JP7269373B2 - ビデオ処理方法、装置、記憶媒体及び記憶方法 - Google Patents
ビデオ処理方法、装置、記憶媒体及び記憶方法 Download PDFInfo
- Publication number
- JP7269373B2 JP7269373B2 JP2021564971A JP2021564971A JP7269373B2 JP 7269373 B2 JP7269373 B2 JP 7269373B2 JP 2021564971 A JP2021564971 A JP 2021564971A JP 2021564971 A JP2021564971 A JP 2021564971A JP 7269373 B2 JP7269373 B2 JP 7269373B2
- Authority
- JP
- Japan
- Prior art keywords
- transform
- video block
- block
- tool
- current video
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 389
- 238000003672 processing method Methods 0.000 title claims description 34
- 230000009466 transformation Effects 0.000 claims description 80
- 238000013139 quantization Methods 0.000 claims description 73
- 230000008569 process Effects 0.000 claims description 65
- 238000006243 chemical reaction Methods 0.000 claims description 51
- 238000012545 processing Methods 0.000 claims description 32
- 238000000638 solvent extraction Methods 0.000 claims description 13
- 230000015654 memory Effects 0.000 claims description 12
- 230000001131 transforming effect Effects 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 description 52
- 230000011664 signaling Effects 0.000 description 35
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 32
- 241000023320 Luma <angiosperm> Species 0.000 description 31
- 238000005516 engineering process Methods 0.000 description 26
- 238000004590 computer program Methods 0.000 description 22
- 239000013598 vector Substances 0.000 description 19
- 230000002829 reductive effect Effects 0.000 description 18
- 238000005192 partition Methods 0.000 description 12
- 230000036961 partial effect Effects 0.000 description 11
- 230000001419 dependent effect Effects 0.000 description 9
- 238000013461 design Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 241000209094 Oryza Species 0.000 description 6
- 235000007164 Oryza sativa Nutrition 0.000 description 6
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 235000009566 rice Nutrition 0.000 description 6
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- 238000009795 derivation Methods 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 238000000844 transformation Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000013515 script Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/11—Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/112—Selection of coding mode or of prediction mode according to a given display mode, e.g. for interlaced or progressive display mode
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/119—Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/12—Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/13—Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/132—Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
- H04N19/159—Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/186—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/46—Embedding additional information in the video signal during the compression process
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/593—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/625—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using discrete cosine transform [DCT]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Compression Of Band Width Or Redundancy In Fax (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Description
本願は2020年5月11日付で出願された国際出願第PCT/CN2020/08581号に基づいており、同出願は2019年5月10日付で出願された国際特許出願第PCT/CN2019/086420号に対する優先権及び利益を主張している。上記出願の開示全体は参照により本願の開示の一部として援用される。
本特許文献はビデオ処理技術、デバイス、及びシステムに関連する。
ビデオ圧縮における進歩にもかかわらず、デジタル・ビデオは、インターネットその他のデジタル通信ネットワークにおいて最大の帯域幅を依然として占めている。ビデオを受信及び表示することが可能な接続ユーザー・デバイスの台数が増加するにつれて、デジタル・ビデオの利用に対する帯域幅の需要は増加し続けるであろうということが予想される。
より高い解像度のビデオの益々増える要請に起因して、ビデオ・コーディング方法及び技術は現代技術の至る所に存在する。ビデオ・コーデックは、典型的には、デジタル・ビデオを圧縮又は解凍する電子回路又はソフトウェアを含み、より高いコーディング効率を提供するために絶えず改良されている。ビデオ・コーデックは、圧縮されていないビデオを圧縮された形式へ、又は逆向きに変換する。ビデオ品質と、ビデオを表現するために使用されるデータ量(ビット・レートによって決定される)と、符号化及び復号化アルゴリズムの複雑さと、データ損失及びエラーに対する感度と、編集の容易さと、ランダム・アクセスと、エンド・ツー・エンド遅延(レイテンシ)との間には複雑な関係が存在する。圧縮されたフォーマットは、通常、標準的なビデオ圧縮規格、例えば、高効率ビデオ・コーディング(HEVC)規格(H.265又はMPEG-H Part 2としても知られている)、ファイナライズされた汎用ビデオ・コーディング(VVC)規格、又は他の現在及び/又は将来のビデオ・コーディング規格に準拠している。
図1は、VVCのエンコーダ・ブロック図の例を示し、3つのループ内フィルタリング・ブロック、即ち:デブロッキング・フィルタ(DF)、サンプル適応オフセット(SAO)、及びALFを含む。予め定義されたフィルタを使用するDFとは異なり、SAO及びALFは、現在のピクチャのオリジナル・サンプルを使用して、オフセットを追加すること、及び有限インパルス応答(FIR)フィルタを適用することによって(コーディングされたサイド情報がオフセットとフィルタ係数をそれぞれシグナリングする)、オリジナル・サンプルと再構成されたサンプルとの間の平均二乗誤差を減少させる。ALFは、各ピクチャの最終処理ステージに位置し、以前のステージで生成されたアーチファクトを捕捉して修復しようとするツールと見なすことができる。
2.2.1 67個のイントラ予測モードによるイントラ・モード・コーディング
自然なビデオで提示される任意のエッジ方向を捕らえるために、方向イントラ・モードの数は、HEVCで使用されているような33個から65個へ拡張される。追加の方向モードは、図2において点線の矢印として描かれており、平面及びDCモードは同じままである。これらのより高密度な方向性イントラ予測モードは、全てのブロック・サイズに対して、そしてルマ及びクロマ・イントラ予測の両方に対して適用される。
アフィン線形重み付けイントラ予測(ALWIP,マトリクス・ベースのイントラ予測(MIP)としても知られている)は、JVET-N0217で提案されている。
先ず、隣接する参照サンプルは平均化によってダウンサンプリングされ、縮小参照信号bdryredを生成する。次いで、行列ベクトル積を計算し、オフセットを加えることによって、縮小予測信号predredが計算される:
平均化、行列ベクトル乗算、及び線形補間の全体的なプロセスが、図3-6で様々な形状に関して示されている。残りの形状は、図示のケースのうちの1つと同様に扱われることに留意されたい。
転置されるケースは相応に取り扱われる。
2.2.2.3 シンタックス及びセマンティクス
7.3.6.5 コーディング・ユニット・シンタックス
多重参照ライン(MRL)イントラ予測は、イントラ予測のために、より多くの参照ラインを使用する。図7において、4つの参照ラインの例が描かれており、ここで、セグメントA及びFのサンプルは、再構成された隣接するサンプルからフェッチされるのではなく、それぞれセグメントB及びEからの最も近いサンプルでパディングされる。HEVCイントラ・ピクチャ予測は、最も近い参照ライン(即ち参照ライン0)を使用する。MRLでは、2つの追加ライン(参照ライン1及び参照ライン3)が使用される。
JVET-M0102では、ISPが提案されており、これはテーブル1に示されるように、ルマ・イントラ予測ブロックを、ブロック・サイズのディメンジョンに依存して垂直に又は水平に、2つ又は4つのサブ・パーティションに分割する。図8及び図9は、2つの可能性の例を示す。すべてのサブ・パーティションは、少なくとも16サンプルを有するという条件を満たしている。ブロック・サイズが4×N又はN×4(N>8)である場合、許容される場合には、1×N又はN×1のサブ・パーティションが存在してもよい。
テーブル1:ブロック・サイズ(最大変換サイズ/maxTBSizeで示される)に応じたサブ・パーティションの数
テーブル2:predModeIntraに依存するtrTypeHor及びtrTypeVerの仕様
0に等しいintra_subpartitions_mode_flag[ x0 ][ y0 ]は、現在のイントラ・コーディング・ユニットが、矩形変換ブロック・サブパーティションにパーティション化されないことを指定する。
intra_subpartitions_mode_flag[ x0 ][ y0 ]が存在しない場合、それは0に等しいと推定される。intra_subpartitions_split_flag[ x0 ][ y0 ]は、イントラ・サブ・パーティション・スプリット・タイプが水平であるか又は垂直であるかを指定する。intra_subpartitions_split_flag[ x0 ][ y0 ]が存在しない場合、それは次のように推定される:
- cbHeightがMaxTbSizeYより大きい場合、intra_subpartitions_split_flag[ x0 ][ y0 ]は0に等しいと推定される。
- そうではない場合(cbWidthがMaxTbSizeYより大きい場合)、intra_subpartitions_split_flag[ x0 ][ y0 ]は、1に等しいと推定される。
変数IntraSubPartitionsSplitTypeは、表7-9に示すように、現在のルマ・コーディング・ブロックに使用される分割のタイプを指定する。IntraSubPartitionsSplitTypeは次のように導出される:
- intra_subpartitions_mode_flag[ x0 ][ y0 ]が0に等しい場合、 IntraSubPartitionsSplitTypeは0に等しく設定される。
- そうではない場合、IntraSubPartitionsSplitTypeは、1 + intra_subpartitions_split_flag[ x0 ][ y0 ]に等しく設定される。
テーブル7-9 IntraSubPartitionsSplitTypeに対する関連名称
- IntraSubPartitionsSplitTypeがISP_NO_SPLITに等しい場合、 NumIntraSubPartitionsは1に等しく設定される。
- そうではない場合、以下のうちの1つの条件が真であるならば、NumIntraSubPartitionsは2に等しく設定される:
- cbWidthは4に等しく且つcbHeightは8に等しい、
- cbWidthは8に等しく且つcbHeightは4に等しい。
- そうではない場合、NumIntraSubPartitionsは4に等しく設定される。
[0071]
2.3 クロマ・イントラ・モード・コーディング
クロマ・イントラ・モード・コーディングの場合、クロス・コンポーネント線形モデル(CCLM)がイネーブルにされているか否かに応じて、合計8個又は5個のイントラ・モードがクロマ・イントラ・モード・コーディングに許容される。これらのモードは、5つの伝統的なイントラ・モードと3つのクロス・コンポーネント線形モデル・モードを含む。クロマDMモードは、対応するルマ・イントラ予測モードを使用する。Iスライスでは、ルマ及びクロマ成分に対して別個のブロック・パーティショニング構造がイネーブルにされているので、1つのクロマ・ブロックが複数のルマ・ブロックに対応する場合がある。従って、クロマDMモードの場合、現在のクロマ・ブロックの中心位置をカバーする対応するルマ・ブロックのイントラ予測モードは、直接そのまま継承される。
テーブル8-2 sps_cclm_enabled_flag が0に等しい場合におけるintra_chroma_pred_mode[xCb][yCb]及びIntraPredModeY[xCb+cbWidth/2][yCb+cbHeight/2]に依存するIntraPredModeC[xCb][yCb]の仕様
2.4 VVCにおける変換コーディング
2.4.1 VVCにおける多重変換セット(MTS)
2.4.1.1 明示的な多重変換セット(MTS)
VTM4では、64×64のサイズに及ぶ大きなブロック・サイズの変換がイネーブルにされており、これは高解像度ビデオ、例えば1080pや4Kシーケンスに主に有用である。高周波変換係数は、サイズ(幅又は高さ、又は幅及び高さの両方)が64に等しい変換ブロックに対して、低周波係数のみが保持されるようにゼロ化される。例えば、M×N変換ブロックの場合、Mをブロック幅とし、Nをブロック高さとし、Mが64に等しい場合に、変換係数のうちの左32列のみが保持される。同様に、Nが64に等しい場合、変換係数の上位32行のみが保持される。大きなブロックに対して変換スキップ・モードが使用される場合、如何なる値もゼロ化することなく、ブロック全体が使用される。
[0073]
HEVCで採用されているDCT-IIに加えて、多重変換選択(MTS)方式が、インター及びイントラ・コーディングされたブロック双方を残差コーディングするために使用される。これはDCT8/DST7から選択される複数の変換を使用する。新たに導入される変換行列はDST-VIIとDCT-VIIIである。以下のテーブル4は、選択されるDST/DCTの基底関数を示す。
テーブル4:VVCで使用される変換行列の基底関数
変換行列の直交性を保持するために、変換行列はHEVCの変換行列よりも精密に量子化される。水平変換の後及び垂直変換の後に、変換された係数の中間値を16ビットの範囲内に保つため、すべての係数は10ビットを有するべきである。
[0075]
MTSスキームを制御するために、イントラ及びインターそれぞれについて、別々のイネーブル・フラグがSPSレベルで指定される。MTSがSPSでイネーブルにされると、MTSが適用されるか否かを指定するために、CUレベル・フラグがシグナリングされる。ここで、MTSはルマについてのみ適用される。MTS CUレベル・フラグは、以下の条件が充足される場合にシグナリングされる。
[0076]
○ 幅及び高さ双方が32以下であること
[0078]
MTS CUフラグがゼロに等しい場合、DCT2は双方向に適用される。しかしながら、MTS CUフラグが1に等しい場合、2つの他のフラグが追加的にシグナリングされて、水平及び垂直方向それぞれについて変換タイプを指定する。変換及びシグナリング・マッピングはテーブル5にされるとおりである。それが変換行列の精度に関しては、8ビットの一次変換コアが使用される。従って、4点DCT-2及びDST-7、8点、16点、及び32点DCT-2を含む、HEVCで使用されるすべての変換コアは同一に保たれる。また、64点DCT-2、4点DCT-8、8点、16点、32点DST-7及びDCT-8を含む他の変換コアは、8ビット一次変換コアを使用する。
テーブル5:水平及び垂直方向に関するtu_mts_idxの復号化される値及び対応する変換行列のマッピング
2.4.2.1 JEMにおけるノン・セパラブル二次変換(NSST)
JEMでは、フォワード一次変換と量子化(エンコーダ側)の間、逆量子化とインバート一次変換(デコーダ側)の間に、二次変換が適用される。図10に示すように、4×4(又は8×8)の二次変換はブロック・サイズに依存して実行される。例えば、8×8ブロック毎に、4×4二次変換が小さなブロック(即ち、min (width, height) < 8)に適用され、8×8二次変換がより大きなブロック(即ち、min (width, height) > 4)に適用される。
RST(低周波ノン・セパラブル変換(LFNST))がJVET-K0099で導入され、(35個の変換集合ではなく)4つの変換集合のマッピングがJVET-L0133で導入されている。このJVET-N0193では、16×64行列(更に、16×48行列に縮小される)及び16×16行列が使用される。表記の便宜上、16×64(16×48に縮小される)変換はRST8×8、16×16変換はRST4×4として表記される。図11はRSTの一例を示す。
縮小変換(RT)の主なアイデアは、N次元ベクトルを別空間のR次元ベクトルにマッピングすることであり、ここでR/N(R < N)は縮小因子である。
RT行列は、次のようにR×N行列である:
ISPモードが選択される場合、RSTはディセーブルにされ、RSTインデックスはシグナリングされず、なぜなら、たとえRSTが適切なすべてのパーティション・ブロックに適用されたとしても、パフォーマンスの改善はわずかであるに過ぎないからである。更に、ISPで予測された残差に対してRSTをディセーブルにすることは、符号化の複雑さを減らす可能性がある。
RST行列は4つの変換集合から選択され、それら各々は2つの変換から構成される。どの変換集合が適用されるかは、以下のように、イントラ予測モードから決定される:
[0101]
(2)そうでない場合、変換集合の選択は、以下のテーブルに従って実行される:
変換集合選択テーブル
更なる簡略化に関し、同じ変換集合の設定を用いて16×64行列の代わりに16×48行列が適用され、それらの各々は、左上の8×8ブロックの中の3つの4×4ブロックから(右下の4×4ブロックを除いている)、48個のデータを取り込む(図13に示されている)。
フォワードRST8x8は16×48行列を使用し、その結果、最初の3つの4×4領域内の中で左上の4×4領域のみにおいて非ゼロの係数を生成する。言い換えれば、RST8x8が適用される場合に、左上4×4(RST8x8によるもの)と右下4×4(一次変換によるもの)の領域のみが非ゼロの係数を有する可能性がある。その結果、右上の4×4及び左下の4×4ブロック領域(図14に示されており、「ゼロ・アウト(zero-out)」領域と呼ばれる)で何らかの非ゼロ要素が検出された場合に、RSTインデックスはコーディングされず、なぜならその場合はRSTが適用されていなかったことを示すからである。そのようなケースでは、RSTインデックスはゼロであると推定される。
通常、4×4のサブ・ブロックにインバートRSTを適用する前に、4×4のサブ・ブロック内の何らかの係数は非ゼロである可能性がある。しかしながら、場合によっては、インバートRSTがサブ・ブロックに適用される前に、4×4サブ・ブロックの幾つかの係数はゼロでなければならないように制限される。
[0108]
JVET-N0193では、現在のブロック・サイズが4×4又は8×8である場合、nonZeroSizeは8に等しく設定される(即ち、図14に示されるようなレンジ[8,15]内のスキャニング・インデックスを有する係数は0であるものとする)。その他のブロック・ディメンジョンでは、nonZeroSizeは16に等しく設定される。
2.4.2.2.7 ワーキング・ドラフトにおけるRSTの説明
7.3.2.3 シーケンス・パラメータ・セットRBSPシンタックス
st_idx[ x0 ][ y0 ]が存在しない場合、st_idx[ x0 ][ y0 ]は0に等しいと推定される。st_idxのビンはコンテキスト・コーディングされる。より具体的には、以下が適用される:
テーブル9-9 シンタックス要素及び関連する二進化
このプロセスに対する入力は、色成分インデックスcIdxと、cIdxに依存する現在のピクチャの左上サンプルに対する、現在のルマ又はクロマ・コーディング・ブロックの左上サンプルを指定するルマ又はクロマ位置(x0, y0)と、ツリー・タイプtreeTypeと、条項8.4.2で規定されているようなルマ・イントラ予測モードIntraPredModeY[ x0 ][ y0 ]と、条項7.4.7.5で規定されているようなクロマ・サンプルのイントラ予測モードを指定するシンタックス要素intra_chroma_pred_mode[ x0 ][ y0 ]と、多重変換選択インデックスtu_mts_idx[ x0 ][ y0 ]である。このプロセスの出力は変数ctxIncである。変数intraModeCtxは以下のように導出される:
cIdxが0に等しい場合、intraModeCtxは以下のように導出される:
intraModeCtx = ( IntraPredModeY[ x0 ][ y0 ] <= 1 ) ? 1 : 0
そうではない場合(cIdxは0より大きい)、intraModeCtxは以下のように導出される:
intraModeCtx = ( intra_chroma_pred_mode[ x0 ][ y0 ] >= 4 ) ? 1 : 0
変数mtsCtxは以下のように導出される:
mtsCtx = ( tu_mts_idx[ x0 ][ y0 ] == 0 && treeType != SINGLE_TREE ) ? 1 : 0
変数ctxIncは以下のように導出される:
ctxInc = ( binIdx << 1 ) + intraModeCtx + ( mtsCtx << 2 )
2.4.2.2.8 RST利用の概要
RSTは、1つのブロック内の非ゼロ係数の数が、単独及び別個のツリーに対してそれぞれ、2及び1より大きい場合にのみイネーブルにされることが可能である。更に、RSTがイネーブルにされる場合、RST適用コーディング・グループ(CG)に対する非ゼロ係数の位置についての以下の制限も要求される。
テーブル1:RSTの利用
2.4.3 サブ・ブロック変換
1に等しいcu_cbfを有するインター予測されたCUの場合、残差ブロック全体又は残差ブロックのサブ・パートが復号化されるかどうかを示すために、cu_sbt_flag をシグナリングすることができる。前者の場合、CUの変換タイプを決定するために、インターMTS情報が更に解析される。後者の場合、残差ブロックの一部は推定された適応変換でコーディングされ、残差ブロックの他の部分はゼロ・アウト化される。SBTは結合されたインター・イントラ・モードには適用されない。
[0110]
サブ・ブロック変換では、SBT-V及びSBT-H(クロマTBは常にDCT-2を使用する)のルマ変換ブロックに、位置依存変換が適用される。SBT‐HとSBT‐Vの2つのポジションは異なるコア変換に関連付けられる。より具体的には、各SBTポジションに対する水平及び垂直変換が図3に規定されている。例えばSBT-Vポジション0に対する水平及び垂直変換はそれぞれDCT-8及びDST-7である。残差TUの一方の側が32より大きい場合、対応する変換はDCT-2として設定される。従って、サブ・ブロック変換は、残差ブロックのTUタイリング、cbf、水平及び垂直変換を一緒に指定し、これは、ブロックの主要な残差がブロックの一方の側にあるケースに対するシンタックス・ショートカットと考えられてもよい。
2.4.3.1 シンタックス要素
7.3.7.5 コーディング・ユニット・シンタックス
cu_sbt_flagが存在しない場合、その値は0に等しいと推定される。
NOTE-:サブブロック変換が使用される場合、コーディング・ユニットは2つの変換ユニットに分割され;一方の変換単位は残差データを有し、他方は残差データを有しない。
1に等しいcu_sbt_quad_flagは、現在のコーディング・ユニットに対して、サブブロック変換が、現在のコーディング・ユニットの1/4サイズの変換ユニットを含むことを指定する。0に等しいcu_sbt_quad_flagは、現在のコーディング・ユニットに対して、サブブロック変換が、現在のコーディング・ユニットの1/2サイズの変換ユニットを含むことを指定する。
cu_sbt_horizontal_flagが存在しない場合、その値は0に等しいと推定される。
1に等しいcu_sbt_horizontal_flagは、現在のコーディング・ユニットが2つの変換ユニットに水平に分割されることを指定する。0に等しいcu_sbt_horizontal_flag[ x0 ][ y0 ]は、現在のコーディング・ユニットが2つの変換ユニットに垂直に分割されることを指定する。
cu_sbt_horizontal_flagが存在しない場合、その値は以下のように導出される:
- cu_sbt_quad_flagが1に等しい場合、cu_sbt_horizontal_flagはallowSbtHorQに等しく設定される。
- そうではない場合(cu_sbt_quad_flagが0に等しい)、cu_sbt_horizontal_flagはallowSbtHorHに等しく設定される。
1に等しいcu_sbt_pos_flagは、現在のコーディング・ユニットの第1変換ユニットのtu_cbf_luma, tu_cbf_cb及びtu_cbf_crは、ビットストリームに存在しないことを指定する。0に等しいcu_sbt_pos_flagは、現在のコーディング・ユニットの第2変換ユニットのtu_cbf_luma, tu_cbf_cb及びtu_cbf_crは、ビットストリームに存在しないことを指定する。
変数SbtNumFourthsTb0は以下のように導出される:
sbtMinNumFourths = cu_sbt_quad_flag ? 1 : 2 (7-117)
SbtNumFourthsTb0 = cu_sbt_pos_flag ? ( 4 - sbtMinNumFourths ) : sbtMinNumFourths (7-118)
0に等しいsps_sbt_max_size_64_flagは、サブブロック変換を許可するための最大CU幅と高さが32ルマ・サンプルであることを指定する。1に等しいsps_sbt_max_size_64_flagは、サブブロック変換を許可するための最大CU幅と高さが64ルマ・サンプルであることを指定する。
MaxSbtSize = sps_sbt_max_size_64_flag ? 64 : 32(7-33)
[0111]
2.4.4 量子化残差ドメイン・ブロック差分パルス・コード変調コーディング(QR-BDPCM)
JVET-N0413では、量子化残差ドメインBDPCM(以下、RBDPCMと表す)が提案されている。イントラ予測と同様に、予測方向にサンプル・コピーを行うことによって(水平又は垂直予測)、ブロック全体に関してイントラ予測が行われる。残差は量子化され、量子化された残差とその予測子(水平又は垂直)量子化値との間のデルタがコーディングされる。
[0112]
サイズがM(行)×N(列)のブロックである場合に、ri,j,0≦i≦M-1,0≦j≦N-1を、上又は左ブロック境界サンプルからのフィルタリングされていないサンプルを使用して(ライン毎に予測ブロックにわたって左隣接ピクセル値をコピーして)水平に又は(予測されるブロックの各ラインに上隣接ラインをコピーして)垂直にイントラ予測を実行した後の予測残差であるとする。Q(ri,j),0≦i≦M-1,0≦j≦N-1を、残差ri,jの量子化されたバージョンとし、ここで、残差は元のブロックと予測されたブロックの値の差分である。次いで、ブロックDPCMが量子化された残差サンプルに適用され、要素r~ i,jを有する修正されたM×NアレイR~という結果が得られる。垂直BDPCMがシグナリングされる場合には:
[0113]
2.5.1 変換適用ブロックの係数コーディング
HEVCでは、コーディング・ブロックの変換係数は、重複しない係数グループ(又はサブブロック)を用いてコーディングされ、各CGは、コーディング・ブロックの4×4ブロックの係数を含む。コーディング・ブロック内のCGとCG内の変換係数は、予め定義されたスキャン順序に従ってコーディングされる。
変換係数レベルの絶対値に関連するシンタックス要素の確率モデルの選択は、ローカルな近隣における絶対値レベルの値又は部分的に再構成された絶対値レベルの値に依存する。使用されるテンプレートは図18に示されている。
更に、同じHEVCスカラー量子化が、依存スケール量子化(dependent scale quantization)と呼ばれる新たな概念とともに使用される。依存スカラー量子化とは、変換係数の許容可能な再構成値の集合が、再構成順序において現在の変換係数レベルに先行する変換係数レベルの値に依存しているアプローチを指す。このアプローチの主な効果は、HEVCで使用されるような従来の独立スカラー量子化と比較して、許容可能な再構成ベクトルが、N次元ベクトル空間(Nは変換ブロックにおける変換係数の数を表す)において、より高密度に詰め込まれることである。これは、N次元単位体積あたりの許容可能な再構成ベクトルの所与の平均数に対して、入力ベクトルと最も近い再構成ベクトルとの間の平均歪みが低減されることを意味する。依存スカラー量子化のアプローチは:(a)異なる再構成レベルを有する2つのスカラー量子化器を定義すること、及び(b)2つのスカラー量子化器の間のスイッチングのためのプロセスを定義することによって実現される。
2.5.1.3 シンタックス及びセマンティクス
7.3.7.11 残差コーディング・シンタックス
2.5.2 TSコーディングされたブロック及びQR-BDPCMコーディングされたブロックの係数コーディング
QR-BDPCMはTSコーディングされたブロックのコンテキスト・モデリング方法に従う。
レギュラー残差コーディングの場合と比較して、TSに対する残差コーディングは以下の変更を含む:
[0156]
(7)コンテキスト・コーディングされたビンのサンプル当たりの数に対する制限、1ブロック内のサンプル当たり2つのビン
2.5.2.1 シンタックス及びセマンティクス
7.3.6.10 変換ユニット・シンタックス
テーブル9-15 コンテキスト・コーディング・ビンによるctxIncのシンタックス要素に対する割り当て
ここで開示される技術の実施形態は、既存の実装の欠点を克服し、それによって、より高いコーディング効率を有するビデオ・コーディングを提供する。開示される技術に基づく残差コーディングのためのコンテキスト・モデリングのための方法は、現在及び将来双方のビデオ・コーディング規格を強化する可能性があり、種々の実装について説明される以下の実施例において解明される。以下に提供される開示される技術の実施例は、一般的な概念を説明しており、限定として解釈されるようには意図されていない。実施例において、明示的に別意を指定しない限り、これらの実施例で説明される種々の特徴は組み合わせることが可能である。
RSTにおける変換行列の選択
1.RSTが適用されるサブ領域は、ブロックの左上部分ではないサブ領域である可能性がある。
a. 一例では、RSTは、ブロックの右上、右下、左下、又は中央のサブ領域に適用される可能性がある。
b. RSTが適用されるサブ領域は、イントラ予測モード及び/又は一次変換行列(例えば、DCT-II、DST-VII、恒等変換)に依存する可能性がある。
2.RSTで使用される変換セット及び/又は変換行列の選択は、色成分に依存する可能性がある。
a.一例では、変換行列の1セットがルマ(又はG)成分に対して使用され、1セットがクロマ成分(又はB/R)成分に対して使用されてもよい。
b.一例では、各色成分は、1セットに対応してもよい。
c.一例では、少なくとも1つの行列は、異なる色成分に対する2つ又は複数のセットの何れにおいても相違する。
3.RSTで使用される変換セット及び/又は変換行列の選択は、イントラ予測方法(例えば、CCLM、多重参照ライン・ベースのイントラ予測法、行列ベースのイントラ予測法)に依存する可能性がある。
a.一例では、変換行列の1セットがCCLMコーディングされたブロックに対して使用され、他のものが非CCLMコーディング・ブロックに対して使用されてもよい。
b.一例では、変換行列の1セットがノーマルなイントラ予測コーディングされたブロックに対して使用され、他のものが多重参照ラインが有効なブロック(即ち、イントラ予測のために隣接するラインを使用しない)に対して使用されてもよい。
c.一例では、変換行列の1セットがジョイント・クロマ残差コーディングを用いたブロックに対して使用され、他のものはジョイント・クロマ残差コーディングが適用されないブロックに対して使用されてもよい。
d.一例では、少なくとも1つの行列は、異なるイントラ予測方法に対する2つ又は複数のセットの何れにおいても相違する。
e.あるいは、RSTは、特定のイントラ予測方向及び/又は特定のコーディング・ツール、例えば、CCLM、及び/又はジョイント・クロマ残差コーディング、及び/又は特定の色成分(例えば、クロマ)でコーディングされたブロックに対してディセーブルにされてもよい。
4.RSTで使用される変換セット及び/又は変換行列の選択は、一次変換に依存する可能性がある。
a.一例では、1つのブロックに適用される1次変換が恒等変換である場合(例えば、TSモードが1つのブロックに適用される)、RSTで使用される変換セット及び/又は変換行列は、他の種類の1次変換とは異なる可能性がある。
b.一例では、1つのブロックに適用される水平及び垂直1-D一次変換が同じ基底(例えば、双方ともDCT-II)である場合、RSTで使用される変換セット及び/又は変換行列は、異なる方向(垂直又は水平)に対する異なる基底によるその一次変換とは異なる可能性がある。
RSTサイド情報のシグナリング及び残差コーディング
5.RSTのサイド情報(例えば、st_idx)をシグナリングするかどうか、及び/如何にして行うかは、(スキャニング順序で)ブロック内で最後の非ゼロ係数に依存してもよい。
a.一例では、最後の非ゼロ係数が、RSTが適用されたCG内に位置する場合に限り、RSTがイネーブルにされてもよく、RSTのインデックスがシグナリングされてもよい。
b.一例では、最後の非ゼロ係数が、RSTが適用されたCG内に位置していない場合、RSTはディセーブルにされ、RSTのシグナリングはスキップされる。
6.RSTのサイド情報(例えば、st_idx)をシグナリングするかどうか、及び/如何にして行うかは、ブロック全体ではなく、1ブロックの部分的な領域内の係数に依存してもよい。
a.一例では、部分的な領域が、RSTが適用されるCGとして定義されてもよい。
b.一例では、部分的な領域は、ブロックのスキャニング順序又は逆のスキャニング順序における最初の又は最後のM個の(例えば、M=1、又は2) CGとして定義されてもよい。
i. 一例では、Mはブロック・ディメンジョンに依存する。
ii.一例では、ブロック・サイズが4xN及び/又はNx4(N>8)である場合に、Mは2に設定される。
iii.一例では、ブロック・サイズが4x8及び/又は8x4及び/又はWxH(W≧8,H≧8)である場合に、Mは1に設定される。
c.一例では、これは部分的な領域内の非ゼロ係数の位置に依存する可能性がある。
d.一例では、これは部分的な領域内の非ゼロ係数のエネルギー(2乗和又は絶対値の和など)に依存する可能性がある。
e.一例では、これはブロック全体ではなく、1ブロックの部分的な領域内の非ゼロ係数の数に依存する可能性がある。
i.1ブロックの部分的な領域内の非ゼロ係数の数が閾値より小さい場合、RSTのサイド情報のシグナリングはスキップされてもよい。
ii.一例では、閾値は、スライス・タイプ/ピクチャ・タイプ/パーティション・ツリー・タイプ(デュアル又はシングル)/ビデオ・コンテンツ(スクリーン・コンテンツ又はカメラでキャプチャされたコンテンツ)に依存してもよい。
iii.一例では、閾値は、4:2:0又は4:4:4のようなカラー・フォーマット、及び/又はY又はCb/Crのような色成分に依存してもよい。
7.RSTが適用される可能性のあるCGに非ゼロ係数が存在しない場合、RSTはディセーブルにされるものとする。
a.一例では、RSTが1ブロックに適用される場合、RSTが適用される少なくとも1つのCGは、少なくとも1つの非ゼロ係数を含まなければならない。
b.一例では、4×N及び/又はN×4(N>8)に関し、RSTが適用される場合、最初の2つの4×4CGは少なくとも1つの非ゼロ係数を含まなければならない。
c.一例では、4×8及び/又は8×4に関し、RSTが適用される場合、左上4×4は少なくとも1つの非ゼロ係数を含まなければならない。
d.一例では、WxH(W>=8及びH>=8)に関し、RSTが適用される場合、左上4×4は少なくとも1つの非ゼロ係数を含まなければならない。
e.適合ビットストリームは、上記の条件の1つ以上を満たさなければならない。
8.RST関連のシンタックス要素は、残差(例えば、変換係数/直接的に量子化されるもの)をコーディングする前にシグナリングされてもよい。
a.一例では、ゼロ・アウト領域における非ゼロ係数の数(例えば、numZeroOutSigCoeff)及びブロック全体における非ゼロ係数の数(例えば、numSigCoeff)のカウントは、係数の解析プロセスで除外される。
b.一例では、RST関連のシンタックス要素(例えば、st_idx)は、残差コーディングの前にコーディングされてもよい。
c.RST関連シンタックス要素は、条件付きで(例えば、コーディングされたブロック・フラグ、TSモードの使用法に従って)シグナリングされてもよい。
iv.一例では、RST関連シンタックス要素(例えば、st_idx)は、コーディングされたブロック・フラグのシグナリングの後、又はTS/MTS関連シンタックス要素のシグナリングの後にコーディングされてもよい。
v.一例では、TSモードがイネーブルにされている場合(例えば、復号化されたtransform_skip_flagが1に等しい場合)、RST関連シンタックス要素のシグナリングはスキップされる。
d.残りの関連シンタックスは、ゼロ・アウトCGに対してシグナリングされない可能性がある。
e.残差をどのようにコーディングするか(例えば、スキャニング順序、二進化、復号化されるシンタックス、コンテキスト・モデリング)は、RSTに依存してもよい。
i.一例では、対角線上向き右スキャニング順序ではなく、ラスタ・スキャニング順序が適用されてもよい。
1)ラスタ・スキャニング順序は左から右へ、上から下へ、又はその逆の順序である。
2)代替的に、対角線上向き右スキャニング順序の代わりに、垂直スキャニング順序(上から下へ、左から右へ、又はその逆の順序)が適用されてもよい。
3)代替的に、更には、コンテキスト・モデリングが修正されてもよい。
a.一例では、コンテキスト・モデリングは、右、下、右下の近隣を使用するのではなく、テンプレートの中で、スキャン順序で最近のN個の近隣である以前にコーディングされた情報に依存してもよい。
b.一例では、コンテキスト・モデリングは、スキャンされたインデックスに従って、テンプレートの中で、以前にコーディングされた情報(例えば、現在のインデックスが0に等しいと仮定して、-1,-2,...)に依存してもよい。
ii.一例では、異なる二値化方法(例えば、ライス・パラメータ導出)を適用して、RSTコーディングされたブロック及びRSTコーディングされてないブロックに関連する残差をコーディングしてもよい。
iii.一例では、特定のシンタックス要素のシグナリングは、RSTコーディングされたブロックに対してスキップされてもよい。
1)RSTが適用されるCGに対するCGコード化ブロック・フラグ(coded_sub_block_flag)のシグナリングはスキップされてもよい。
a.一例では、RST8x8が対角線スキャン順序で最初の3つのCGに適用された場合、CGコード化ブロック・フラグのシグナリングは、第2及び第3CG、例えば、ブロックの左上8x8領域の右上4×4CG及び左下4×4CGについてスキップされる。
i.代替的に、更に、対応するCGコード化ブロック・フラグは0であると推定される、即ち、全ての係数はゼロである。
b.一例では、RSTが1ブロックに適用される場合に、CGコード化ブロック・フラグのシグナリングは、スキャニング順序で最初のCG(又は逆のスキャニング順序で最後のCG)に対してスキップされる。
ii.代替的に、更に、ブロック内の左上CGに対するCGコード化ブロック・フラグは、1であると推定される、即ち、それは少なくとも1つの非ゼロ係数を含む。
c.8×8ブロックの一例が図21に示されている。RST8x8又はRST4x4が8x8ブロックに適用される場合、CG0のcoded_sub_block_flagは1であると推定され、CG1及びCG2のcoded_sub_block_flagは0であると推定される。
2)特定の座標に対する係数の大きさ及び/又は符号フラグのシグナリングはスキップされてもよい。
a.一例では、スキャン順序における1つのCGに対するインデックスが、非ゼロ係数が存在し得る最大許容インデックスより小さくない場合(例えば、セクション0におけるnonZeroSize)、係数のシグナリングはスキップされてもよい。
b.一例では、sig_coeff_flag, abs_level_gtX_flag, par_level_flag, abs_remainder, coeff_sign_flag, dec_abs_levelのようなシンタックス要素のシグナリングは、スキップされてもよい。
3)代替的に、残差のシグナリング(例えば、CGコード化ブロック・フラグ、係数の大きさ、及び/又は特定の座標の符号フラグ)は維持されるかもしれないが、コンテキスト・モデリングは、他のCGと異なるように修正される可能性がある。
iv.一例では、RSTが適用されるCG及び他のCGにおける残差のコーディングは異なっていてもよい。
1)上記の条項に関し、それらはRSTが適用されるCGにのみ適用されてもよい。
9.RST関連シンタックス要素は、変換スキップ及び/又はMTSインデックスのような他の変換指示の前にシグナリングされてもよい。
a.一例では、変換スキップのシグナリングは、RST情報に依存してもよい。
i.一例では、RSTがブロック内で適用される場合、変換スキップ指示はシグナリングされず、ブロックについて0であると推定される。
b.一例では、MTSインデックスのシグナリングは、RST情報に依存してもよい。
i.一例では、RSTがブロック内で適用される場合、1つ以上のMTS変換指示は信号化されず、ブロックについて使用されないと推定される。
10.1つのブロック内の異なる部分に対する算術符号化において、異なるコンテキスト・モデリング法を使用することが提案される。
a.一例では、ブロックは、スキャニング順序における最初のM個のCGと残りのCGという2つの部分であるように扱われる。
i.一例において、Mは1に設定される。
ii.一例において、Mは4xN及びNx4(N>8)ブロックに対して2に設定され、他のすべての場合に対して1に設定される。
b.一例では、ブロックは、RSTが適用されるサブ領域とRSTが適用されないサブ領域という2つの部分であるように扱われる。
i.RST4x4が適用される場合、RSTが適用されるサブ領域は、現在のブロックの最初の1つ又は2つのCGである。
ii.RST4x4が適用される場合、RSTが適用されるサブ領域は、現在のブロックの最初の3つのCGである。
c.一例では、1つのブロック内の最初の部分に対するコンテキスト・モデリング・プロセスにおいて、以前にコーディングされた情報の使用をディセーブルにするが、2番目の部分に対してはそれをイネーブルにすることが提案される。
d.一例では、第1CGを復号化する場合に、残りの1つ以上のCGの情報は、使用されることを許容されない場合がある。
i.一例では、第1CGに対してCGコード化ブロック・フラグをコーディングする場合に、第2CGの値(例えば右又は下)は考慮されない。
ii.一例では、第1CGに対するCGコード化ブロック・フラグをコーディングする場合に、第2及び第3CGの値(例えば、WxH(W≧8及びH≧8)に対する右及び下のCG)は考慮されない。
iii.一例では、現在の係数をコーディングする場合に、コンテキスト・テンプレートにおける近隣が異なるCG内にある場合、この近隣からの情報は、使用されるように許可されない。
e.一例では、RSTが適用される領域内の係数を復号化する場合に、RSTが適用されない残りの領域の情報は、使用されるように許可されない場合がある。
f.代替的に、更に、上記方法は特定の条件下で適用されてもよい。
i.条件は、RSTがイネーブルであるかどうかを含んでもよい。
ii.条件は、ブロック寸法を含んでもよい。
RSTサイド情報の算術コーディングにおけるコンテキスト・モデリング
11.RSTインデックスをコーディングする場合に、コンテキスト・モデリングは、明示的又は暗黙的な多重変換選択(MTS)がイネーブルにされているかどうかに依存してもよい。
a.一例では、暗黙のMTSがイネーブルである場合に、同じイントラ予測モードでコーディングされたブロックに対して、異なるコンテキストが選択されてもよい。
