JP7271168B2 - Vinyl chloride resin composition for rehabilitating pipe, and rehabilitating pipe - Google Patents
Vinyl chloride resin composition for rehabilitating pipe, and rehabilitating pipe Download PDFInfo
- Publication number
- JP7271168B2 JP7271168B2 JP2018243639A JP2018243639A JP7271168B2 JP 7271168 B2 JP7271168 B2 JP 7271168B2 JP 2018243639 A JP2018243639 A JP 2018243639A JP 2018243639 A JP2018243639 A JP 2018243639A JP 7271168 B2 JP7271168 B2 JP 7271168B2
- Authority
- JP
- Japan
- Prior art keywords
- chloride resin
- weight
- parts
- vinyl chloride
- polyvinyl chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Description
本発明は、更生管用塩化ビニル系樹脂組成物、および更生管に関する。 TECHNICAL FIELD The present invention relates to a vinyl chloride resin composition for rehabilitating pipes and rehabilitating pipes.
近年、老朽化した既設管を修復する方法の1つとして、既設管の内側に合成樹脂管を挿入し、内面をライニングするライニング工法が知られている。例えば特許文献1に記載の技術では、修復対象の既設管内に、その内径よりも外径が小さい熱可塑性合成樹脂製の更生管(ライニング管ともいう)を加熱軟化状態にして挿入している。そして、その後、この更生管内にスチームを導入し内圧を加えることによって更生管を半径方向に膨張させ、既設管内面に密接させる。そして、冷却媒体を用いて、更生管を固化させている。 BACKGROUND ART In recent years, as one of the methods for repairing an existing pipe that has deteriorated, a lining method is known in which a synthetic resin pipe is inserted inside the existing pipe to line the inner surface. For example, in the technique described in Patent Document 1, a rehabilitated pipe (also referred to as a lining pipe) made of thermoplastic synthetic resin whose outer diameter is smaller than its inner diameter is inserted into the existing pipe to be repaired in a heated and softened state. After that, steam is introduced into the rehabilitated pipe to apply internal pressure to expand the rehabilitated pipe in the radial direction and bring it into close contact with the inner surface of the existing pipe. The cooling medium is used to solidify the rehabilitating pipe.
従来、このような更生管を構成する材料として、硬質塩化ビニル系樹脂が使用されている。特許文献2~4には、更生管に使用される塩化ビニル系樹脂組成物が開示されている。 Conventionally, hard vinyl chloride resins have been used as materials for constructing such rehabilitated pipes. Patent Documents 2 to 4 disclose vinyl chloride resin compositions used for rehabilitation pipes.
特許文献2には、平均重合度400~600のポリ塩化ビニル樹脂40~60重量%と、平均重合度1050~1350のポリ塩化ビニル樹脂60~40重量%との混合物を主成分とし、当該混合物100重量部に対して、MMA系および/またはMBS系改質剤3~25重量部配合した樹脂組成物が開示されている。 In Patent Document 2, a mixture of 40 to 60% by weight of a polyvinyl chloride resin having an average degree of polymerization of 400 to 600 and 60 to 40% by weight of a polyvinyl chloride resin having an average degree of polymerization of 1050 to 1350 is the main component, and the mixture A resin composition is disclosed in which 3 to 25 parts by weight of an MMA-based and/or MBS-based modifier is blended with 100 parts by weight.
特許文献3には、塩化ビニル系樹脂と、ガラス転移点又は融点又は滴点が塩化ビニル系樹脂のガラス転点よりも低い化合物(熱可塑性エラストマー、可塑剤、酸化防止剤)とを含む樹脂組成物が開示されている。 Patent Document 3 discloses a resin composition containing a vinyl chloride resin and a compound (thermoplastic elastomer, plasticizer, antioxidant) having a glass transition point, melting point, or dropping point lower than the glass transition point of the vinyl chloride resin. things are disclosed.
特許文献4には、アクリル系共重合体に、塩化ビニルモノマー又は塩化ビニルモノマー及びその他の共重合性モノマーをグラフト共重合してなる平均重合度400~2500の複合塩化ビニル系樹脂を含む樹脂組成物が開示されている。 Patent Document 4 discloses a resin composition containing a composite vinyl chloride resin having an average degree of polymerization of 400 to 2500 obtained by graft copolymerizing a vinyl chloride monomer or a vinyl chloride monomer and other copolymerizable monomers to an acrylic copolymer. things are disclosed.
また、特許文献5には、塩化ビニル系樹脂組成物を管状に溶融押出成形して得られる硬質塩化ビニル系樹脂管が開示されている。特許文献5に記載の技術にて使用される塩化ビニル系樹脂組成物は、アクリル系共重合体に塩化ビニルを懸濁重合にてグラフト共重合することにより得られる重合度800~2000の塩化ビニル系樹脂を含んでいる。 Further, Patent Document 5 discloses a rigid vinyl chloride resin pipe obtained by melt-extrusion molding a vinyl chloride resin composition into a tubular shape. The vinyl chloride resin composition used in the technique described in Patent Document 5 is vinyl chloride having a polymerization degree of 800 to 2000 obtained by graft copolymerizing vinyl chloride to an acrylic copolymer by suspension polymerization. Contains system resin.
しかしながら、特許文献2~5に開示されたポリ塩化ビニル樹脂組成物は以下の問題がある。 However, the polyvinyl chloride resin compositions disclosed in Patent Documents 2 to 5 have the following problems.
まず、特許文献2に開示された樹脂組成物は、優れた膨張施工性を発現するものの、平均重合度400~600のポリ塩化ビニル樹脂に汎用性がない。それゆえ、樹脂組成物のコストが増大する。 First, although the resin composition disclosed in Patent Document 2 exhibits excellent expansion workability, polyvinyl chloride resins having an average degree of polymerization of 400 to 600 do not have versatility. Therefore, the cost of the resin composition increases.
また、特許文献3に開示された樹脂組成物に含まれる化合物(熱可塑性エラストマー、可塑剤、酸化防止剤)は、ポリ塩化ビニル樹脂に比べて高価である。そして、これら化合物とポリ塩化ビニル樹脂とをブレンドした組成物は、粘着性・付着性を伴うため成形性が悪い。このため、押出成形による更生管の量産性に問題が出やすい。 Moreover, the compounds (thermoplastic elastomer, plasticizer, antioxidant) contained in the resin composition disclosed in Patent Document 3 are more expensive than polyvinyl chloride resin. Compositions obtained by blending these compounds with polyvinyl chloride resins are viscous and adherent, resulting in poor moldability. For this reason, problems tend to arise in the mass production of rehabilitating pipes by extrusion molding.
特許文献4または5に開示された、アクリル系共重合体に塩化ビニルを懸濁重合にてグラフト共重合することにより得られる塩化ビニル系樹脂は、製品性能、膨張施工性等において優れているものの、一般の塩化ビニル系樹脂に比べて高価である。 Although the vinyl chloride resin obtained by graft copolymerizing vinyl chloride to the acrylic copolymer by suspension polymerization disclosed in Patent Document 4 or 5 is excellent in product performance, expansion workability, etc. , are more expensive than general vinyl chloride resins.
したがって、特許文献2~5に記載の技術は、更生管製造に掛かるコストと、押出成形性および膨張施工性との両立という点で改善の余地がある。 Therefore, the techniques described in Patent Documents 2 to 5 have room for improvement in terms of compatibility between the cost required for manufacturing the rehabilitating pipe and the extrusion moldability and expansion workability.
本発明の一態様は、経済性に優れ、かつ押出成形性および膨張施工性に優れた更生管用塩化ビニル系樹脂組成物、および更生管を実現することを目的とする。 An object of one aspect of the present invention is to realize a vinyl chloride-based resin composition for a rehabilitating pipe and a rehabilitating pipe that are economically efficient and have excellent extrusion moldability and expansion workability.
