバイス1300が、提供される。デバイス1300は、この例示的な実施形態によれば、現在のブロックに関する初期動きベクトルを取得するように構成される初期動きベクトルユニット1310を含む。さらに、デバイス1300は、初期動きベクトルに基づいて現在のブロック内のサンプル値に関する第1の予測を取得するように構成される予測ユニット1320を含む。さらに、デバイス1300は、第1の予測に従ってマッチングコストを計算するように構成されるマッチングコスト計算ユニット1330を含む。
デバイス1300は、少なくとも1つの予め設定された条件に従って、オプティカルフロー改善プロセスが実行されるべきか否かを判定するように構成されるオプティカルフロー改善プロセス判定ユニット1340を含み、少なくとも1つの予め設定された条件は、計算されたマッチングコストが閾値以上であるかどうかという条件を含む。さらに、デバイス1300は、オプティカルフロー改善プロセスが実行されるべきであると判定されるときに、現在のブロック内のサンプル値に関する最終的なインター予測を取得するためにオプティカルフロー改善プロセスを実行するように構成されるオプティカルフロー改善プロセス実行ユニット1350を含む。
数学演算子
本出願において使用される数学演算子は、Cプログラミング言語において使用される数学演算子に似ている。しかし、整数の除算および算術シフト演算の結果は、より厳密に定義され、累乗および実数値の除算などの追加の演算が、定義される。付番およびカウントの規則は、概して0から始まり、たとえば、「第1」は、0番と等価であり、「第2」は、1番と等価であり、以下同様である。
算術演算子
以下の算術演算子が、以下の通り定義される。
Figure 0007271697000013
論理演算子
以下の論理演算子が、以下の通り定義される。
x && y xおよびyのブール論理「積」
x || y xおよびyのブール論理「和」
! ブール論理「否定」
x ? y : z xが真であるかまたは0に等しくない場合、値yと評価され、そうでない場合、値zと評価される。
関係演算子
以下の関係演算子が、以下の通り定義される。
> より大きい
>= 以上
< 未満
<= 以下
== 等しい
!= 等しくない
関係演算子が値「na」(該当なし)を割り振られたシンタックス要素または変数に適用されるとき、値「na」は、シンタックス要素または変数に関する異なる値として扱われる。値「na」は、いかなるその他の値とも等しくないとみなされる。
ビット演算子
以下のビット演算子が、以下の通り定義される。
& ビット毎の「論理積」。整数引数に対する演算のとき、整数値の2の補数表現に対して作用する。別の引数よりも少ないビットを含む2進数引数に対する演算のとき、より短い引数が、0に等しいさらに上位桁のビットを追加することによって拡張される。
| ビット毎の「論理和」。整数引数に対する演算のとき、整数値の2の補数表現に対して作用する。別の引数よりも少ないビットを含む2進数引数に対する演算のとき、より短い引数が、0に等しいさらに上位桁のビットを追加することによって拡張される。
^ ビット毎の「排他的論理和」。整数引数に対する演算のとき、整数値の2の補数表現に対して作用する。別の引数よりも少ないビットを含む2進数引数に対する演算のとき、より短い引数が、0に等しいさらに上位桁のビットを追加することによって拡張される。
x>>y xの2の補数による整数の表現の、2進数のy桁分の算術右シフト。この関数は、yの非負の整数値に対してのみ定義される。右シフトの結果として最上位ビット(MSB)にシフトされるビットは、シフト演算の前のxのMSBに等しい値を有する。
x<<y xの2の補数による整数の表現の、2進数のy桁分の算術左シフト。この関数は、yの非負の整数値に対してのみ定義される。左シフトの結果として最下位ビット(LSB)にシフトされるビットは、0に等しい値を有する。
代入演算子
以下の算術演算子が、以下の通り定義される。
= 代入演算子
++ インクリメント、つまり、x++は、x = x + 1と等価であり、配列のインデックスに使用されるとき、インクリメント演算の前に変数の値と評価される。
-- デクリメント、つまり、x--は、x = x - 1と等価であり、配列のインデックスに使用されるとき、デクリメント演算の前に変数の値と評価される。
+= 指定された量のインクリメント、つまり、x += 3は、x = x + 3と等価であり、x += (-3)は、x = x + (-3)と等価である。
-= 指定された量のデクリメント、つまり、x -= 3は、x = x - 3と等価であり、x -= (-3)は、x = x - (-3)と等価である。
範囲の表記
以下の表記が、値の範囲を指定するために使用される。
x = y..z xは、x、y、およびzが整数値であり、zがyよりも大きいものとして、yおよびzを含んでyからzまでの整数値を取る。
数学関数
以下の数学関数が、定義される。
Figure 0007271697000014
Asin( x ) -1.0および1.0を含んで-1.0から1.0までの範囲内の引数xに作用し、ラジアンを単位として-π÷2およびπ÷2を含んで-π÷2からπ÷2までの範囲の出力値を有する三角法の逆正弦関数
Atan( x ) 引数xに作用し、ラジアンを単位として-π÷2およびπ÷2を含んで-π÷2からπ÷2までの範囲の出力値を有する三角法の逆正接関数
Figure 0007271697000015
Ceil( x ) x以上の最小の整数。
Clip1Y( x ) = Clip3( 0, ( 1 << BitDepthY ) - 1, x )
Clip1C( x ) = Clip3( 0, ( 1 << BitDepthC ) - 1, x )
Figure 0007271697000016
Cos( x ) ラジアンを単位とする引数xに作用する三角法の余弦関数。
Floor(x) x以下の最大の整数。
Figure 0007271697000017
Ln( x ) xの自然対数(eを底とする対数であり、eは、自然対数の底の定数2.718281828...である)。
Log2( x ) xの2を底とする対数。
Log10( x ) xの10を底とする対数。
Figure 0007271697000018
Round( x ) = Sign( x ) * Floor( Abs( x ) + 0.5 )
Figure 0007271697000019
Sin( x ) ラジアンを単位とする引数xに作用する三角法の正弦関数
Figure 0007271697000020
Tan( x ) ラジアンを単位とする引数xに作用する三角法の正接関数
演算の優先順位
式中の優先順位が括弧を使用して明示されないとき、以下の規則が、適用される。
- より高い優先度の演算は、より低い優先度のいかなる演算よりも前に評価される。
- 同じ優先度の演算は、左から右に順に評価される。
下の表は、最も高い方から最も低い方へ演算の優先度を明示し、表のより上の位置は、より高い優先度を示す。
Cプログラミング言語においても使用される演算子に関して、本明細書において使用される優先順位は、Cプログラミング言語において使用されるのと同じである。
Table: (表の一番上の)最も高い方から(表の一番下の)最も低い方への演算の優先度
Figure 0007271697000021
論理演算のテキストの記述
本文中、以下の形態で、すなわち、
if( 条件0 )
ステートメント0
else if( 条件1 )
ステートメント1
...
else /* 残りの条件に関する情報を伝えるコメント */
ステートメントn
の形態で数学的に記述される論理演算のステートメントは、以下のように記述される可能性がある。
以下のように... / ...以下が適用される。
- 条件0の場合、ステートメント0
- そうではなく、条件1の場合、ステートメント1
- ...
- それ以外の場合(残りの条件に関する情報を伝えるコメント)、ステートメントn
本文中のそれぞれの「...の場合、...、そうではなく...の場合、...、それ以外の場合、...」のステートメントは、「...の場合、...」が直後に続く「以下のように...」または「...以下が適用される」によって導入される。「...の場合、...、そうではなく...の場合、...、それ以外の場合、...」の最後の条件は、常に「それ以外の場合、...」である。交互に挿入された「...の場合、...、そうではなく...の場合、...、それ以外の場合、...」のステートメントは、「以下のように...」または「...以下が適用される」を終わりの「それ以外の場合、...」とマッチングすることによって特定され得る。
本文中、以下の形態で、すなわち、
if( 条件0a && 条件0b )
ステートメント0
else if( 条件1a || 条件1b )
ステートメント1
...
else
ステートメントn
の形態で数学的に記述される論理演算のステートメントは、以下のように記述される可能性がある。
以下のように... / ...以下が適用される。
- 以下の条件のすべてが真である場合、ステートメント0
- 条件0a
- 条件0b
- そうでなく、以下の条件のうちの1つまたは複数が真である場合、ステートメント1
- 条件1a
- 条件1b
- ...
- それ以外の場合、ステートメントn
本文中、以下の形態で、すなわち、
if( 条件0 )
ステートメント0
if( 条件1 )
ステートメント1
の形態で数学的に記述される論理演算のステートメントは、以下のように記述される可能性がある。
条件0のとき、ステートメント0
条件1のとき、ステートメント1
本発明の実施形態が主にビデオコーディングに基づいて説明されたが、コーディングシステム10、エンコーダ20、およびデコーダ30(およびそれに対応してシステム10)の実施形態、ならびに本明細書において説明されたその他の実施形態は、静止ピクチャの処理またはコーディング、つまり、ビデオコーディングと同様のいかなる先行するまたは連続するピクチャからも独立した個々のピクチャの処理またはコーディングのために構成される可能性もあることに留意されたい。概して、ピクチャの処理コーディングが単一のピクチャ17に制限される場合、インター予測ユニット244(エンコーダ)および344(デコーダ)のみが、利用可能でない可能性がある。ビデオエンコーダ20およびビデオデコーダ30のすべてのその他の機能(ツールまたはテクノロジーとも呼ばれる)、たとえば、残差計算204/304、変換206、量子化208、量子化解除210/310、(逆)変換212/312、区分け262/362、イントラ予測254/354、および/またはループフィルタ220、320、およびエントロピーコーディング270、およびエントロピー復号304が、静止ピクチャの処理のために等しく使用される可能性がある。
たとえば、エンコーダ20およびデコーダ30、ならびにたとえばエンコーダ20およびデコーダ30に関連して本明細書において説明された機能の実施形態は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの任意の組合せで実装される可能性がある。ソフトウェアに実装される場合、機能は、1つまたは複数の命令またはコードとしてコンピュータ可読媒体上に記憶されるかまたは通信媒体上で送信され、ハードウェアに基づく処理ユニットによって実行される可能性がある。コンピュータ可読媒体は、データストレージ媒体などの有形の媒体に対応するコンピュータ可読ストレージ媒体、またはたとえば通信プロトコルによるある場所から別の場所へのコンピュータプログラムの転送を容易にする任意の媒体を含む通信媒体を含む可能性がある。このようにして、概して、コンピュータ可読媒体は、(1)非一時的である有形のコンピュータ可読ストレージ媒体または(2)信号もしくは搬送波などの通信媒体に対応する可能性がある。データストレージ媒体は、本開示において説明された技術の実装のための命令、コード、および/またはデータ構造を取り出すために1つもしくは複数のコンピュータまたは1つもしくは複数のプロセッサによってアクセスされ得る任意の利用可能な媒体である可能性がある。コンピュータプログラム製品は、コンピュータ可読媒体を含む可能性がある。
限定ではなく例として、そのようなコンピュータ可読ストレージ媒体は、RAM、ROM、EEPROM、CD-ROMもしくはその他の光ディスクストレージ、磁気ディスクストレージもしくはその他の磁気ストレージデバイス、フラッシュメモリ、または命令もしくはデータ構造の形態で所望のプログラムコードを記憶するために使用されることが可能であり、コンピュータによってアクセスされることが可能である任意のその他の媒体を含み得る。また、任意の接続が、適切にコンピュータ可読媒体と呼ばれる。たとえば、命令が、同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者線(DSL)、または赤外線、ラジオ波、およびマイクロ波などのワイヤレステクノロジーを用いてウェブサイト、サーバ、またはその他のリモートソースから送信される場合、同軸ケーブル、光ファイバケーブル、ツイストペア、DSL、または赤外線、ラジオ波、およびマイクロ波などのワイヤレステクノロジーは、媒体の定義に含まれる。しかし、コンピュータ可読ストレージ媒体およびデータストレージ媒体は、接続、搬送波、信号、またはその他の一時的媒体を含まず、その代わりに、非一時的な有形のストレージ媒体を対象とすることを理解されたい。本明細書において使用されるとき、ディスク(disk)およびディスク(disc)は、コンパクトディスク(CD: compact disc)、レーザディスク(登録商標) (laser disc(登録商標))、光ディスク(optical disc)、デジタルバーサタイルディスク(DVD: digital versatile disc)、フロッピー(登録商標)ディスク(floppy disk)、およびブルーレイ(登録商標)ディスク(Blu-ray(登録商標) disc)を含み、ディスク(disk)が、通常、磁気的にデータを再生する一方、ディスク(disc)は、レーザを用いて光学的にデータを再生する。上記のものの組合せも、コンピュータ可読媒体の範囲に含まれるべきである。
命令は、1つまたは複数のデジタル信号プロセッサ(DSP)、汎用マイクロプロセッサ、特定用途向け集積回路(ASIC)、フィールドプログラマブルロジックアレイ(FPGA)、またはその他の等価な集積もしくはディスクリート論理回路などの1つまたは複数のプロセッサによって実行される可能性がある。したがって、用語「プロセッサ」は、本明細書において使用されるとき、上述の構造または本明細書において説明された技術の実装に好適な任意のその他の構造のいずれかを指す可能性がある。加えて、一部の態様において、本明細書において説明された機能は、符号化および復号のために構成された専用のハードウェアおよび/もしくはソフトウェアモジュール内に提供されるか、または組み合わされたコーデックに組み込まれる可能性がある。また、技術は、1つまたは複数の回路または論理要素にすべて実装される可能性がある。
本開示の技術は、ワイヤレスハンドセット、集積回路(IC)、または1組のIC(たとえば、チップセット)を含む多種多様なデバイスまたは装置に実装される可能性がある。様々な構成要素、モジュール、またはユニットが、開示された技術を実行するように構成されたデバイスの機能の態様を強調するために本開示において説明されているが、異なるハードウェアユニットによる実現を必ずしも必要としない。むしろ、上述のように、様々なユニットが、コーデックハードウェアユニットにおいて組み合わされるか、または好適なソフトウェアおよび/もしくはファームウェアと連携した、上述の1つもしくは複数のプロセッサを含む相互運用性のあるハードウェアユニットの集合によって提供される可能性がある。
10 ビデオコーディングシステム、コーディングシステム
12 送信元デバイス
13 符号化されたピクチャデータ、通信チャネル
14 送信先デバイス
16 ピクチャソース
17 ピクチャ、ピクチャデータ、生ピクチャ、生ピクチャデータ、モノクロピクチャ、カラーピクチャ、現在のピクチャ
18 プリプロセッサ、前処理ユニット、ピクチャプリプロセッサ
19 前処理されたピクチャ、前処理されたピクチャデータ
20 ビデオエンコーダ、エンコーダ
21 符号化されたピクチャデータ、符号化されたビットストリーム
22 通信インターフェース、通信ユニット
28 通信インターフェース、通信ユニット
30 デコーダ、ビデオデコーダ
31 復号されたピクチャデータ、復号されたピクチャ
32 ポストプロセッサ、後処理ユニット
33 後処理されたピクチャデータ、後処理されたピクチャ
34 ディスプレイデバイス
46 処理回路
100 ビデオエンコーダ
201 入力、入力インターフェース
203 ピクチャブロック、元のブロック、現在のブロック、区分けされたブロック、現在のピクチャブロック
204 残差計算ユニット、残差計算
205 残差ブロック、残差
206 変換処理ユニット、変換
207 変換係数
208 量子化ユニット、量子化
209 量子化された係数、量子化された変換係数、量子化された残差係数
210 量子化解除ユニット、量子化解除
211 量子化解除された係数、量子化解除された残差係数
212 逆変換処理ユニット、(逆)変換
213 再構築された残差ブロック、量子化解除された係数、変換ブロック
214 再構築ユニット、加算器、合算器
215 再構築されたブロック
216 バッファ
220 ループフィルタユニット、ループフィルタ
221 フィルタリングされたブロック、フィルタリングされた再構築されたブロック
230 復号ピクチャバッファ(DPB)
231 復号されたピクチャ
244 インター予測ユニット
254 イントラ予測ユニット、インター予測ユニット、イントラ予測
260 モード選択ユニット
262 区分けユニット、区分け
265 予測ブロック、予測子
266 シンタックス要素
270 エントロピー符号化ユニット、エントロピーコーディング
272 出力、出力インターフェース
304 エントロピー復号ユニット、残差計算、エントロピー復号
309 量子化された係数
310 量子化解除ユニット、量子化解除
311 量子化解除された係数、変換係数
312 逆変換処理ユニット、(逆)変換、出力
313 再構築された残差ブロック
314 再構築ユニット、合算器、加算器
315 再構築されたブロック
320 ループフィルタ、ループフィルタユニット
321 フィルタリングされたブロック、復号されたビデオブロック
330 復号ピクチャバッファ(DPB)
331 復号されたピクチャ
344 インター予測ユニット
354 イントラ予測ユニット、イントラ予測
360 モード適用ユニット
362 区分け
365 予測ブロック
400 ビデオコーディングデバイス
410 着信ポート、入力ポート
420 受信機ユニット(Rx)
430 プロセッサ、論理ユニット、中央演算処理装置(CPU)
440 送信機ユニット(Tx)
450 発信ポート、出力ポート
460 メモリ
470 コーディングモジュール
500 装置
502 プロセッサ
504 メモリ
506 データ
508 オペレーティングシステム
510 アプリケーションプログラム
512 バス
514 二次ストレージ
518 ディスプレイ
1300 デバイス
1310 初期動きベクトルユニット
1320 予測ユニット
1330 マッチングコスト計算ユニット
1340 オプティカルフロー改善プロセス判定ユニット
1350 オプティカルフロー改善プロセス実行ユニット

Claims (14)

  1. 復号デバイスまたは符号化デバイスにおいて実施されるビデオコーディングの方法であって、
    現在のブロックに関する初期動きベクトルを取得するステップと、
    前記初期動きベクトルに基づいて前記現在のブロック内のサンプル値に関する第1の予測を取得するステップと、
    前記第1の予測に従って第1のマッチングコストを計算するステップと、
    前記初期動きベクトルに基づいて改善された動きベクトルを取得するステップと、
    前記改善された動きベクトルに対応する第2のマッチングコストを取得するステップと、
    前記改善された動きベクトルに従って、前記現在のブロック内の前記サンプル値に関する第2の予測を取得するステップと、
    少なくとも1つの予め設定された条件に従って、オプティカルフロー改善プロセスが実行されるべきか否かを判定するステップであって、前記少なくとも1つの予め設定された条件が、前記第2のマッチングコストが閾値以上であるかどうかという条件を含む、ステップと、
    前記オプティカルフロー改善プロセスが実行されるべきであると判定されるときに、前記現在のブロック内の前記サンプル値に関する最終的なインター予測を取得するために前記第2の予測に基づいて前記オプティカルフロー改善プロセスを実行するステップと
    を含み、
    前記オプティカルフロー改善プロセスが実行されるべきないと判定されるときにのみ、前記最終的なインター予測が、前記第2の予測の加重和によって得られる、方法。
  2. 前記少なくとも1つの予め設定された条件が、前記現在のブロックがデコーダ側の動きベクトルの改善によって予測されることが可能であるという条件を含む、請求項1に記載の方法。
  3. 前記少なくとも1つの予め設定された条件のすべてが満たされると判定されるときに、前記オプティカルフロー改善プロセスが実行されるべきであると判定される、請求項1または2に記載の方法。
  4. 前記現在のブロック内の前記サンプル値に関する前記第1の予測が、第1の補間フィルタに基づいて取得される、請求項1から3のいずれか一項に記載の方法。
  5. 前記第1の補間フィルタが、バイリニア補間フィルタである、請求項4に記載の方法。
  6. 前記初期動きベクトルに基づいて前記現在のブロック内のサンプル値に関する第1の予測を取得する前記ステップが、
    前記初期動きベクトルに基づいて候補のいくつかのペアを取得するステップと、
    候補の前記ペアのうちの少なくとも1つに基づいて前記現在のブロック内のサンプル値に関する第1の予測を取得するステップと
    を含み、
    前記第1の予測に従って第1のマッチングコストを計算する前記ステップが、
    前記第1の予測に基づいて候補の前記ペアの各々に関するマッチングコストを決定するステップと、
    前記決定されたマッチングコストのうちの最小のマッチングコストを前記第1のマッチングコストとして決定するステップと
    を含む、請求項1から5のいずれか一項に記載の方法。
  7. 前記現在のブロック内の前記サンプル値に関する前記第2の予測が、第2の補間フィルタに従って取得される、請求項1または6に記載の方法。
  8. 第2の補間フィルタが、6タップまたは8タップ補間フィルタである、請求項1から7のいずれか一項に記載の方法。
  9. 前記閾値が、前記現在のブロックのサイズに従って取得される、請求項1から8のいずれか一項に記載の方法。
  10. 前記現在のブロックが、コーディングブロックまたは下位ブロックである、請求項1から9のいずれか一項に記載の方法。
  11. 前記現在のブロック内の前記サンプル値に関する前記最終的なインター予測を含むインター予測ブロックを生成するステップをさらに含む、請求項1から10のいずれか一項に記載の方法。
  12. 請求項1から11のいずれか一項に記載の方法を実行するための処理回路を含む、エンコーダ(20)。
  13. 請求項1から11のいずれか一項に記載の方法を実行するための処理回路を含む、デコーダ(30)。
  14. 請求項1から11のいずれか一項に記載の方法を実行するためのプログラムコードを含む、コンピュータプログラム。
JP2021549390A 2019-02-22 2020-02-21 オプティカルフローの改善の早期終了 Active JP7271697B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023071739A JP2023099561A (ja) 2019-02-22 2023-04-25 オプティカルフローの改善の早期終了

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN201931007114 2019-02-22
IN201931007114 2019-02-22
PCT/CN2020/076178 WO2020169083A1 (en) 2019-02-22 2020-02-21 Early termination for optical flow refinement

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023071739A Division JP2023099561A (ja) 2019-02-22 2023-04-25 オプティカルフローの改善の早期終了

Publications (2)

Publication Number Publication Date
JP2022521748A JP2022521748A (ja) 2022-04-12
JP7271697B2 true JP7271697B2 (ja) 2023-05-11

Family

ID=72144773

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021549390A Active JP7271697B2 (ja) 2019-02-22 2020-02-21 オプティカルフローの改善の早期終了
JP2023071739A Pending JP2023099561A (ja) 2019-02-22 2023-04-25 オプティカルフローの改善の早期終了

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023071739A Pending JP2023099561A (ja) 2019-02-22 2023-04-25 オプティカルフローの改善の早期終了

Country Status (17)

Country Link
EP (2) EP4243418A3 (ja)
JP (2) JP7271697B2 (ja)
KR (2) KR20240000638A (ja)
CN (2) CN113383550A (ja)
AU (1) AU2020226553A1 (ja)
BR (1) BR112021016270A2 (ja)
CA (1) CA3128112A1 (ja)
DK (1) DK3912352T3 (ja)
ES (1) ES2965083T3 (ja)
FI (1) FI3912352T3 (ja)
HU (1) HUE063469T2 (ja)
MX (1) MX2021009931A (ja)
PL (1) PL3912352T3 (ja)
PT (1) PT3912352T (ja)
SG (1) SG11202107970QA (ja)
WO (1) WO2020169083A1 (ja)
ZA (1) ZA202106944B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023277755A1 (en) * 2021-06-30 2023-01-05 Telefonaktiebolaget Lm Ericsson (Publ) Selective subblock-based motion refinement
WO2023277756A1 (en) * 2021-06-30 2023-01-05 Telefonaktiebolaget Lm Ericsson (Publ) Overlapped decoder side motion refinement
WO2023193769A1 (en) * 2022-04-06 2023-10-12 Mediatek Inc. Implicit multi-pass decoder-side motion vector refinement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180242004A1 (en) 2015-08-23 2018-08-23 Lg Electronics Inc. Inter prediction mode-based image processing method and apparatus therefor
WO2018173895A1 (ja) 2017-03-21 2018-09-27 シャープ株式会社 予測画像生成装置、動画像復号装置、および動画像符号化装置
WO2019010156A1 (en) 2017-07-03 2019-01-10 Vid Scale, Inc. MOTION COMPENSATION PREDICTION BASED ON A BIDIRECTIONAL OPTICAL FLOW

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040076333A1 (en) 2002-10-22 2004-04-22 Huipin Zhang Adaptive interpolation filter system for motion compensated predictive video coding
US10127644B2 (en) * 2015-04-10 2018-11-13 Apple Inc. Generating synthetic video frames using optical flow
WO2017036414A1 (en) * 2015-09-02 2017-03-09 Mediatek Inc. Method and apparatus of decoder side motion derivation for video coding
WO2017036399A1 (en) * 2015-09-02 2017-03-09 Mediatek Inc. Method and apparatus of motion compensation for video coding based on bi prediction optical flow techniques
EP4138392A1 (en) * 2016-02-05 2023-02-22 HFI Innovation Inc. Method and apparatus of motion compensation based on bi-directional optical flow techniques for video coding
US20180199057A1 (en) * 2017-01-12 2018-07-12 Mediatek Inc. Method and Apparatus of Candidate Skipping for Predictor Refinement in Video Coding
WO2019001741A1 (en) * 2017-06-30 2019-01-03 Huawei Technologies Co., Ltd. MOTION VECTOR REFINEMENT FOR MULTI-REFERENCE PREDICTION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180242004A1 (en) 2015-08-23 2018-08-23 Lg Electronics Inc. Inter prediction mode-based image processing method and apparatus therefor
WO2018173895A1 (ja) 2017-03-21 2018-09-27 シャープ株式会社 予測画像生成装置、動画像復号装置、および動画像符号化装置
WO2019010156A1 (en) 2017-07-03 2019-01-10 Vid Scale, Inc. MOTION COMPENSATION PREDICTION BASED ON A BIDIRECTIONAL OPTICAL FLOW

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Kenji Kondo, Masaru Ikeda, and Teruhiko Suzuki,Non-CE9: On early termination for BDOF,Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,JVET-M0073-r2,13th Meeting: Marrakech, MA,2019年01月,pp.1-5
Kyohei Unno, Kei Kawamura, and Sei Naito,CE9-related: Alternative method of SAD based early termination for BDOF,Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,JVET-N0158-v2,14th Meeting: Geneva, CH,2019年03月,pp.1-4
Xiaoyu Xiu,et al.,Description of SDR, HDR, and 360° video coding technology proposal by InterDigital Communications and Dolby Laboratories,Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,JVET-J0015-v1,10th Meeting: San Diego, US,2018年04月,pp.1-9

Also Published As

Publication number Publication date
WO2020169083A1 (en) 2020-08-27
PL3912352T3 (pl) 2024-02-26
ZA202106944B (en) 2022-09-28
DK3912352T3 (da) 2023-11-20
EP3912352B1 (en) 2023-09-06
AU2020226553A1 (en) 2021-08-19
KR102616714B1 (ko) 2023-12-20
US20210392334A1 (en) 2021-12-16
JP2023099561A (ja) 2023-07-13
PT3912352T (pt) 2023-11-21
FI3912352T3 (fi) 2023-11-30
CA3128112A1 (en) 2020-08-27
BR112021016270A2 (pt) 2021-10-13
ES2965083T3 (es) 2024-04-10
EP4243418A3 (en) 2023-10-25
EP4243418A2 (en) 2023-09-13
CN114845102A (zh) 2022-08-02
JP2022521748A (ja) 2022-04-12
CN114845102B (zh) 2023-07-07
CN113383550A (zh) 2021-09-10
EP3912352A4 (en) 2022-04-20
MX2021009931A (es) 2021-09-21
HUE063469T2 (hu) 2024-01-28
KR20240000638A (ko) 2024-01-02
KR20210113384A (ko) 2021-09-15
SG11202107970QA (en) 2021-08-30
EP3912352A1 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
WO2020181997A1 (en) An encoder, a decoder and corresponding methods for inter prediction
WO2020177696A1 (en) Use of extended samples during search in decoder-side motion refinement
US20210400259A1 (en) Dmvr using decimated prediction block
JP7271697B2 (ja) オプティカルフローの改善の早期終了
JP2024009038A (ja) 双予測のオプティカルフロー計算および双予測補正におけるブロックレベル境界サンプル勾配計算のための整数グリッド参照サンプルの位置を計算するための方法
CA3117627A1 (en) Separate merge list for subblock merge candidates and intra-inter techniques harmonization for video coding
JP2023100701A (ja) イントラ予測のためのイントラモードコーディングを使用するエンコーダ、デコーダ、および対応する方法
WO2020253853A1 (en) Early termination for optical flow refinment
WO2020085955A1 (en) Method and apparatus for reference sample filtering
US11985320B2 (en) Early termination for optical flow refinement
RU2808608C2 (ru) Раннее прекращение уточнения оптического потока
RU2814812C2 (ru) Выведение веса выборки цветности для геометрического режима разделения
WO2021006773A1 (en) Motion field storage optimization for the line buffer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230426

R150 Certificate of patent or registration of utility model

Ref document number: 7271697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150