JP7269839B2 - Incubation device - Google Patents

Incubation device Download PDF

Info

Publication number
JP7269839B2
JP7269839B2 JP2019159238A JP2019159238A JP7269839B2 JP 7269839 B2 JP7269839 B2 JP 7269839B2 JP 2019159238 A JP2019159238 A JP 2019159238A JP 2019159238 A JP2019159238 A JP 2019159238A JP 7269839 B2 JP7269839 B2 JP 7269839B2
Authority
JP
Japan
Prior art keywords
culture
medium
cell density
loss term
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019159238A
Other languages
Japanese (ja)
Other versions
JP2021036804A (en
Inventor
啓介 渋谷
健之 近藤
俊明 松尾
聖 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019159238A priority Critical patent/JP7269839B2/en
Publication of JP2021036804A publication Critical patent/JP2021036804A/en
Application granted granted Critical
Publication of JP7269839B2 publication Critical patent/JP7269839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、培養装置に関する。
The present invention relates to a culture device.

近年、生物由来の物質を有効成分とするバイオ医薬品の流通が拡大している。抗体医薬等のバイオ医薬品は、一般に、培養液中で浮遊細胞を培養し、目的の物質を培養液中に産生させることにより生産されている。また、各種の工業分野において、動物細胞、植物細胞、微生物細胞等を培養することにより、多様な有用物質が生産されている。 In recent years, the distribution of biopharmaceuticals containing biological substances as active ingredients is expanding. Biopharmaceuticals such as antibody drugs are generally produced by culturing floating cells in a culture medium to produce target substances in the culture medium. In various industrial fields, various useful substances are produced by culturing animal cells, plant cells, microbial cells, and the like.

培養方式としては、回分培養(Batch Culture)、流加培養(Fed-Batch Culture)、灌流培養(Perfusion Culture)がある。回分培養は、一回の培養毎に培地を用意し、培養中に培地を供給しない培養法である。流加培養は、培養中に系外から培地を供給するが培養が終わるまで培養液を排出しない培養法である。灌流培養は、培養中に連続的に培地を供給し、同量の培養液を連続的に排出させる培養法である。 Culture methods include batch culture, fed-batch culture, and perfusion culture. Batch culture is a culture method in which a medium is prepared for each culture and no medium is supplied during the culture. Fed-batch culture is a culture method in which a culture medium is supplied from outside the system during culture, but the culture solution is not discharged until the culture is completed. Perfusion culture is a culture method in which medium is continuously supplied during culture and the same amount of culture solution is continuously discharged.

回分培養は、播種した細胞を栄養が枯渇するまで培養する方式であるため、操作が簡単な利点がある。流加培養は、培養中の細胞に栄養を供給する方式であるため、回分培養よりも長期間の培養が可能であり、物質の生産量を比較的容易に向上させることができる。灌流培養は、栄養の濃度を高く維持しつつ老廃物の濃度を低減することができるため、培養条件を一定に保ち、物質を安定的に生産することができる。 Batch culture is a method in which seeded cells are cultured until nutrients are depleted, and thus has the advantage of simple operation. Fed-batch culture is a system in which nutrients are supplied to the cells being cultured, so that culture can be carried out for a longer period of time than batch culture, and the amount of substance produced can be increased relatively easily. Perfusion culture can reduce the concentration of waste products while maintaining a high concentration of nutrients, so that the culture conditions can be kept constant and substances can be produced stably.

灌流培養の運転方法としては、培養槽内の培養液を細胞と共に連続的に排出し、細胞を含む培養液を細胞分離器に送り、分離濃縮された細胞を培養槽に返送するのが一般的である。細胞分離器としては、培養されていた細胞と、細胞が産生した物質や老廃物等との分離に、遠心分離、重力分離、膜分離等の各種の原理を利用するものが知られている。 As a method of operating perfusion culture, it is common to continuously discharge the culture medium in the culture tank together with the cells, send the culture medium containing cells to the cell separator, and return the separated and concentrated cells to the culture tank. is. Cell separators are known that utilize various principles such as centrifugation, gravity separation, and membrane separation to separate cultured cells from substances and waste products produced by the cells.

特許文献1には、灌流培養における細胞分離装置としてクロスフロー(またはTangential Flow Filtration、TFF)ろ過装置を採用する培養技術が記載されている。この装置は、培養槽から培養液を送液ポンプにより抜き出し(細胞懸濁液)、TFFろ過装置により、抜き出された細胞懸濁液の一部をろ過した後、ろ液排出により細胞が濃縮された細胞懸濁液(濃縮培養液)を培養液に戻す構成とされている。 Patent Document 1 describes a culture technique that employs a cross-flow (or Tangential Flow Filtration, TFF) filtration device as a cell separation device in perfusion culture. In this device, the culture solution is drawn out from the culture tank by the liquid feed pump (cell suspension), and after part of the drawn out cell suspension is filtered by the TFF filtration device, the cells are concentrated by discharging the filtrate. The cell suspension (concentrated culture medium) is returned to the culture medium.

特開2015-217395号公報JP 2015-217395 A

特許文献1のような構成の灌流培養では、培養中に連続的に培地を供給し、同量の培養液を連続的に排出させるため濃度を一定に保つことが可能であり、細胞密度を一定に保つことができる一方で、培地の消費速度の増加が課題である。さらに細胞分離器等の大型の設備を必要とするため、小規模実験を行うには、設備コストが増加してしまい灌流培養には適さない。 In the perfusion culture configured as in Patent Document 1, the medium is continuously supplied during the culture, and the same amount of the culture solution is continuously discharged, so that the concentration can be kept constant, and the cell density can be kept constant. While it can be kept at 200°C, increasing the consumption rate of the medium is a challenge. Furthermore, since it requires large-scale equipment such as a cell separator, it is not suitable for perfusion culture because the cost of equipment increases for small-scale experiments.

灌流培養よりも容易に培養が可能であり、大型の設備を必要としない方法として、回分培養や、流加培養を行うが。回分培養や流加培養では、灌流培養と比較して、生産性が落ちてしまうという問題がある。 Batch culture and fed-batch culture are performed as methods that allow easier culture than perfusion culture and do not require large-scale equipment. Batch culture and fed-batch culture have a problem of lower productivity than perfusion culture.

そこで本発明は、回分培養もしくは、流加培養を繰り返して行うリピートバッチ培養において、生産性の高い培養を行うことを課題とする。 Therefore, an object of the present invention is to perform culture with high productivity in batch culture or repeat batch culture in which fed-batch culture is repeated.

前記課題を解決するための本発明に係わる培養装置は、回分培養もしくは流加培養により細胞の培養を繰り返して行うリピートバッチ培養による細胞の培養装置であって、細胞を培養する培養槽と、前記培養槽に接続され、前記培養槽内の培地成分濃度を測定する培地成分濃度計と、前記培養槽に接続され、前記培養槽内の細胞密度を測定する細胞密度計と、前記繰り返しの各回において、前記培地成分濃度計と、前記細胞密度計との測定結果から、培地損失項を計算し、前記培地損失項により培養の制御を行う制御装置と、を備え、前記リピートバッチ培養における前記培地損失項を、各回の培養液交換時の培地の1成分もしくは複数の成分の培養槽外への排出量を各回の運転中平均細胞密度で除した値とし、同じ細胞を灌流培養によって培養した際の前記培地損失項を、培地成分の1成分もしくは複数成分の培養槽外への排出速度を細胞密度で除した値としたとき、前記制御装置は、前記リピートバッチ培養における前記培地損失項が前記灌流培養によって培養した際の前記培地損失項よりも小さくなるように運転することを特徴とする。 A culture apparatus according to the present invention for solving the above-mentioned problems is a cell culture apparatus for repeat batch culture in which cells are repeatedly cultured by batch culture or fed-batch culture, comprising: a culture tank for culturing cells; A medium component concentration meter that is connected to a culture tank and measures the concentration of medium components in the culture tank, a cell density meter that is connected to the culture tank and measures the cell density in the culture tank, and , a control device that calculates a medium loss term from the measurement results of the medium component concentration meter and the cell density meter, and controls culture based on the medium loss term, wherein the medium in the repeat batch culture The loss term is the value obtained by dividing the amount of one or more components of the medium discharged to the outside of the culture tank at each culture medium exchange by the average cell density during each operation, and the same cells were cultured by perfusion culture. When the medium loss term in the above is a value obtained by dividing the discharge rate of one or more medium components to the outside of the culture tank by the cell density, the control device determines that the medium loss term in the repeat batch culture is the above It is characterized in that it is operated so as to be smaller than the medium loss term when cultured by perfusion culture .

本発明によると、回分培養もしくは、流加培養を繰り返して行うリピートバッチ培養において、生産性の高い培養を行うことができる。 According to the present invention, culture with high productivity can be performed in batch culture or repeat batch culture in which fed-batch culture is repeated.

本実施形態に係わる培養装置の概略構成を示す模式図である。1 is a schematic diagram showing a schematic configuration of a culture apparatus according to this embodiment; FIG. 時間変化に対する培養液量と細胞密度の変化を示す図である。FIG. 4 is a diagram showing changes in culture volume and cell density over time. 生細胞密度と培地損失の関係を示す図である。FIG. 10 shows the relationship between viable cell density and medium loss. CHO細胞を用いた際の生細胞密度と培地損失の関係を示す図である。FIG. 10 shows the relationship between viable cell density and medium loss when using CHO cells. 酵母を用いた際の生細胞密度と培地損失の関係を示す図である。FIG. 4 is a graph showing the relationship between viable cell density and medium loss when using yeast.

以下、本発明を実施するための形態を、図等を参照しながら説明する。なお、以下の各図において共通する構成については同一の符号を付し、重複した説明を省略する。 EMBODIMENT OF THE INVENTION Hereafter, the form for implementing this invention is demonstrated, referring drawings. In addition, the same code|symbol is attached|subjected about the structure which is common in each following figure, and the overlapping description is abbreviate|omitted.

図1は、本発明の実施形態に係わる培養装置を示す模式図である。
図1に示すように、本実施形態に係わる培養装置100は、培養槽10と、添加培地容器20と、移送配管21と、移送ポンプP1と、バルブV1と、抜出配管22と、抜出ポンプP2とフィルタF1と、制御装置23とを含んで構成される。
FIG. 1 is a schematic diagram showing a culture apparatus according to an embodiment of the present invention.
As shown in FIG. 1, the culture apparatus 100 according to the present embodiment includes a culture tank 10, a supplemented medium container 20, a transfer pipe 21, a transfer pump P1, a valve V1, an extraction pipe 22, an extraction It includes a pump P2, a filter F1, and a control device 23. FIG.

培養装置100は、培養槽10を細胞を培養するための培養槽として用いることによって、回分培養あるいは流加培養に適用することができる。 The culture apparatus 100 can be applied to batch culture or fed-batch culture by using the culture tank 10 as a culture tank for culturing cells.

培養する細胞の由来としては、哺乳類、鳥類等の動物が挙げられるが、特に制限されるものではない。哺乳類の具体例としては、ヒト、サル、チンパンジー、アカゲザル、カニクイザル、ヒヒ、マーモセット、リスザル等の霊長類や、ウシ、ブタ、ウマ、ヒツジ、ヤギ等の有蹄類や、マウス、ラット、モルモット、ハムスター等の齧歯類や、ウサギ、イヌ、ネコ等が挙げられる。 Cells to be cultured are derived from animals such as mammals and birds, but are not particularly limited. Specific examples of mammals include primates such as humans, monkeys, chimpanzees, rhesus monkeys, cynomolgus monkeys, baboons, marmosets and squirrel monkeys; ungulates such as cows, pigs, horses, sheep and goats; mice, rats, guinea pigs; Examples include rodents such as hamsters, rabbits, dogs, and cats.

培養する細胞の具体例としては、iPS細胞、ES細胞(embryonic stem cells:胚性幹細胞)、成体幹細胞、骨髄由来多能性幹細胞、生殖幹細胞、間葉系幹細胞、肝幹細胞、心幹細胞、膵幹細胞、腎幹細胞、神経幹細胞、筋幹細胞、表皮幹細胞、毛包幹細胞、造血幹細胞等の幹細胞や、肝細胞、心筋細胞、膵細胞、腎細胞、繊維芽細胞、上皮細胞、内皮細胞、表皮細胞、軟骨細胞、骨芽細胞、滑膜細胞等の体細胞等が挙げられる。 Specific examples of cells to be cultured include iPS cells, ES cells (embryonic stem cells), adult stem cells, bone marrow-derived pluripotent stem cells, germ stem cells, mesenchymal stem cells, hepatic stem cells, cardiac stem cells, and pancreatic stem cells. , kidney stem cells, neural stem cells, muscle stem cells, epidermal stem cells, hair follicle stem cells, hematopoietic stem cells, hepatocytes, cardiomyocytes, pancreatic cells, kidney cells, fibroblasts, epithelial cells, endothelial cells, epidermal cells, cartilage cells, osteoblasts, somatic cells such as synovial cells, and the like.

培養槽10は、細胞を増殖又は生存維持させるための槽であり、ステンレス鋼、アルミニウム合金、プラスチック(樹脂)、ガラス等の適宜の材料で形成することができる。ステンレス鋼製の槽や容器は、洗浄性や滅菌性に優れており、繰り返しの使用に用いることができる。樹脂製の槽や容器は、ディスポーザブル品としての使用が可能であり、洗浄装置、滅菌装置等の設置を省略することができる。 The culture tank 10 is a tank for growing or maintaining cells, and can be made of appropriate materials such as stainless steel, aluminum alloy, plastic (resin), and glass. Tanks and containers made of stainless steel are excellent in washability and sterilization, and can be used repeatedly. Resin-made tanks and containers can be used as disposable items, and the installation of cleaning equipment, sterilization equipment, etc. can be omitted.

図1に示すように、培養槽10には、添加培地容器20が接続される。培養槽10と添加培地容器20の入り口とは、移送配管21によって接続される。移送ポンプP1が駆動することで、添加培地容器20から培地が引き抜かれて、移送配管21を通って、培養槽10へと供給される。 As shown in FIG. 1 , a supplemented medium container 20 is connected to the culture tank 10 . The culture tank 10 and the inlet of the supplemented medium container 20 are connected by a transfer pipe 21 . By driving the transfer pump P<b>1 , the medium is drawn out from the supplemented medium container 20 and supplied to the culture tank 10 through the transfer pipe 21 .

培養装置100の培養槽10の槽内は、抜出配管22を介して、フィルタF1の一次側の入口と接続されている。抜出配管22には、培養槽10側から液体を引き抜いてフィルタF1に送る抜出ポンプP2が備えられている。抜出配管22は、培養後の目的物を回収するための配管であり、培養槽10内の液体を引き抜いてフィルタF1の一次側に送る。 The tank interior of the culture tank 10 of the culture apparatus 100 is connected to the inlet on the primary side of the filter F1 via an extraction pipe 22 . The withdrawal pipe 22 is provided with a withdrawal pump P2 for withdrawing the liquid from the culture tank 10 side and sending it to the filter F1. The withdrawal pipe 22 is a pipe for collecting the target substance after culture, and withdraws the liquid in the culture tank 10 and sends it to the primary side of the filter F1.

フィルタF1には、分離精製しようとする目的物の大きさに応じて、所定の孔径のフィルタが用いられる。 A filter having a predetermined pore size is used for the filter F1 according to the size of the target substance to be separated and purified.

培養槽10は、培養液を攪拌する攪拌装置11と、培養液に空気、酸素、窒素、二酸化炭素等を通気する通気装置12と、培養液の温度を調節する温度調整装置13と、培地成分濃度計14と、細胞密度計15と培地損失表示部16とを備えて構成される。攪拌装置11、通気装置12、温度調整装置13、培地成分濃度計14と、細胞密度計15を制御して培養環境を調整する制御装置23を備えることができる。 The culture tank 10 includes a stirring device 11 for stirring the culture solution, an aeration device 12 for aerating the culture solution with air, oxygen, nitrogen, carbon dioxide, etc., a temperature control device 13 for adjusting the temperature of the culture solution, and medium components. It comprises a densitometer 14 , a cell density meter 15 and a medium loss indicator 16 . A control device 23 that controls the stirring device 11, the aeration device 12, the temperature adjustment device 13, the medium component concentration meter 14, and the cell density meter 15 to adjust the culture environment can be provided.

攪拌装置11としては、攪拌翼を備える機械攪拌式装置に代えて、振盪攪拌式装置、エアーフロー攪拌式装置等を用いることもできる。通気装置12としては、液中通気のための散気管、スパージャの他に、気中通気のための通気管等を備えることができる。温度調整装置13としては、例えば、ウォータージャケット、電熱ヒータ等を槽周囲に備えることができる。 As the stirring device 11, a shaking stirring device, an air flow stirring device, or the like can be used instead of a mechanical stirring device equipped with stirring blades. As the aeration device 12, in addition to a diffuser pipe and a sparger for aeration in the liquid, a ventilation pipe for aeration in the air can be provided. As the temperature control device 13, for example, a water jacket, an electric heater, or the like can be provided around the tank.

培地成分濃度計14は、培地に含まれる基質成分を測定できる装置である。さらに、細胞密度計15は、培養槽10内の細胞密度を測定することが可能である。培地成分濃度計14と細胞密度計15によって取得した値は、制御装置23に送られて、培地損質項の値が計算され、その値を培地損失表示部16に出力することができる。こうすることで、培地損失項の計算を可能にし、生産性の制御を容易に行うことができる。 The medium component concentration meter 14 is a device capable of measuring substrate components contained in the medium. Furthermore, the cell density meter 15 can measure the cell density within the culture tank 10 . The values obtained by medium component concentration meter 14 and cell density meter 15 are sent to controller 23 to calculate the value of the medium spoilage term, which can be output to medium loss indicator 16 . This allows calculation of the media loss term and facilitates control of productivity.

また、培養装置100は、培養槽10の培養環境や灌流培養の運転を制御する制御装置23を備えることができる。制御装置23は、温度調整装置13の作動・停止や温度出力、通気装置12の作動・停止や通気量、バルブV1の開閉、移送ポンプP1や、抜出ポンプP2の作動・停止や吐出量等を制御する。 The culture apparatus 100 can also include a control device 23 that controls the culture environment of the culture tank 10 and the perfusion culture operation. The control device 23 controls the operation/stop and temperature output of the temperature adjustment device 13, the operation/stop and ventilation amount of the ventilation device 12, the opening/closing of the valve V1, the operation/stop of the transfer pump P1 and the discharge pump P2, the discharge amount, and the like. to control.

本実施形態に係わる培養装置100を用いて行う培養方法について説明する。
上記のとおり、培養装置100では、培養終了まで、培地を抜き出さない回分培養、もしくは流加培養によって培養を行う。培養完了後、培養槽10から一部培地を抜出されて、新たな培地が供給される。この操作を繰り返すことで、細胞の培養を行う(以下、リピートバッチ法)。
A culture method using the culture apparatus 100 according to the present embodiment will be described.
As described above, in the culture apparatus 100, culture is performed by batch culture or fed-batch culture without withdrawing the culture medium until the end of the culture. After the culture is completed, part of the culture medium is removed from the culture tank 10, and new culture medium is supplied. By repeating this operation, cells are cultured (hereinafter referred to as repeat batch method).

(培養方法)
次に本実施形態の培養装置100が、灌流培養よりも、高い生産性となる方法および、原理について説明する。
図2の液量の経時変化に示すように、灌流培養では、一定のペースで、培地を供給して抜き出すため、リピートバッチ法に比べて、時間当たりに失う培地成分が多くなることを示している。
また、図2の細胞数密度の経時変化に示すように、灌流培養では、細胞密度を高水準に保つことができる。しかし、リピートバッチ方では、培養終了毎(1バッチ毎)に培養槽から培地を抜き出して、新たな新鮮培地を加えるため、培地を追加してからは、対数増殖的に細胞が増殖する(対数増殖期)が、培養完了後に抜き出すため、細胞密度は低い状態となる。
(Culture method)
Next, the method and principle by which the culture apparatus 100 of the present embodiment achieves higher productivity than perfusion culture will be described.
As shown in the change in liquid volume over time in Figure 2, in the perfusion culture, the medium is supplied and withdrawn at a constant pace, so compared to the repeat batch method, more medium components are lost over time. there is
In addition, as shown in the change in cell number density over time in FIG. 2, the perfusion culture can keep the cell density at a high level. However, in the repeat batch method, the medium is extracted from the culture vessel and fresh medium is added after each culture is completed (every batch). Growth phase) is withdrawn after completion of culture, resulting in a low cell density.

そこで、本発明は、投入培地の容量あたりの細胞密度の増加量および目的生産物の精製量を増やすことで、培地消費量を減らし、コストダウンを図ることができる点に着目した。つまり、灌流培養で、細胞を培養するときよりも、リピートバッチ培養で細胞を培養する時のほうが、投入培地に対して、目的の生成物を多く精製できる状態で、培養装置を運転することで生産性を向上させることができる。 Therefore, the present invention focuses on the fact that the consumption of the medium can be reduced and the cost can be reduced by increasing the amount of increase in cell density and the amount of purified target product per volume of input medium. In other words, when culturing cells by repeat batch culture, it is possible to operate the culture apparatus in a state where more of the target product can be purified with respect to the input medium than when culturing cells by perfusion culture. Productivity can be improved.

次に、生産性を上げる原理について説明する。なおここでいう生産性とは、投入培地あたりの細胞が生産するタンパク質の量である。一般的にこの生産量は式(1)に示す関係により求めることができる。 Next, the principle of increasing productivity will be described. The productivity here is the amount of protein produced by cells per input medium. Generally, this production amount can be obtained from the relationship shown in the formula (1).

Figure 0007269839000001
Figure 0007269839000001

特別な連続細胞分離装置を用いることなく、細胞ならびに生産タンパク質の一部回収を周期的に行い、その都度新鮮培地を補充する繰り返し培養(リピートバッチ培養)には、培養槽から培養液の一部Bcだけ抜出し、その分だけ新鮮培地を供給する操作を行う。その際、培養液の一部抜出により、細胞数がBc・Xeだけ減少する。そして、新鮮培地を供給した後の生細胞密度は培養開始時点の値X0に戻る。このため、(1-Bc)・Xe=X0となる。そのため、式1は式2のように表せる。 For repeated culture (repeat-batch culture) in which a part of the cells and the produced protein are periodically collected without using a special continuous cell separation device and supplemented with fresh medium each time, a part of the culture medium is removed from the culture tank. Only Bc is withdrawn and fresh medium is supplied accordingly. At that time, the number of cells is reduced by Bc·Xe due to part of the culture medium being withdrawn. Then, the viable cell density after supplying the fresh medium returns to the value X 0 at the start of culture. Therefore, (1−Bc)·Xe=X 0 . Therefore, Equation 1 can be expressed as Equation 2.

Figure 0007269839000002
Figure 0007269839000003
Figure 0007269839000004
Figure 0007269839000002
Figure 0007269839000003
Figure 0007269839000004

式2において、細胞が実質的に対数増殖期間(X(t)=X0・eμtに従い、生細胞密度が増殖)の場合は次式の様に表すことができる。

Figure 0007269839000005
In Equation 2, when cells are substantially logarithmically growing (X(t)=X 0 ·e μt , viable cell density grows), it can be expressed as follows.
Figure 0007269839000005

ここで繰返し周期tc→0の極限値をとると、

Figure 0007269839000006
If we take the limit of the repetition period tc→0,
Figure 0007269839000006

これは培養液をそのままで連続的に排出し、同時に同じ流量で新鮮培地を供給するケモスタットの運転であるが、式3と同じ右辺となり、同じ式で表すことが出来ることを示している。この時、培地成分濃度、生細胞密度それぞれ、各回の培養開始時と終了時の値は同じとなる。 This is the operation of a chemostat that continuously discharges the culture medium as it is and simultaneously supplies fresh medium at the same flow rate. At this time, the concentration of medium components and the viable cell density are the same at the start and end of each culture.

灌流培養の場合には、同様に式(1)より生細胞密度が一定値Xpとなるため、投入培地からのタンパク質の生産性は次のように表される。

Figure 0007269839000007
ここで、
D :灌流率(Bleeding含む)[d-1]
Sp :培養槽内培地成分濃度 [mmol/L]
Xp :灌流培養における生細胞密度 [cells/L]
:灌流培養における“培地損失項” [mmol/cells/h]
Figure 0007269839000008
In the case of perfusion culture, the viable cell density is also a constant value Xp according to formula (1), so the protein productivity from the input medium is expressed as follows.
Figure 0007269839000007
here,
D : Perfusion rate (including bleeding) [d -1 ]
Sp : Concentration of medium components in culture tank [mmol/L]
Xp: Viable cell density in perfusion culture [cells/L]
: “Medium loss term” in perfusion culture [mmol/cells/h]
Figure 0007269839000008

式2および式5により、灌流培養とリピートバッチ培養の細胞のタンパク質の生産性は、培地損失項によって異なることがわかる。そのため、灌流培養よりも、リピートバッチ培養によって生産性の高い培養を行うためには、培地損失項に着目する必要がある。つまり、灌流培養による培地損失項の値を基準値として、その基準値よりもリピートバッチ培養による培地損失項の値を低くするように運転すればよい。 Equations 2 and 5 show that the protein productivity of cells in perfusion and repeat-batch cultures differs with the medium loss term. Therefore, in order to perform culture with higher productivity by repeat batch culture than perfusion culture, it is necessary to pay attention to the medium loss term. In other words, the value of the medium loss term due to perfusion culture may be used as a reference value, and the operation may be performed so that the value of the medium loss term due to repeat batch culture is lower than the reference value.

培地損失項の制御は、培地成分濃度と細胞密度を適宜測定しながら基準値よりも値が小さくなるように運転するとよい。リピートバッチ培養における、培地損失項の値が基準値よりも高い場合は、培地濃度の調整を行ったり、培養回数を増やすことで、培地損失項の値を基準値よりも下げるとよい。培地濃度の調整は、添加培地量の増減(細胞の希釈倍率の調整)もしくは培養期間の延長により可能である。 The medium loss term is preferably controlled by appropriately measuring the medium component concentration and cell density so that the value becomes smaller than the reference value. If the value of the medium loss term in repeat batch culture is higher than the reference value, the value of the medium loss term may be lowered below the reference value by adjusting the medium concentration or increasing the number of cultures. The medium concentration can be adjusted by increasing or decreasing the amount of added medium (adjusting the cell dilution ratio) or extending the culture period.

式2と式5を比較すると、バッチ培養と灌流培養とでは、培地からのタンパク質の生産性は類似の式であらわされ、相違部は最右辺分母第2項(以降この値を培地損失項と呼ぶ)のみとなる。従って式2および式5より、リピートバッチ培養においての培地損失項、すなわち各回の培養液交換時の培地の成分の排出量を各回の運転中の平均細胞密度で除した値が、同じ細胞を用いた灌流培養における培地損失項、すなわち還流率と培地成分濃度の積を細胞密度で除した値よりも小さくなるように運転することで、灌流培養よりも生産性の高いリピートバッチ培養を行うことができる。 Comparing Eq. call) only. Therefore, from Equations 2 and 5, the medium loss term in repeat batch culture, that is, the value obtained by dividing the amount of medium components discharged at each culture solution exchange by the average cell density during each operation, is the same cell density. Repeat batch culture with higher productivity than perfusion culture can be performed by operating so that the medium loss term in the conventional perfusion culture, that is, the value obtained by dividing the product of the reflux rate and the medium component concentration by the cell density, is smaller. can.

より具体的には、対数増殖期に培地損失項を比較することが好ましい。リピートバッチ法による、対数増殖期の生産性を表す式3と式5を比較すると、
対数増殖期の場合は式3および5より、リピートバッチ培養において培地損失項、すなわち比増殖速度と各回の培養終了時の培地成分濃度の積を各回の培養終了時の細胞密度で除した値が、同じ細胞を用いた灌流培養における培地損失項、すなわち還流率と培地成分濃度の積を細胞密度で除した値よりも小さくなるように運転することで、灌流培養よりも生産性の高いリピートバッチ培養を行うことができる。
More specifically, it is preferred to compare medium loss terms during logarithmic growth phase. Comparing Equation 3 and Equation 5, which represent the productivity of the logarithmic growth phase by the repeat batch method,
In the case of the logarithmic growth phase, from equations 3 and 5, the medium loss term in repeat batch culture, that is, the product of the specific growth rate and the medium component concentration at the end of each culture divided by the cell density at the end of each culture , by operating the medium loss term in perfusion culture using the same cells, i.e., the product of the perfusion rate and the medium component concentration divided by the cell density, the repeat batch is more productive than the perfusion culture. Cultivation can be performed.

上記のとおり、細胞のタンパク質の生産性は、培地損失項に依存しているため、リピートバッチ培養による培地損失項を基準値と同等の値にすることでスケールダウン実験を行うことができる。すなわち、リピートバッチ培養において灌流培養と同等の条件に設定することで、設備コストを抑えたより簡易的な実験を行うことができる。 As described above, since the protein productivity of cells depends on the medium loss term, a scaled-down experiment can be performed by setting the medium loss term due to repeat batch culture to a value equivalent to the reference value. That is, by setting conditions equivalent to perfusion culture in repeat batch culture, it is possible to perform simpler experiments with reduced facility costs.

式2と式5を比較すると、バッチ培養と灌流培養とでは、培地からのタンパク質の生産性は類似の式であらわされ、相違部は最右辺分母第2項(以降この値を培地損失項と呼ぶ)のみとなる。従って式2および式5より、リピートバッチ培養においての培地損失項、すなわち各回の培養液交換時の培地の成分の排出量を各回の運転中の平均細胞密度で除した値が、同じ細胞を用いた灌流培養における培地損失項、すなわち還流率と培地成分濃度の積を細胞密度で除した値と同じになるように運転することで、灌流培養と同じ生産性のリピートバッチ培養を行うことができる。こうすることで、大規模な設備を必要とする灌流培養とは異なり、簡易な設備で培養を行うことができるため、設備や培地のコストダウンを図ることができる。 Comparing Eq. call) only. Therefore, from Equations 2 and 5, the medium loss term in repeat batch culture, that is, the value obtained by dividing the amount of medium components discharged at each culture solution exchange by the average cell density during each operation, is the same cell density. Repeat batch culture with the same productivity as perfusion culture can be performed by operating so that the medium loss term in perfusion culture, that is, the value obtained by dividing the product of the reflux rate and the concentration of medium components by the cell density, is the same. . By doing so, unlike perfusion culture, which requires large-scale equipment, culture can be performed with simple equipment, so that the cost of equipment and culture medium can be reduced.

より具体的には、対数増殖期に培地損失項を比較することが好ましい。リピートバッチ法による、対数増殖期の生産性を表す式3と式5を比較すると、
対数増殖期の場合は式3および5より、リピートバッチ培養において培地損失項、すなわち比増殖速度と各回の培養終了時の培地成分濃度の積を各回の培養終了時の細胞密度で除した値が、同じ細胞を用いた灌流培養における培地損失項、すなわち還流率と培地成分濃度の積を細胞密度で除した値と同じになるように運転することで、灌流培養と同じ生産性のリピートバッチ培養を行うことができる。こうすることで、大規模な設備を必要とする灌流培養とは異なり、簡易な設備で培養を行うことができるため、設備や培地のコストダウンを図ることができる。
More specifically, it is preferred to compare medium loss terms during logarithmic growth phase. Comparing Equation 3 and Equation 5, which represent the productivity of the logarithmic growth phase by the repeat batch method,
In the case of the logarithmic growth phase, from equations 3 and 5, the medium loss term in repeat batch culture, that is, the product of the specific growth rate and the medium component concentration at the end of each culture divided by the cell density at the end of each culture , the repeat batch culture with the same productivity as the perfusion culture by operating to be the same as the medium loss term in the perfusion culture using the same cells, that is, the product of the reflux rate and the medium component concentration divided by the cell density. It can be performed. By doing so, unlike perfusion culture, which requires large-scale equipment, culture can be performed with simple equipment, so that the cost of equipment and culture medium can be reduced.

このように本実施形態に係わる培養装置100を使用して行う培養方法によれば、培地損失を計算することで、生産性が高くなるように培養の制御が可能となり、リピートバッチ法において灌流培養以上の生産性で培養を行うことができる。 As described above, according to the culture method using the culture apparatus 100 according to the present embodiment, it is possible to control the culture so as to increase productivity by calculating the medium loss, and the perfusion culture in the repeat batch method. Cultivation can be performed with the above productivity.

(実施例)
以下、実施例を示して本願発明について具体的に説明するが、本発明の技術的範囲はこれに限定されるものではない。
(Example)
EXAMPLES The present invention will be specifically described below by showing examples, but the technical scope of the present invention is not limited to these.

培養装置として、図1に示す培養装置100を用いて、リピートバッチ法により培養を行い、灌流培養との生産性の比較試験を行った。なお、灌流培養の設備は一般的に用いられる細胞分離装置を含むものである。
<グルコース>
Using the culture apparatus 100 shown in FIG. 1 as the culture apparatus, culture was performed by the repeat batch method, and a productivity comparison test with perfusion culture was performed. Equipment for perfusion culture includes a commonly used cell separation device.
<Glucose>

はじめに、グルコースを加えた液体培地を用意した。この液体培地中に細胞を播種し、培養槽内で回分培養方式の攪拌培養を行った。 First, a liquid medium containing glucose was prepared. Cells were seeded in this liquid medium and subjected to stirring culture in a batch culture method in a culture tank.

次に比較対象として同様の細胞を用いて従来の灌流培養で以下のパラメータで培養を行った。B:Bleeding速度 0.4 [d-1]、CS/X:培地比消費速度 1.25×10-9 [mmol/cell/d]、D:灌流率 1 [d-1]、Si:新鮮培地中グルコース濃度 50 [mmol/L]、Sp:培養液中の培地成分(代表値としてグルコース濃度)25 [mmol/L]、X:細胞密度 2×1010[cells/L]
μ:比増殖速度 0.4 [d-1]
Next, similar cells were used for comparison and cultured under the following parameters in a conventional perfusion culture. B: Bleeding rate 0.4 [d-1], CS/X: Medium specific consumption rate 1.25×10 -9 [mmol/cell/d], D: Perfusion rate 1 [d-1], Si: Glucose concentration in fresh medium 50 [mmol/L], Sp: medium components in the culture medium (glucose concentration as a representative value) 25 [mmol/L], X: cell density 2×10 10 [cells/L]
μ: Specific growth rate 0.4 [d-1]

ケモスタットの定常運転では、培養液交換と細胞希釈は等しくなるため、灌流率Dは細胞の比増殖速度μと同じとなり、Xp=μ(Si-Sp)/Cs/xの関係が成立する。灌流培養では排出培養液と細胞を分離し、細胞は培養槽内に残すため細胞の比増殖速度以上の速さでの培養液交換が可能である。図3の太線で示すように比増殖速度以上の速さで培養液交換を行うことによりケモスタットより細胞密度を増加させることができるが、細胞密度を増加してもそれに比例した培地供給(灌流率)の増加が必要であり、培地損失項の値はケモスタットと変わらない。 In the steady-state operation of the chemostat, the medium exchange and cell dilution are the same, so the perfusion rate D is the same as the cell specific growth rate μ, and the relationship Xp=μ(Si-Sp)/Cs/x is established. In the perfusion culture, the discharged culture medium and cells are separated, and the cells are left in the culture tank, so the culture medium can be exchanged at a speed higher than the specific growth rate of the cells. As shown by the thick line in Fig. 3, the cell density can be increased from the chemostat by exchanging the culture medium at a speed higher than the specific growth rate. ) is required and the value of the medium loss term is the same as in the chemostat.

培養液中の培地成分濃度を新鮮培地中の濃度の半分とする本実施例の設定例では、灌流培養の培地損失項は、細胞の培地比消費速度と等しくなり、無視できない大きさである。また、細胞密度の増加は培地交換速度(灌流率)の増加だけでなく、酸素供給、二酸化炭素除去、混合、細胞分離能力の増強が必要となるため、一定の上限がある。 In the setting example of this embodiment, in which the concentration of the medium components in the culture solution is half that in the fresh medium, the medium loss term in perfusion culture is equal to the medium specific consumption rate of the cells, and is not negligible. In addition, an increase in cell density requires not only an increase in medium exchange rate (perfusion rate), but also oxygen supply, carbon dioxide removal, mixing, and enhancement of cell separation ability, so there is a certain upper limit.

一方、リピートバッチ培養では、図3に示すように、平均培地成分濃度を灌流培養と等しく25mmol/Lとした時、灌流培養より培地損失項を少なくした培養が可能である。繰返し周期tcを繰り返し培養に支障がない範囲で長くしていくと更に培地損失項を少なくすることができる。 On the other hand, in repeat-batch culture, as shown in FIG. 3, when the average medium component concentration is 25 mmol/L, which is the same as perfusion culture, culture with less medium loss than perfusion culture is possible. The medium loss term can be further reduced by lengthening the repetition period tc within a range that does not interfere with repeated culture.

本実施例では、図3に示すように、培地損失項を灌流培養の半分程度に下げることができる。そのため、コストを削減した経済的な運転を可能とする。 In this example, as shown in FIG. 3, the medium loss term can be reduced to about half that of perfusion culture. Therefore, economical operation with reduced costs is possible.

灌流培養は抜出培養液中の培地成分は常に一定であるため、リピートバッチ培養の様な平均培地成分濃度と各回の培養終了、培養液交換前の培地成分濃度差を利用した培地損失項を少なくする運転はできないことを示している。 In perfusion culture, the medium components in the extracted culture solution are always constant. This indicates that it is not possible to drive to reduce.

しかし、図3に示すように、平均培地成分濃度が灌流培養における値(25mmol/L)よりも高い値(28mmol/L)で運転すると、初期段階では、灌流培養よりも培地損失項が大きな運転となってしまう。よって、灌流培養よりも培地損失項を低い値で運用すためには、グルコース濃度を4.4mmol/L(生産性を維持する下限値、Biotechnol Prog. 2017 May;33(3):771-785)~25mmol/Lに設定することが好ましい。 However, as shown in Figure 3, when the average medium component concentration is higher (28 mmol/L) than in the perfusion culture (25 mmol/L), the medium loss term is larger than in the perfusion culture in the early stages of operation. becomes. Therefore, in order to operate the medium loss term at a lower value than perfusion culture, the glucose concentration should be 4.4 mmol / L (lower limit to maintain productivity, Biotechnol Prog. 2017 May;33(3):771-785 ) to 25 mmol/L.

<CHO細胞>
図4は、細胞にCHO細胞を、培地としてグルタミンを用いた比較試験の結果である。
グルタミン濃度は、0.4mMを超えると乳酸をはじめとした副生成物の生成速度が増大し、タンパク質生産や、品質に影響を及ぼす。そのため、グルタミン濃度0.4mM以下で培養を行った。この場合、リピートバッチ培養では、初期のグルタミン濃度は最大の0.4mM(Smax)となり、増殖後のグルタミン濃度は約0mMとなる。そのため、リピートバッチでの培養可能範囲は図のような領域となる。灌流培養による生産では、30日以上生産を続けることが多い。動物細胞のリピートバッチでは1周期1日程度となるため、30回以上の培養が行われ、各周期の培養で、培地損失項の基準値が高くなることがあっても、平均で培地損失項の基準以下に収まればよく、必要に応じて添加培地量の調整もしくはリピートバッチの周期の変更を行うこともできる。
<CHO cells>
FIG. 4 shows the results of a comparative test using CHO cells as the cells and glutamine as the medium.
If the glutamine concentration exceeds 0.4 mM, the production rate of by-products including lactic acid increases, affecting protein production and quality. Therefore, culture was performed at a glutamine concentration of 0.4 mM or less. In this case, in repeat batch culture, the initial glutamine concentration is the maximum of 0.4 mM (Smax), and the glutamine concentration after growth is about 0 mM. Therefore, the cultivable range in the repeat batch is the area shown in the figure. Production by perfusion culture often continues for 30 days or longer. In repeat batches of animal cells, one cycle is about one day, so 30 or more cultures are performed. If necessary, the amount of added medium can be adjusted or the repeat batch cycle can be changed.

<酵母>
図5は、酵母において、代謝物であるアルコール濃度が細胞生存率に影響する場合の比較試験の結果である。アルコール濃度が16%を越えると酵母が死に始め、20%で完全に死滅する。そのため、アルコール濃度を16%以下となるように培養する必要がある。よって、リピートバッチ培養では、増殖後のアルコール濃度は16以下となるように制御を行った。そのため、リピートバッチでの培養可能範囲は図のような領域となる。
<Yeast>
FIG. 5 shows the results of a comparative test in which the alcohol concentration, which is a metabolite, affects the cell viability in yeast. Above 16% alcohol concentration the yeast begins to die and at 20% it is completely dead. Therefore, it is necessary to culture so that the alcohol concentration is 16% or less. Therefore, in the repeat batch culture, the alcohol concentration after growth was controlled to 16 or less. Therefore, the cultivable range in the repeat batch is the area shown in the figure.

以上、本発明について説明したが、本発明は、前記の実施形態や変形例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変化が可能である。 Although the present invention has been described above, the present invention is not limited to the above-described embodiments and modifications, and various changes are possible without departing from the scope of the present invention.

培地中の1栄養成分の消費に着目した経済性比較を行ったが、例えば、複数栄養成分に着目した複合的、網羅的な比較も可能である。また、栄養成分と逆の影響を与える毒性、抑制効果を持つ細胞代謝成分、生産物の蓄積と排出に着目して培地損失項を老廃物排出項に置き換えた比較を行うことも可能である。 Although the economic comparison focused on the consumption of one nutrient component in the medium was performed, for example, a complex and exhaustive comparison focusing on multiple nutrient components is also possible. It is also possible to make a comparison by replacing the medium loss term with the waste product discharge term by focusing on the toxicity that has the opposite effect to the nutritional component, the cell metabolism component that has a suppressive effect, and the accumulation and discharge of the product.

100 培養装置
10 培養槽
11 攪拌装置
12 通気装置
13 温度調整装置
14 培地成分濃度計
15 細胞密度計
16 培地損失表示部
23 制御装置
REFERENCE SIGNS LIST 100 culture device 10 culture tank 11 agitator 12 aeration device 13 temperature control device 14 medium component concentration meter 15 cell density meter 16 medium loss indicator 23 control device

Claims (4)

回分培養もしくは流加培養により細胞の培養を繰り返して行うリピートバッチ培養による細胞の培養装置であって、
細胞を培養する培養槽と、
前記培養槽に接続され、前記培養槽内の培地成分濃度を測定する培地成分濃度計と、
前記培養槽に接続され、前記培養槽内の細胞密度を測定する細胞密度計と、
前記繰り返しの各回において、前記培地成分濃度計と、前記細胞密度計との測定結果から、培地損失項を計算し、前記培地損失項により培養の制御を行う制御装置と、を備え、
前記リピートバッチ培養における前記培地損失項を、各回の培養液交換時の培地の1成分もしくは複数の成分の培養槽外への排出量を各回の運転中平均細胞密度で除した値とし、
同じ細胞を灌流培養によって培養した際の前記培地損失項を、培地成分の1成分もしくは複数成分の培養槽外への排出速度を細胞密度で除した値としたとき、
前記制御装置は、
前記リピートバッチ培養における前記培地損失項が前記灌流培養によって培養した際の前記培地損失項よりも小さくなるように運転する
ことを特徴とする培養装置。
An apparatus for culturing cells by repeat-batch culture in which cells are repeatedly cultured by batch culture or fed-batch culture,
a culture tank for culturing cells;
a medium component concentration meter that is connected to the culture tank and measures the concentration of medium components in the culture tank;
A cell density meter connected to the culture tank and measuring the cell density in the culture tank;
a control device that calculates a medium loss term from the measurement results of the medium component concentration meter and the cell density meter in each repetition, and controls the culture based on the medium loss term ;
The medium loss term in the repeat batch culture is a value obtained by dividing the amount of one or more components of the medium discharged to the outside of the culture tank at each time of culture solution exchange by the average cell density during each time of operation,
When the medium loss term when the same cells are cultured by perfusion culture is a value obtained by dividing the discharge rate of one or more medium components out of the culture tank by the cell density,
The control device is
Operate so that the medium loss term in the repeat batch culture is smaller than the medium loss term in the perfusion culture.
A culture apparatus characterized by:
回分培養もしくは流加培養により細胞の培養を繰り返して行うリピートバッチ培養による細胞の培養装置であって、
細胞を培養する培養槽と、
前記培養槽に接続され、前記培養槽内の培地成分濃度を測定する培地成分濃度計と、
前記培養槽に接続され、前記培養槽内の細胞密度を測定する細胞密度計と、
前記繰り返しの各回において、前記培地成分濃度計と、前記細胞密度計との測定結果から、培地損失項を計算し、前記培地損失項により培養の制御を行う制御装置と、を備え、
前記リピートバッチ培養における前記培地損失項を、培養細胞が対数増殖期のときの比増殖速度と各回の培養終了時の排出量との積を各回の培養終了時の細胞密度で除した値とし、
同じ細胞を灌流培養によって培養した際の前記培地損失項を、培地成分の1成分もしくは複数成分の培養槽外への排出速度を細胞密度で除した値としたとき、
前記制御装置は、
前記リピートバッチ培養における前記培地損失項が前記灌流培養によって培養した際の前記培地損失項よりも小さくなるように運転する
ことを特徴とする培養装置。
An apparatus for culturing cells by repeat-batch culture in which cells are repeatedly cultured by batch culture or fed-batch culture,
a culture tank for culturing cells;
A medium component concentration meter that is connected to the culture tank and measures the concentration of medium components in the culture tank;
A cell density meter connected to the culture tank and measuring the cell density in the culture tank;
a control device that calculates a medium loss term from the measurement results of the medium component concentration meter and the cell density meter in each repetition, and controls the culture based on the medium loss term ;
The medium loss term in the repeat batch culture is the product of the specific growth rate when the cultured cells are in the logarithmic growth phase and the output amount at the end of each culture divided by the cell density at the end of each culture,
When the medium loss term when the same cells are cultured by perfusion culture is a value obtained by dividing the discharge rate of one or more medium components out of the culture tank by the cell density,
The control device is
Operate so that the medium loss term in the repeat batch culture is smaller than the medium loss term in the perfusion culture.
A culture apparatus characterized by:
回分培養もしくは流加培養により細胞の培養を繰り返して行うリピートバッチ培養による細胞の培養装置であって、
細胞を培養する培養槽と、
前記培養槽に接続され、前記培養槽内の培地成分濃度を測定する培地成分濃度計と、
前記培養槽に接続され、前記培養槽内の細胞密度を測定する細胞密度計と、
前記繰り返しの各回において、前記培地成分濃度計と、前記細胞密度計との測定結果から、培地損失項を計算し、前記培地損失項により培養の制御を行う制御装置と、を備え、
前記リピートバッチ培養における前記培地損失項を、各回の培養液交換時の培地の1成分もしくは複数の成分の培養槽外への排出量を各回の運転中平均細胞密度で除した値とし、
同じ細胞を灌流培養によって培養した際の前記培地損失項を、培地成分の1成分もしくは複数成分の培養槽外への排出速度を細胞密度で除した値としたとき、
前記制御装置は、
前記リピートバッチ培養における前記培地損失項が前記灌流培養によって培養した際の前記培地損失項と同じになるように制御する
ことを特徴とする培養装置。
An apparatus for culturing cells by repeat-batch culture in which cells are repeatedly cultured by batch culture or fed-batch culture,
a culture tank for culturing cells;
a medium component concentration meter that is connected to the culture tank and measures the concentration of medium components in the culture tank;
A cell density meter connected to the culture tank and measuring the cell density in the culture tank;
a control device that calculates a medium loss term from the measurement results of the medium component concentration meter and the cell density meter in each repetition, and controls the culture based on the medium loss term ;
The medium loss term in the repeat batch culture is a value obtained by dividing the amount of one or more components of the medium discharged to the outside of the culture tank at each time of culture solution exchange by the average cell density during each time of operation,
When the medium loss term when the same cells are cultured by perfusion culture is a value obtained by dividing the discharge rate of one or more medium components out of the culture tank by the cell density,
The control device is
The medium loss term in the repeat batch culture is controlled to be the same as the medium loss term in the perfusion culture.
A culture apparatus characterized by:
回分培養もしくは流加培養により細胞の培養を繰り返して行うリピートバッチ培養による細胞の培養装置であって、
細胞を培養する培養槽と、
前記培養槽に接続され、前記培養槽内の培地成分濃度を測定する培地成分濃度計と、
前記培養槽に接続され、前記培養槽内の細胞密度を測定する細胞密度計と、
前記繰り返しの各回において、前記培地成分濃度計と、前記細胞密度計との測定結果から、培地損失項を計算し、前記培地損失項により培養の制御を行う制御装置と、を備え、
前記リピートバッチ培養における前記培地損失項を、培養細胞が対数増殖期のときの比増殖速度と各回の培養終了時の排出量との積を各回の培養終了時の細胞密度で除した値とし、
同じ細胞を灌流培養によって培養した際の前記培地損失項を、培地成分の1成分もしくは複数成分の培養槽外への排出速度を細胞密度で除した値としたとき、
前記制御装置は、
前記リピートバッチ培養における前記培地損失項が前記灌流培養によって培養した際の前記培地損失項と同じになるように運転する
ことを特徴とする培養装置。
An apparatus for culturing cells by repeat-batch culture in which cells are repeatedly cultured by batch culture or fed-batch culture,
a culture tank for culturing cells;
a medium component concentration meter that is connected to the culture tank and measures the concentration of medium components in the culture tank;
A cell density meter connected to the culture tank and measuring the cell density in the culture tank;
a control device that calculates a medium loss term from the measurement results of the medium component concentration meter and the cell density meter in each repetition, and controls the culture based on the medium loss term ;
The medium loss term in the repeat batch culture is the product of the specific growth rate when the cultured cells are in the logarithmic growth phase and the output amount at the end of each culture divided by the cell density at the end of each culture,
When the medium loss term when the same cells are cultured by perfusion culture is a value obtained by dividing the discharge rate of one or more medium components out of the culture tank by the cell density,
The control device is
Operate so that the medium loss term in the repeat batch culture is the same as the medium loss term in the perfusion culture.
A culture apparatus characterized by:
JP2019159238A 2019-09-02 2019-09-02 Incubation device Active JP7269839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019159238A JP7269839B2 (en) 2019-09-02 2019-09-02 Incubation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019159238A JP7269839B2 (en) 2019-09-02 2019-09-02 Incubation device

Publications (2)

Publication Number Publication Date
JP2021036804A JP2021036804A (en) 2021-03-11
JP7269839B2 true JP7269839B2 (en) 2023-05-09

Family

ID=74846706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019159238A Active JP7269839B2 (en) 2019-09-02 2019-09-02 Incubation device

Country Status (1)

Country Link
JP (1) JP7269839B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023130916A (en) * 2022-03-08 2023-09-21 キヤノン株式会社 Culture device, cell density measurement device, and cell density measurement method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202500A (en) 2006-02-03 2007-08-16 Hitachi Ltd Operation-regulating device of culturing vessel
JP2007244341A (en) 2006-03-20 2007-09-27 Hitachi Ltd Method and system for culture control of biological cell
JP2008043301A (en) 2006-08-21 2008-02-28 Hitachi Plant Technologies Ltd Cell culture method
JP2008178344A (en) 2007-01-24 2008-08-07 Hitachi Plant Technologies Ltd Method and apparatus for cell culture
JP2013085516A (en) 2011-10-18 2013-05-13 Hitachi Plant Technologies Ltd Method for controlling cell culture, device for controlling cell culture, and device for culturing cell including the device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202500A (en) 2006-02-03 2007-08-16 Hitachi Ltd Operation-regulating device of culturing vessel
JP2007244341A (en) 2006-03-20 2007-09-27 Hitachi Ltd Method and system for culture control of biological cell
JP2008043301A (en) 2006-08-21 2008-02-28 Hitachi Plant Technologies Ltd Cell culture method
JP2008178344A (en) 2007-01-24 2008-08-07 Hitachi Plant Technologies Ltd Method and apparatus for cell culture
JP2013085516A (en) 2011-10-18 2013-05-13 Hitachi Plant Technologies Ltd Method for controlling cell culture, device for controlling cell culture, and device for culturing cell including the device

Also Published As

Publication number Publication date
JP2021036804A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
Allan et al. Bioprocess design considerations for cultured meat production with a focus on the expansion bioreactor
JP6227562B2 (en) Perfusion bioreactor system and operating method thereof
CN103865792B (en) A kind of circulating fermentable reaction and feed liquid isolation integral equipment
CN104726334A (en) Bioreactor for the cultivation of mammalian cells
EP0585419B1 (en) Method and apparatus for growing biomass particles
Junne et al. Cultivation of cells and microorganisms in wave‐mixed disposable bag bioreactors at different scales
CN110257227B (en) Bioreactor for animal cell culture
JP2011519575A (en) Cell culture bioreactor and cell culture method capable of scale adjustment
JP7269839B2 (en) Incubation device
Jossen et al. Single‐use bioreactors–an overview
Zeng et al. Continuous culture
JP2018516077A (en) Small scale culture of suspension cells
CN114127248A (en) Bioreactor for growing microorganisms
WO2010130306A1 (en) Bioreactorsystem
JP2024073613A (en) Bioreactors or fermenters for the cultivation of cells or microorganisms in suspension on an industrial scale
WO2020162036A1 (en) Culturing device and culturing method
Ge et al. Advancing our understanding of bioreactors for industrial-sized cell culture: Health care and cellular agriculture implications
KR20220100934A (en) Process and system for making inoculum
RU2710967C9 (en) Method for detachable-topping fermentation with high cell density
Rasche et al. Bioreactors and Fermentors—Powerful Tools for Resolving Cultivation Bottlenecks
JP6744161B2 (en) Separation device, culture device and separation method
Raj et al. 03 Fermentation Technology and Bioreactor Design
US20240174970A1 (en) Method for operating a bioprocess installation
EP4339274A1 (en) Method for operating a bioprocess installation for production of a bioproduct
CN210340843U (en) Adherent cell microcarrier culture apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R150 Certificate of patent or registration of utility model

Ref document number: 7269839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150