上記の課題を解決するために、本発明の態様1に係る更生管用塩化ビニル系樹脂組成物は、平均重合度1000~1100の第1のポリ塩化ビニル樹脂と、平均重合度750~850の第2のポリ塩化ビニル樹脂との混合物からなるか、あるいは前記第1のポリ塩化ビニル樹脂からなる主樹脂成分と、鉛系以外の安定剤と、を含み、MMA系の改質剤、MBS系の改質剤、およびCPE系の改質剤からなる群より選ばれる1以上の改質剤が、前記主樹脂成分100重量部に対して3~25重量部配合されている。 In order to solve the above problems, the vinyl chloride resin composition for rehabilitating pipes according to aspect 1 of the present invention comprises a first polyvinyl chloride resin having an average degree of polymerization of 1000 to 1100 and a polyvinyl chloride resin having an average degree of polymerization of 750 to 850. 2, or a main resin component consisting of the first polyvinyl chloride resin, a stabilizer other than lead, and an MMA-based modifier and an MBS-based modifier. 3 to 25 parts by weight of one or more modifiers selected from the group consisting of modifiers and CPE modifiers are blended with 100 parts by weight of the main resin component.
また、本発明の態様2に係る更生管用塩化ビニル系樹脂組成物は、態様1において、前記主樹脂成分は、50~100重量%の前記第1のポリ塩化ビニル樹脂と、0~50重量%の前記第2のポリ塩化ビニル樹脂と、からなる。 Further, in the vinyl chloride resin composition for rehabilitating pipes according to aspect 2 of the present invention, in aspect 1, the main resin components are 50 to 100% by weight of the first polyvinyl chloride resin and 0 to 50% by weight of the first polyvinyl chloride resin. and the second polyvinyl chloride resin.
また、本発明の態様3に係る更生管用塩化ビニル系樹脂組成物は、態様1または2において、前記安定剤は、有機錫系安定剤、金属石鹸系安定剤、および無機系安定剤からなる群から選択される少なくとも1種の安定剤である。 Further, in the vinyl chloride resin composition for rehabilitating pipes according to aspect 3 of the present invention, in aspect 1 or 2, the stabilizer is a group consisting of an organic tin stabilizer, a metal soap stabilizer, and an inorganic stabilizer. at least one stabilizer selected from
また、本発明の態様4に係る更生管用塩化ビニル系樹脂組成物は、態様1~3の何れか1つの態様において、前記安定剤は、前記混合物100重量部に対して、0.5~5.0重量部含む。 Further, in the vinyl chloride resin composition for rehabilitating pipes according to aspect 4 of the present invention, in any one aspect of aspects 1 to 3, the stabilizer is 0.5 to 5 parts per 100 parts by weight of the mixture. .0 parts by weight.
また、本発明の態様5に係る更生管は、既設管に挿入され、態様1~4の何れか1つの態様の更生管用塩化ビニル系樹脂組成物からなる構成である。 Further, a rehabilitating pipe according to aspect 5 of the present invention is inserted into an existing pipe and is composed of the vinyl chloride resin composition for rehabilitating pipe according to any one of aspects 1 to 4.
本発明の一態様によれば、経済性に優れ、かつ押出成形性および膨張施工性に優れた更生管用塩化ビニル系樹脂組成物を実現できる。 ADVANTAGE OF THE INVENTION According to one aspect of the present invention, it is possible to realize a vinyl chloride-based resin composition for rehabilitating pipes, which is economical and has excellent extrusion moldability and expansion workability.
〔実施形態1〕
以下、本発明の一実施形態に関して以下に説明する。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。
[Embodiment 1]
An embodiment of the present invention will be described below. In this specification, unless otherwise specified, "A to B" representing a numerical range means "A or more and B or less".
本発明者は、鋭意検討した結果、主樹脂成分を汎用性が高い平均重合度のポリ塩化ビニル樹脂の組合せとし、塩化ビニル系樹脂組成物における改質剤を特定の改質剤とし当該改質剤の配合量を特定の範囲とすることにより、経済性に優れかつ膨張施工性に優れた更生管を製造することができることを見出し、本発明の基本概念に至った。 As a result of intensive studies, the present inventors have found that the main resin component is a combination of polyvinyl chloride resins with a highly versatile average degree of polymerization, and the modifier in the vinyl chloride resin composition is a specific modifier. The present inventors have found that it is possible to manufacture a rehabilitating pipe excellent in economic efficiency and expansion workability by setting the compounding amount of the agent within a specific range, and have arrived at the basic concept of the present invention.
本実施形態に係る更生管用塩化ビニル系樹脂組成物(以下、単に塩化ビニル系樹脂組成物と称することもある)は、平均重合度1000~1100の第1のポリ塩化ビニル樹脂と、平均重合度750~850の第2のポリ塩化ビニル樹脂との混合物からなるか、あるいは前記第1のポリ塩化ビニル樹脂からなる主樹脂成分と、鉛系以外の安定剤と、を含み、前記主樹脂成分100重量部に対して、3~25重量部のMMA系および/またはMBS系改質剤が配合されている。 The vinyl chloride-based resin composition for rehabilitating pipes according to the present embodiment (hereinafter sometimes simply referred to as a vinyl chloride-based resin composition) comprises a first polyvinyl chloride resin having an average polymerization degree of 1000 to 1100, and an average polymerization degree of 750 to 850 containing a mixture with a second polyvinyl chloride resin or a main resin component consisting of the first polyvinyl chloride resin and a non-lead-based stabilizer, the main resin component 100 3 to 25 parts by weight of MMA-based and/or MBS-based modifiers are blended with respect to parts by weight.
(主樹脂成分)
塩化ビニル系樹脂組成物の主樹脂成分である、第1および第2のポリ塩化ビニル樹脂は、互いに平均重合度の範囲が異なる。第1のポリ塩化ビニル樹脂の平均重合度は1000~1100であり、第2のポリ塩化ビニル樹脂の平均重合度は、750~850である。なお、「平均重合度」とは、JIS K 6720-2「プラスチック-塩化ビニルホモポリマー及びコポリマー (PVC) -第2部: 試験片の作り方及び諸性質の求め方」に準拠して測定した平均重合度を意味する。
(main resin component)
The first and second polyvinyl chloride resins, which are the main resin components of the vinyl chloride resin composition, have different ranges of average degree of polymerization. The average degree of polymerization of the first polyvinyl chloride resin is 1000-1100, and the average degree of polymerization of the second polyvinyl chloride resin is 750-850. The "average degree of polymerization" is the average measured in accordance with JIS K 6720-2 "Plastics-Vinyl chloride homopolymers and copolymers (PVC)-Part 2: How to make test pieces and how to determine various properties" means the degree of polymerization.
このような平均重合度のポリ塩化ビニル樹脂は、一般的な管材(管、継手等)に使用される。このため、第1および第2のポリ塩化ビニル樹脂は、汎用性および経済性に優れた材料である。本実施形態では、このような経済性に優れたポリ塩化ビニル樹脂を主な樹脂成分として使用して、押出成形性および膨張施工性に優れた更生管を実現している。 A polyvinyl chloride resin having such an average degree of polymerization is used for general pipe materials (pipes, joints, etc.). Therefore, the first and second polyvinyl chloride resins are versatile and economical materials. In the present embodiment, such economical polyvinyl chloride resin is used as the main resin component to realize a rehabilitating pipe with excellent extrusion moldability and expansion workability.
第1および第2のポリ塩化ビニル樹脂それぞれについて、平均重合度の範囲を上記のように設定する理由は、市販のポリ塩化ビニル樹脂として汎用のものを使用することにある。一般に市販されているポリ塩化ビニル樹脂の重合度は、平均重合度が1050、800、700のタイプ(いずれのタイプも±50程度の平均重合度の幅がある)である。このような汎用性のあるポリ塩化ビニル樹脂を材料として使用することにより、経済性に優れた塩化ビニル系樹脂組成物を実現できる。 The reason for setting the range of the average degree of polymerization for each of the first and second polyvinyl chloride resins as described above is that a commercially available polyvinyl chloride resin for general use is used. Generally commercially available polyvinyl chloride resins have average degrees of polymerization of 1050, 800 and 700 (all types have a range of average degree of polymerization of about ±50). By using such a versatile polyvinyl chloride resin as a material, an economical vinyl chloride resin composition can be realized.
前記主樹脂成分における第1および第2のポリ塩化ビニル樹脂の配合割合は、特に限定されない。好ましくは、前記主樹脂成分は、50~100重量%、特に好ましくは60~80重量%の前記第1のポリ塩化ビニル樹脂と、0~50重量%、特に好ましくは20~40重量%の前記第2のポリ塩化ビニル樹脂と、からなる。前記主樹脂成分は、第1のポリ塩化ビニル樹脂のみからなっていてもよい。第1のポリ塩化ビニル樹脂の配合割合が50重量%未満である場合、第2のポリ塩化ビニル樹脂の配合割合が50重量%を超える。これにより、製品強度が不足となり好ましくない。 The mixing ratio of the first and second polyvinyl chloride resins in the main resin component is not particularly limited. Preferably, said main resin component comprises 50 to 100% by weight, particularly preferably 60 to 80% by weight, of said first polyvinyl chloride resin and 0 to 50% by weight, particularly preferably 20 to 40% by weight of said and a second polyvinyl chloride resin. The main resin component may consist only of the first polyvinyl chloride resin. When the mixing ratio of the first polyvinyl chloride resin is less than 50% by weight, the mixing ratio of the second polyvinyl chloride resin exceeds 50% by weight. As a result, the strength of the product becomes insufficient, which is not preferable.
(安定剤)
安定剤は、更生管の成形時および加熱膨張時の熱安定性を確保するために、塩化ビニル系樹脂組成物に配合される。安定剤は、塩化ビニル系樹脂組成物の柔らかさ(弾性率)を調整するため、ガラス転移点が比較的低い、鉛系以外の材料が使用される。
(stabilizer)
The stabilizer is added to the vinyl chloride resin composition to ensure thermal stability during molding and thermal expansion of the rehabilitating pipe. As the stabilizer, a non-lead material with a relatively low glass transition point is used in order to adjust the softness (modulus of elasticity) of the vinyl chloride resin composition.
鉛系の安定剤が塩化ビニル系樹脂組成物に配合された場合、次の問題がある。まず、鉛系の安定剤は、無機系材料が多く、塩化ビニル系樹脂のガラス転移点を低下する効果がない。次いで、塩化ビニル系樹脂組成物を例えば下水排水管を構成する更生管の材料に使用したとき、鉛系の安定剤は、下水排水から発生する硫酸ガスと反応し、硫化鉛が生成される。そして、この硫化鉛が更生管に汚染し黒色に変色する。 When a lead-based stabilizer is added to a vinyl chloride-based resin composition, there are the following problems. First, lead-based stabilizers are mostly inorganic materials and have no effect of lowering the glass transition point of vinyl chloride-based resins. Next, when the vinyl chloride resin composition is used as a material for rehabilitating pipes constituting, for example, sewage drainage pipes, the lead-based stabilizer reacts with sulfuric acid gas generated from sewage drainage to produce lead sulfide. Then, this lead sulfide contaminates the rehabilitating pipe and turns it black.
本実施形態にて使用される安定剤は、鉛系以外の安定剤であれば、特に限定されない。好ましくは、当該安定剤は、有機錫系安定剤、金属石鹸系安定剤、および無機系安定剤からなる群から選択される少なくとも1種の安定剤である。安定剤として、例えば、ジメチル錫メルカプト、ジブチル錫マレート、ジオクチル錫ラウレート、ジオクチル錫メルカプト等の有機錫系安定剤;ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム等の金属石鹸系安定剤;ハイドロタルサイト、ゼオライト等の無機系安定剤等が挙げられる。これらの安定剤は、単独で用いられてもよいし、2種類以上が併用されてもよい。 The stabilizer used in the present embodiment is not particularly limited as long as it is a stabilizer other than lead-based stabilizers. Preferably, the stabilizer is at least one stabilizer selected from the group consisting of organotin stabilizers, metallic soap stabilizers, and inorganic stabilizers. Examples of stabilizers include organic tin stabilizers such as dimethyltin mercapto, dibutyltin malate, dioctyltin laurate, and dioctyltin mercapto; metal soap stabilizers such as calcium stearate, zinc stearate, and barium stearate; hydrotalcite. and inorganic stabilizers such as zeolite. These stabilizers may be used alone, or two or more of them may be used in combination.
塩化ビニル系樹脂組成物における前記安定剤の量は、更生管の成形時および加熱膨張時に必要な熱安定性を確保できるように、主樹脂成分の組成、安定剤の種類等に応じて適宜設定可能である。例えば、前記安定剤として有機錫系安定剤を使用した場合、前記安定剤は、前記主樹脂成分100重量部に対して、好ましくは0.5~5.0重量部、より好ましくは1.0~4.0重量部含む。前記安定剤が上記範囲内に配合されていることによって、更生管の成形時および加熱膨張時に必要な熱安定性を確保できる。前記主樹脂成分100重量部に対する前記安定剤の量が0.5重量部未満である場合、成形時の熱安定性が不足であるため、好ましくない。また、前記主樹脂成分100重量部に対する前記安定剤の量が5.0重量部を超える場合、製品強度が不足するため、好ましくない。 The amount of the stabilizer in the vinyl chloride resin composition is appropriately set according to the composition of the main resin component, the type of stabilizer, etc., so as to ensure the necessary thermal stability during molding and thermal expansion of the rehabilitating pipe. It is possible. For example, when an organic tin-based stabilizer is used as the stabilizer, the stabilizer is preferably 0.5 to 5.0 parts by weight, more preferably 1.0 part by weight, per 100 parts by weight of the main resin component. Contains ~4.0 parts by weight. By blending the stabilizer within the above range, it is possible to secure the necessary thermal stability during molding and thermal expansion of the rehabilitating pipe. When the amount of the stabilizer is less than 0.5 parts by weight with respect to 100 parts by weight of the main resin component, the thermal stability during molding is insufficient, which is undesirable. Further, if the amount of the stabilizer exceeds 5.0 parts by weight with respect to 100 parts by weight of the main resin component, the strength of the product will be insufficient, which is not preferable.
また、塩化ビニル系樹脂組成物には、安定剤に加え、安定助剤が配合されていてもよい。本実施形態に使用される安定助剤としては、例えば、例えば、エポキシ化大豆油、エポキシ化アマニ油、燐酸エステル等が挙げられる。これらの安定化助剤は、単独で用いられてもよいし、2種類以上が併用されてもよい。塩化ビニル系樹脂組成物における前記安定助剤の量は、前記安定剤による熱安定性を補助できるように、安定剤の種類等に応じて適宜設定可能である。 In addition to the stabilizer, the vinyl chloride resin composition may contain a stabilizing aid. Stabilizing aids used in the present embodiment include, for example, epoxidized soybean oil, epoxidized linseed oil, phosphate esters, and the like. These stabilizing aids may be used alone, or two or more of them may be used in combination. The amount of the stabilizing aid in the vinyl chloride resin composition can be appropriately set according to the type of the stabilizer and the like so as to assist the thermal stability of the stabilizer.
(改質剤)
改質剤は、主にポリ塩化ビニル樹脂の伸びと強度の改善のため、塩化ビニル系樹脂組成物に必須に含まれている。本実施形態にて使用される前記改質剤は、MMA系の改質剤、MBS系の改質剤、およびCPE系の改質剤からなる群より選ばれる1以上の改質剤である。すなわち、MMA系およびMBS系、CPE系の改質剤のうちいずれか1種、または2種以上の組合せである。
(Modifier)
Modifiers are essential in vinyl chloride resin compositions mainly for improving elongation and strength of polyvinyl chloride resins. The modifier used in the present embodiment is one or more modifiers selected from the group consisting of MMA-based modifiers, MBS-based modifiers, and CPE-based modifiers. That is, it is one of MMA, MBS, and CPE modifiers, or a combination of two or more of them.
MMA系の改質剤は、アクリル酸エステルを主体とする共重合ゴムにメチルメタアクリレート、スチレン、アクリロニトリル等の単量体をグラフト重合させた多成分系樹脂である。また、MBS系の改質剤は、ブタジエン・スチレン・メチルメタクリレート共重合体である。CPE系の改質剤は、塩素化ポリエチレンの重合体である。塩素化ポリエチレンの塩素化度は、必要とされる性能に応じて調整することができる。このようなMMA系およびMBS系、CPE系のうち少なくとも1種の改質剤を塩化ビニル系樹脂組成物に配合されることにより、ポリ塩化ビニル樹脂の伸びおよび強度が改善される。なお、MBS系の改質剤は、更生管の耐候性の改善効果が不十分である。それゆえ、好適には、本実施形態に使用される改質剤は、MMA系、CPE系の改質剤を含む。 The MMA-based modifier is a multi-component resin obtained by graft-polymerizing monomers such as methyl methacrylate, styrene, and acrylonitrile to a copolymer rubber mainly composed of acrylic acid ester. The MBS modifier is a butadiene/styrene/methyl methacrylate copolymer. CPE-based modifiers are polymers of chlorinated polyethylene. The degree of chlorination of chlorinated polyethylene can be adjusted according to the required performance. Elongation and strength of the polyvinyl chloride resin are improved by blending at least one modifier selected from the MMA, MBS and CPE modifiers into the vinyl chloride resin composition. MBS-based modifiers are insufficient in improving the weather resistance of reclaimed pipes. Therefore, preferably, the modifier used in this embodiment includes MMA-based and CPE-based modifiers.
なお、従来公知の改質剤として、EVA系、ABS系の改質剤が知られている。これらの改質剤は、MMA系、MBS系またはCPE系の改質剤と比較して、粘着性・付着性を伴うものが多く、さらに、更生管の施工温度範囲(80~95℃)での伸びの改善効果を期待できない、あるいは、不十分である。 EVA-based and ABS-based modifiers are known as conventionally known modifiers. Compared to MMA, MBS, or CPE modifiers, many of these modifiers are viscous and sticky. The effect of improving the elongation of the product cannot be expected or is insufficient.
また、本実施形態においては、MMA系の改質剤、MBS系の改質剤、およびCPE系の改質剤からなる群より選ばれる1以上の改質剤が、前記主樹脂成分100重量部に対して3~25重量部配合されている。前記主樹脂成分100重量部に対する改質剤の配合量が3重量部未満である場合、更生管の実用強度が不足し、膨張施工温度での更生管の伸びが不十分であり、膨張施工性が低下する。また、前記主樹脂成分100重量部に対する改質剤の配合量が25重量部を超える場合、押出成形性が悪くなる。前記主樹脂成分100重量部に対する改質剤の配合量は、好ましくは3~25重量部、特に好ましくは5~20重量部である。 Further, in the present embodiment, one or more modifiers selected from the group consisting of MMA-based modifiers, MBS-based modifiers, and CPE-based modifiers are included in 100 parts by weight of the main resin component. 3 to 25 parts by weight are blended with respect to When the amount of the modifier compounded relative to 100 parts by weight of the main resin component is less than 3 parts by weight, the practical strength of the rehabilitated pipe is insufficient, the elongation of the rehabilitated pipe at the expansion work temperature is insufficient, and the expansion workability. decreases. Further, when the amount of the modifier compounded exceeds 25 parts by weight with respect to 100 parts by weight of the main resin component, extrusion moldability is deteriorated. The amount of the modifier compounded with respect to 100 parts by weight of the main resin component is preferably 3 to 25 parts by weight, particularly preferably 5 to 20 parts by weight.
(その他の添加剤)
本実施形態に係る塩化ビニル系樹脂組成物には、必要に応じて、充填剤、顔料、滑剤、加工助剤、光安定剤、紫外線吸収剤、充填剤、色剤、酸化防止剤(老化防止剤)、帯電防止剤、難燃剤等の各種添加剤の1種もしくは2種以上が添加されていてもよい。これらの添加剤の添加方法や添加順序は、特に限定されるものではなく、任意の方法や任意の順序であってよい。
(Other additives)
If necessary, the vinyl chloride resin composition according to the present embodiment contains fillers, pigments, lubricants, processing aids, light stabilizers, ultraviolet absorbers, fillers, coloring agents, antioxidants (antiaging agents). agents), antistatic agents, flame retardants, and the like. The method and order of addition of these additives are not particularly limited, and may be any method or any order.
上記充填剤としては、例えば、炭酸カルシウム、タルク、クレー、シリカ等の無機充填剤が挙げられる。これらの充填剤は、単独で用いられてもよいし、2種類以上が併用されてもよい。 Examples of the filler include inorganic fillers such as calcium carbonate, talc, clay and silica. These fillers may be used alone or in combination of two or more.
上記顔料としては、例えば、アゾ系、フタロシアニン系、スレン系、染料レーキ系等の有機顔料;クロム酸モリブデン系、フェロシアン化物系等の無機顔料等が挙げられる。これらの顔料は、単独で用いられてもよいし、2種類以上が併用されてもよい。 Examples of the pigment include organic pigments such as azo-based, phthalocyanine-based, threne-based, and dye lake-based pigments; and inorganic pigments such as molybdenum chromate-based and ferrocyanide-based pigments. These pigments may be used alone or in combination of two or more.
上記滑剤としては、例えば、ステアリン酸等の脂肪酸類;ブチルステアレート等の脂肪酸エステル系材料;ポリエチレン、酸化ポリエチレン等のオレフィン系ワックス;パラフィン等の炭化水素系ワックス類等が挙げられる。これらの滑剤は、単独で用いられてもよいし、2種類以上が併用されてもよい。 Examples of the lubricant include fatty acids such as stearic acid; fatty acid ester materials such as butyl stearate; olefin waxes such as polyethylene and polyethylene oxide; and hydrocarbon waxes such as paraffin. These lubricants may be used alone, or two or more of them may be used in combination.
上記加工助剤としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート等の(メタ)アクリレート系モノマーの単独重合体もしくは共重合体;上記(メタ)アクリレート系モノマーとスチレン、ビニルトルエン、アクリロニトリル等のビニル系モノマーとの共重合体等が挙げられる。これらの加工助剤は、単独で用いられてもよいし、2種類以上が併用されてもよい。 Examples of the processing aid include homopolymers or copolymers of (meth)acrylate monomers such as methyl (meth)acrylate, ethyl (meth)acrylate, and butyl (meth)acrylate; and a copolymer with a vinyl monomer such as styrene, vinyltoluene, acrylonitrile, and the like. These processing aids may be used alone, or two or more of them may be used in combination.
上記光安定剤としては、例えば、ヒンダードアミン系光安定剤等が挙げられる。これらの光安定剤は、単独で用いられてもよいし、2種類以上が併用されてもよい。 Examples of the light stabilizer include hindered amine light stabilizers. These light stabilizers may be used alone, or two or more of them may be used in combination.
上記紫外線吸収剤としては、例えば、サリチル酸エステル系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系等の紫外線吸収剤が挙げられる。これらの紫外線吸収剤は、単独で用いられてもよいし、2種類以上が併用されてもよい。 Examples of the ultraviolet absorber include salicylate-based, benzophenone-based, benzotriazole-based, and cyanoacrylate-based ultraviolet absorbers. These ultraviolet absorbers may be used alone, or two or more of them may be used in combination.
また、上記充填剤としては、酸化チタン等が挙げられる。 Moreover, titanium oxide etc. are mentioned as said filler.
また、これらの添加剤の配合量については特に限定されるものではなく、更生管の製造の常法に従うものとすればよい。例えば、上記滑剤は、前記主樹脂成分100重量部に対して0.1~2.5重量部であり、上記の充填剤または色剤は、必要に応じて、前記主樹脂成分100重量部に対して5.0重量部以下の範囲で配合され得る。 Moreover, the amount of these additives to be added is not particularly limited, and may be in accordance with the conventional method for manufacturing rehabilitating pipes. For example, the lubricant is 0.1 to 2.5 parts by weight per 100 parts by weight of the main resin component, and the filler or coloring agent is added to 100 parts by weight of the main resin component, if necessary. 5.0 parts by weight or less.
以上のように、本実施形態に係る塩化ビニル系樹脂組成物は、以下の特徴がある。 As described above, the vinyl chloride resin composition according to this embodiment has the following features.
(a)平均重合度1000~1100の第1のポリ塩化ビニル樹脂と、平均重合度750~850の第2のポリ塩化ビニル樹脂との混合物からなるか、あるいは前記第1のポリ塩化ビニル樹脂からなる主樹脂成分と、鉛系以外の安定剤と、を含む。 (a) a mixture of a first polyvinyl chloride resin having an average degree of polymerization of 1000 to 1100 and a second polyvinyl chloride resin having an average degree of polymerization of 750 to 850, or from the first polyvinyl chloride resin and a non-lead-based stabilizer.
(b)前記主樹脂成分100重量部に対して、3~25重量部のMMA系および/またはMBS系の改質剤が配合されている。 (b) 3 to 25 parts by weight of an MMA-based and/or MBS-based modifier is blended with 100 parts by weight of the main resin component;
まず、前記特徴(a)のような主樹脂成分は、汎用性が高いので、経済性に優れた材料である。そして、前記特徴(b)のように、前記主樹脂成分100重量部に対して、3~25重量部のMMA系および/またはMBS系の改質剤が配合されていることにより、押出成形性および施工温度(70~100℃)での膨張施工性が優れたものとなる。このように、本実施形態によれば、経済性に優れ、かつ押出成形性および膨張施工性に優れた更生管用塩化ビニル系樹脂組成物を実現できる。 First, the main resin component as in the above feature (a) is highly versatile and therefore economical. Then, as in the feature (b), 3 to 25 parts by weight of an MMA-based and/or MBS-based modifier is blended with respect to 100 parts by weight of the main resin component, thereby improving extrusion moldability. And the expansion workability at the construction temperature (70 to 100° C.) is excellent. As described above, according to the present embodiment, it is possible to realize a vinyl chloride-based resin composition for rehabilitating pipes that is economical and has excellent extrusion moldability and expansion workability.
(膨張施工性)
本実施形態に係る塩化ビニル系樹脂組成物は、上述の組成および特性を有することにより、膨張施工性に優れたものとなり、膨張施工性の評価基準を満たすものとなる。膨張施工性の評価基準は、従来公知の基準を適用することができ、特に限定されない。本実施形態に係る塩化ビニル系樹脂組成物は、管押出成形法により成形された成形管について、以下の1.~3.の評価基準の少なくとも1つを満たすことが好ましく、特に好ましくは、以下の1.~3.の評価基準の全てを満たすことが特に好ましい。
(expansion workability)
Since the vinyl chloride-based resin composition according to the present embodiment has the composition and properties described above, it has excellent expansion workability and satisfies the evaluation criteria for expansion workability. There are no particular limitations on the evaluation criteria for expansive workability, and conventionally known criteria can be applied. The vinyl chloride-based resin composition according to the present embodiment is a molded tube molded by a tube extrusion molding method, and the following 1. ~3. It is preferable to satisfy at least one of the evaluation criteria of, particularly preferably, the following 1. ~3. It is particularly preferable to satisfy all of the evaluation criteria of
1.後述するリング拡径試験による成形管の伸び率が100%以上、好ましくは140%以上である。 1. The elongation rate of the formed tube is 100% or more, preferably 140% or more, in a ring diameter expansion test described later.
2.後述する弾性率(80℃)の測定試験による成形管の80℃での弾性率が1000MPa以下、好ましくは500MPa以下である。 2. According to an elastic modulus (80° C.) measurement test described later, the elastic modulus at 80° C. of the molded tube is 1000 MPa or less, preferably 500 MPa or less.
3.後述する90℃での引張クリープ試験による成形管の試験片の伸び率が20%以下、好ましくは17%以下である。 3. The elongation percentage of the test piece of the molded tube is 20% or less, preferably 17% or less in a tensile creep test at 90°C, which will be described later.
(更生管)
本実施形態に係る更生管は、既設管に挿入され、上述した塩化ビニル系樹脂組成物からなる。より具体的には、更生管は、既設管中に挿入され、加熱されることにより既設管の内面に密着するように構成されている。
(rehabilitation pipe)
A rehabilitating pipe according to the present embodiment is inserted into an existing pipe and is made of the vinyl chloride resin composition described above. More specifically, the rehabilitated pipe is inserted into the existing pipe and heated so as to adhere to the inner surface of the existing pipe.
このような更生管は、押出成形機を用いて、上述の塩化ビニル系樹脂組成物を溶融混練し、押出し成形を行って、所望の断面形状の管状体に成形することにより作製される。上記更生管の断面形状は、更生(修復)しようとする既設管中に挿入可能であって、加熱により上記既設管の内面に密着し得る形状であればよく、特に限定されるものではない。 Such a reclaimed pipe is produced by melt-kneading the vinyl chloride-based resin composition described above using an extruder, performing extrusion molding, and molding into a tubular body having a desired cross-sectional shape. The cross-sectional shape of the rehabilitated pipe is not particularly limited as long as it can be inserted into the existing pipe to be rehabilitated (repaired) and can be brought into close contact with the inner surface of the existing pipe by heating.
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態中にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and can be modified in various ways within the scope of the claims. Embodiments obtained by appropriately combining technical means disclosed in the embodiments is also included in the technical scope of the present invention.
以下、実施例および比較例により、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
<更生管の評価方法>
(1)押出成形性
押出成形により得られた更生管の外内面を観察し、目視にて焼け筋・波打ち等の有無を確認した。日本下水道協会規格JSWAS K1-2010「下水道用硬質塩化ビニル管」の外観規定に基づき、更生管の内外面を評価した。
<Evaluation method for rehabilitating pipe>
(1) Extrusion Moldability The outer and inner surfaces of the reclaimed pipe obtained by extrusion molding were observed to visually confirm the presence or absence of burnt streaks, undulations, and the like. The inner and outer surfaces of the rehabilitated pipe were evaluated based on the appearance regulations of Japan Sewage Works Association Standard JSWAS K1-2010 "Rigid vinyl chloride pipe for sewerage".
(2)膨張施工性
下記のA~Cの試験全てに合格を「○」と判定し、下記のA~Cの試験の少なくとも1つに不合格を「×」と判定した。
(2) Expansion workability Passing all of the following tests A to C was judged as "◯", and failing at least one of the following tests A to C was judged as "x".
A.リング拡径試験
得られた更生管を幅15mmのリング状に切断して、90℃の温度に加熱した後、図1に示すようなリング径を拡大する試験装置に設置した。具体的には、図1に示す試験装置における8つの円筒体がリング状の更生管サンプルの内面に接触するように、更生管サンプルを設置する。その後、円筒体を更生管の外面側へ移動させて、更生管サンプルのリングを円周方向に8角形に拡大させる。そして、更生管サンプルのリングが破断したときの、更生管サンプルの伸び率を測定した。破断したときの更生管サンプルの伸び率が100%以上である場合を合格と判定した。
A. Ring diameter expansion test The obtained rehabilitated pipe was cut into a ring shape with a width of 15 mm, heated to a temperature of 90°C, and then placed in a test apparatus for expanding the ring diameter as shown in Fig. 1 . Specifically, the rehabilitating pipe sample is placed so that the eight cylindrical bodies in the test apparatus shown in FIG. 1 are in contact with the inner surface of the ring-shaped rehabilitating pipe sample. After that, the cylindrical body is moved to the outer surface side of the rehabilitated pipe, and the ring of the rehabilitated pipe sample is enlarged in the circumferential direction into an octagonal shape. Then, the elongation rate of the rehabilitated pipe sample was measured when the ring of the rehabilitated pipe sample was broken. When the elongation percentage of the rehabilitating pipe sample was 100% or more when it was broken, it was determined to be acceptable.
B.弾性率(80℃)の測定試験
得られた更生管から、幅10mm、長さ50mm、厚さ1mmのダンベル型試験片を切り出した。そして、切り出したダンベル型試験片を、動的粘弾性測定試験機を用いて、温度別の貯蔵弾性率を測定した。なお、使用した動的粘弾性測定試験機は、日立ハイテクサイエンス製DMA7100であり、設定温度=30℃→130℃(昇温速度=5℃/分)、周波数=1Hz、振幅幅=10μmの条件で、温度別の貯蔵弾性率を測定した。測定された弾性率のうち、80℃での弾性率を判定基準とした。80℃での弾性率が1000MPa以下である場合を合格と判定した。
B. Measurement Test of Elastic Modulus (80° C.) A dumbbell-shaped specimen having a width of 10 mm, a length of 50 mm, and a thickness of 1 mm was cut out from the obtained rehabilitated pipe. Then, the storage elastic modulus of each cut dumbbell-shaped test piece was measured for each temperature using a dynamic viscoelasticity measuring tester. The dynamic viscoelasticity measurement tester used was DMA7100 manufactured by Hitachi High-Tech Science, under the conditions of set temperature = 30 ° C. → 130 ° C. (heating rate = 5 ° C./min), frequency = 1 Hz, amplitude width = 10 μm. , the storage elastic modulus at each temperature was measured. Among the elastic moduli measured, the elastic modulus at 80° C. was used as the criterion. A sample having an elastic modulus of 1000 MPa or less at 80° C. was determined to be acceptable.
C.90℃での引張クリープ試験
得られた更生管から、幅10mm、長さ100mm、厚さ2.5mmの試験片を切り出した。切り出した試験片を、JISK7115「プラスチック-クリープ特性の試験方法-第1部:引張クリープ」に準拠して、引張りクリープ試験を行い、試験片の伸び率を測定した。なお、試験条件は、試験温度:90℃±1.5℃(水中)、引張応力:0.5MPa、試験時間=240時間とした。そして、試験片の伸び率が20%以下である場合を合格と判定した。
C. Tensile Creep Test at 90° C. A test piece having a width of 10 mm, a length of 100 mm and a thickness of 2.5 mm was cut out from the obtained rehabilitated pipe. The cut test piece was subjected to a tensile creep test in accordance with JISK7115 “Plastics—Determination of creep properties—Part 1: Tensile creep” to measure the elongation of the test piece. The test conditions were test temperature: 90° C.±1.5° C. (in water), tensile stress: 0.5 MPa, test time=240 hours. Then, when the elongation percentage of the test piece was 20% or less, it was determined to be acceptable.
(3)硫化時の黒変
得られた更生管から、幅15mm、長さ30mmのサンプルを切り出した。そして、サンプルをメルカプト錫系の安定剤に浸漬させ、密閉ビーカー内で常温24時間放置した。24時間放置後のサンプルの変色(黒変)の有無を目視で評価した。黒変が観察されない場合を「○」と判定し、黒変が観察された場合を「×」と判定した。
(3) Black discoloration during sulfurization A sample having a width of 15 mm and a length of 30 mm was cut out from the obtained regenerated pipe. Then, the sample was immersed in a mercaptotin-based stabilizer and allowed to stand at room temperature for 24 hours in a closed beaker. The presence or absence of discoloration (blackening) of the sample after being left for 24 hours was visually evaluated. A case where black discoloration was not observed was evaluated as "good", and a case where black discoloration was observed was evaluated as "poor".
〔実施例1〕
平均重合度1050のポリ塩化ビニル樹脂を主樹脂成分として用いた。当該主樹脂成分100重量部に対して、安定剤として有機錫系安定剤(内容物:オクチル錫、メチル錫、熱安定助剤)4.00重量部、改質剤としてMMA系改質剤(アクリル系衝撃強化剤とも称する、商品名「カネエースFMシリーズ」、カネカ社製)10.00重量部、加工助剤として商品名「メタブレンP551」(三菱レイヨン社製)3.00重量部、滑剤としてエステル系滑剤(商品名「リケスター SL-02」、理研ビタミン社製)およびエチレン系滑剤(商品名「Hiwax220MP」、三井化学工業社製)0.40重量部、その他の添加剤として白色顔料および充填剤(商品名「μ-POWDER 3S」、白石カルシウム社製)1.20重量部の割合で配合し、塩化ビニル系樹脂組成物を調製した。
[Example 1]
A polyvinyl chloride resin having an average degree of polymerization of 1050 was used as the main resin component. Per 100 parts by weight of the main resin component, 4.00 parts by weight of an organic tin-based stabilizer (contents: octyl tin, methyl tin, thermal stabilization aid) as a stabilizer, and an MMA-based modifier ( 10.00 parts by weight of product name "Kane Ace FM Series" (manufactured by Kaneka Corporation), which is also called an acrylic impact modifier, 3.00 parts by weight of product name "Metabrene P551" (manufactured by Mitsubishi Rayon Co., Ltd.) as a processing aid, and as a lubricant Ester-based lubricant (trade name “Rikester SL-02”, manufactured by Riken Vitamin) and ethylene-based lubricant (trade name “Hiwax220MP”, manufactured by Mitsui Chemicals) 0.40 parts by weight, white pigment and filler as other additives agent (trade name “μ-POWDER 3S”, manufactured by Shiraishi Calcium Co., Ltd.) was blended at a rate of 1.20 parts by weight to prepare a vinyl chloride resin composition.
得られた塩化ビニル系樹脂組成物を、管押出成形法により押出成形を行い、外径185±1.0mm、肉厚8.6±0.6mmの更生管(テスト用管)を作製した。 The obtained vinyl chloride resin composition was extruded by a tube extrusion molding method to prepare a rehabilitating tube (test tube) having an outer diameter of 185±1.0 mm and a wall thickness of 8.6±0.6 mm.
得られた更生管について、押出成形性、膨張施工性、硫化時の黒変を評価した。その結果は表1に示すとおりであった。 The obtained reclaimed pipe was evaluated for extrusion moldability, expansion workability, and blackening during sulfurization. The results were as shown in Table 1.
〔実施例2〕
主樹脂成分として、平均重合度800のポリ塩化ビニル樹脂25重量部と平均重合度1050のポリ塩化ビニル樹脂75重量部との混合物を使用したことを除いて、実施例1と同様の方法で塩化ビニル系樹脂組成物を調製し、当該塩化ビニル系樹脂組成物を用いて更生管を作製した。
[Example 2]
Chlorination was performed in the same manner as in Example 1, except that a mixture of 25 parts by weight of a polyvinyl chloride resin having an average degree of polymerization of 800 and 75 parts by weight of a polyvinyl chloride resin having an average degree of polymerization of 1050 was used as the main resin component. A vinyl resin composition was prepared, and a rehabilitating pipe was produced using the vinyl chloride resin composition.
得られた更生管について、押出成形性、膨張施工性、硫化時の黒変を評価した。その結果は表1に示すとおりであった。 The obtained reclaimed pipe was evaluated for extrusion moldability, expansion workability, and blackening during sulfurization. The results were as shown in Table 1.
〔実施例3〕
主樹脂成分として、平均重合度800のポリ塩化ビニル樹脂50重量部と平均重合度1050のポリ塩化ビニル樹脂50重量部との混合物を使用したことを除いて、実施例1と同様の方法で塩化ビニル系樹脂組成物を調製し、当該塩化ビニル系樹脂組成物を用いて更生管を作製した。
[Example 3]
Chlorination was performed in the same manner as in Example 1, except that a mixture of 50 parts by weight of a polyvinyl chloride resin having an average degree of polymerization of 800 and 50 parts by weight of a polyvinyl chloride resin having an average degree of polymerization of 1050 was used as the main resin component. A vinyl resin composition was prepared, and a rehabilitating pipe was produced using the vinyl chloride resin composition.
得られた更生管について、押出成形性、膨張施工性、硫化時の黒変を評価した。その結果は表1に示すとおりであった。 The obtained reclaimed pipe was evaluated for extrusion moldability, expansion workability, and blackening during sulfurization. The results were as shown in Table 1.
〔実施例4〕
主樹脂成分として、平均重合度800のポリ塩化ビニル樹脂50重量部と平均重合度1050のポリ塩化ビニル樹脂50重量部との混合物を使用したこと、および主樹脂成分100重量部に対してアクリル系衝撃強化剤20.00重量部を配合したことを除いて、実施例1と同様の方法で塩化ビニル系樹脂組成物を調製し、当該塩化ビニル系樹脂組成物を用いて更生管を作製した。
[Example 4]
As the main resin component, a mixture of 50 parts by weight of a polyvinyl chloride resin having an average degree of polymerization of 800 and 50 parts by weight of a polyvinyl chloride resin having an average degree of polymerization of 1050 was used; A vinyl chloride resin composition was prepared in the same manner as in Example 1, except that 20.00 parts by weight of the impact modifier was added, and a rehabilitating pipe was produced using the vinyl chloride resin composition.
得られた更生管について、押出成形性、膨張施工性、硫化時の黒変を評価した。その結果は表1に示すとおりであった。 The obtained reclaimed pipe was evaluated for extrusion moldability, expansion workability, and blackening during sulfurization. The results were as shown in Table 1.
〔比較例1〕
主樹脂成分として平均重合度1300のポリ塩化ビニル樹脂100重量部を使用したこと、および安定剤として有機錫系安定剤4.00重量部に代えて鉛系複合ワンパック安定剤(三塩基性硫酸鉛とステアリン酸鉛の混合物)9.00重量部を主樹脂成分100重量部に対して配合したこと、および滑剤の内容物として塩素化ポリエチレン0.4重量部を主樹脂成分100重量部に対して追加し滑剤処方を微調整したことを除いて、実施例1と同様の方法で塩化ビニル系樹脂組成物を調製し、当該塩化ビニル系樹脂組成物を用いて更生管を作製した。
[Comparative Example 1]
100 parts by weight of polyvinyl chloride resin with an average degree of polymerization of 1300 was used as the main resin component, and a lead-based composite one-pack stabilizer (tribasic sulfuric acid) was used instead of 4.00 parts by weight of an organic tin stabilizer as a stabilizer. 9.00 parts by weight of a mixture of lead and lead stearate) is added to 100 parts by weight of the main resin component, and 0.4 parts by weight of chlorinated polyethylene is added as a content of the lubricant to 100 parts by weight of the main resin component. A vinyl chloride resin composition was prepared in the same manner as in Example 1, except that the formulation of the lubricant was finely adjusted, and a rehabilitating pipe was produced using the vinyl chloride resin composition.
得られた更生管について、押出成形性、膨張施工性、硫化時の黒変を評価した。その結果は表1に示すとおりであった。 The obtained reclaimed pipe was evaluated for extrusion moldability, expansion workability, and blackening during sulfurization. The results were as shown in Table 1.
〔比較例2〕
主樹脂成分として平均重合度700のポリ塩化ビニル樹脂100重量部を使用したことを除いて、比較例1と同様の方法で塩化ビニル系樹脂組成物を調製し、当該塩化ビニル系樹脂組成物を用いて更生管を作製した。
[Comparative Example 2]
A vinyl chloride resin composition was prepared in the same manner as in Comparative Example 1, except that 100 parts by weight of a polyvinyl chloride resin having an average degree of polymerization of 700 was used as the main resin component. A rehabilitated pipe was produced using
得られた更生管について、押出成形性、膨張施工性、硫化時の黒変を評価した。その結果は表1に示すとおりであった。 The obtained reclaimed pipe was evaluated for extrusion moldability, expansion workability, and blackening during sulfurization. The results were as shown in Table 1.
〔比較例3〕
主樹脂成分として、平均重合度800のポリ塩化ビニル樹脂100重量部を使用したことを除いて、実施例1と同様の方法で塩化ビニル系樹脂組成物を調製し、当該塩化ビニル系樹脂組成物を用いて更生管を作製した。
[Comparative Example 3]
A vinyl chloride resin composition was prepared in the same manner as in Example 1, except that 100 parts by weight of a polyvinyl chloride resin having an average degree of polymerization of 800 was used as the main resin component. was used to produce a rehabilitated pipe.
得られた更生管について、押出成形性、膨張施工性、硫化時の黒変を評価した。その結果は表1に示すとおりであった。 The obtained reclaimed pipe was evaluated for extrusion moldability, expansion workability, and blackening during sulfurization. The results were as shown in Table 1.
〔比較例4〕
主樹脂成分として、平均重合度800のポリ塩化ビニル樹脂50重量部と平均重合度1050のポリ塩化ビニル樹脂50重量部との混合物を使用したこと、および主樹脂成分100重量部に対してアクリル系衝撃強化剤2.00重量部を配合したことを除いて、実施例1と同様の方法で塩化ビニル系樹脂組成物を調製し、当該塩化ビニル系樹脂組成物を用いて更生管を作製した。
[Comparative Example 4]
As the main resin component, a mixture of 50 parts by weight of a polyvinyl chloride resin having an average degree of polymerization of 800 and 50 parts by weight of a polyvinyl chloride resin having an average degree of polymerization of 1050 was used; A vinyl chloride resin composition was prepared in the same manner as in Example 1, except that 2.00 parts by weight of the impact modifier was added, and a rehabilitating pipe was produced using the vinyl chloride resin composition.
得られた更生管について、押出成形性、膨張施工性、硫化時の黒変を評価した。その結果は表1に示すとおりであった。 The obtained reclaimed pipe was evaluated for extrusion moldability, expansion workability, and blackening during sulfurization. The results were as shown in Table 1.
〔比較例5〕
主樹脂成分として、平均重合度800のポリ塩化ビニル樹脂50重量部と平均重合度1050のポリ塩化ビニル樹脂50重量部との混合物を使用したこと、および主樹脂成分100重量部に対してアクリル系衝撃強化剤30.00重量部を配合したことを除いて、実施例1と同様の方法で塩化ビニル系樹脂組成物を調製し、当該塩化ビニル系樹脂組成物を用いて更生管を作製した。
[Comparative Example 5]
As the main resin component, a mixture of 50 parts by weight of a polyvinyl chloride resin having an average degree of polymerization of 800 and 50 parts by weight of a polyvinyl chloride resin having an average degree of polymerization of 1050 was used; A vinyl chloride resin composition was prepared in the same manner as in Example 1, except that 30.00 parts by weight of an impact modifier was added, and a rehabilitating pipe was produced using the vinyl chloride resin composition.
得られた更生管について、押出成形性、膨張施工性、硫化時の黒変を評価した。その結果は表1に示すとおりであった。 The obtained reclaimed pipe was evaluated for extrusion moldability, expansion workability, and blackening during sulfurization. The results were as shown in Table 1.
表1の実施例1~4の結果から、塩化ビニル系樹脂組成物における、(a)主樹脂成分が平均重合度1000~1100の第1のポリ塩化ビニル樹脂と、平均重合度750~850の第2のポリ塩化ビニル樹脂との混合物からなるか、あるいは前記第1のポリ塩化ビニル樹脂からなり、かつ、(b)前記主樹脂成分100重量部に対して、3~25重量部のMMA系および/またはMBS系改質剤が配合されていれば、押出成形性および膨張施工性が良好であることがわかった。さらに、鉛系以外の安定化剤である有機錫系安定剤が配合されていることにより、硫化時の黒変が抑制されたことがわかった。 From the results of Examples 1 to 4 in Table 1, in the vinyl chloride resin composition, (a) the main resin component is a first polyvinyl chloride resin having an average polymerization degree of 1000 to 1100 and an average polymerization degree of 750 to 850. consisting of a mixture with a second polyvinyl chloride resin or consisting of the first polyvinyl chloride resin, and (b) 3 to 25 parts by weight of MMA based on 100 parts by weight of the main resin component It was found that the extrudability and expansion workability were good if the and/or MBS-based modifier was blended. Furthermore, it was found that black discoloration during sulfurization was suppressed by blending an organic tin-based stabilizer, which is a stabilizer other than a lead-based stabilizer.
表1に示されるように、主樹脂成分として平均重合度1300のポリ塩化ビニル樹脂100重量部を使用した比較例1、主樹脂成分として平均重合度700のポリ塩化ビニル樹脂100重量部を使用した比較例2、および主樹脂成分として平均重合度800のポリ塩化ビニル樹脂100重量部を使用した比較例3では、リング拡径試験、弾性率(80℃)の測定試験、90℃での引張クリープ試験の少なくとも1つの試験において不合格であり、膨張施工性が良好ではなかった。また、特に比較例1および2では、膨張施工性に加え、押出成形性も良好でなかった。また、有機錫系安定剤に代えて鉛系安定剤を使用した比較例1および2では、硫化時の黒変が確認された。 As shown in Table 1, Comparative Example 1 using 100 parts by weight of polyvinyl chloride resin with an average degree of polymerization of 1300 as the main resin component, and 100 parts by weight of polyvinyl chloride resin with an average degree of polymerization of 700 as the main resin component. In Comparative Example 2 and Comparative Example 3 using 100 parts by weight of polyvinyl chloride resin having an average polymerization degree of 800 as the main resin component, a ring diameter expansion test, an elastic modulus (80 ° C.) measurement test, a tensile creep at 90 ° C. It failed in at least one of the tests and had poor expansion workability. Moreover, in Comparative Examples 1 and 2 in particular, not only expansion workability but also extrusion moldability were not good. In addition, in Comparative Examples 1 and 2 in which a lead-based stabilizer was used in place of the organotin-based stabilizer, black discoloration during sulfurization was confirmed.
また、比較例4,5では、主樹脂成分として平均重合度800のポリ塩化ビニル樹脂と平均重合度1050のポリ塩化ビニル樹脂との混合物を使用している。しかし、比較例4では、アクリル系衝撃強化剤が主樹脂成分100重量部に対して2.00重量部配合されており、比較例5では、アクリル系衝撃強化剤が主樹脂成分100重量部に対して30.00重量部配合されている。すなわち、比較例4および5では、主樹脂成分100重量部に対するアクリル系衝撃強化剤の配合量が3~25重量部の範囲外である。このような比較例4および5では、押出成形性および膨張施工性の両方を満足させることができない。 In Comparative Examples 4 and 5, a mixture of a polyvinyl chloride resin with an average degree of polymerization of 800 and a polyvinyl chloride resin with an average degree of polymerization of 1050 is used as the main resin component. However, in Comparative Example 4, 2.00 parts by weight of the acrylic impact modifier was added to 100 parts by weight of the main resin component, and in Comparative Example 5, the acrylic impact modifier was added to 100 parts by weight of the main resin component. 30.00 parts by weight is blended. In other words, in Comparative Examples 4 and 5, the amount of the acrylic impact modifier blended with respect to 100 parts by weight of the main resin component is outside the range of 3 to 25 parts by weight. In such Comparative Examples 4 and 5, both extrusion moldability and expansion workability cannot be satisfied.
本発明は、既設管の補修等が必要な土木・建設産業等に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used in the civil engineering and construction industries, etc., where repair of existing pipes is required.
Claims (4)
鉛系以外の安定剤と、を含み、
MMA系の改質剤、MBS系の改質剤、およびCPE系の改質剤からなる群より選ばれる1以上の改質剤が、前記主樹脂成分100重量部に対して3~25重量部配合されており、
前記主樹脂成分は、
50~80重量%の前記第1のポリ塩化ビニル樹脂と、
20~50重量%の前記第2のポリ塩化ビニル樹脂と、からなる、更生管用塩化ビニル系樹脂組成物。 a main resin component consisting of a mixture of a first polyvinyl chloride resin having an average degree of polymerization of 1000 to 1100 and a second polyvinyl chloride resin having an average degree of polymerization of 750 to 850;
Stabilizers other than lead-based,
One or more modifiers selected from the group consisting of MMA-based modifiers, MBS-based modifiers, and CPE-based modifiers, in an amount of 3 to 25 parts by weight per 100 parts by weight of the main resin component is compounded,
The main resin component is
50 to 80 % by weight of the first polyvinyl chloride resin;
20 to 50% by weight of the second polyvinyl chloride resin, and a vinyl chloride resin composition for rehabilitating pipes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018243639A JP7271168B2 (en) | 2018-12-26 | 2018-12-26 | Vinyl chloride resin composition for rehabilitating pipe, and rehabilitating pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018243639A JP7271168B2 (en) | 2018-12-26 | 2018-12-26 | Vinyl chloride resin composition for rehabilitating pipe, and rehabilitating pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020105290A JP2020105290A (en) | 2020-07-09 |
JP7271168B2 true JP7271168B2 (en) | 2023-05-11 |
Family
ID=71448283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018243639A Active JP7271168B2 (en) | 2018-12-26 | 2018-12-26 | Vinyl chloride resin composition for rehabilitating pipe, and rehabilitating pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7271168B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003073518A (en) | 2001-09-06 | 2003-03-12 | Sekisui Chem Co Ltd | Vinyl chloride based resin composition for regenerated pipe and regenerated pipe |
JP2008013632A (en) | 2006-07-04 | 2008-01-24 | Sekisui Chem Co Ltd | Vinyl chloride-based resin composition for restored pipe and vinyl chloride-based resin restored pipe |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2619104B2 (en) * | 1990-03-26 | 1997-06-11 | 筒中プラスチック工業株式会社 | PVC pipe for lining existing pipe |
-
2018
- 2018-12-26 JP JP2018243639A patent/JP7271168B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003073518A (en) | 2001-09-06 | 2003-03-12 | Sekisui Chem Co Ltd | Vinyl chloride based resin composition for regenerated pipe and regenerated pipe |
JP2008013632A (en) | 2006-07-04 | 2008-01-24 | Sekisui Chem Co Ltd | Vinyl chloride-based resin composition for restored pipe and vinyl chloride-based resin restored pipe |
Also Published As
Publication number | Publication date |
---|---|
JP2020105290A (en) | 2020-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5090183B2 (en) | Thermoplastic vulcanizate blend | |
JPWO2003022920A1 (en) | Polyethylene resin composition | |
US20070260006A1 (en) | Rigid polyvinyl chloride polymer compositions having improved impact properties | |
MXPA04011608A (en) | Thermoplastic formulations for manufacturing fluid pipes and accessories for home and industrial use, and process for the same. | |
JP7271168B2 (en) | Vinyl chloride resin composition for rehabilitating pipe, and rehabilitating pipe | |
JP2008246916A (en) | Bellow-molded article and its manufacturing method | |
WO2021038974A1 (en) | Thermoplastic elastomer composition, bonding member and method for producing same | |
JP7257805B2 (en) | Vinyl chloride resin composition | |
JP3765174B2 (en) | Elastomer composition and cross-linked product thereof | |
JP2012067257A (en) | Polyvinyl chloride resin composition and flexible cable protecting tube | |
JP7388196B2 (en) | Thermoplastic elastomer composition and molded article | |
JP4954611B2 (en) | Epichlorohydrin rubber composition and molded article comprising the same | |
JP7078419B2 (en) | Vinyl chloride resin molded product | |
JP2023095827A (en) | Polyvinyl chloride resin composition for rehabilitated pipes and rehabilitated pipe | |
JP2003073518A (en) | Vinyl chloride based resin composition for regenerated pipe and regenerated pipe | |
JP2019178229A (en) | Synthetic rubber composition, molded product thereof, and plasticization method for synthetic rubber | |
JP2002001811A (en) | Method for manufacturing vinyl chloride resin tube | |
JPH11223283A (en) | Vinyl chloride pipe line constituting member | |
JP4472201B2 (en) | Vinyl chloride resin composition | |
JPH09292063A (en) | Pipe and joint excellent in flexibility and shock resistance | |
JP2596971B2 (en) | Rubber composition | |
JP3235226B2 (en) | Chlorinated ethylene rubber composition | |
JP2583713B2 (en) | Thermoplastic elastomer composition | |
JP2003286380A (en) | Chlorinated vinyl chloride resin composition and regenerated pipe | |
JP3371509B2 (en) | Resin composition and molded product thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20210618 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220510 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220704 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230411 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230426 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7271168 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |