JP7270983B2 - Recyclable low adhesion polyurethane material - Google Patents

Recyclable low adhesion polyurethane material Download PDF

Info

Publication number
JP7270983B2
JP7270983B2 JP2020152295A JP2020152295A JP7270983B2 JP 7270983 B2 JP7270983 B2 JP 7270983B2 JP 2020152295 A JP2020152295 A JP 2020152295A JP 2020152295 A JP2020152295 A JP 2020152295A JP 7270983 B2 JP7270983 B2 JP 7270983B2
Authority
JP
Japan
Prior art keywords
polyurethane material
low
adhesion
weight
surface energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020152295A
Other languages
Japanese (ja)
Other versions
JP2021130804A (en
Inventor
旭 呉
敏換 劉
玉良 郭
秀彬 徐
丹鳳 于
Original Assignee
▲広▼州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ▲広▼州大学 filed Critical ▲広▼州大学
Publication of JP2021130804A publication Critical patent/JP2021130804A/en
Application granted granted Critical
Publication of JP7270983B2 publication Critical patent/JP7270983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/288Compounds containing at least one heteroatom other than oxygen or nitrogen
    • C08G18/2885Compounds containing at least one heteroatom other than oxygen or nitrogen containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5003Polyethers having heteroatoms other than oxygen having halogens
    • C08G18/5015Polyethers having heteroatoms other than oxygen having halogens having fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6648Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6651Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6685Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

本発明は、ポリマー材料の技術分野に属し、特にリサイクル可能な低付着性ポリウレタン材料及びその調製方法に関する。 The present invention belongs to the technical field of polymer materials, and more particularly to a recyclable low-adhesion polyurethane material and its preparation method.

リサイクル性は、材料の重要な特性の1つであり、資源の利用効率の向上、材料の調製によって引き起こされる環境汚染の低減に寄与する。近年、水/油を付着させない低付着性材料の設計及び調製に関して多くの研究がなされており、低付着性材料は、セルフクリーニング、防汚、防氷、防曇、防錆、液体輸送や抵抗低減などの分野における幅広い応用性が期待できる。材料の低付着性は、材料の表面の化学組成と形態による影響を受け、材料のリサイクル性の実現は、低付着材料を設計する従来の方法により深刻に制限されてしまい、低付着性とリサイクル性が両立することのできない2つの特性であると考えられることもある。 Recyclability is one of the important properties of materials and contributes to improving resource utilization efficiency and reducing environmental pollution caused by the preparation of materials. In recent years, a lot of research has been done on the design and preparation of low-adhesion materials that do not adhere to water/oil, and low-adhesion materials can be used for self-cleaning, antifouling, anti-icing, anti-fogging, anti-corrosion, liquid transport and resistance. A wide range of applicability in fields such as reduction can be expected. The low-fouling properties of materials are affected by the chemical composition and morphology of the material's surface, and the realization of recyclability of materials is severely limited by the traditional methods of designing low-fouling materials. It is sometimes thought that gender is two properties that are incompatible.

従来の低付着性材料は、組成に応じて均質材料と複合材料の2つの種類に大別できる。均質低付着性材料は、単分子層、テフロンなどの線形分子構造の熱可塑性材料と、化学的に架橋された熱硬化性材料とにさらに分類できる。これらの均質材料の平坦な表面は、水や油を付着させず、120度以下の接触角を示す。さらにエッチング又は繊維加工により平坦な表面にマイクロナノの粗い構造を付与する場合、接触角を150度に向上させて、超疎水性を実現できる。複合材料の代表例としては、表面がマイクロナノの粗さを有するハスの葉のようなバイオニック超疎水性材料及び内部がマイクロナノの構造を有するウツボカズラのようなバイオニック超潤滑性材料がある。複合超疎水性材料の組成には、SiO、TiO、ZnO、カーボンナノチューブなどのナノ粒子とフッ素含有化合物の組み合わせを使用できる。超潤滑性材料では、多孔質基材に潤滑油を閉じ込むことで形成された潤滑面も、水/油を付着させない性能及び120度以下の接触角を示す。低表面エネルギーのフルオロエーテル又はシリコーンオイルは、試験対象の液体と相溶せず、注入用の潤滑油として使用でき、テフロン繊維、シリカのビーズ、又はアルミナゲルなどは、多孔質基材の材料として使用できる。複合材料、特に複合材料の微細なナノ構造の分離と再現は困難であり、テフロン及び熱硬化性系はほとんどの溶媒に対して不溶であるとともに、高沸点である。このような問題により、従来の低付着性材料のリサイクルが大幅に制限される。 Conventional low-adhesion materials can be broadly divided into two classes, homogeneous materials and composite materials, depending on their composition. Homogeneous low-adhesion materials can be further classified into linear molecular structure thermoplastic materials such as monolayers, Teflon, etc., and chemically crosslinked thermoset materials. Flat surfaces of these homogeneous materials do not adhere to water or oil and exhibit contact angles of 120 degrees or less. Furthermore, when a flat surface is provided with a micro-nano rough structure by etching or fiber processing, the contact angle can be increased to 150 degrees to achieve superhydrophobicity. Representative examples of composite materials include bionic super-hydrophobic materials such as lotus leaves having micro-nano surface roughness and bionic super-lubricating materials such as nepenthes having micro-nano structures inside. . Combinations of nanoparticles such as SiO 2 , TiO 2 , ZnO, carbon nanotubes, and fluorine-containing compounds can be used in the composite superhydrophobic material composition. In superlubricating materials, a lubricating surface formed by confining lubricating oil in a porous substrate also exhibits water/oil-free performance and a contact angle of 120 degrees or less. Low surface energy fluoroethers or silicone oils are immiscible with the liquid under test and can be used as lubricants for injection, while Teflon fibers, silica beads, or alumina gels can be used as porous substrate materials. Available. Separation and reproduction of composites, especially the fine nanostructures of composites, is difficult, and Teflon and thermosetting systems are insoluble in most solvents and have high boiling points. Such problems severely limit the recycling of conventional low-adhesion materials.

中国特許出願公開第107779032号明細書Chinese Patent Application Publication No. 107779032

本発明は、新規高分子機能性材料、高性能高分子構造材料、及びポリマーコーティング材料の分野に属し、原油に対する付着性の低い防汚コーティング及びその調製方法を開示する。このコーティングは、成分として、ポリマー樹脂又はエマルジョン10~95wt%、架橋成分0~50wt%、低表面エネルギー成分0~20wt%を含み、残りの成分は溶媒又は水である。原油は、コーティングに接触した後、付着マークを残すことなくコーティング表面から滑り落ちる。さらに、コーティングは、良好な透明性、硬度、付着性、柔軟性、耐食性などの総合的な特性を備えている。スプレー塗装、浸せき塗装、ナイフ塗装などに用いる工業用設備やプロセスに適しており、ガラス、金属、木材器具、セラミック、ポリマー、紡績物など、さまざまな基材に適用できる。原油に対する低付着性及びコーティングの広範な適用によって、コーティングは、原油採掘、輸送、保管、処理や加工などの分野において応用の将来性が期待できる。 The present invention belongs to the fields of novel polymeric functional materials, high-performance polymeric structural materials, and polymeric coating materials, and discloses an antifouling coating with low adhesion to crude oil and a method for preparing the same. The coating comprises, as components, 10-95 wt% polymer resin or emulsion, 0-50 wt% cross-linking component, 0-20 wt% low surface energy component, the remainder being solvent or water. After contacting the coating, the crude oil slides off the coating surface without leaving sticky marks. Furthermore, the coating has overall properties such as good transparency, hardness, adhesion, flexibility and corrosion resistance. It is suitable for industrial equipment and processes such as spray coating, dip coating and knife coating, and can be applied to a wide variety of substrates including glass, metal, woodware, ceramics, polymers and textiles. Due to the low adhesion to crude oil and the wide application of coatings, coatings hold promise for applications in fields such as crude oil extraction, transportation, storage, handling and processing.

本発明の目的は、従来の低付着性材料のリサイクルが困難である問題を解決して、各原料が良性溶剤への溶解又は低温加熱により再加工・自己修復を行うことができ、また優れた透明性や引張性を有し、水性・油性液体に対して耐付着性を示すリサイクル可能な低付着性ポリウレタン材料、及びその調製方法を提供することである。 The object of the present invention is to solve the problem of difficulty in recycling conventional low-adhesion materials, and each raw material can be reprocessed and self-repaired by dissolving in a benign solvent or by low-temperature heating. An object of the present invention is to provide a recyclable low-adhesion polyurethane material having transparency, tensile properties, and anti-adhesion to aqueous and oily liquids, and a method for preparing the same.

本発明によるリサイクル可能な低付着性ポリウレタン材料は、原料として、ハードモノマー25重量%~40重量%、ソフトモノマー45重量%~65重量%、低表面エネルギー化合物1重量%~25重量%、鎖延長剤及び触媒を含み、
前記低表面エネルギー化合物は、有機フッ素化合物又は有機シリコーン化合物から選ばれる。
The recyclable low-adhesion polyurethane material according to the present invention comprises, as raw materials, 25% to 40% by weight of hard monomers, 45% to 65% by weight of soft monomers, 1% to 25% by weight of low surface energy compounds, chain extension including agents and catalysts;
The low surface energy compound is selected from organic fluorine compounds or organic silicone compounds.

さらに、前記有機フッ素化合物は、パーフルオロポリエーテルアルコール(たとえば、ポリパーフルオロプロピレンオキシドグリコール)、トリデカフルオロ-n-オクタノール及びヘキサフルオロブタノールから選ばれる少なくとも1種である。 Further, the organic fluorine compound is at least one selected from perfluoropolyether alcohol (eg, polyperfluoropropylene oxide glycol), tridecafluoro-n-octanol and hexafluorobutanol.

さらに、前記有機シリコーン化合物は、アミノシリコーンオイル(たとえば、アミノプロピルポリジメチルシロキサン、アミノポリジメチルシロキサン)、ヒドロキシシリコーンオイル(たとえば、ヒドロキシポリジメチルシロキサン)から選ばれる少なくとも1種である。 Further, the organic silicone compound is at least one selected from aminosilicone oils (eg, aminopropylpolydimethylsiloxane, aminopolydimethylsiloxane) and hydroxysilicone oils (eg, hydroxypolydimethylsiloxane).

さらに、前記ハードモノマーは、トルエン-2,4-ジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、ジシクロヘキシルメタンジイソシアネート(HMDI)、1,4-シクロヘキサンジイソシアネート、イソフルロンジイソシアネート(IPDI)から選ばれる少なくとも1種である。 Furthermore, the hard monomers include toluene-2,4-diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), dicyclohexylmethane diisocyanate (HMDI), 1,4-cyclohexane diisocyanate, isoflurone diisocyanate ( IPDI).

さらに、前記ソフトモノマーはポリエーテルグリコール及び/又はポリエステルジオールから選ばれる。 Furthermore, said soft monomers are selected from polyether glycols and/or polyester diols.

さらに、鎖延長剤は1,4-ブタンジオール、エチレングリコール、ジエチレングリコール、エチレンジアミン、水から選ばれる少なくとも1種である。 Furthermore, the chain extender is at least one selected from 1,4-butanediol, ethylene glycol, diethylene glycol, ethylenediamine, and water.

さらに、ポリウレタン材料の原料中、前記鎖延長剤は0~5重量%である。 Furthermore, the content of the chain extender is 0 to 5% by weight in the raw material of the polyurethane material.

さらに、前記触媒は、有機スズ触媒から選ばれ、たとえば、ジブチルスズジラウレートである。 Further, said catalyst is selected from organotin catalysts, for example dibutyltin dilaurate.

さらに、ポリウレタン材料の原料中、前記触媒は0~0.05重量%である。 Further, the content of the catalyst is 0-0.05% by weight in the raw material of the polyurethane material.

本発明による上記リサイクル可能な低付着性ポリウレタン材料の調製方法は、ソフトモノマー、鎖延長剤、ハードモノマー及び触媒を溶剤に分散させ、反応させてプレポリマーを形成するステップ(1)と、
プレポリマーに低表面エネルギー化合物を加えて、重縮合反応を行うステップ(2)と、
最後に、鎖延長剤を加えて反応させ、反応終了後、硬化させてポリウレタン材料を得るステップ(3)と、を含む。
The method for preparing the above recyclable low-adhesion polyurethane material according to the present invention comprises the step (1) of dispersing a soft monomer, a chain extender, a hard monomer and a catalyst in a solvent and reacting them to form a prepolymer;
a step (2) of adding a low surface energy compound to the prepolymer and conducting a polycondensation reaction;
Finally, a step (3) of adding and reacting a chain extender and curing to obtain a polyurethane material after completion of the reaction.

さらに、ステップ(1)では、ソフトモノマー、鎖延長剤、ハードモノマー、触媒及び溶剤の混合順番について、まず、ソフトモノマーと鎖延長剤の混合物にハードモノマーを加え、次に触媒と溶剤を加える。 Further, in step (1), regarding the mixing order of soft monomer, chain extender, hard monomer, catalyst and solvent, the hard monomer is first added to the mixture of soft monomer and chain extender, and then the catalyst and solvent are added.

さらに、ステップ(2)では、前記重縮合反応の温度は70~80℃であり、反応時間は1~2hである。 Furthermore, in step (2), the temperature of the polycondensation reaction is 70-80° C., and the reaction time is 1-2 h.

さらに、ステップ(3)では、反応時間は10~12h、好ましくは12hである。ステップ(3)では、重縮合反応が終了した後、さらに鎖延長剤を加える。このときに、鎖延長剤を加えることによって、ハードモノマー中の未反応-NCOを消費できる。たとえば、水を鎖延長剤とする場合、水は、ハードモノマー中のイソシアネートの-NCOと反応し、高極性の尿素結合を形成して、プレポリマーを接続し、大分子を生成し、また、より強固な物理的架橋作用を材料へ付与する。 Furthermore, in step (3), the reaction time is 10-12 h, preferably 12 h. In step (3), a chain extender is added after the polycondensation reaction is completed. At this time, unreacted —NCO in the hard monomer can be consumed by adding a chain extender. For example, when water is used as a chain extender, water reacts with -NCO of the isocyanate in the hard monomer to form a highly polar urea bond to connect the prepolymer and generate a large molecule, and Provides a stronger physical cross-linking action to the material.

さらに、ステップ(1)では、溶剤は、ブタノン、アセトン、N,N-ジメチルホルムアミド及びN,N-ジメチルアセトアミドから選ばれる少なくとも1種であり、使用量が20%~60%(質量比)である。 Furthermore, in step (1), the solvent is at least one selected from butanone, acetone, N,N-dimethylformamide and N,N-dimethylacetamide, and the amount used is 20% to 60% (mass ratio). be.

従来技術に比べて、本発明では、ソフトモノマーとハードモノマーが重合してプレポリマーを形成した後、低表面エネルギーを有する有機フッ素化合物、有機シリコーン化合物を加え、有機フッ素化合物、有機シリコーン化合物とプレポリマーを重縮合反応させて、低表面エネルギーセグメントを持つポリウレタン材料を形成し、また、ポリマーにおいて低表面エネルギーセグメントが物理的架橋の形だけで存在し、化学的架橋がないため、ポリウレタン材料は、一般的な溶剤に溶解するか、又は低温で溶融することができ、それによって、リサイクルが可能になり、さらに、ポリウレタン材料の表面エネルギーを効果的に低下させ、ポリウレタン材料の付着性を低下させ、その防汚能力を高める。 Compared with the prior art, in the present invention, after the soft monomer and the hard monomer are polymerized to form a prepolymer, an organic fluorine compound and an organic silicone compound having low surface energy are added, and the organic fluorine compound and the organic silicone compound are added to the prepolymer. Polycondensation reaction of the polymer to form a polyurethane material with low surface energy segments, and because the low surface energy segments are present in the polymer only in the form of physical crosslinks and no chemical crosslinks, the polyurethane material is It can be dissolved in common solvents or melted at low temperature, which makes it possible to recycle, effectively lowers the surface energy of the polyurethane material, reduces the adhesion of the polyurethane material, enhance its antifouling ability.

ポリウレタン材料の表面の元素マップである。4 is an elemental map of the surface of a polyurethane material; (a)水(観察しやすさから青色インクで染色)、(b)ヘキサデカン、(c)植物油、(d)ポンプオイルに対するポリウレタンフィルムの付着性のテスト結果である。Figure 3 shows the adhesion test results of polyurethane films to (a) water (stained with blue ink for ease of observation), (b) hexadecane, (c) vegetable oil, and (d) pump oil. (a)ポリテトラフルオロエチレン、(b)金属、(c)ガラス、(d)木材、(e)ポリエチレンテレフタレート基材上に形成されたポリウレタン材料コーティングである。A polyurethane material coating formed on a (a) polytetrafluoroethylene, (b) metal, (c) glass, (d) wood, (e) polyethylene terephthalate substrate. ポリウレタン材料がポリテトラフルオロエチレン上に形成された基材の曲げテスト結果である。It is a bending test result of a substrate in which a polyurethane material is formed on polytetrafluoroethylene. ポリウレタン材料コーティングの透過率曲線である。4 is a transmittance curve for a polyurethane material coating; ポリウレタン材料の再成形過程を示す。Figure 2 shows the remolding process of polyurethane material. ポリウレタン材料の自己修復過程を示す。Figure 2 shows the self-healing process of polyurethane material.

以下、特定の実施例にて本発明の技術案を詳細に説明する。 Hereinafter, the technical solution of the present invention will be described in detail with specific embodiments.

本発明のリサイクル可能な低付着性ポリウレタン材料は、ハードモノマー、ソフトモノマー、低表面エネルギー化合物、鎖延長剤及び触媒で製造されるものであり、具体的には、原料として、ハードモノマー25重量%~40重量%、ソフトモノマー45重量%~65重量%、低表面エネルギー化合物1重量%~25重量%、鎖延長剤0~5重量%、触媒0~0.05重量%を含む。 The recyclable low-adhesion polyurethane material of the present invention is produced from a hard monomer, a soft monomer, a low surface energy compound, a chain extender and a catalyst. ~40% by weight, 45%-65% by weight soft monomers, 1%-25% by weight low surface energy compounds, 0-5% by weight chain extenders, 0-0.05% by weight catalysts.

各原料として使用される具体的な物質及びこれらの使用量の詳細を表1~6に示す。 Tables 1 to 6 show specific substances used as raw materials and details of their amounts used.

本発明のポリウレタン材料の調製方法は以下のとおりである。
(1)ソフトモノマー、鎖延長剤、ハードモノマー及び触媒を溶剤に分散させ、反応させてプレポリマーを形成する。
具体的には、表1の配合比でソフトモノマーと鎖延長剤を四つ口フラスコに加えて、均一に混合した。次に、撹拌しながらハードモノマーを加え、さらに触媒と溶剤を加えた。反応系の温度を70~85℃、好ましくは80℃に上げて、保温したまま2h反応させて、プレポリマーを形成した。
(2)プレポリマーに低表面エネルギー化合物を加えて、重縮合反応を行う。
具体的には、ステップ(1)のプレポリマーに低表面エネルギー化合物を加えて、2h反応させ続け、低表面エネルギー化合物とステップ(1)のプレポリマーを重縮合反応させ、低表面エネルギーセグメントを生成した。
(3)最後に、鎖延長剤を加えて反応させ、反応終了後、硬化させてポリウレタン材料を得る。
重縮合反応が終了した後、反応系を40℃に降温し、次に一定量の鎖延長剤を加えて、50℃で12h反応させた。反応終了後、20~70℃で1~24hベークして硬化させると、最終的なポリウレタン材料を得た。
実際に調製する際に、ステップ(1)で使用される溶剤は、ブタノン、アセトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドから選ばれる少なくとも1種であり、その使用量は、少なくともソフトモノマー、鎖延長剤及びハードモノマーを均一に分散できるほどである。ステップ(3)で加える鎖延長剤は、好ましくは水である。
比較として、以下、低表面エネルギー化合物を添加せず、ハードモノマー、ソフトモノマー、鎖延長剤及び触媒だけで製造されるポリウレタン材料を提供し、原料の詳細を表7の比較例1に示し、その調製方法は以上と同様であった。
The method for preparing the polyurethane material of the present invention is as follows.
(1) A soft monomer, a chain extender, a hard monomer and a catalyst are dispersed in a solvent and reacted to form a prepolymer.
Specifically, the soft monomer and the chain extender were added to a four-necked flask at the compounding ratio shown in Table 1 and mixed uniformly. The hard monomer was then added with stirring, followed by the catalyst and solvent. The temperature of the reaction system was raised to 70 to 85° C., preferably 80° C., and the mixture was reacted for 2 hours while maintaining the temperature to form a prepolymer.
(2) A low surface energy compound is added to the prepolymer to carry out a polycondensation reaction.
Specifically, a low surface energy compound is added to the prepolymer of step (1), and the reaction is continued for 2 hours to cause a polycondensation reaction between the low surface energy compound and the prepolymer of step (1) to produce a low surface energy segment. bottom.
(3) Finally, a chain extender is added and reacted, and after completion of the reaction, cured to obtain a polyurethane material.
After the polycondensation reaction was completed, the temperature of the reaction system was lowered to 40°C, then a certain amount of chain extender was added, and the reaction was carried out at 50°C for 12 hours. After completion of the reaction, it was cured by baking at 20-70° C. for 1-24 hours to obtain the final polyurethane material.
In the actual preparation, the solvent used in step (1) is at least one selected from butanone, acetone, N,N-dimethylformamide, and N,N-dimethylacetamide, and the amount used is at least Enough to evenly disperse the soft monomers, chain extenders and hard monomers. The chain extender added in step (3) is preferably water.
For comparison, the following provides a polyurethane material produced only from a hard monomer, a soft monomer, a chain extender and a catalyst without adding a low surface energy compound. The preparation method was the same as above.

Figure 0007270983000001
Figure 0007270983000001

Figure 0007270983000002
Figure 0007270983000002

Figure 0007270983000003
Figure 0007270983000003

Figure 0007270983000004
Figure 0007270983000004

Figure 0007270983000005
Figure 0007270983000005

Figure 0007270983000006
Figure 0007270983000006

Figure 0007270983000007
Figure 0007270983000007

上記各実施例又は比較例で調製されたポリウレタン材料は、すべて液体形態であり、固形分40%~80%であり、以下、ポリウレタン溶液と呼ぶ。 All of the polyurethane materials prepared in the above Examples or Comparative Examples are in liquid form with a solids content of 40% to 80% and are hereinafter referred to as polyurethane solutions.

実施例1のポリウレタン材料の表面の元素マップを図1に示す。図1から、C、O、N、Fなどの元素がポリウレタン材料に均一に分布していることがわかる。 An elemental map of the surface of the polyurethane material of Example 1 is shown in FIG. From FIG. 1, it can be seen that the elements such as C, O, N, F are uniformly distributed in the polyurethane material.

実施例1のポリウレタン溶液の一定量を室温又は20~70℃でシャーレに注ぎ、次に50℃の恒温乾燥オーブンに平らに置き、24時間乾燥させた後、シャーレからフィルムを剥離し、ポリウレタンフィルムを得た。次に、ポリウレタンフィルムを水、ヘキサデカン、植物油、ポンプオイルのそれぞれに浸漬し、取り出した後、ポリウレタンフィルムへの水、ヘキサデカン、植物油、ポンプオイルの付着状況を観察し、この結果を図2に示す。図2に示すように、水はポリウレタンフィルムにまったく付着できず、ポリウレタンフィルムをヘキサデカンから取り出した直後、ポリウレタンフィルムの表面にはわずかなヘキサデカンが付着しているが、5s後、ヘキサデカンが完全にポリウレタンフィルムから分離し、付着し続けることができず、ポリウレタンフィルムに対する植物油の付着性はヘキサデカンのそれよりわずかに強いものの、ポリウレタンフィルムを植物油から取り出してから25s後、植物油はポリウレタンフィルムから完全に分離することができ、より高粘度のポンプオイルの場合は、35s後、ポリウレタンフィルムから完全に分離できた。 A certain amount of the polyurethane solution of Example 1 is poured into a petri dish at room temperature or 20-70°C, then placed flat in a constant temperature drying oven at 50°C and dried for 24 hours. got Next, the polyurethane film was immersed in water, hexadecane, vegetable oil, and pump oil, respectively, and after taking it out, the state of adhesion of water, hexadecane, vegetable oil, and pump oil to the polyurethane film was observed. The results are shown in FIG. . As shown in FIG. 2, water could not adhere to the polyurethane film at all. Immediately after the polyurethane film was removed from hexadecane, a small amount of hexadecane adhered to the surface of the polyurethane film. 25 s after removing the polyurethane film from the vegetable oil, the vegetable oil is completely separated from the polyurethane film, although the adhesion of the vegetable oil to the polyurethane film is slightly stronger than that of hexadecane. and the higher viscosity pump oil was completely separated from the polyurethane film after 35 s.

実施例1のポリウレタン溶液を、ポリテトラフルオロエチレン、金属、ガラス、木材やポリエチレンテレフタレートなどのさまざまな基材にコーティングし、乾燥させて、図3に示すように、滑らかで透明なコーティングを形成した。また、ポリウレタン材料コーティングでコーティングされたポリテトラフルオロエチレンを曲げた結果、図4に示すように、コーティングの最小曲げ半径が1mm未満であり、これは、ポリウレタン材料とポリテトラフルオロエチレンとの付着性が良好であることを示している。 The polyurethane solution of Example 1 was coated onto various substrates such as polytetrafluoroethylene, metal, glass, wood and polyethylene terephthalate and dried to form a smooth, clear coating as shown in FIG. . Also, bending the polytetrafluoroethylene coated with the polyurethane material coating resulted in a minimum bending radius of less than 1 mm, as shown in FIG. is good.

さらに、実施例1のポリウレタン溶液を、二次元コードパターンを有する基材上にコーティングし、乾燥させてコーティングを形成し、このコーティングの透過率をテストし、結果を図5に示した。図5は、本発明のポリウレタン材料で形成されたコーティングが98%以上の透過率を有し、透明性が優れ、二次元コードの認識に影響を及ぼさないことを示している。 Furthermore, the polyurethane solution of Example 1 was coated on a substrate having a two-dimensional code pattern, dried to form a coating, and the transmittance of this coating was tested, and the results are shown in FIG. FIG. 5 shows that the coating made of the polyurethane material of the present invention has a transmittance of 98% or more, which has excellent transparency and does not affect the recognition of the two-dimensional code.

実施例1のポリウレタン溶液を型に注入し、乾燥させて成形品とし、次に、有機溶剤(たとえば、エタノール、ブタノン、アセトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド)に室温で溶解して溶液とし、型に注入し、有機溶剤が蒸発乾固すると、図6に示すように、再成形された成形品を得て、これは、本発明のポリウレタン材料が簡単な溶解法でリサイクルできることを示している。また、図7に示すように、ポリウレタン材料で形成されたコーティング上をスクラッチして、スクラッチ(図7a)を形成し、次に120℃で10min加熱すると、スクラッチが消え(図7b)、これは、本発明のポリウレタン材料が自己修復機能を有することを示している。 The polyurethane solution of Example 1 is poured into a mold, dried to form a molded article, and then dissolved in an organic solvent (eg, ethanol, butanone, acetone, N,N-dimethylformamide, N,N-dimethylacetamide) at room temperature. After dissolving into a solution and pouring into a mold and the organic solvent evaporating to dryness, a remolded article is obtained as shown in FIG. Indicates that it can be recycled. Also, as shown in FIG. 7, the coating made of polyurethane material is scratched to form a scratch (FIG. 7a), then heated at 120° C. for 10 min, the scratch disappears (FIG. 7b), which is , indicating that the polyurethane material of the present invention has a self-healing function.

さらに、テストしたところ、実施例2~6で調製されたポリウレタン材料は、実施例1のポリウレタン材料と同じ特性を有し、このため、ここでは詳しく説明しない。 Furthermore, when tested, the polyurethane materials prepared in Examples 2-6 have the same properties as the polyurethane material of Example 1, and therefore will not be described in detail here.

これに対して、低表面エネルギー化合物を添加していない比較例1のポリウレタン材料は、透明性が良好であり、透過率が95%以上に達し、また、リサイクル性及び修復性を有するが、水/油性液体に対する耐付着性がなかった。 On the other hand, the polyurethane material of Comparative Example 1, to which no low surface energy compound was added, had good transparency, had a transmittance of 95% or more, and had recyclability and repairability. / There was no adhesion resistance to oily liquids.

以上説明したとおり、本発明は、ソフトモノマーとハードモノマーが重合してプレポリマーを形成した後、低表面エネルギーを有する有機フッ素化合物、有機シリコーン化合物を加え、有機フッ素化合物、有機シリコーン化合物とプレポリマーを重縮合反応させて、低表面エネルギーセグメントを持つポリウレタン材料を形成し、また、ポリマーにおいて低表面エネルギーセグメントが物理的架橋の形だけで存在し、化学的架橋がないため、ポリウレタン材料は、一般的な溶剤に溶解するか、又は低温(80~120℃)で溶融することができ、それによって、リサイクルが可能になり、さらに、ポリウレタン材料の表面エネルギーを効果的に低下させ、ポリウレタン材料の付着性を低下させ、形成されたフィルムは、水をまったく付着させず、高粘度のヘキサデカン、植物油、ポンプオイルなどの液体有機物のいずれにも付着性が非常に低い。さらに、本発明のポリウレタン材料は、ガラス、金属、セラミック、ポリマー、木材などの固体基材に対しては良好な付着性を有し、形成されたフィルム又はコーティングは、光透過率が非常に高いので、可撓性電子表示装置、ウェアラブルセンサなどのウェアラブルデバイス、スマートロボットや人体修復材料などの分野に適用できる。 As described above, in the present invention, after a soft monomer and a hard monomer are polymerized to form a prepolymer, an organic fluorine compound or an organic silicone compound having a low surface energy is added to obtain an organic fluorine compound, an organic silicone compound, and a prepolymer. polycondensation reaction to form a polyurethane material with low surface energy segments, and because the low surface energy segments are present only in the form of physical crosslinks in the polymer, and no chemical crosslinks, the polyurethane material is generally It can be dissolved in organic solvents or melted at low temperature (80-120°C), which makes it possible to recycle, furthermore effectively lowers the surface energy of the polyurethane material and improves the adhesion of the polyurethane material. The films formed do not adhere to water at all and have very low adhesion to any liquid organics such as highly viscous hexadecane, vegetable oils and pump oils. Furthermore, the polyurethane materials of the present invention have good adhesion to solid substrates such as glass, metals, ceramics, polymers, wood, etc., and the films or coatings formed have very high light transmission. Therefore, it can be applied to fields such as flexible electronic display devices, wearable devices such as wearable sensors, smart robots, and human body repair materials.

上記実施例は、本発明の好ましい実施形態であるが、本発明の実施形態は、上記実施例により制限されず、本発明の趣旨及び原理から逸脱することなく行われる他の変更、修正、置換、組み合わせや簡略化は、すべて同等の置換方式であり、いずれも本発明の特許範囲に含まれる。 Although the above examples are preferred embodiments of the present invention, the embodiments of the present invention are not limited by the above examples, and other changes, modifications, and substitutions made without departing from the spirit and principle of the present invention. , combinations and simplifications are all equivalent permutation schemes and are within the patent scope of the present invention.

Claims (4)

リサイクル可能な低付着性ポリウレタン材料であって、原料として、
ハードモノマー25重量%~40重量%、ソフトモノマー45重量%~65重量%、低表面エネルギー化合物1重量%~25重量%、鎖延長剤及び触媒を含めて組成物の総和が100重量%となり、
前記低表面エネルギー化合物は、有機フッ素化合物から選ばれ、
前記有機フッ素化合物は、パーフルオロポリエーテルアルコール、及びヘキサフルオロブタノールから選ばれる少なくとも1種であり
記ハードモノマーは、トルエン-2,4-ジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、及び1,4-シクロヘキサンジイソシアネートから選ばれる少なくとも1種であり、
前記ソフトモノマーは、ポリエーテルグリコール及び/又はポリエステルジオールから選ばれ、
前記ポリウレタン材料でコーティングした膜は、500nm以上の波長の光に対して、98%以上の透過率を有し、410nm以下の波長の光に対して、90%以下の透過率を有することにより、二次元コードの認識に影響を及ぼさない、ことを特徴とするリサイクル可能な低付着性ポリウレタン材料。
A recyclable low-adhesion polyurethane material comprising, as raw materials,
25% to 40% by weight of the hard monomer, 45% to 65% by weight of the soft monomer, 1% to 25% by weight of the low surface energy compound, the chain extender and the catalyst, and the total composition is 100% by weight. ,
The low surface energy compound is selected from organofluorine compounds,
The organic fluorine compound is at least one selected from perfluoropolyether alcohol and hexafluorobutanol ,
The hard monomer is at least one selected from toluene-2,4-diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, dicyclohexylmethane diisocyanate , and 1,4 -cyclohexane diisocyanate ,
said soft monomers are selected from polyether glycols and/or polyester diols,
The film coated with the polyurethane material has a transmittance of 98% or more for light with a wavelength of 500 nm or more , and has a transmittance of 90% or less for light with a wavelength of 410 nm or less. A recyclable low-adhesion polyurethane material that does not affect recognition of a two-dimensional code.
前記鎖延長剤は、1,4-ブタンジオール、エチレングリコール、ジエチレングリコール、エチレンジアミン及び水から選ばれる少なくとも1種である、ことを特徴とする請求項1に記載のリサイクル可能な低付着性ポリウレタン材料。 2. The recyclable low-adhesion polyurethane material according to claim 1, wherein the chain extender is at least one selected from 1,4-butanediol, ethylene glycol, diethylene glycol, ethylenediamine and water. 前記触媒は有機スズ触媒から選ばれる、ことを特徴とする請求項1に記載のリサイクル可能な低付着性ポリウレタン材料。 A recyclable low-fouling polyurethane material according to claim 1, characterized in that said catalyst is selected from organotin catalysts. ポリウレタン材料の原料中、前記触媒は0.05重量%以下である、ことを特徴とする請求項3に記載のリサイクル可能な低付着性ポリウレタン材料。 4. The recyclable low-adhesion polyurethane material according to claim 3, wherein said catalyst is 0.05% by weight or less in the raw material of said polyurethane material.
JP2020152295A 2020-01-14 2020-09-10 Recyclable low adhesion polyurethane material Active JP7270983B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010035474.5 2020-01-14
CN202010035474.5A CN111217984A (en) 2020-01-14 2020-01-14 Recyclable low-viscosity agglomerated polyurethane material and preparation method thereof

Publications (2)

Publication Number Publication Date
JP2021130804A JP2021130804A (en) 2021-09-09
JP7270983B2 true JP7270983B2 (en) 2023-05-11

Family

ID=70808327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020152295A Active JP7270983B2 (en) 2020-01-14 2020-09-10 Recyclable low adhesion polyurethane material

Country Status (2)

Country Link
JP (1) JP7270983B2 (en)
CN (1) CN111217984A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116515379B (en) * 2023-05-16 2024-03-15 江苏晨光涂料有限公司 Bio-based super-hydrophobic conductive anti-corrosion polyurethane coating and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169411A (en) 2005-12-21 2007-07-05 Toyobo Co Ltd Polyurethane resin and electric conductivity roll using the same
WO2012172936A1 (en) 2011-06-13 2012-12-20 Dic株式会社 Polyurethane composition, water repellent agent, polyurethane resin composition for forming surface skin layer of leather-like sheet, and leather-like sheet
JP2014218657A (en) 2013-04-12 2014-11-20 ヤマウチ株式会社 Elastic body of sheet feed roller, method for producing the same, and paper feed roller

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320376A (en) * 1989-06-15 1991-01-29 Toyoda Gosei Co Ltd Coating composition
US20140170917A1 (en) * 2012-12-19 2014-06-19 3M Innovative Properties Company Polyurethane polymer, synthetic leather, and method
EP2829561A1 (en) * 2013-07-24 2015-01-28 Centre National De La Recherche Scientifique Self-healing polymers
WO2015127981A1 (en) * 2014-02-28 2015-09-03 Fundación Cidetec Self-healing elastomer and process for its preparation
US10414859B2 (en) * 2014-08-20 2019-09-17 Resinate Materials Group, Inc. High recycle content polyester polyols
JP6710975B2 (en) * 2015-07-29 2020-06-17 東ソー株式会社 Ultraviolet absorbent resistant polyurethane composition and coating material using the composition
CN107216440B (en) * 2017-06-16 2020-08-04 徐州佑季化工材料有限公司 Reversible hydrogen bond self-repairing polymer and preparation method thereof
CN107814937B (en) * 2017-11-17 2021-03-30 四川大学 Self-repairing reworkable polysiloxane elastomer and preparation method and application thereof
CN108559052B (en) * 2018-04-19 2020-10-30 清华大学 Cross-linked polyurea elastomer with self-repairing performance and preparation method thereof
CN108559045A (en) * 2018-04-23 2018-09-21 四川大学 The polyurea materials and preparation method and application of the repeatable processing of selfreparing
CN108659188A (en) * 2018-06-01 2018-10-16 南京理工大学 A kind of polyureas selfreparing thermoplastic elastomer (TPE) and preparation method thereof
CN109627946A (en) * 2018-12-06 2019-04-16 中国科学院海洋研究所 A method of preparing bionical superslide surface at room temperature with self-healing properties
CN110423454A (en) * 2019-07-19 2019-11-08 广州大学 A kind of Anti-fouling polyurethanes film and its preparation method and application that high-elastic height is saturating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169411A (en) 2005-12-21 2007-07-05 Toyobo Co Ltd Polyurethane resin and electric conductivity roll using the same
WO2012172936A1 (en) 2011-06-13 2012-12-20 Dic株式会社 Polyurethane composition, water repellent agent, polyurethane resin composition for forming surface skin layer of leather-like sheet, and leather-like sheet
JP2014218657A (en) 2013-04-12 2014-11-20 ヤマウチ株式会社 Elastic body of sheet feed roller, method for producing the same, and paper feed roller

Also Published As

Publication number Publication date
JP2021130804A (en) 2021-09-09
CN111217984A (en) 2020-06-02

Similar Documents

Publication Publication Date Title
Fu et al. Mechanically robust, self-healing superhydrophobic anti-icing coatings based on a novel fluorinated polyurethane synthesized by a two-step thiol click reaction
Zhong et al. Robust hyperbranched polyester-based anti-smudge coatings for self-cleaning, anti-graffiti, and chemical shielding
TWI301492B (en)
Wei et al. High-performance bio-based polyurethane antismudge coatings using castor oil-based hyperbranched polyol as superior cross-linkers
CN109666119B (en) Water-based antifogging resin, water-based antifogging coating composition and preparation method thereof
CN104098999B (en) UV-heat dual-curing polyurethane coating, and preparation method and application thereof
CN108504269A (en) A kind of floride-free nonpolluting coating and preparation method thereof of ultraviolet light/sun light curable
CN104968498B (en) Mold release film
Liang et al. Bio-based omniphobic polyurethane coating providing anti-smudge and anti-corrosion protection
Ha et al. Bio-based waterborne polyurethane coatings with high transparency, antismudge and anticorrosive properties
CN103608160A (en) Transfer film for in-mold molding and method for producing same
Khan et al. Simple design for durable and clear self-cleaning coatings
CN110845952A (en) Fluorinated polyurethane coating and preparation method of super-hydrophobic coating
CN107603460A (en) A kind of UV solidfication water polyurethane acrylate paints of modification and preparation method thereof
JP7270983B2 (en) Recyclable low adhesion polyurethane material
Gao et al. Rational design of durable anti-fouling coatings with high transparency, hardness, and flexibility
CN108299618A (en) A kind of high-performance water-based UV solidified resins and preparation method thereof
CN111434740A (en) Ultraviolet-cured fluorine-containing polyurethane acrylate coating
Zhou et al. Castor oil-based transparent and omniphobic polyurethane coatings with high hardness, anti-smudge and anti-corrosive properties
CN114479665A (en) High-transparency flexible scratch-resistant coating, functional coating and preparation method thereof
Cui et al. Fabrication of UV/moisture dual curing coatings based on fluorinated polyoxetanes for anti-fouling applications
TW201014886A (en) Coating composition and coating film formation method using same
Chen et al. Translucent lignin-based omniphobic polyurethane coating with antismudge and UV-blocking dual functionalities
Liu et al. Endowing recyclability to anti-adhesion materials via designing physically crosslinked polyurethane
CN110452352B (en) Waterborne polyurethane resin and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200910

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200910

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210406

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210728

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221213

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230227

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230314

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230411

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230419

R150 Certificate of patent or registration of utility model

Ref document number: 7270983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150