i.一例では、形状(正方形又は非正方形)のようなブロック寸法が、コンテキストを選択するために使用される。
b.一例では、明示的なMTSに対してコーディングされる変換インデックス(例えば、tu_mts_idx)をチェックする代わりに、変換行列の基底が使用されてもよい。
i.一例では、水平及び垂直1-D変換の両方についてDCT-IIを用いた変換マトリクス基底に対して、対応するコンテキストは、他の種類の変換マトリクスとは相違していてもよい。
12.RSTインデックスをコーディングする場合に、コンテキスト・モデリングはCCLMがイネーブルにされているかどうかに依存してもよい(例えば、sps_cclm_enabled_flag)。
a.代替的に、RSTインデックス・コーディングのためのコンテキストを選択することをイネーブルにするかどうか、又はどのように選択するかは、CCLMが1つのブロックに適用されるかどうかに依存してもよい。
b.一例では、コンテキスト・モデリングは、現在のブロックに対してCCLMがイネーブルにされているかどうかに依存してもよい。
i.一例では次のとおりであってもよい:
the intraModeCtx = sps_cclm_enabled_flag? ( intra_chroma_pred_mode[ x0 ][ y0 ] is CCLM: intra_chroma_pred_mode[ x0 ][ y0 ] is DM) ? 1 : 0
c.代替的に、RSTインデックス・コーディングのためのコンテキストを選択することをイネーブルにするかどうか、又はどのように選択するかは、現在のクロマ・ブロックがDMモードでコーディングされるかどうかに依存してもよい。
i.一例では次のとおりであってもよい:
intraModeCtx = ( intra_chroma_pred_mode[ x0 ][ y0 ] == (sps_cclm_enabled_flag ? 7:4) ) ? 1 : 0
13.RSTインデックスをコーディングする場合に、コンテキスト・モデリングはブロック・ディメンジョン/分割深度(例えば、四分木深度及び/又はBT/TT深度)に依存してもよい。
14.RSTインデックスをコーディングする場合に、コンテキスト・モデリングは、カラー・フォーマット及び/又は色成分に依存してもよい。
15.RSTインデックスをコーディングする場合に、コンテキスト・モデリングは、イントラ予測モード及び/又はMTSインデックスから独立していてもよい。
16.RSTインデックスをコーディングする場合に、第1及び/又は第2ビンは、1つのコンテキストのみでコンテキスト・コーディングされるか、又はバイパス・コーディングされる可能性がある。
条件下でRSTプロセスを起動すること
17.インバースRSTプロセスを起動するかどうかは、CGコード化ブロック・フラグに依存してもよい。
a.一例では、左上のCGコード化ブロック・フラグがゼロである場合、プロセスを起動する必要はない。
i.一例では、左上CGコード化ブロック・フラグがゼロであり、ブロック・サイズが4xN/Nx4(N>8)と等しくない場合、プロセスを起動する必要はない。
b.一例では、スキャニング順序で最初の2つのCGコード化ブロック・フラグが両方ともゼロに等しい場合、プロセスを起動する必要はない。
i.一例では、スキャニング順序で最初の2つのCGコード化ブロック・フラグが両方ともゼロに等しく、ブロック・サイズが4xN/Nx4(N>8)に等しい場合、プロセスを起動する必要はない。
18.インバースRSTプロセスを起動するかどうかは、ブロック寸法に依存してもよい。
a.一例では、4×8/8×4のような特定のブロック寸法に対して、RSTはディセーブルにされてもよい。代替的に、更に、RST関連シンタックス要素のシグナリングはスキップされてもよい。
以下の例示的な実施形態において、JVET-N0193のトップにおける変更は太字及び斜体で強調されている。削除されるテキストは、二重括弧でマーキングされる(例えば、[[a]]は、文字“a”の削除を示す)。
5.1 実施形態#1
RSTインデックスのシグナリングは、ブロック全体ではなく、ブロックのサブ領域内の非ゼロ係数の数に依存する。
7.3.6.11 残差コーディング・シンタックス
[0170]
RSTは、特定のCGのコーディングされたブロック・フラグに従って起動されない場合がある。
8.7.4 スケーリングされた変換係数に対する変換プロセス
8.7.4.1 概要
このプロセスに対する入力は次のとおりである:
- ルマ・ロケーション( xTbY, yTbY ):現在のピクチャの左上ルマ・サンプルに対する、現在のルマ変換ブロックの左上サンプルを指定する。
- 変数nTbW:現在の変換ブロックの幅を指定する。
- 変数nTbH :現在の変換ブロックの高さを指定する。
- 変数cIdx:現在のブロックの色成分を指定する。
- スケーリングされた変換係数の(nTbW)x(nTbH)アレイd[ x ][ y ]:x = 0..nTbW - 1, y = 0..nTbH - 1
このプロセスの出力は、残差サンプルの (nTbW)x(nTbH)アレイr[x][y]であり、x = 0..nTbW - 1, y = 0..nTbH - 1である。
変数bInvokeSTは0に設定され、更に、以下の条件のうちの1つが真である場合には1に修正される:
- coded_sub_block_flag[0][0]が1に等しく、nTbW x nTbH !=32である場合
- coded_sub_block_flag[0][0]及びcoded_sub_block_flag[0][1]が1に等しく、nTbWが4に等しく、nTbHが8より大きい場合
- coded_sub_block_flag[0][0]及びcoded_sub_block_flag[1][0]が1に等しく、nTbWが8より大きく、nTbHが4に等しい場合
bInvokeSTが1に等しく、st_idx[ xTbY ][ yTbY ]が0に等しくない場合は、以下が適用される:
1.変数nStSize, log2StSize, numStX, numStY,及びnonZeroSizeは、以下のように導出される:
- nTbW及びnTbH双方が8以上である場合、log2StSizeは3に設定され、nStOutSizeは48に設定される。
- そうではない場合、log2StSizeは2に設定され、nStOutSizeは16に設定される。
- nStSizeは( 1 << log2StSize )に設定される。
- nTbHは4に等しく、nTbWは8より大きく、numStXは2に等しく設定される。
- そうではない場合、numStXは1に等しく設定される。
- nTbWは4に等しく、nTbHは8より大きい場合、numStYは2に等しく設定される。
- そうではない場合、numStYは1に等しく設定される。
- nTbW及びnTbH双方が4に等しいか、又はnTbW及びnTbH双方が8に等しい場合、nonZeroSizeは8に等しく設定される。
- そうではない場合、nonZeroSizeは16に等しく設定される。
2.xSbIdx = 0..numStX - 1及びySbIdx = 0..numStY - 1に関し、以下が適用される:
- 変数アレイu[ x ](x = 0..nonZeroSize - 1)は、以下のようにして導出される:
xC = ( xSbIdx << log2StSize ) + DiagScanOrder[ log2StSize ][ log2StSize ][ x ][ 0 ]
yC = ( ySbIdx << log2StSize ) + DiagScanOrder[ log2StSize ][ log2StSize ][ x ][ 1 ]
u[ x ] = d[ xC ][ yC ]
- u[ x ](x = 0..nonZeroSize - 1)は、条項8.7.4.4で指定されるような1次元変換プロセスを起動することによって、変数アレイv[x](x = 0..nStOutSize - 1)に変換され、そのプロセスは、スケーリングされた変換係数の変換入力長nonZeroSizeと、変換出力長nStOutSizeと、リストu[ x ](x = 0..nonZeroSize - 1)と、変換セット選択のためのインデックスstPredModeIntraと、変換セットにおける変換選択のためのインデックスst_idx[ xTbY ][ yTbY ]とを入力とし、出力はリストv[x](x = 0..nStOutSize - 1)である。変数stPredModeIntraは、条項 8.4.4.2.1.で指定されるpredModeIntraに設定される。
- アレイd[ ( xSbIdx << log2StSize ) + x ][ ( ySbIdx << log2StSize ) + y ](x = 0..nStSize - 1, y = 0..nStSize - 1)は、以下のように導出される:
- stPredModeIntraが34以下であるか、又はINTRA_LT_CCLM, INTRA_T_CCLM,又はINTRA_L_CCLMに等しい場合、以下が適用される:
d[ ( xSbIdx << log2StSize ) + x ][ ( ySbIdx << log2StSize ) + y ] = ( y < 4 ) ? v[ x + ( y << log2StSize ) ] : ( ( x < 4 ) ? v[ 32 + x + ( ( y - 4 ) << 2 ) ] : d[ ( xSbIdx << log2StSize ) + x ][ ( ySbIdx << log2StSize ) + y ] )
- そうではない場合、以下が適用される:
d[ ( xSbIdx << log2StSize ) + x ][ ( ySbIdx << log2StSize ) + y ] = ( y < 4 ) ? v[ y + ( x << log2StSize ) ] : ( ( x < 4 ) ? v[ 32 + ( y - 4 ) + ( x << 2 ) ] : d[ ( xSbIdx << log2StSize ) + x ][ ( ySbIdx << log2StSize ) + y ] )
変数implicitMtsEnabledは、以下のように導出される:
- sps_mts_enabled_flagが1に等しく、以下の条件のうちの何れかが真である場合、implicitMtsEnabledは1に等しく設定される:
- IntraSubPartitionsSplitTypeがISP_NO_SPLITに等しくないこと
- cu_sbt_flagが1に等しく、Max( nTbW, nTbH )が32以下であること
- sps_explicit_mts_intra_enabled_flag及びsps_explicit_mts_inter_enabled_flagが両方とも0に等しく、CuPredMode[ xTbY ][ yTbY ]がMODE_INTRAに等しい
- そうではない場合、implicitMtsEnabledは0に等しく設定される。
水平変換カーネルを指定する変数trTypeHorと垂直変換カーネルを指定する変数trTypeVerは、以下のように導出される:
- cIdxが0より大きい場合、trTypeHorとtrTypeVerは0に等しく設定される。
- そうではない場合、implicitMtsEnabledが1に等しいならば、以下が適用される:
- IntraSubPartitionsSplitTypeがISP_NO_SPLITに等しくない場合、trTypeHorとtrTypeVerは、intraPredModeに依存してテーブル8-15で指定される。
- そうではない場合、cu_sbt_flagが1に等しいならば、trTypeHorとtrTypeVerは、cu_sbt_horizontal_flagとcu_sbt_pos_flagに依存してテーブル8-14で指定される。
- そうではない場合(sps_explicit_mts_intra_enabled_flag及び sps_explicit_mts_inter_enabled_flagは0に等しい)、trTypeHor及びtrTypeVerは以下のように導出される:
trTypeHor = ( nTbW >= 4 && nTbW <= 16 && nTbW <= nTbH ) ? 1 : 0 (8-1029)
trTypeVer = ( nTbH >= 4 && nTbH <= 16 && nTbH <= nTbW ) ? 1 : 0 (8-1030)
- そうではない場合、trTypeHor及びtrTypeVerは、tu_mts_idx[ xTbY ][ yTbY ]に依存してテーブル8-13で指定される。
変数nonZeroW及びnonZeroHは、以下のように導出される:
nonZeroW = Min( nTbW, ( trTypeHor > 0 ) ? 16 : 32 ) (8-1031)
nonZeroH = Min( nTbH, ( trTypeVer > 0 ) ? 16 : 32 ) (8-1032)
残差サンプルの(nTbW)x(nTbH)アレイrは、以下のように導出される:
1.nTbHが1より大きい場合、スケーリングされた変換係数d[ x ][ y ](x = 0..nonZeroW - 1, y = 0..nonZeroH - 1)の各々の(垂直)列は、条項8.7.4.2で規定されるような1次元変換プロセスを、各々の列x = 0..nonZeroW - 1について起動することによって、e[ x ][ y ](x = 0..nonZeroW - 1, y = 0..nTbH - 1)に変換され、そのプロセスは、変換ブロックの高さnTbHと、スケーリングされた変換係数の非ゼロ高さnonZeroHと、リストd[ x ][ y ](y = 0..nonZeroH - 1)と、trTypeVerに等しく設定される変換タイプ変数trTypeとを入力とし、出力はリストe[ x ][ y ](y = 0..nTbH - 1)である。
2.nTbH and nTbWが両方とも1より大きい場合、中間サンプル値g[ x ][ y ](x = 0..nonZeroW - 1, y = 0..nTbH - 1)は、以下のように導出される:
g[ x ][ y ] = Clip3( CoeffMin, CoeffMax, ( e[ x ][ y ] + 64 ) >> 7 ) (8-1033)
nTbWが1より大きい場合、結果のアレイg[ x ][ y ](x = 0..nonZeroW - 1, y = 0..nTbH - 1)の各々の(水平)行は、条項8.7.4.2で規定されるような1次元変換プロセスを、各々の行y = 0..nTbH - 1について起動することによって、g[ x ][ y ](x = 0..nonZeroW - 1, y = 0..nTbH - 1)に変換され、そのプロセスは、変換ブロックの幅nTbWと、結果のアレイg[ x ][ y ]の非ゼロ幅nonZeroWと、リストg[ x ][ y ](x = 0..nonZeroW - 1)と、trTypeHorに等しく設定される変換タイプ変数trTypeとを入力とし、出力はリストr[ x ][ y ](x = 0..nTbW - 1)である。
RSTインデックスのコンテキスト・モデリングを改訂する。
5.3.1 代替例#1
9.5.4.2.8 シンタックス要素st_idxに対するctxIncの導出プロセス
このプロセスに対する入力は、色成分インデックスcIdxと、cIdxに依存する現在のピクチャの左上サンプルに対する現在のルマ又はクロマ・コーディング・ブロックの左上サンプルを指定するルマ又はクロマ位置(x0, y0)と、ツリー・タイプtreeTypeと、条項8.4.2で指定されるようなルマ・イントラ予測モードIntraPredModeY[ x0 ][ y0 ] と、条項7.4.7.5で指定されるようなクロマ・サンプルのイントラ予測モードを指定するシンタックス要素intra_chroma_pred_mode[ x0 ][ y0 ]と、ブロック幅nTbW及び高さnTbHと、多重変換選択インデックスtu_mts_idx[ x0 ][ y0 ]とである。
このプロセスの出力は変数ctxIncである。
変数intraModeCtxは、以下のように導出される:
cIdxが0に等しい場合、intraModeCtxは以下のように導出される:
intraModeCtx = ( IntraPredModeY[ x0 ][ y0 ] <= 1 ) ? 1 : 0
そうではない場合(cIdxは0より大きい)、intraModeCtxは以下のように導出される:
intraModeCtx = ( intra_chroma_pred_mode[ x0 ][ y0 ] >= 4 ) ? 1 : 0
変数mtsCtxは、以下のように導出される:
mtsCtx = ( (sps_explicit_mts_intra_enabled_flag ? tu_mts_idx[ x0 ][ y0 ] == 0 : nTbW==nTbH) && treeType != SINGLE_TREE ) ? 1 : 0
変数ctxIncは、以下のように導出される:
ctxInc = ( binIdx << 1 ) + intraModeCtx + ( mtsCtx << 2 )
5.3.2 代替例#2
このプロセスに対する入力は、色成分インデックスcIdxと、cIdxに依存する現在のピクチャの左上サンプルに対する現在のルマ又はクロマ・コーディング・ブロックの左上サンプルを指定するルマ又はクロマ位置(x0, y0)と、ツリー・タイプtreeTypeと、条項8.4.2で指定されるようなルマ・イントラ予測モードIntraPredModeY[ x0 ][ y0 ] と、条項7.4.7.5で指定されるようなクロマ・サンプルのイントラ予測モードを指定するシンタックス要素intra_chroma_pred_mode[ x0 ][ y0 ]と、多重変換選択インデックスtu_mts_idx[ x0 ][ y0 ]とである。
このプロセスの出力は変数ctxIncである。
変数intraModeCtxは、以下のように導出される:
cIdxが0に等しい場合、intraModeCtxは以下のように導出される:
intraModeCtx = ( IntraPredModeY[ x0 ][ y0 ] <= 1 ) ? 1 : 0
そうではない場合(cIdxは0より大きい)、intraModeCtxは以下のように導出される:
intraModeCtx = ( intra_chroma_pred_mode[ x0 ][ y0 ] >= 4 ) ? 1 : 0
変数mtsCtxは、以下のように導出される:
mtsCtx = ( tu_mts_idx[ x0 ][ y0 ] == 0 && treeType != SINGLE_TREE ) ? 1 : 0
変数ctxIncは、以下のように導出される:
ctxInc = ( binIdx << 1 ) + intraModeCtx + ( mtsCtx << 2 ) ]]
[0172]
図22Aは、ビデオ処理装置2210のブロック図である。装置2210は、本願で説明される1つ以上の方法を実装するために使用されてもよい。装置2210は、スマートフォン、タブレット、コンピュータ、モノのインターネット(IoT)受信機などで具体化されてもよい。装置2210は、1つ以上のプロセッサ2212、1つ以上のメモリ2214、及びビデオ処理ハードウェア2216を含んでもよい。プロセッサ2212は、本文書で説明される1つ以上の方法を実装するように構成されてもよい。メモリ(memories)2214は、本願で説明される方法及び技術を実装するために使用されるデータ及びコードを記憶するために使用されてもよい。ビデオ処理ハードウェア2216は、ハードウェア回路において、本文書で説明される幾つかの技術を実装するために使用されてもよい。
[0173]
図22Bは、本願で開示される技術が実装され得るビデオ処理システムの別の例のブロック図である。図22Bは、本願で開示される種々の技術が実装され得る例示的なビデオ処理システム2220を示すブロック図である。種々の実装は、システム2220の構成要素の一部又は全部を含んでもよい。システム2220は、ビデオ・コンテンツを受信するための入力2222を含んでもよい。ビデオ・コンテンツは、生の又は非圧縮のフォーマット、例えば、8又は10ビットの多重成分ピクセル値で受信されてもよいし、又は圧縮された又は符号化されたフォーマットで受信されてもよい。入力2222は、ネットワーク・インターフェース、周辺バス・インターフェース、又はストレージ・インターフェースを表現している可能性がある。ネットワーク・インターフェースの例は、イーサーネット、光受動ネットワーク(PON)などの有線インターフェースや、Wi-Fi又はセルラー・インターフェースのような無線インターフェースを含む。
現在のビデオ・ブロックの特徴に基づいて、縮小二次変換を現在のビデオ・ブロックに適用するための変換セット又は変換行列を選択するステップ;及び
現在のビデオ・ブロックと、現在のビデオ・ブロックを構成するビデオのビットストリーム表現との間の変換の一部として、選択された変換セット又は変換行列を、現在のビデオ・ブロックの一部分に適用するステップ;
を含む方法。
現在のビデオ・ブロックに関連する1つ以上の係数に基づいて、現在のビデオ・ブロックのビットストリーム表現における縮小二次変換(RST)の適用のためのサイド情報のシグナリングの選択的な包含に関する決定を行うステップ;及び
決定に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現を含むビデオとの間の変換を実行するステップ;
を含む方法。
縮小二次変換(RST)を現在のビデオ・ブロックに適用することに関し、現行のビデオ・ブロックのビットストリーム表現を構成するステップであって、RSTに関連するシンタックス要素は、残差情報をコーディングする前に、ビットストリーム表現においてシグナリングされる、ステップ;及び
その構成に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行するステップ;
を含む方法。
縮小二次変換(RST)を現在のビデオ・ブロックに適用するために、現在のビデオ・ブロックのビットストリーム表現を構成するステップであって、RSTに関連するシンタックス要素は、変換スキップ指示又は多重変換セット(MTS)インデックスの何れかの前にビットストリーム表現でシグナリングされる、ステップ;及び
その構成に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行するステップ;
を含む方法。
現在のビデオ・ブロックの特徴に基づいて、縮小二次変換(RST)のインデックスをコーディングするためのコンテキスト・モデルを構成するステップ;及び
その構成に基づいて、現在のビデオ・ブロックと、現在のビデオ・ブロックを含むビデオのビットストリーム表現との間の変換を実行するステップ;
を含む方法。
現在のビデオ・ブロックの特徴に基づいて、現在のビデオ・ブロックに対するインバース縮小二次変換(RST)プロセスの選択的適用に関する決定を行うステップ;及び
決定に基づいて、現在のビデオ・ブロックと、現在のビデオ・ブロックを含むビデオのビットストリーム表現との間の変換を実行するステップ;
を含む方法。
ビデオの現在のビデオ・ブロックと、ビデオのコーディングされた表現との間の変換を実行するステップを含み、変換は以下を含む方法。
選択した変換セット又は変換行列を現在のビデオ・ブロックに適用すること;
を含み、前記二次変換ツールを使用して:
符号化の間に、量子化の前に、現在のビデオ・ブロックの残差に適用されたフォワード一次変換の出力に、フォワード二次変換が適用されるか、又は
復号化の間に、インバース一次変換を適用する前に、インバース二次変換が、現在のビデオ・ブロックの逆量子化の出力に適用される。
ビデオの現在のビデオ・ブロックとビデオのコーディングされた表現との間の変換を実行するステップを含み、変換は、現在のビデオ・ブロックの左上の部分ではない現在のビデオ・ブロックのサブ領域に二次変換ツールを適用することを含み、
二次変換ツールを使用して:
符号化の間に、量子化の前に、現在のビデオ・ブロックのサブ領域の残差に適用されたフォワード一次変換の出力に、フォワード二次変換が適用されるか、又は
復号化の間に、インバース一次変換を適用する前に、インバース二次変換が、現在のビデオ・ブロックのサブ領域の逆量子化の出力に適用される、方法。
ビデオの現在のピクチャの現在のビデオ・ブロックとビデオのコーディングされた表現との間の変換に関し、ルールに起因する二次変換ツールの現在のビデオ・ブロックに対する適用性を決定するステップであって、ルールは、現在のビデオ・ブロックをコーディングするために使用されるイントラ予測方向、コーディング・ツールの用途、及び/又は現在のビデオ・ブロックが由来するビデオの色成分に関連している、ステップ;及び
決定に基づいて変換を実行するステップ;
を含む方法。
二次変換ツールを使用して:
符号化の間に、量子化の前に、現在のビデオ・ブロックの残差に適用されたフォワード一次変換の出力に、フォワード二次変換が適用されるか、又は
復号化の間に、インバース一次変換を適用する前に、インバース二次変換が、現在のビデオ・ブロックの逆量子化の出力に適用される、方法。
符号化の間に、量子化の前に、現在のビデオ・ブロックの残差に適用されたフォワード一次変換の出力に、フォワード二次変換は適用されず、又は
復号化の間に、インバース一次変換を適用する前に、現在のビデオ・ブロックの逆量子化の出力に対するインバース二次変換は省略される、方法。
ビデオの現在のビデオ・ブロックとビデオのコーディングされた表現との間の変換を実行するステップを含み、コーディングされた表現は、現在のビデオ・ブロックの残差において最後の非ゼロ係数を指定するフォーマット・ルールであって、二次変換ツールに関するサイド情報がコーディングされた表現に含まれるかどうか又はどのように含まれるかを制御するフォーマット・ルールに適合し、二次変換ツールは、符号化の間に、量子化の前に、ビデオ・ブロックの残差に適用されたフォワード一次変換の出力に、フォワード二次変換を適用すること、又は復号化の間に、インバース一次変換を適用する前に、インバース二次変換を、ビデオ・ブロックの逆量子化の出力に適用することを含む、方法。
ビデオの現在のビデオ・ブロックとビデオのコーディングされた表現との間の変換を実行するステップを含み、コーディングされた表現は、現在のビデオ・ブロックの一部の残差において1つ以上の係数を指定するフォーマット・ルールであって、二次変換ツールに関するサイド情報がコーディングされた表現に含まれるかどうか又はどのように含まれるかを制御するフォーマット・ルールに適合し、
二次変換ツールは、符号化の間に、量子化の前に、ビデオ・ブロックの残差に適用されたフォワード一次変換の出力に、フォワード二次変換を適用すること、又は復号化の間に、インバース一次変換を適用する前に、インバース二次変換を、ビデオ・ブロックに対する逆量子化の出力に適用することを含む、方法。
ビデオの現在のビデオ・ブロックとビデオのコーディングされた表現との間の変換を実行するステップを含み、変換を実行することは、二次変換ツールの現在のビデオ・ブロックに対する適用性を、現在のビデオ・ブロックの1つ以上のコーディング・グループにおける非ゼロ係数の存在に基づいて決定することを含み、二次変換ツールは、符号化の間に、量子化の前に、ビデオ・ブロックの残差に適用されたフォワード一次変換の出力に、フォワード二次変換を適用すること、又は復号化の間に、インバース一次変換を適用する前に、インバース二次変換を、ビデオ・ブロックの逆量子化の出力に適用することを含む、方法。
ビデオの現在のビデオ・ブロックと現在のビデオ・ブロックのコーディングされた表現との間の変換を実行するステップを含み、
コーディングされた表現は、現在のビデオ・ブロックに対する二次変換ツールのサイド情報に対応するシンタックス要素が、変換関連情報の前に、コーディングされた表現においてシグナリングされることを指定するフォーマット・ルールに適合し、
二次変換ツールは、符号化の間に、量子化の前に、ビデオ・ブロックの残差に適用されたフォワード一次変換の出力に、フォワード二次変換を適用すること、又は復号化の間に、インバース一次変換を適用する前に、インバース二次変換を、ビデオ・ブロックの逆量子化の出力に適用することを含む、方法。
ビデオの現在のビデオ・ブロックと現在のコーディングされた表現との間の変換を実行するステップを含み、
コーディングされた表現は、現在のビデオ・ブロックのための二次変換ツールのサイド情報に対応するシンタックス要素が、残差コーディング情報の前に、コーディングされた表現においてシグナリングされることを指定するフォーマット・ルールに適合し、
二次変換ツールは、符号化の間に、量子化の前に、ビデオ・ブロックの残差に適用されたフォワード一次変換の出力に、フォワード二次変換を適用すること、又は復号化の間に、インバース一次変換を適用する前に、インバース二次変換を、ビデオ・ブロックに対する逆量子化の出力に適用することを含む、方法。
ビデオの現在のビデオ・ブロックとビデオのコーディングされた表現との間の変換を実行するステップを含み、
変換を実行することは、二次変換ツールに関連する情報に基づくルールに従って現在のビデオ・ブロックの残差をコーディングすることを含み、
二次変換ツールは、符号化の間に、量子化の前に、ビデオ・ブロックの残差に適用されたフォワード一次変換の出力に、フォワード二次変換を適用すること、又は復号化の間に、インバース一次変換を適用する前に、インバース二次変換を、ビデオ・ブロックに対する逆量子化の出力に適用することを含む、方法。
ビデオの現在のビデオ・ブロックとビデオのコーディングされた表現との間の変換を実行するステップを含み、
変換を実行することは、ビデオの現在のビデオ・ブロックの特徴に基づいて、二次変換ツールのインデックスに対応するビン・ストリングのビンをコーディングするか又はビンをコーディングすることをバイパスするためのコンテキスト・モデルを構築することを含み、
インデックスは、二次変換ツールの適用性及び/又は二次変換ツールのカーネル情報を示し、
二次変換ツールは、符号化の間に、量子化の前に、ビデオ・ブロックの残差に適用されたフォワード一次変換の出力に、フォワード二次変換を適用すること、又は二次変換ツールは、復号化の間に、インバース一次変換を適用する前に、インバース二次変換を、ビデオ・ブロックに対する逆量子化の出力に適用することを含む、方法。
ビデオの現在のビデオ・ブロックと現在のビデオ・ブロックのコーディングされた表現との間の変換を実行するステップを含み、変換を実行することは、現在のビデオ・ブロックのディメンジョンに基づいて、シンタックス要素がコーディングされた表現に含まれるかどうかを決定することを含み、シンタックス要素は、二次変換を適用することの指示、及び二次変換プロセスで使用される変換カーネルのインデックス、のうちの少なくとも1つを含む二次変換ツールのサイド情報に対応し、
二次変換を使用して、インバース二次変換は、インバース一次変換を適用する前に、コーディングされた表現を復号化するために使用され、且つ現在のビデオ・ブロックの逆量子化の出力に適用される、方法。
ビデオの現在のビデオ・ブロックと現在のビデオ・ブロックのコーディングされた表現との間の変換を実行するステップを含み、変換を実行することは、現在のビデオ・ブロックのディメンジョンに基づいて、シンタックス要素が現在のビデオ・ブロックのコーディングされた表現に含まれるかどうかを決定することを含み、シンタックス要素は、二次変換を適用することの指示、及び二次変換プロセスで使用される変換カーネルのインデックス、のうちの少なくとも1つを含む二次変換ツールのサイド情報に対応し、
二次変換を使用して、量子化プロセスを適用する前に、フォワード二次変換が、現在のビデオ・ブロックを符号化するために使用され、且つ現在のビデオ・ブロックの一次変換の出力に適用される、方法。
Claims (14)
- ビデオ処理方法であって:
ビデオの現在のビデオ・ブロックと前記ビデオのビットストリームとの間の変換を実行するステップを含み、
前記ビットストリームは、前記現在のビデオ・ブロックに対する多重変換選択ツールのサイド情報に対応する第1シンタックス要素が前記ビットストリームに存在しないことを、二次変換ツールを示す第2シンタックス要素の値がイネーブルにされていることに応じて指定するフォーマット・ルールに適合し、
前記第2シンタックス要素は、前記二次変換ツールを適用するかどうかと、前記二次変換ツールで使用される変換カーネルのインデックスとを指定し、
前記二次変換ツールは、
符号化の間に、量子化の前に、ビデオ・ブロックの残差に適用されたフォワード一次変換の出力に、フォワード二次変換を適用すること、又は
復号化の間に、インバース一次変換を適用する前に、インバース二次変換を、前記ビデオ・ブロックの逆量子化の出力に適用することを含み、
前記第2シンタックス要素の第2ビンのコーディングに唯1つのコンテキストの増加が使用される、方法。 - 前記第1シンタックス要素は、一次変換プロセスで使用される変換カーネルのインデックスを示す、請求項1に記載の方法。
- 前記第1シンタックス要素は、前記ビットストリームには存在せず、前記第1シンタックス要素の値はゼロに等しいと推定される、請求項1に記載の方法。
- 前記第2シンタックス要素はコンテキスト・コーディングされている、請求項1-3のうちの何れか1項に記載の方法。
- 前記第2シンタックス要素をコーディングするために使用されるコンテキストは前記第1シンタックス要素とは独立している、請求項4に記載の方法。
- 前記第2シンタックス要素をコーディングするために使用されるコンテキストは前記現在のビデオ・ブロックの色成分に基づいている、請求項4に記載の方法。
- 前記第2シンタックス要素をコーディングするために使用されるコンテキストは前記現在のビデオ・ブロックの分け方に更に基づいている、請求項4に記載の方法。
- 前記二次変換ツールは、低周波ノン・セパラブル変換(LFNST)ツールに対応している、請求項1-7のうちの何れか1項に記載の方法。
- 前記第1シンタックス要素の前記値がゼロに等しい場合に、DCT2変換カーネルが、水平及び垂直方向の両方において前記現在のビデオ・ブロックに適用される、請求項1に記載の方法。
- 前記変換は前記現在のビデオ・ブロックを前記ビットストリームに符号化することを含む、請求項1-9のうちの何れか1項に記載の方法。
- 前記変換は前記現在のビデオ・ブロックを前記ビットストリームから復号化することを含む、請求項1-9のうちの何れか1項に記載の方法。
- 命令を備える非一時的なメモリとプロセッサとを含むビデオ・データを処理する装置であって、前記命令は前記プロセッサにより実行されると、前記プロセッサに:
ビデオの現在のビデオ・ブロックと前記ビデオのビットストリームとの間の変換を実行させ、
前記ビットストリームは、前記現在のビデオ・ブロックに対する多重変換選択ツールのサイド情報に対応する第1シンタックス要素が前記ビットストリームに存在しないことを、二次変換ツールを示す第2シンタックス要素の値がイネーブルにされていることに応じて指定するフォーマット・ルールに適合し、
前記第2シンタックス要素は、前記二次変換ツールを適用するかどうかと、前記二次変換ツールで使用される変換カーネルのインデックスとを指定し、
前記二次変換ツールは、
符号化の間に、量子化の前に、ビデオ・ブロックの残差に適用されたフォワード一次変換の出力に、フォワード二次変換を適用すること、又は
復号化の間に、インバース一次変換を適用する前に、インバース二次変換を、前記ビデオ・ブロックの逆量子化の出力に適用することを含み、
前記第2シンタックス要素の第2ビンのコーディングに唯1つのコンテキストの増加が使用される、装置。 - 命令を記憶する非一時的なコンピュータ読み取り可能な記憶媒体であって、前記命令は、プロセッサに:
ビデオの現在のビデオ・ブロックと前記ビデオのビットストリームとの間の変換を実行させ、
前記ビットストリームは、前記現在のビデオ・ブロックに対する多重変換選択ツールのサイド情報に対応する第1シンタックス要素が前記ビットストリームに存在しないことを、二次変換ツールを示す第2シンタックス要素の値がイネーブルにされていることに応じて指定するフォーマット・ルールに適合し、
前記第2シンタックス要素は、前記二次変換ツールを適用するかどうかと、前記二次変換ツールで使用される変換カーネルのインデックスとを指定し、
前記二次変換ツールは、
符号化の間に、量子化の前に、ビデオ・ブロックの残差に適用されたフォワード一次変換の出力に、フォワード二次変換を適用すること、又は
復号化の間に、インバース一次変換を適用する前に、インバース二次変換を、前記ビデオ・ブロックの逆量子化の出力に適用することを含み、
前記第2シンタックス要素の第2ビンのコーディングに唯1つのコンテキストの増加が使用される、記憶媒体。 - ビデオのビットストリームを記憶する方法であって:
前記ビデオの現在のビデオ・ブロックに対する前記ビットストリームを生成するステップ;及び
前記ビットストリームを、非一時的なコンピュータ読み取り可能な記憶媒体に記憶するステップ;
を含み、前記ビットストリームは、前記現在のビデオ・ブロックに対する多重変換選択ツールのサイド情報に対応する第1シンタックス要素が前記ビットストリームに存在しないことを、二次変換ツールを示す第2シンタックス要素の値がイネーブルにされていることに応じて指定するフォーマット・ルールに適合し、
前記第2シンタックス要素は、前記二次変換ツールを適用するかどうかと、前記二次変換ツールで使用される変換カーネルのインデックスとを指定し、
前記二次変換ツールは、
符号化の間に、量子化の前に、ビデオ・ブロックの残差に適用されたフォワード一次変換の出力に、フォワード二次変換を適用すること、又は
復号化の間に、インバース一次変換を適用する前に、インバース二次変換を、前記ビデオ・ブロックの逆量子化の出力に適用することを含み、
前記第2シンタックス要素の第2ビンのコーディングに唯1つのコンテキストの増加が使用される、記憶方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023070317A JP7514359B2 (ja) | 2019-05-10 | 2023-04-21 | ビデオ・データ処理方法、装置、記憶媒体及び記憶方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNPCT/CN2019/086420 | 2019-05-10 | ||
CN2019086420 | 2019-05-10 | ||
PCT/CN2020/089581 WO2020228671A1 (en) | 2019-05-10 | 2020-05-11 | Multiple secondary transform matrices for video processing |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023070317A Division JP7514359B2 (ja) | 2019-05-10 | 2023-04-21 | ビデオ・データ処理方法、装置、記憶媒体及び記憶方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022532517A JP2022532517A (ja) | 2022-07-15 |
JP7269373B2 true JP7269373B2 (ja) | 2023-05-08 |
Family
ID=73289293
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021564971A Active JP7269373B2 (ja) | 2019-05-10 | 2020-05-11 | ビデオ処理方法、装置、記憶媒体及び記憶方法 |
JP2021564972A Active JP7267461B2 (ja) | 2019-05-10 | 2020-05-11 | ビデオ・データ処理方法、装置、記憶媒体及び記憶方法 |
JP2023070317A Active JP7514359B2 (ja) | 2019-05-10 | 2023-04-21 | ビデオ・データ処理方法、装置、記憶媒体及び記憶方法 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021564972A Active JP7267461B2 (ja) | 2019-05-10 | 2020-05-11 | ビデオ・データ処理方法、装置、記憶媒体及び記憶方法 |
JP2023070317A Active JP7514359B2 (ja) | 2019-05-10 | 2023-04-21 | ビデオ・データ処理方法、装置、記憶媒体及び記憶方法 |
Country Status (8)
Country | Link |
---|---|
US (4) | US11622131B2 (ja) |
EP (3) | EP4329309A3 (ja) |
JP (3) | JP7269373B2 (ja) |
KR (2) | KR102655582B1 (ja) |
CN (6) | CN117499641A (ja) |
BR (1) | BR112021021631A2 (ja) |
SG (1) | SG11202111967VA (ja) |
WO (5) | WO2020228670A1 (ja) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102629234B1 (ko) * | 2017-08-04 | 2024-01-24 | 엘지전자 주식회사 | 비디오 압축을 위한 변환을 구성하는 방법 및 장치 |
WO2020156538A1 (en) | 2019-02-03 | 2020-08-06 | Beijing Bytedance Network Technology Co., Ltd. | Interaction between mv precisions and mv difference coding |
CN113424533B (zh) | 2019-02-14 | 2024-09-10 | 北京字节跳动网络技术有限公司 | 复杂度降低的解码器侧运动推导 |
CN117499641A (zh) | 2019-05-10 | 2024-02-02 | 北京字节跳动网络技术有限公司 | 用于视频处理的简化二次变换的有条件使用 |
JP7522135B2 (ja) * | 2019-05-11 | 2024-07-24 | 北京字節跳動網絡技術有限公司 | 複数のイントラ符号化方法の相互作用 |
KR102627834B1 (ko) | 2019-05-11 | 2024-01-23 | 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 | 비디오 프로세싱에서의 코딩 툴들의 선택적 사용 |
SG11202113262WA (en) * | 2019-05-31 | 2021-12-30 | Interdigital Vc Holdings Inc | Transform selection for implicit multiple transform selection |
CN117354521A (zh) | 2019-06-07 | 2024-01-05 | 北京字节跳动网络技术有限公司 | 视频比特流中的简化二次变换的有条件信令 |
US20220014743A1 (en) * | 2019-06-10 | 2022-01-13 | Xris Corporation | Method for encoding/decoding image signal and device therefor |
WO2020262992A1 (ko) * | 2019-06-25 | 2020-12-30 | 한국전자통신연구원 | 영상 부호화/복호화 방법 및 장치 |
EP3984227A4 (en) | 2019-07-27 | 2022-08-17 | Beijing Bytedance Network Technology Co., Ltd. | TOOL USE RESTRICTIONS BASED ON TYPES OF REFERENCE IMAGES |
WO2021023151A1 (en) | 2019-08-03 | 2021-02-11 | Beijing Bytedance Network Technology Co., Ltd. | Position based mode derivation in reduced secondary transforms for video |
WO2021032045A1 (en) | 2019-08-17 | 2021-02-25 | Beijing Bytedance Network Technology Co., Ltd. | Context modeling of side information for reduced secondary transforms in video |
US20220295104A1 (en) * | 2019-09-20 | 2022-09-15 | Nokia Technologies Oy | An apparatus, a method and a computer program for video coding and decoding |
WO2021068954A1 (en) | 2019-10-12 | 2021-04-15 | Beijing Bytedance Network Technology Co., Ltd. | High level syntax for video coding tools |
KR20230062685A (ko) * | 2019-10-29 | 2023-05-09 | 엘지전자 주식회사 | 변환에 기반한 영상 코딩 방법 및 그 장치 |
WO2021086064A1 (ko) * | 2019-10-29 | 2021-05-06 | 엘지전자 주식회사 | 변환에 기반한 영상 코딩 방법 및 그 장치 |
WO2021096174A1 (ko) * | 2019-11-11 | 2021-05-20 | 엘지전자 주식회사 | 변환에 기반한 영상 코딩 방법 및 그 장치 |
JPWO2021100450A1 (ja) * | 2019-11-21 | 2021-05-27 | ||
US20220150518A1 (en) * | 2020-11-11 | 2022-05-12 | Tencent America LLC | Method and apparatus for video coding |
US20240015329A1 (en) * | 2021-09-27 | 2024-01-11 | Arkaos S.A. | Method and apparatus for compression and decompression of video data without intraframe prediction |
US20230140628A1 (en) * | 2021-11-04 | 2023-05-04 | Meta Platforms, Inc. | Novel buffer format for a two-stage video encoding process |
WO2023191332A1 (ko) * | 2022-03-28 | 2023-10-05 | 현대자동차주식회사 | 적응적 다중변환선택을 이용하는 비디오 코딩을 위한 방법 및 장치 |
WO2023191261A1 (ko) * | 2022-03-30 | 2023-10-05 | 엘지전자 주식회사 | 영상 코딩 시스템에서 레지듀얼 정보를 코딩하는 방법 및 장치 |
WO2024080784A1 (ko) * | 2022-10-12 | 2024-04-18 | 엘지전자 주식회사 | 비분리 1차 변환에 기반한 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장하는 기록 매체 |
Family Cites Families (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5796842A (en) * | 1996-06-07 | 1998-08-18 | That Corporation | BTSC encoder |
EP1914987B1 (en) * | 2005-08-10 | 2012-12-26 | Mitsubishi Electric Corporation | Recording medium, reproduction device, and reproduction method for performing high-speed trick reproduction |
JPWO2011016250A1 (ja) * | 2009-08-06 | 2013-01-10 | パナソニック株式会社 | 符号化方法、復号方法、符号化装置及び復号装置 |
US9172968B2 (en) * | 2010-07-09 | 2015-10-27 | Qualcomm Incorporated | Video coding using directional transforms |
US8693795B2 (en) * | 2010-10-01 | 2014-04-08 | Samsung Electronics Co., Ltd. | Low complexity secondary transform for image and video compression |
KR101756442B1 (ko) | 2010-11-29 | 2017-07-11 | 에스케이텔레콤 주식회사 | 인트라예측모드의 중복성을 최소화하기 위한 영상 부호화/복호화 방법 및 장치 |
AU2015249109B2 (en) * | 2011-03-08 | 2017-08-24 | Qualcomm Incorporated | Coding of transform coefficients for video coding |
US9338449B2 (en) * | 2011-03-08 | 2016-05-10 | Qualcomm Incorporated | Harmonized scan order for coding transform coefficients in video coding |
US20120320972A1 (en) * | 2011-06-16 | 2012-12-20 | Samsung Electronics Co., Ltd. | Apparatus and method for low-complexity optimal transform selection |
US20130003856A1 (en) * | 2011-07-01 | 2013-01-03 | Samsung Electronics Co. Ltd. | Mode-dependent transforms for residual coding with low latency |
CN107835420B (zh) * | 2011-10-18 | 2021-05-14 | 株式会社Kt | 视频信号解码方法 |
KR20130058524A (ko) | 2011-11-25 | 2013-06-04 | 오수미 | 색차 인트라 예측 블록 생성 방법 |
US9883185B2 (en) * | 2011-12-29 | 2018-01-30 | Lg Electronics Inc. | Method for encoding and decoding image based on entry point in bitstream and apparatus using same |
CN109413429B (zh) | 2012-01-20 | 2022-05-17 | 杜比实验室特许公司 | 解码方法、视频解码设备及编码方法 |
EP2869557B1 (en) * | 2012-06-29 | 2023-08-09 | Electronics And Telecommunications Research Institute | Method and device for encoding/decoding images |
US9420289B2 (en) | 2012-07-09 | 2016-08-16 | Qualcomm Incorporated | Most probable mode order extension for difference domain intra prediction |
AU2012232992A1 (en) * | 2012-09-28 | 2014-04-17 | Canon Kabushiki Kaisha | Method, apparatus and system for encoding and decoding the transform units of a coding unit |
US9532051B2 (en) * | 2012-10-05 | 2016-12-27 | Futurewei Technologies, Inc. | Architecture for hybrid video codec |
CN103141596B (zh) | 2013-03-07 | 2014-07-16 | 福建归来客有机茶叶有限公司 | 一种高香型乌龙红茶及其制作方法 |
US20140254661A1 (en) * | 2013-03-08 | 2014-09-11 | Samsung Electronics Co., Ltd. | Method and apparatus for applying secondary transforms on enhancement-layer residuals |
WO2014205730A1 (zh) * | 2013-06-27 | 2014-12-31 | 北京大学深圳研究生院 | Avs视频压缩编码方法及编码器 |
KR20150043226A (ko) | 2013-10-14 | 2015-04-22 | 삼성전자주식회사 | 깊이 인트라 부호화 방법 및 그 장치, 복호화 방법 및 그 장치 |
US11070810B2 (en) * | 2014-03-14 | 2021-07-20 | Qualcomm Incorporated | Modifying bit depths in color-space transform coding |
CN105516730B (zh) * | 2014-09-24 | 2018-04-24 | 晨星半导体股份有限公司 | 视讯编码装置及视讯解码装置以及其编码与解码方法 |
US10091504B2 (en) * | 2015-01-08 | 2018-10-02 | Microsoft Technology Licensing, Llc | Variations of rho-domain rate control |
US10306229B2 (en) * | 2015-01-26 | 2019-05-28 | Qualcomm Incorporated | Enhanced multiple transforms for prediction residual |
US20170034530A1 (en) * | 2015-07-28 | 2017-02-02 | Microsoft Technology Licensing, Llc | Reduced size inverse transform for decoding and encoding |
US10681379B2 (en) * | 2015-09-29 | 2020-06-09 | Qualcomm Incorporated | Non-separable secondary transform for video coding with reorganizing |
WO2017069419A1 (ko) * | 2015-10-22 | 2017-04-27 | 엘지전자 주식회사 | 비디오 코딩 시스템에서 인트라 예측 방법 및 장치 |
WO2017138352A1 (en) * | 2016-02-08 | 2017-08-17 | Sharp Kabushiki Kaisha | Systems and methods for transform coefficient coding |
CN105791867B (zh) * | 2016-03-23 | 2019-02-22 | 北京大学 | 基于边界自适应变换的优化视频数据编码方法 |
WO2017173593A1 (en) | 2016-04-06 | 2017-10-12 | Mediatek Singapore Pte. Ltd. | Separate coding secondary transform syntax elements for different color components |
US10708164B2 (en) * | 2016-05-03 | 2020-07-07 | Qualcomm Incorporated | Binarizing secondary transform index |
CN114339227B (zh) | 2016-05-04 | 2024-04-12 | 夏普株式会社 | 用于对变换数据进行编码的系统和方法 |
WO2017192995A1 (en) | 2016-05-06 | 2017-11-09 | Vid Scale, Inc. | Method and system for decoder-side intra mode derivation for block-based video coding |
US10595046B2 (en) * | 2016-05-13 | 2020-03-17 | Sony Corporation | Image processing apparatus and method |
US10547854B2 (en) | 2016-05-13 | 2020-01-28 | Qualcomm Incorporated | Neighbor based signaling of intra prediction modes |
CN109076223B (zh) * | 2016-05-13 | 2021-07-09 | 夏普株式会社 | 图像解码装置以及图像编码装置 |
CN109076242B (zh) | 2016-05-13 | 2023-01-03 | 索尼公司 | 图像处理设备和方法 |
CN114401407A (zh) * | 2016-06-24 | 2022-04-26 | 韩国电子通信研究院 | 用于基于变换的图像编码/解码的方法和设备 |
US10972733B2 (en) | 2016-07-15 | 2021-04-06 | Qualcomm Incorporated | Look-up table for enhanced multiple transform |
KR102321394B1 (ko) * | 2016-08-01 | 2021-11-03 | 한국전자통신연구원 | 영상 부호화/복호화 방법 |
WO2018037737A1 (ja) | 2016-08-24 | 2018-03-01 | ソニー株式会社 | 画像処理装置、画像処理方法、及びプログラム |
US10880564B2 (en) * | 2016-10-01 | 2020-12-29 | Qualcomm Incorporated | Transform selection for video coding |
US11095893B2 (en) * | 2016-10-12 | 2021-08-17 | Qualcomm Incorporated | Primary transform and secondary transform in video coding |
JP6870096B2 (ja) * | 2017-01-03 | 2021-05-12 | エルジー エレクトロニクス インコーポレイティド | 二次変換を用いたビデオ信号のエンコーディング/デコーディング方法及び装置 |
US11025903B2 (en) | 2017-01-13 | 2021-06-01 | Qualcomm Incorporated | Coding video data using derived chroma mode |
EP3577899A4 (en) | 2017-01-31 | 2020-06-17 | Sharp Kabushiki Kaisha | SYSTEMS AND METHODS FOR SCALING TRANSFORM COEFFICIENT LEVEL VALUES |
EP4007277A1 (en) * | 2017-03-16 | 2022-06-01 | HFI Innovation Inc. | Method and apparatus of enhanced multiple transforms and non-separable secondary transform for video coding |
US20180288439A1 (en) | 2017-03-31 | 2018-10-04 | Mediatek Inc. | Multiple Transform Prediction |
US10855997B2 (en) * | 2017-04-14 | 2020-12-01 | Mediatek Inc. | Secondary transform kernel size selection |
US10638126B2 (en) * | 2017-05-05 | 2020-04-28 | Qualcomm Incorporated | Intra reference filter for video coding |
US10742975B2 (en) | 2017-05-09 | 2020-08-11 | Futurewei Technologies, Inc. | Intra-prediction with multiple reference lines |
US10750181B2 (en) * | 2017-05-11 | 2020-08-18 | Mediatek Inc. | Method and apparatus of adaptive multiple transforms for video coding |
US10805641B2 (en) * | 2017-06-15 | 2020-10-13 | Qualcomm Incorporated | Intra filtering applied together with transform processing in video coding |
JP2021010046A (ja) | 2017-10-06 | 2021-01-28 | シャープ株式会社 | 画像符号化装置及び画像復号装置 |
US10827173B2 (en) | 2017-11-13 | 2020-11-03 | Electronics And Telecommunications Research Institute | Method and apparatus for quantization |
US10764590B2 (en) | 2017-11-15 | 2020-09-01 | Google Llc | Entropy coding primary and secondary coefficients of video data |
WO2019117634A1 (ko) | 2017-12-15 | 2019-06-20 | 엘지전자 주식회사 | 2차 변환에 기반한 영상 코딩 방법 및 그 장치 |
GB2570711B (en) | 2018-02-05 | 2023-04-05 | Sony Corp | Data encoding and decoding |
CN108322745B (zh) * | 2018-02-28 | 2019-12-03 | 中南大学 | 一种基于不可分二次变换模式的帧内快速选择方法 |
CN116347074A (zh) | 2018-03-09 | 2023-06-27 | 韩国电子通信研究院 | 使用样点滤波的图像编码/解码方法和设备 |
WO2019194504A1 (ko) * | 2018-04-01 | 2019-10-10 | 엘지전자 주식회사 | 축소된 2차 변환을 이용하여 비디오 신호를 처리하는 방법 및 장치 |
US11019355B2 (en) | 2018-04-03 | 2021-05-25 | Electronics And Telecommunications Research Institute | Inter-prediction method and apparatus using reference frame generated based on deep learning |
US11470316B2 (en) | 2018-05-31 | 2022-10-11 | Lg Electronics Inc. | Method and device for performing transformation by using layered-givens transform |
CN117812254A (zh) | 2018-06-29 | 2024-04-02 | 弗劳恩霍夫应用研究促进协会 | 扩展参考图像内预测 |
US11166044B2 (en) | 2018-07-31 | 2021-11-02 | Tencent America LLC | Method and apparatus for improved compound orthonormal transform |
EP3815363A1 (en) | 2018-08-16 | 2021-05-05 | Beijing Bytedance Network Technology Co. Ltd. | Coefficient dependent coding of transform matrix selection |
KR102432406B1 (ko) * | 2018-09-05 | 2022-08-12 | 엘지전자 주식회사 | 비디오 신호의 부호화/복호화 방법 및 이를 위한 장치 |
US10819979B2 (en) | 2018-09-06 | 2020-10-27 | Tencent America LLC | Coupled primary and secondary transform |
US11039139B2 (en) | 2018-09-14 | 2021-06-15 | Tencent America LLC | Method and apparatus for identity transform in multiple transform selection |
KR20210103539A (ko) | 2018-12-20 | 2021-08-23 | 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. | 인접 샘플 감소에 의해 선형 또는 아핀 변환을 사용하는 인트라 예측 |
KR20200083321A (ko) | 2018-12-28 | 2020-07-08 | 한국전자통신연구원 | 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체 |
KR20240018691A (ko) | 2019-01-14 | 2024-02-13 | 로즈데일 다이나믹스 엘엘씨 | 영상 코딩 시스템에서 레지듀얼 정보를 사용하는 영상 디코딩 방법 및 그 장치 |
US11523136B2 (en) * | 2019-01-28 | 2022-12-06 | Hfi Innovation Inc. | Methods and apparatuses for coding transform blocks |
CN112514384A (zh) * | 2019-01-28 | 2021-03-16 | 株式会社 Xris | 视频信号编码/解码方法及其装置 |
US11595663B2 (en) | 2019-02-01 | 2023-02-28 | Qualcomm Incorporated | Secondary transform designs for partitioned transform units in video coding |
KR20210114386A (ko) * | 2019-02-08 | 2021-09-23 | 주식회사 윌러스표준기술연구소 | 이차 변환을 이용하는 비디오 신호 처리 방법 및 장치 |
US11616966B2 (en) | 2019-04-03 | 2023-03-28 | Mediatek Inc. | Interaction between core transform and secondary transform |
US11172211B2 (en) | 2019-04-04 | 2021-11-09 | Tencent America LLC | Method and apparatus for video coding |
US11134257B2 (en) | 2019-04-04 | 2021-09-28 | Tencent America LLC | Simplified signaling method for affine linear weighted intra prediction mode |
WO2020207502A1 (en) | 2019-04-12 | 2020-10-15 | Beijing Bytedance Network Technology Co., Ltd. | Most probable mode list construction for matrix-based intra prediction |
CN113711612B (zh) | 2019-04-20 | 2023-05-26 | 北京字节跳动网络技术有限公司 | 视频编解码中的色度语法元素的信令 |
WO2020226424A1 (ko) | 2019-05-08 | 2020-11-12 | 엘지전자 주식회사 | Mip 및 lfnst를 수행하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법 |
CN117499641A (zh) | 2019-05-10 | 2024-02-02 | 北京字节跳动网络技术有限公司 | 用于视频处理的简化二次变换的有条件使用 |
CN117336484A (zh) | 2019-06-06 | 2024-01-02 | Lg电子株式会社 | 图像解码和编码设备及发送比特流的设备 |
CN117354521A (zh) | 2019-06-07 | 2024-01-05 | 北京字节跳动网络技术有限公司 | 视频比特流中的简化二次变换的有条件信令 |
US11115658B2 (en) | 2019-06-25 | 2021-09-07 | Qualcomm Incorporated | Matrix intra prediction and cross-component linear model prediction harmonization for video coding |
KR20220035154A (ko) | 2019-07-21 | 2022-03-21 | 엘지전자 주식회사 | 팔레트 모드의 적용 여부에 따라 크로마 성분 예측 정보를 시그널링 하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법 |
WO2021023151A1 (en) | 2019-08-03 | 2021-02-11 | Beijing Bytedance Network Technology Co., Ltd. | Position based mode derivation in reduced secondary transforms for video |
WO2021032045A1 (en) | 2019-08-17 | 2021-02-25 | Beijing Bytedance Network Technology Co., Ltd. | Context modeling of side information for reduced secondary transforms in video |
WO2021110018A1 (en) | 2019-12-02 | 2021-06-10 | Beijing Bytedance Network Technology Co., Ltd. | Separable secondary transform processing of coded video |
-
2020
- 2020-05-11 CN CN202311455502.9A patent/CN117499641A/zh active Pending
- 2020-05-11 BR BR112021021631A patent/BR112021021631A2/pt unknown
- 2020-05-11 CN CN202080035068.7A patent/CN113812154B/zh active Active
- 2020-05-11 CN CN202080035008.5A patent/CN113812162B/zh active Active
- 2020-05-11 WO PCT/CN2020/089580 patent/WO2020228670A1/en active Application Filing
- 2020-05-11 WO PCT/CN2020/089583 patent/WO2020228673A1/en active Application Filing
- 2020-05-11 EP EP23213812.3A patent/EP4329309A3/en active Pending
- 2020-05-11 WO PCT/CN2020/089582 patent/WO2020228672A1/en active Application Filing
- 2020-05-11 JP JP2021564971A patent/JP7269373B2/ja active Active
- 2020-05-11 EP EP20804851.2A patent/EP3949396A4/en active Pending
- 2020-05-11 CN CN202080035009.XA patent/CN113841401B/zh active Active
- 2020-05-11 CN CN202080035007.0A patent/CN113841409B/zh active Active
- 2020-05-11 SG SG11202111967VA patent/SG11202111967VA/en unknown
- 2020-05-11 CN CN202080035078.0A patent/CN113812146B/zh active Active
- 2020-05-11 EP EP20805202.7A patent/EP3949397A4/en active Pending
- 2020-05-11 KR KR1020217035948A patent/KR102655582B1/ko active IP Right Grant
- 2020-05-11 KR KR1020217035774A patent/KR20220006059A/ko active Search and Examination
- 2020-05-11 JP JP2021564972A patent/JP7267461B2/ja active Active
- 2020-05-11 WO PCT/CN2020/089581 patent/WO2020228671A1/en unknown
- 2020-05-11 WO PCT/CN2020/089579 patent/WO2020228669A1/en unknown
-
2021
- 2021-08-12 US US17/400,397 patent/US11622131B2/en active Active
- 2021-08-12 US US17/400,512 patent/US11611779B2/en active Active
- 2021-08-12 US US17/400,464 patent/US11575940B2/en active Active
- 2021-08-25 US US17/411,170 patent/US20220417529A1/en active Pending
-
2023
- 2023-04-21 JP JP2023070317A patent/JP7514359B2/ja active Active
Non-Patent Citations (5)
Title |
---|
Adam Wieckowski, et al.,NextSoftware: An alternative implementation the Joint Exploration Model (JEM),Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,JVET-H0084,8th Meeting: Macao, CN,2017年12月,pp.1-12 |
Jianle Chen, et al.,Algorithm Description of Joint Exploration Test Model 7 (JEM 7),Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,JVET-G1001-v1,7th Meeting: Torino, IT,2017年08月,pp.28-32 |
Moonmo Koo, et al.,CE6: Reduced Secondary Transform (RST) (CE6-3.1),Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,JVET-N0193,14th Meeting: Geneva, CH,2019年03月,pp.1-19 |
Moonmo Koo, et al.,CE6: Reduced Secondary Transform (RST) (CE6-3.1),Spec_text_CE6-3.1d.docx,JVET-N0193 (version 5),2019年03月,pp.1-21,https://jvet-experts.org/doc_end_user/documents/14_Geneva/wg11/JVET-N0193-v5.zip |
Xin Zhao, Xiang Li, and Shan Liu,CE6: Coupled primary and secondary transform (Test 6.3.2),Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-L0288-r1,12th Meeting: Macao, CN,2018年10月,pp.1-4 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7269373B2 (ja) | ビデオ処理方法、装置、記憶媒体及び記憶方法 | |
JP7277616B2 (ja) | ビデオ・データを処理する方法、装置及び記憶媒体 | |
JP7422858B2 (ja) | ビデオ処理方法、装置、記憶媒体及び記憶方法 | |
JP7277608B2 (ja) | 多重変換行列のコンテキストモデリングおよび選択 | |
KR20220006055A (ko) | 다중 인트라 코딩 방법 사이의 상호 작용 | |
WO2020228693A1 (en) | Coding of multiple intra prediction methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211102 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211102 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230421 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7269373 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |