JP7269247B2 - Hydrotreating catalyst for reduction of metals and sulfur in heavy oil - Google Patents

Hydrotreating catalyst for reduction of metals and sulfur in heavy oil Download PDF

Info

Publication number
JP7269247B2
JP7269247B2 JP2020539077A JP2020539077A JP7269247B2 JP 7269247 B2 JP7269247 B2 JP 7269247B2 JP 2020539077 A JP2020539077 A JP 2020539077A JP 2020539077 A JP2020539077 A JP 2020539077A JP 7269247 B2 JP7269247 B2 JP 7269247B2
Authority
JP
Japan
Prior art keywords
catalyst
metal
pore volume
fraction
metal fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020539077A
Other languages
Japanese (ja)
Other versions
JP2021511951A (en
Inventor
陽介 小圷
康一 松下
ピー. ウッズ、マシュー
Original Assignee
アドバンスド・リフアイニング・テクノロジーズ・エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アドバンスド・リフアイニング・テクノロジーズ・エルエルシー filed Critical アドバンスド・リフアイニング・テクノロジーズ・エルエルシー
Publication of JP2021511951A publication Critical patent/JP2021511951A/en
Application granted granted Critical
Publication of JP7269247B2 publication Critical patent/JP7269247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6522Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/864Cobalt and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/866Nickel and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • B01J35/19
    • B01J35/30
    • B01J35/615
    • B01J35/633
    • B01J35/635
    • B01J35/647
    • B01J35/66
    • B01J35/69
    • B01J35/695
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/31Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/60Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
    • B01J2523/67Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/60Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
    • B01J2523/68Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/82Metals of the platinum group
    • B01J2523/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/82Metals of the platinum group
    • B01J2523/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/82Metals of the platinum group
    • B01J2523/827Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/82Metals of the platinum group
    • B01J2523/828Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/847Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

(関連出願)
本出願は、2018年1月31日に提出された米国仮特許出願第62/624236号の優先権出願日の利益を主張し、その開示は参照により本明細書に組み込まれる。
(Related application)
This application claims the benefit of the priority filing date of US Provisional Patent Application No. 62/624,236, filed January 31, 2018, the disclosure of which is incorporated herein by reference.

(発明の分野)
本発明は、水素化処理触媒に関する。より具体的には、本発明は、三金属組成を有する水素化処理触媒、ならびに改善された脱金属能力及び硫黄除去のために特に設計された細孔ネットワークに関する。
(Field of Invention)
The present invention relates to hydroprocessing catalysts. More specifically, the present invention relates to hydroprocessing catalysts having trimetallic compositions and pore networks specifically designed for improved demetallization capabilities and sulfur removal.

製油所では、増加した常圧残油及び真空残油などの高沸点成分の割合を含有する、より経済的でより重い原油を処理する傾向がある。これらの成分には、高レベルの硫黄、窒素、ニッケル、及びバナジウムを含有しており、下流の処理中に複雑化を引き起こす。これらの用途では、ニッケル及びバナジウムはポルフィリン化合物の形態を採ることがあり、ニッケルの除去は一般に、バナジウムの除去より困難である。これらのより重い原油を処理して、金属、硫黄及び窒素を除去し炭化水素を飽和させることは、いくつかの理由のために有利である。第1に、硫黄及び窒素を除去することで、下流のユニットの環境基準に準拠することができる。第2に、汚染金属の除去は、接触改質装置、流動接触分解又は異性化ユニットで使用されるものなどの下流のユニット触媒を保護する。 Refineries tend to process more economical, heavier crudes containing an increased proportion of high boiling point components such as atmospheric and vacuum resids. These components contain high levels of sulfur, nitrogen, nickel, and vanadium, causing complications during downstream processing. In these applications, nickel and vanadium can take the form of porphyrin compounds, and removal of nickel is generally more difficult than removal of vanadium. Processing these heavier crudes to remove metals, sulfur and nitrogen and to saturate hydrocarbons is advantageous for several reasons. First, removal of sulfur and nitrogen allows compliance with environmental standards for downstream units. Second, removal of contaminant metals protects downstream unit catalysts such as those used in catalytic reformers, fluid catalytic cracking or isomerization units.

硫黄の除去及び脱金属に関して活性が改善された水素化処理触媒を開発するための継続的な努力があった。米国特許第5,334,307号は、2~8重量パーセントのシリカを含有するアモルファス多孔質耐火性酸化物担体を有する水素化処理触媒を開示している。米国特許第5,545,602号は、アルミナ担体、第VIII族非貴金属酸化物、VI族-B金属酸化物、及び0~2重量%の酸化リンを開示する。それにもかかわらず、硫黄金属の除去、特にニッケルに関して改善された活性及び活性保持を有する水素化処理触媒に対する継続的な必要性がある。そのような改善が特定の三金属配合及び特に設計された細孔構造を有する触媒を使用して可能になることが予想外に見出された。 There have been ongoing efforts to develop hydrotreating catalysts with improved activity in terms of sulfur removal and demetallization. US Pat. No. 5,334,307 discloses a hydroprocessing catalyst having an amorphous porous refractory oxide support containing 2-8 weight percent silica. US Pat. No. 5,545,602 discloses an alumina support, a Group VIII non-noble metal oxide, a Group VI-B metal oxide, and 0-2 wt % phosphorus oxide. Nonetheless, there is a continuing need for hydroprocessing catalysts with improved activity and activity retention for sulfur metal removal, particularly nickel. It has been unexpectedly found that such improvements are possible using catalysts with specific trimetallic formulations and specifically designed pore structures.

本開示の主題は、特にニッケルに関して、並外れた硫黄金属除去活性を提供する、特に定義された細孔サイズ分布を有する独特の三金属配合を有する水素化処理触媒に関する。 The subject of the present disclosure relates to hydroprocessing catalysts having unique trimetallic formulations with specifically defined pore size distributions that provide exceptional sulfur metal removal activity, particularly with respect to nickel.

一実施形態では、本開示は、担体と、担体に含浸された金属成分と、を含む、触媒を提供する。担体は、アルミナを含み、金属成分は、第1の金属画分及び第2の金属画分を含み、第1の金属画分は、クロム、モリブデン、又はタングステンから選択される少なくとも1つの金属を含み、第2の金属画分は、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、又はプラチナから選択される少なくとも2つの金属を含む。触媒は、12nm~16nm未満の細孔径を有する細孔に対して0.28~0.45mL/gの第1の細孔容積、及び2.0nm~12.0nm未満の細孔に対して0.15~0.28mL/gの第2の細孔容積を有する。 In one embodiment, the present disclosure provides a catalyst that includes a support and a metal component impregnated on the support. The support comprises alumina, the metal component comprises a first metal fraction and a second metal fraction, the first metal fraction comprising at least one metal selected from chromium, molybdenum, or tungsten. and the second metal fraction comprises at least two metals selected from cobalt, rhodium, iridium, nickel, palladium, or platinum. The catalyst has a first pore volume of 0.28 to 0.45 mL/g for pores with pore sizes of 12 nm to less than 16 nm, and 0 for pores of 2.0 nm to less than 12.0 nm. It has a secondary pore volume of 0.15-0.28 mL/g.

別の実施形態では、本開示は、触媒を生成するためのプロセスを提供し、金属成分を担体上へ含侵することを含む。担体は、アルミナを含み、金属成分は、第1の金属画分及び第2の金属画分を含む。第1の金属画分は、クロム、モリブデン、タングステン、又はそれらの混合物から選択される少なくとも1つの金属を含み、第2の金属画分は、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、プラチナ、又はそれらの混合物から選択される少なくとも2つの異なる金属を含む。触媒は、12nm~16nm未満の細孔径を有する細孔に対して0.28~0.45mL/gの第1の細孔容積、及び2.0nm~12.0nm未満の細孔に対して0.15~0.28mL/gの第2の細孔容積を有する。 In another embodiment, the disclosure provides a process for producing a catalyst, including impregnating a metal component onto a support. The support comprises alumina and the metal component comprises a first metal fraction and a second metal fraction. The first metal fraction comprises at least one metal selected from chromium, molybdenum, tungsten, or mixtures thereof, and the second metal fraction comprises cobalt, rhodium, iridium, nickel, palladium, platinum, or It contains at least two different metals selected from mixtures thereof. The catalyst has a first pore volume of 0.28 to 0.45 mL/g for pores with pore sizes of 12 nm to less than 16 nm, and 0 for pores of 2.0 nm to less than 12.0 nm. It has a secondary pore volume of 0.15-0.28 mL/g.

本明細書の目的のために、「ベーマイト」又は「擬ベーマイト」という用語は、式Al.HOの固体アルミナ材料を意味し、十分に結晶化されたy-AlOOHの主反射と一致する太線を示す、X線回折図形を有し、これらは、交換可能に使用される。 For the purposes of this specification, the term "boehmite" or "pseudo-boehmite" refers to compounds of the formula Al 2 O 3 . These are used interchangeably, denoting a solid alumina material of H 2 O and having an X-ray diffraction pattern showing a thick line coinciding with the main reflection of well-crystallized y-AlOOH.

本主題の触媒は、担体及び担体に含浸された金属成分を含み、製油所供給源から金属及び硫黄を除去するように設計されている。供給源には、大気残留物、真空残留物、又は脱アスファルト油が含まれ、原油から取得することができる。原油又は原油の画分の種類は限定されない。大気残留物は、原油の常圧蒸留によって取得され、343℃を超える沸点を有する重油画分である。減圧下で大気残留物を蒸留すると、550℃を超えて沸騰する重質油画分である真空残留物が生成される。脱アスファルト油とは、溶剤抽出によって真空残留物からアスファルテンを除去することによって取得される画分である。本明細書に記載されている触媒は、好ましくは、中東原油などの高硫黄含有量とともに高レベルの金属を含有する供給原料を処理するために使用される。 The subject catalysts comprise a support and a metal component impregnated on the support and are designed to remove metals and sulfur from refinery sources. Sources include atmospheric retentate, vacuum retentate, or deasphalted oil, and can be obtained from crude oil. The type of crude oil or fraction of crude oil is not limited. Atmospheric retentate is the heavy oil fraction obtained by atmospheric distillation of crude oil and having a boiling point above 343°C. Distillation of atmospheric retentate under reduced pressure produces vacuum retentate, which is the heavy oil fraction boiling above 550°C. Deasphalted oil is the fraction obtained by removing the asphaltenes from the vacuum residue by solvent extraction. The catalysts described herein are preferably used to process feedstocks containing high levels of metals with high sulfur content, such as Middle East crude oil.

本主題に従って調製された触媒は、広範囲の反応条件下、例えば、約200~500℃の範囲の温度、約5~300barの範囲の水素圧力、及び約0.05~10h-1の範囲の液体の時空間速度(LHSV)で複数の供給物を処理するための水素処理プロセスで使用することができる。「水素処理」という用語は、炭化水素原料を高温高圧(水素処理反応条件)で水素と反応させる様々なプロセスを包含でき、水素添加、水素化脱硫、水素化脱窒素、水素化脱金属、水素化脱芳香族、水素化分解、及び軽度圧力条件下水素化分解(マイルドハイドロクラッキングとも称される)が挙げられる。 Catalysts prepared according to the present subject matter can be used under a wide range of reaction conditions, for example temperatures in the range of about 200-500° C., hydrogen pressures in the range of about 5-300 bar, and liquid It can be used in a hydroprocessing process for processing multiple feeds with a space hourly space velocity (LHSV) of . The term "hydroprocessing" can encompass a variety of processes in which a hydrocarbon feedstock is reacted with hydrogen at elevated temperature and pressure (hydroprocessing reaction conditions), including hydrogenation, hydrodesulfurization, hydrodenitrogenation, hydrodemetalization, hydrogen These include dearomatization, hydrocracking, and hydrocracking under mild pressure conditions (also called mild hydrocracking).

より具体的には、本明細書で使用される「水素化処理」という用語は、当該供給原料に存在する硫黄、汚染金属、窒素、及びコンラッドソン炭素のうちの少なくとも1つの濃度を下げるために触媒の存在下で石油供給原料(石油中に存在する炭化水素の複雑な混合物)を圧力下で水素と反応させる石油精製プロセスを意味する。水素化処理は、水素化分解、及び水素化処理プロセスを含み、これらは、反応する水素の量、触媒の特性、及び処理される石油供給原料の性質によって異なる。 More specifically, the term "hydrotreating" as used herein refers to It refers to a petroleum refining process in which a petroleum feedstock (a complex mixture of hydrocarbons present in petroleum) is reacted under pressure with hydrogen in the presence of a catalyst. Hydrotreating includes hydrocracking and hydrotreating processes, which vary according to the amount of hydrogen reacted, the properties of the catalyst, and the nature of the petroleum feedstock being processed.

水素化分解は、典型的には、(a)超大気圧の水素分圧で、(b)典型的には、593.3℃未満の温度で、(c)水素の全体的な正味化学消費量で、及び(d)少なくとも1つの水素化成分を含有する固体担持触媒の存在下で、実行される分子(「供給原料」)ごとに少なくとも5個の炭素原子を含有する主に炭化水素系化合物の水素化処理を伴うと理解されている。 Hydrocracking is typically performed (a) at superatmospheric hydrogen partial pressures, (b) typically at temperatures below 593.3° C., and (c) with an overall net chemical consumption of hydrogen of and (d) in the presence of a solid supported catalyst containing at least one hydrogenation component, a predominantly hydrocarbon-based compound containing at least 5 carbon atoms per molecule ("feedstock") carried out. is understood to involve the hydrotreating of

水素化処理は、典型的には、当該供給原料の脱硫及び/又は脱窒のために、分子当たり少なくとも5個の炭素原子を含有する主に炭化水素系化合物(「供給原料」)の水素化処理を含むと理解され、処理は、(a)超大気圧の水素分圧で、(b)典型的には、593.3℃未満の温度で、(c)水素の全体的な正味化学消費量で、及び(d)少なくとも1つの水素化成分を含有する固体担持触媒の存在下で、実行される。 Hydrotreating typically involves hydrotreating a predominantly hydrocarbon-based compound containing at least 5 carbon atoms per molecule (“feedstock”) for desulfurization and/or denitrification of the feedstock. Understood to include processing, processing (a) at superatmospheric hydrogen partial pressures, (b) at temperatures typically less than 593.3° C., and (c) the overall net chemical consumption of hydrogen and (d) in the presence of a solid supported catalyst containing at least one hydrogenation component.

触媒担体 catalyst carrier

本主題の触媒金属は、有孔アルミナ担体に含有される。使用されるアルミナは、例えば、ガンマアルミナ、又はベーマイト若しくは擬ベーマイトなどのアルミナの前駆体であり得る。アルミナは、解膠してもよく、又は解膠しなくてもよい。好ましくは、調製に使用されるアルミナは、解膠された擬ベーマイトであり、これは混合及び形成後、か焼されてガンマアルミナになる。アルミナ組成物は、典型的には、温度、時間、pH、反応物供給速度などを含む制御された反応物濃度及び反応条件下でアルミナが沈殿するバッチプロセスで調製される。そのようなプロセスは、当該技術分野で一般に既知であり(例えば、Sanchezらの米国特許第4,154,812号、Lussierらの米国特許第6,403,526号、及びそこに引用されている特許を参照されたく、これらの開示は、参照により本明細書に組み込まれている)、関連するアルミナ調製方法が、本明細書に開示されている。 The subject catalytic metals are contained in a perforated alumina support. The alumina used can be, for example, gamma alumina or a precursor of alumina such as boehmite or pseudoboehmite. The alumina may be peptized or unpeptized. Preferably, the alumina used in the preparation is peptized pseudoboehmite, which after mixing and forming is calcined to gamma alumina. Alumina compositions are typically prepared in batch processes in which the alumina is precipitated under controlled reactant concentrations and reaction conditions, including temperature, time, pH, reactant feed rates, and the like. Such processes are generally known in the art (e.g., Sanchez et al., US Pat. No. 4,154,812, Lussier et al., US Pat. No. 6,403,526, and references therein). See patents, the disclosures of which are incorporated herein by reference), and related alumina preparation methods are disclosed herein.

触媒金属成分 catalyst metal component

触媒金属成分は、第1の金属画分及び第2の金属画分を含む。第1の金属画分は、周期表の第VIB族元素から選択される少なくとも1つの金属を含む。好ましくは、第1の金属画分は、クロム、モリブデン、又はタングステンから選択される少なくとも1つの金属を含む。より好ましくは、第1の金属画分は、単一の金属である。更により好ましくは、第1の金属画分は、モリブデンである。第2の金属画分は、周期表の第VIIIB族元素から選択される少なくとも2つの金属を含む。好ましくは、第2の金属画分は、コバルト、ロジウム、イリジウム、パラジウム、又は白金から選択される少なくとも2つの金属を含む。より好ましくは、第2の金属画分は、コバルト、ロジウム、又はイリジウムから選択される第1の金属サブグループからの少なくとも1つの金属と、ニッケル、パラジウム、又は白金から選択される第2の金属サブグループからの少なくとも1つの金属と、を含む。更により好ましくは、第2の金属画分は、第1の金属サブグループからの1つの金属と、第2の金属サブグループからの1つの金属と、を含む。より好ましくは、第2の金属画分は、コバルト及びニッケルを含む。 The catalytic metal component includes a first metal fraction and a second metal fraction. The first metal fraction comprises at least one metal selected from Group VIB elements of the periodic table. Preferably, the first metal fraction comprises at least one metal selected from chromium, molybdenum or tungsten. More preferably, the first metal fraction is a single metal. Even more preferably, the first metal fraction is molybdenum. The second metal fraction comprises at least two metals selected from Group VIIIB elements of the periodic table. Preferably, the second metal fraction comprises at least two metals selected from cobalt, rhodium, iridium, palladium, or platinum. More preferably, the second metal fraction comprises at least one metal from the first metal subgroup selected from cobalt, rhodium or iridium and a second metal selected from nickel, palladium or platinum and at least one metal from the subgroup. Even more preferably, the second metal fraction comprises one metal from the first metal subgroup and one metal from the second metal subgroup. More preferably, the second metal fraction comprises cobalt and nickel.

好ましくは、第1の金属画分と第2の金属画分との組み合わされた総重量は、触媒の総重量に基づいて3.0~12.0重量%である。より好ましくは、第1の金属画分及び第2の金属画分の総重量は、5.0~10.0重量%である。更により好ましくは、第1の金属画分及び第2の金属画分の総重量は、6.0~8.0重量%である。 Preferably, the combined total weight of the first metal fraction and the second metal fraction is 3.0 to 12.0 weight percent based on the total weight of the catalyst. More preferably, the total weight of the first metal fraction and the second metal fraction is 5.0-10.0 wt%. Even more preferably, the total weight of the first metal fraction and the second metal fraction is between 6.0 and 8.0 wt%.

好ましくは、第1の金属サブグループは、触媒の総重量に基づいて0.5~2.0重量%の量で存在し、第2の金属サブグループは、触媒の総重量に基づいて0.3~1.0重量%の量で存在する。より好ましくは、触媒の総重量に基づいて第1の金属サブグループは、0.80~1.20重量%の量で存在し、第2の金属サブグループは、0.40~0.60重量%の量で存在する。 Preferably, the first metal subgroup is present in an amount of 0.5 to 2.0 wt.%, based on the total weight of the catalyst, and the second metal subgroup is 0.5 to 2.0 wt. It is present in an amount of 3-1.0% by weight. More preferably, the first metal subgroup is present in an amount of 0.80-1.20% by weight and the second metal subgroup is present in an amount of 0.40-0.60% by weight, based on the total weight of the catalyst. %.

好ましくは、2.0~6.0の範囲の第2の金属画分に対する第1の金属画分の比を更に含む。より好ましくは、3.0~5.0の範囲の第2の金属画分に対する第1の金属画分の比を更に含む。更により好ましくは、3.5~4.5の範囲の第2の金属画分に対する第1の金属画分の比を更に含む。 Preferably, it further comprises a ratio of the first metal fraction to the second metal fraction in the range of 2.0-6.0. More preferably, it further comprises a ratio of the first metal fraction to the second metal fraction in the range of 3.0-5.0. Even more preferably, it further comprises a ratio of the first metal fraction to the second metal fraction in the range of 3.5-4.5.

触媒調製プロセス Catalyst preparation process

本主題の触媒は、最初にアルミナを水などの溶媒と混合し、アルミナを解膠する場合は解膠液と混合して、押出成形などの成形に適した生地状の材料を形成することによって調製される。混合は、典型的には、これらの成分を組み合わせるために、低エネルギーミキサ又は高エネルギー混合デバイスで行われる。次に、生地状の担体材料を押し出し、乾燥させ、か焼する。最後に、乾燥/か焼した押出物に金属成分を含浸させる。 The subject catalysts are prepared by first mixing the alumina with a solvent such as water and, if the alumina is peptized, with a deflocculating liquid to form a dough-like material suitable for molding such as extrusion. prepared. Mixing is typically done in a low energy mixer or high energy mixing device to combine these components. The dough-like carrier material is then extruded, dried and calcined. Finally, the dried/calcined extrudate is impregnated with the metal component.

解膠 deflocculation

アルミナの解膠は、化学処理によって大きなアルミナ粒子を小さな粒子に分解して、触媒組成物に好適なバインダーを作るために使用されるプロセスである。解膠液は、酸及び水を含めることができ、触媒の細孔構造にも影響を及ぼし、細孔サイズ分布を調整するために使用することができる。アルミナを解膠するために使用される酸は、好ましくは一塩基酸から選択される。より好ましくは、酸は、ギ酸、硝酸、塩酸、酢酸、及びそれらの混合物からなる群から選択される。更により好ましくは、アルミナを解膠するために使用される酸は、塩酸又は硝酸である。最も好ましくは、解膠は、硝酸を用いて行われる。アルミナの解膠は、好ましくは、解膠プロセスにおいて1.0~4.0重量%の酸を使用して実施される。より好ましくは、1.5~3.5重量%が使用される。最も好ましくは、2.0~3.0重量%が使用される。好ましくは、酸、水、及び未焼成のプソイドベーマイトアルミナの水溶液をミキサに供給し、混合して、1750°Fでの空気中の強熱減量測定によって判定される50~65重量パーセントの含水率を有する生地状の材料を生成する。次いで、混合された固体は、以下に記載されるように、所望のサイズ及び形状を有する触媒粒子に形成される。 Peptization of alumina is a process used to break down large alumina particles into smaller particles by chemical treatment to make a suitable binder for catalyst compositions. Peptizers, which can contain acids and water, also affect the pore structure of the catalyst and can be used to adjust the pore size distribution. The acid used to peptize the alumina is preferably selected from monobasic acids. More preferably, the acid is selected from the group consisting of formic acid, nitric acid, hydrochloric acid, acetic acid, and mixtures thereof. Even more preferably, the acid used to peptize the alumina is hydrochloric acid or nitric acid. Most preferably, deflocculation is carried out using nitric acid. Peptization of alumina is preferably carried out using 1.0 to 4.0 weight percent acid in the peptization process. More preferably, 1.5-3.5% by weight is used. Most preferably, 2.0-3.0 wt% is used. Preferably, an aqueous solution of acid, water, and uncalcined pseudoboehmite alumina is fed to a mixer and mixed to achieve a water content of 50 to 65 weight percent as determined by loss on ignition measurement in air at 1750°F. Creates a dough-like material with modulus. The mixed solids are then formed into catalyst particles having the desired size and shape, as described below.

押出/乾燥 Extrusion/drying

アルミナが解膠された後、得られた生地状の材料は、最初に押し出されて、ラム押出機、単軸押出機又は二軸押出機などの当該技術分野で公知の機器で押出物を形成する。押出後、押出物は、100~200℃の温度で10分~48時間乾燥するか、又は400~900℃で0.5~48時間か焼することができる。押出物はまた、上記のように乾燥され、続いて上記のようにか焼されてもよい。好ましくは、乾燥/か焼押出物の形状は、四角柱、円筒、三葉、又は四葉を含む。好ましくは、押出物の径は、0.2~10.0mmである。より好ましくは、押出物の径は、0.8~3.0mmである。 After the alumina has been peptized, the resulting dough-like material is first extruded to form extrudates in equipment known in the art such as ram extruders, single screw extruders or twin screw extruders. do. After extrusion, the extrudate can be dried at a temperature of 100-200° C. for 10 minutes-48 hours or calcined at 400-900° C. for 0.5-48 hours. The extrudates may also be dried as above and subsequently calcined as above. Preferably, the shape of the dried/calcined extrudates comprises square prisms, cylinders, trilobes, or tetralobes. Preferably, the extrudate diameter is between 0.2 and 10.0 mm. More preferably, the diameter of the extrudate is 0.8-3.0 mm.

乾燥/か焼に続いて、金属含有溶液を担体と接触させることにより、活性金属が担体に含浸され、その結果、金属が担体の細孔に堆積する。金属含有溶液は、金属化合物を好ましくは酸化物、硝酸塩、又は炭酸塩として存在させる溶媒に金属化合物を溶解することによって調製することができる。金属含有溶液中の金属は、当該技術分野で既知の任意の方法によって含浸させることができる。好ましくは、金属含浸は、初期湿潤含浸法によって実施される。この含浸法では、溶液中の活性金属の濃度又は使用する溶液の量を調整することにより、担体に付着する活性金属の量を制御することができる。 Following drying/calcination, the active metal is impregnated into the support by contacting the metal-containing solution with the support such that the metal is deposited in the pores of the support. A metal-containing solution can be prepared by dissolving a metal compound in a solvent in which the metal compound is preferably present as an oxide, nitrate, or carbonate. The metals in the metal-containing solution can be impregnated by any method known in the art. Preferably, metal impregnation is performed by the incipient wetness impregnation method. In this impregnation method, the amount of active metal deposited on the carrier can be controlled by adjusting the concentration of the active metal in the solution or the amount of solution used.

含浸後、含浸された担体は、100~200℃の温度で10分~48時間の期間にわたって乾燥させるか、又は400~700℃の温度で0.5~48時間の期間にわたってか焼することができる。好ましくは、含侵された担体は、上記のように最初に乾燥され、次いで、か焼され得る。好ましくは、第1の金属画分の金属は、第2の金属画分とは別個に含浸され、ここで、別個の含浸は、乾燥及び/又はか焼工程によって分離される。 After impregnation, the impregnated support can be dried at a temperature of 100-200° C. for a period of 10 minutes to 48 hours, or calcined at a temperature of 400-700° C. for a period of 0.5-48 hours. can. Preferably, the impregnated support can be first dried and then calcined as described above. Preferably, the metal of the first metal fraction is impregnated separately from the second metal fraction, wherein the separate impregnations are separated by drying and/or calcination steps.

代替的に、酸及び水を用いた解膠工程において、金属含有溶液をアルミナに添加することにより、金属を担体に含浸させることができる。得られた材料は、上記のように押し出され、乾燥され、任意選択的にか焼される。 Alternatively, the metal can be impregnated into the support by adding a metal-containing solution to the alumina in a peptization step using acid and water. The resulting material is extruded, dried and optionally calcined as described above.

触媒細孔サイズ分布 Catalyst pore size distribution

上記のような触媒の調製は、特別に設計された細孔容積分布をもたらし、細孔容積の最大の割合は、12~16nm未満の径を有する細孔内にあり、細孔からの細孔容積の中間量は、2~12nm未満の径を有し、細孔からの細孔容積の最小量は、16+nm(すなわち、細孔が16nm以上)の径を有する。三金属設計と組み合わせて、これらの特定の細孔サイズ範囲における細孔容積の指定されたレベルの組み合わせによって表される細孔サイズネットワークの全体的な構造は、より小さな細孔に好まれる触媒活性の最適なバランス、及び金属を蓄積処理してより大きな細孔に好まれる細孔の閉塞を防止する能力を提供するために特に選択される。 Preparation of the catalyst as described above results in a specially designed pore volume distribution, with the largest proportion of the pore volume being in pores with diameters less than 12-16 nm and An intermediate amount of volume has a diameter of less than 2-12 nm, and a minimum amount of pore volume from pores has a diameter of 16+ nm (ie, pores are 16 nm or greater). Combined with the trimetallic design, the overall structure of the pore size network, represented by the combination of specified levels of pore volume in these particular pore size ranges, favors the catalytic activity of smaller pores. and the ability to accumulate metals to prevent pore blockage in favor of larger pores.

特に明記しない限り、細孔容積及び分布、ならびに触媒表面積は、以下に記載される方法によって判定される。 Unless otherwise specified, pore volume and distribution, and catalyst surface area are determined by the methods described below.

本明細書で使用される「総細孔容積」は、窒素脱着によって識別可能なすべての細孔のcc/gでの累積容積を意味する。触媒担体又は担体粒子、特にアルミナ粉末については、細孔径分布と細孔容積は、E.P.Barrett、L.G.Joyner及びP.P.Halenda(「BJH」)、「The Determination of Pore Volume and Area Distributions in Porous Substances.I.Computations from Nitrogen Isotherms」、J.Am.Chern.Soc.、1951年、73(1)、pp373~380によって説明されている公知の計算方法を使用することを使用して窒素脱着等温線(円柱状の細孔を想定)を参照して計算することができる。 As used herein, "total pore volume" means the cumulative volume in cc/g of all pores discernible by nitrogen desorption. For catalyst supports or support particles, particularly alumina powder, the pore size distribution and pore volume are determined according to E.M. P. Barrett, L. G. Joyner and P.S. P. Halenda (“BJH”), “The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms,” J. Am. Am. Chern. Soc. , 1951, 73(1), pp 373-380 with reference to nitrogen desorption isotherms (assuming cylindrical pores). can.

サンプルの総窒素細孔容積は、上記の窒素脱離法及びBJH計算によって判定された窒素細孔容積の総計である。 The total nitrogen pore volume of the sample is the sum of the nitrogen pore volumes determined by the nitrogen desorption method and BJH calculations described above.

本明細書における「表面積」とは、本明細書では、S.Brunauer、P.Emmett、及びE.Teller in the Journal of The American Chemical Society、60(2)、pp309~319(1938)によって上記で説明されたようなBET技術を使用する窒素吸着によって判定される比表面積を指す。 "Surface area" as used herein is defined by S.W. Brunauer, P.; Emmett, and E.M. It refers to the specific surface area determined by nitrogen adsorption using the BET technique as described above by Teller in the Journal of The American Chemical Society, 60(2), pp 309-319 (1938).

細孔容積、PV(cc/g)又は表面積、(SA)(m/g)などの重量を含むすべての形態学的性質は、当該技術分野で公知の手順に従って金属非含有基準に対して正規化することができる。しかし、本明細書に公表される形態学的性質は、金属含有量について修正していない「実測定」基準に基づいている。 All morphological properties including weight such as pore volume, PV (cc/g) or surface area, (SA) (m 2 /g) were measured against metal-free standards according to procedures known in the art. can be normalized. However, the morphological properties published herein are based on "actual measurement" standards that are not corrected for metal content.

アルミナの全揮発分(TV)は、1750°Fの空気中での強熱減量によって測定された。NaOは、ICP原子発光分光法又は蛍光X線によって測定された。 Total volatiles (TV) of alumina was measured by loss on ignition in air at 1750°F. Na 2 O was measured by ICP atomic emission spectroscopy or X-ray fluorescence.

12nm未満(2nm~<12nm)の細孔 Pores less than 12 nm (2 nm to <12 nm)

細孔径が12nm未満、すなわち2nm~12nm未満の細孔の触媒中の細孔の細孔容積は、典型的には0.15mL/g~0.28mL/g未満である。本明細書の目的のために、2nm~<12nmの範囲の細孔容積は、第2の細孔容積と称される。好ましくは、細孔容積は、0.16~0.25mL/g、より好ましくは、0.17~0.22mL/gである。2nm~<12nmの範囲の細孔容積は、典型的に、総細孔容積の20.0~45.0%、好ましくは22.0~37.0%、より好ましくは25.0~32.0%を表す。 The pore volume of the pores in the catalyst with a pore diameter of less than 12 nm, ie between 2 nm and less than 12 nm, is typically between 0.15 mL/g and less than 0.28 mL/g. For the purposes of this specification, pore volumes in the range of 2 nm to <12 nm are referred to as secondary pore volumes. Preferably, the pore volume is between 0.16 and 0.25 mL/g, more preferably between 0.17 and 0.22 mL/g. Pore volumes in the range of 2 nm to <12 nm are typically 20.0-45.0%, preferably 22.0-37.0%, more preferably 25.0-32.0% of the total pore volume. Represents 0%.

12nm~<16nmの細孔 Pores from 12 nm to <16 nm

細孔径が12nm~<16nmである触媒中の細孔の細孔容積は、典型的には0.28mL/g~0.45mL/g未満である。本明細書の目的のために、12nm~<16nmの細孔の範囲の細孔容積は、第1の細孔容積と称される。好ましくは、細孔容積は、0.30~0.40mL/gである。より好ましくは、細孔容積は、0.32~0.36mL/gである。細孔直径が12nm~<16nmの細孔容積は、典型的に、総細孔容積の37.0~75.0%、好ましくは42.0~60.0%、より好ましくは47.0~53.0%である。 The pore volume of pores in the catalyst with pore diameters between 12 nm and <16 nm is typically between 0.28 mL/g and less than 0.45 mL/g. For the purposes of this specification, the pore volume in the range of pores from 12 nm to <16 nm is referred to as the first pore volume. Preferably, the pore volume is 0.30-0.40 mL/g. More preferably, the pore volume is between 0.32 and 0.36 mL/g. The pore volume with pore diameters from 12 nm to <16 nm is typically 37.0-75.0% of the total pore volume, preferably 42.0-60.0%, more preferably 47.0- 53.0%.

12~60nmの細孔 12-60 nm pores

典型的には、細孔径が12~60nmの細孔の触媒中の細孔の細孔容積は、0.32mL/g~0.60mL/gである。好ましくは、細孔の細孔容積は、0.42mL/g~0.55mL/gである。より好ましくは、細孔の細孔容積は、0.46~0.52mL/gである。典型的には、12nm~60nmの範囲の細孔容積は、総細孔容積の53.0~80.0%を構成する。好ましくは、12nm~60nmの範囲の細孔容積は、総細孔容積の60.0~77.0%を構成する。より好ましくは、12nm~60nmの範囲の細孔容積は、総細孔容積の67.0~74.0%を構成する。 Typically, the pore volume of the pores in the catalyst with pores having a pore size of 12-60 nm is 0.32 mL/g to 0.60 mL/g. Preferably, the pore volume of the pores is between 0.42 mL/g and 0.55 mL/g. More preferably, the pores have a pore volume of 0.46 to 0.52 mL/g. Typically, pore volumes in the range 12 nm to 60 nm constitute 53.0-80.0% of the total pore volume. Preferably, the pore volume in the range 12 nm-60 nm constitutes 60.0-77.0% of the total pore volume. More preferably, the pore volume in the range 12 nm-60 nm constitutes 67.0-74.0% of the total pore volume.

16~60nmの細孔 16-60 nm pores

典型的には、細孔径が16nm~60nmの触媒中の細孔の細孔容積は、0.01mL/g~0.20mL/gである。本明細書の目的のために、16~60nmの範囲の細孔容積は、第3の細孔容積と称される。好ましくは、この範囲の細孔容積は、0.02mL/g~0.19mL/gである。より好ましくは、この範囲の細孔容積は、0.10~0.18mL/gである。16nm~60nmの範囲の細孔容積は、総細孔容積の1.0~28.0%、好ましくは8.0~27.0%、より好ましくは15.0~26.0%を構成する。 Typically, the pore volume of pores in the catalyst with pore sizes between 16 nm and 60 nm is between 0.01 mL/g and 0.20 mL/g. For the purposes of this specification, the pore volume in the 16-60 nm range is referred to as the tertiary pore volume. Preferably, the pore volume in this range is from 0.02 mL/g to 0.19 mL/g. More preferably, the pore volume in this range is 0.10-0.18 mL/g. The pore volume in the range 16 nm-60 nm constitutes 1.0-28.0%, preferably 8.0-27.0%, more preferably 15.0-26.0% of the total pore volume .

総細孔容積 total pore volume

水素化処理触媒の総細孔容積は、典型的には0.63~0.75mL/gである。好ましくは、総細孔容積は、0.64~0.74mL/gである。より好ましくは、総細孔容積は、0.65~0.73mL/gである。 The total pore volume of the hydrotreating catalyst is typically 0.63-0.75 mL/g. Preferably, the total pore volume is 0.64-0.74 mL/g. More preferably, the total pore volume is 0.65-0.73 mL/g.

表面積 Surface area

本主題の水素化処理触媒の比表面積(SA)は、典型的には180~230m/gである。好ましくは、比表面積は、185~225m/gであり、より好ましくは、比表面積は190~220m/gである。 The specific surface area (SA) of the subject hydroprocessing catalysts is typically 180-230 m 2 /g. Preferably, the specific surface area is 185-225 m 2 /g, more preferably 190-220 m 2 /g.

リン含有量 phosphorus content

好ましくは、水素化処理触媒は、水素化処理触媒の総質量に基づいて1000ppmの最大リン含有量を含有する。より好ましくは、水素化処理触媒の最大リン含有量は、200ppmである。水素化処理触媒がより多量のリンを含有する場合、得られる触媒上への金属堆積は、高すぎる可能性があり、それにより触媒の細孔口をふさぐ。 Preferably, the hydroprocessing catalyst contains a maximum phosphorus content of 1000 ppm based on the total mass of the hydroprocessing catalyst. More preferably, the maximum phosphorus content of the hydrotreating catalyst is 200 ppm. If the hydrotreating catalyst contains higher amounts of phosphorus, the resulting metal deposition on the catalyst may be too high, thereby plugging the pore mouths of the catalyst.

中央細孔径(Median pore diameter、MPD) Median pore diameter (MPD)

好ましくは、本主題の水素化処理触媒の中央細孔径は、10.0~16.0nmである。好ましくは、中央細孔径は、11.0~15.0nmである。より好ましくは、中央細孔径は、13.4~14.3nmである。本明細書の目的のために、中央細孔径は、細孔容積分布の半分が細孔サイズ分布に従ってより大きな径の細孔内にある細孔径を意味する。 Preferably, the median pore size of the subject hydroprocessing catalysts is between 10.0 and 16.0 nm. Preferably, the median pore size is between 11.0 and 15.0 nm. More preferably, the median pore diameter is between 13.4 and 14.3 nm. For the purposes of this specification, median pore size means the pore size in which half of the pore volume distribution is within the larger pore size according to the pore size distribution.

以下の実施例は、本発明のプロセスの性能を更に詳細に説明する。当業者は、本発明の趣旨及び特許請求の範囲内にある多数の改変を認識するであろう。 The following examples further illustrate the performance of the process of the invention. Those skilled in the art will recognize numerous modifications that are within the spirit of the invention and scope of the claims.

実施例において、触媒活性試験は、以下に示される手順に記載されるように中東供給原料を使用して実施された。中東供給原料の特徴は次のとおりである。 In the examples, catalytic activity tests were performed using a Middle Eastern feedstock as described in the procedure given below. The characteristics of the Middle East feedstock are:

硫黄含有量CS0:2.1質量%、JIS K2541に準拠して測定。 Sulfur content C S0 : 2.1% by mass, measured according to JIS K2541.

バナジウム含有量CV0:15.0質量ppm、JIS K0116に準拠して測定。 Vanadium content CV0 : 15.0 mass ppm, measured according to JIS K0116.

ニッケル含有量CNi0:7.0質量ppm、JIS K10116に準拠して測定。 Nickel content C Ni0 : 7.0 mass ppm, measured according to JIS K10116.

実施例1 Example 1

実施例1の水素化処理触媒の調製は、最初に、1.02cc/gの窒素細孔容積、350m/gの表面積、0.05重量%のNaO含有量、総揮発度35.0重量%を有する、擬ベーマイト・アルミナを含有する原料粉末に硝酸と水を加えて担体生地を得、次いで、混練することにより実施された。担体生地(アルミナ、酸及び水)の総重量に基づいて、2.0重量%のHNOが使用された。得られた生地を押し出すことにより、押出物を得た。得られた押出物を130℃で18時間乾燥し、次いで、800℃で1時間か焼させた。得られた担体に、三酸化モリブデン(MoO)をアンモニア溶液に溶解して得られたモリブデン酸アンモニウム溶液を含浸させた。最終的な触媒中のモリブデンの割合は、表1に示すとおりである。担体は、130℃で18時間乾燥させた。硝酸ニッケル及び硝酸コバルトを含有する溶液を調製し、次いで、乾燥した担体に含浸させて、表1に示すように最終的な触媒中にコバルト及びニッケル含有量を有する触媒を生成した。次いで、ニッケル及びコバルトの溶液を含浸させた担体を、130℃で18時間乾燥させた。乾燥した担体を450℃で25分か焼し、触媒を生成した。 The hydrotreating catalyst of Example 1 was prepared by first using a nitrogen pore volume of 1.02 cc/g, a surface area of 350 m 2 /g, a Na 2 O content of 0.05 wt. It was carried out by adding nitric acid and water to a raw material powder containing pseudo-boehmite alumina, having 0% by weight, to obtain a carrier dough, and then kneading. 2.0 wt% HNO3 was used, based on the total weight of the carrier mass (alumina, acid and water). An extrudate was obtained by extruding the obtained dough. The resulting extrudates were dried at 130°C for 18 hours and then calcined at 800°C for 1 hour. The obtained carrier was impregnated with an ammonium molybdate solution obtained by dissolving molybdenum trioxide (MoO 3 ) in an ammonia solution. The percentage of molybdenum in the final catalyst is as shown in Table 1. The carrier was dried at 130° C. for 18 hours. A solution containing nickel nitrate and cobalt nitrate was prepared and then impregnated onto a dry support to produce a catalyst with cobalt and nickel content in the final catalyst as shown in Table 1. The support impregnated with the nickel and cobalt solution was then dried at 130° C. for 18 hours. The dried support was calcined at 450°C for 25 minutes to produce the catalyst.

実施例1の触媒中のモリブデン、ニッケル、及びコバルトの含有量は、ICP発光分光化学分析によって測定され、表1に示されているとおりである。実施例1の触媒の細孔の細孔径分布、比表面積及び中央細孔径は、上記の方法で測定した。結果を表1に示す。 The molybdenum, nickel, and cobalt contents in the catalyst of Example 1 were determined by ICP emission spectrochemical analysis and are shown in Table 1. The pore size distribution, specific surface area and median pore size of the pores of the catalyst of Example 1 were measured by the methods described above. Table 1 shows the results.

触媒活性試験手順 Catalytic activity test procedure

実施例1の水素化脱硫(HDS)、水素化脱金属(HDM)、水素化脱ニッケル(HDNi)及び水素化脱分解(HDV)活性を試験するために実験が行われた。固定床反応器に実施例1の触媒を充填した。以下の条件下で、触媒を水素ガスの流れ及び中東供給原料油と接触させた。 Experiments were conducted to test the hydrodesulfurization (HDS), hydrodemetalization (HDM), hydrodenickel (HDNi) and hydrodelysis (HDV) activities of Example 1. A fixed bed reactor was packed with the catalyst of Example 1. The catalyst was contacted with a stream of hydrogen gas and a Middle East feedstock under the following conditions.

水素分圧-14.0Mpa Hydrogen partial pressure -14.0Mpa

液体時空間速度(LHSV)-1.6h-1 Liquid hourly space velocity (LHSV) -1.6h -1

水素ガス対油比-928Nm/m Hydrogen gas to oil ratio - 928 Nm 3 /m 3

固定床反応器は、340℃、360℃、380℃、390℃の4つの異なる温度に連続して保持された。各温度で、製品油中の硫黄(C)、バナジウム(C)、及びニッケル(CNi)の濃度を、前述の方法を使用して測定した。プラグフローリアクターでの一次反応速度を想定し、CV0とCNi0が飼料油中のバナジウム及びニッケルの濃度である各温度でのHDM(式1A)、HDNi(式1B)、HDV(式1C)反応の反応速度定数を計算した。HDSの反応速度定数は、プラグフローリアクター(式1D)での二次反応速度を想定して、各温度で計算され、式中、CS0は供給油の硫黄濃度を示し、dは供給油の密度を示す。 The fixed bed reactor was continuously maintained at four different temperatures: 340°C, 360°C, 380°C and 390°C. At each temperature, the concentrations of sulfur (C s ), vanadium (C v ), and nickel (C Ni ) in the product oil were measured using the methods previously described. HDM (Equation 1A), HDNi (Equation 1B), HDV (Equation 1C) at each temperature where C V0 and C Ni0 are the concentrations of vanadium and nickel in the feed oil, assuming first order kinetics in a plug flow reactor. The kinetic constants of the reactions were calculated. The kinetic constants of HDS are calculated at each temperature assuming secondary reaction kinetics in a plug flow reactor (equation 1D), where CSO denotes the sulfur concentration of the feed and d0 is the feed indicates the density of

HDM=LHSVIn[(CV0+CNi0)/(C+CNi)] (式1A) k HDM =LHSV * In[(C V0 +C Ni0 )/(C V +C Ni )] (equation 1A)

HDNi=LHSVIn[CNi0/CNi] (式1B) k HDNi = LHSV * In[C Ni0 /C Ni ] (equation 1B)

HDV=LHSVIn[CV0/CVi] (式1C) k HDV = LHSV * In[C V0 /C Vi ] (equation 1C)

HDS=LHSV/(CS0 /3.208)(CS0/C-1) (式1D) k HDS =LHSV/(C S0 * d 0 /3.208) * (C S0 /C S −1) (equation 1D)

アレニウスの式(式2)を使用して、温度がケルビン単位である逆絶対温度(1/T)を、速度定数の自然対数(式1A~1Dから取得)、及び最小二乗法を使用して計算された最適な回帰線に対してプロットした。これらの回帰直線を使用して、380℃での計算された反応速度定数(ki、c)が、各サンプルの各反応タイプ(HDM、HDNi、HDV及びHDS)について計算された。例えば、表2及び3を参照されたい。 Using the Arrhenius equation (Equation 2), the inverse absolute temperature (1/T) where temperature is in Kelvin, using the natural logarithm of the rate constant (obtained from Equations 1A-1D), and the least squares method Plotted against the calculated best fit regression line. Using these regression lines, calculated reaction rate constants (k i,c ) at 380° C. were calculated for each reaction type (HDM, HDNi, HDV and HDS) for each sample. See, for example, Tables 2 and 3.

lnk=-(E/R)(1/T)+lnA (式2) lnk=−(E/R) * (1/T)+lnA (equation 2)

式中、
k=各個々の反応(HDM、HDNi、HDV
又はHDS)の反応速度定数
E=活性化エネルギー
R=気体定数
A=頻度因子
T=温度、ケルビン
During the ceremony,
k = each individual reaction (HDM, HDNi, HDV
or HDS) E = activation energy R = gas constant A = frequency factor T = temperature, Kelvin

比較を容易にするために、各例の触媒について相対反応活性を計算し、表1にパーセンテージで示している。これらの相対活性度は、各例の計算された反応速度定数(ki,c)を参照ケースの計算された速度定数で割ることによって計算される。特に明記しない限り、すべてのサンプルの触媒活性試験は実施例1と同様に実施された。固定床反応器が比較例1の触媒とそれに続く比較例2の触媒の重量で60:40の混合物の2つの層で充填されたことを除いて、参照ケースの推定速度定数は上記のように測定された。定義により、参照ケースの相対反応活性度は、100%である。例えば、表2及び3を参照されたい。 For ease of comparison, the relative reaction activity was calculated for each example catalyst and is shown in Table 1 as a percentage. These relative activities are calculated by dividing the calculated rate constant (k i,c ) for each example by the calculated rate constant for the reference case. All samples were tested for catalytic activity as in Example 1 unless otherwise stated. The estimated rate constants for the reference case were as above, except that the fixed bed reactor was packed with two layers of a 60:40 mixture by weight of the catalyst of Comparative Example 1 followed by the catalyst of Comparative Example 2. Measured. By definition, the relative activity of the reference case is 100%. See, for example, Tables 2 and 3.

実施例2 Example 2

実施例2では、水素化処理触媒の調製は、UOPから市販されているアルミナ粉末Versal250を使用したことを除いて、実施例1と同じ方法で実施された。Versal250は、0.82cc/gの窒素細孔容積、350m/gの表面積、0のNaO含有量、25.0重量%の揮発性を有する。更に、担体生地(アルミナ、酸及び水)の総重量に基づいて、3.0重量%のHNOが調製において利用された。実施例2の水素化処理試験及び触媒特性化は、実施例1と同じ方法で行われた。結果を表1に示す。最後に、実施例1と同様にして、実施例2の脱金属活性、HDNi活性、HDV活性、HDNi活性/HDV活性、脱硫活性を測定した。結果を表1に示す。 In Example 2, the preparation of the hydrotreating catalyst was carried out in the same manner as in Example 1, except that alumina powder Versal 250, commercially available from UOP, was used. Versal 250 has a nitrogen pore volume of 0.82 cc/g, a surface area of 350 m2 /g, a Na2O content of 0, and a volatility of 25.0 wt%. Additionally, 3.0 wt% HNO3 was utilized in the preparation, based on the total weight of the carrier mass (alumina, acid and water). The hydrotreating tests and catalyst characterization of Example 2 were carried out in the same manner as in Example 1. Table 1 shows the results. Finally, in the same manner as in Example 1, the demetallizing activity, HDNi activity, HDV activity, HDNi activity/HDV activity, and desulfurization activity of Example 2 were measured. Table 1 shows the results.

実施例3 Example 3

実施例3の水素化処理触媒は、窒素細孔容積が0.99cc/g、表面積が350m/g、NaO含有量が0.05重量%、揮発性が32.0重量%を有するシュードベーマイトアルミナ粉末を使用したことを除いて、実施例1と同じ方法で調製した。更に、担体生地(アルミナ、酸及び水)の総重量に基づいて、2.0重量%のHNOが調製において利用された。実施例3の水素化処理試験及び触媒特性化は、水素化処理触媒の変更を除いて、実施例1と同じ方法で実行された。結果を表1に示す。最後に、実施例1と同様にして、実施例3の脱金属活性、HDNi活性、HDV活性、HDNi活性/HDV活性、脱硫活性を測定した。結果を表1に示す。 The hydrotreating catalyst of Example 3 has a nitrogen pore volume of 0.99 cc/g, a surface area of 350 m 2 /g, a Na 2 O content of 0.05 wt %, and a volatility of 32.0 wt % Prepared in the same manner as in Example 1, except that pseudoboehmite alumina powder was used. Additionally, 2.0 wt% HNO3 was utilized in the preparation, based on the total weight of the carrier mass (alumina, acid and water). The hydrotreating tests and catalyst characterization of Example 3 were carried out in the same manner as Example 1, except for changing the hydrotreating catalyst. Table 1 shows the results. Finally, in the same manner as in Example 1, the demetallizing activity, HDNi activity, HDV activity, HDNi activity/HDV activity, and desulfurization activity of Example 3 were measured. Table 1 shows the results.

比較例1 Comparative example 1

比較例1の水素化処理触媒は、実施例2によるアルミナ粉末を使用して生成され、実施例1による担体を調製した。更に、担体生地(アルミナ、酸及び水)の総重量に基づいて、0.5重量%のHNOが調製において利用された。次いで、実施例1に記載のように担体にモリブデン酸アンモニウム溶液を含浸させて、表1に示すモリブデン含有量を生成した。乾燥後、次いで、モリブデンを含浸させた担体に、実施例1で説明したように硝酸ニッケル溶液を用いてニッケルを含浸させ、表1に示すようなニッケル含有量を有する触媒を生成した。コバルトは、担体上に含侵されなかった。担体は、130℃で18時間乾燥させ、次いで、450℃で25分間か焼させた。実施例1の水素化処理試験及び触媒特性化は、水素化処理触媒の変更を除いて、実施例1と同じ方法で実行された。結果を表1に示す。最後に、固定床反応器に、比較例1とそれに続く比較例2の重量で60:40の2層の混合物を充填したことを除いて、実施例1と同様にして、比較例1の脱金属活性、HDNi活性、HDV活性、HDNi活性/HDV活性、脱硫活性を測定した。結果を表1に示す。 The hydrotreating catalyst of Comparative Example 1 was produced using the alumina powder according to Example 2 and the support according to Example 1 was prepared. Additionally, 0.5 wt% HNO3 was utilized in the preparation, based on the total weight of the carrier mass (alumina, acid and water). The carrier was then impregnated with an ammonium molybdate solution as described in Example 1 to produce the molybdenum content shown in Table 1. After drying, the molybdenum impregnated support was then impregnated with nickel using a nickel nitrate solution as described in Example 1 to produce catalysts with nickel contents as shown in Table 1. No cobalt was impregnated onto the carrier. The carrier was dried at 130°C for 18 hours and then calcined at 450°C for 25 minutes. The hydrotreating tests and catalyst characterization of Example 1 were carried out in the same manner as in Example 1, except for changing the hydrotreating catalyst. Table 1 shows the results. Finally, the desorption of Comparative Example 1 was performed in the same manner as in Example 1, except that the fixed bed reactor was charged with a 60:40 two-layer mixture by weight of Comparative Example 1 followed by Comparative Example 2. Metal activity, HDNi activity, HDV activity, HDNi activity/HDV activity, and desulfurization activity were measured. Table 1 shows the results.

比較例2 Comparative example 2

比較例2の触媒は、窒素細孔容積が0.94cc/g、表面積が350m/g、NaO含有量が0.05重量%、揮発性が34.0重量%を有するシュードベーマイトアルミナ粉末を使用したことを除いて、実施例1と同じ方法で生成した。担体か焼は、740℃で行った。更に、担体生地(アルミナ、酸及び水)の総重量に基づいて、4.0重量%のHNOが調製において利用された。比較例2の触媒の試験及び特性化もまた、実施例1と同じであった。結果を表1に示す。最後に、固定床反応器に、比較例1とそれに続く比較例2の重量で60:40の2層の混合物を充填したことを除いて、実施例1と同様にして、比較例2の脱金属活性、HDNi活性、HDV活性、HDNi活性/HDV活性、脱硫活性を測定した。 The catalyst of Comparative Example 2 is pseudoboehmite alumina having a nitrogen pore volume of 0.94 cc/g, a surface area of 350 m 2 /g, a Na 2 O content of 0.05 wt %, and a volatility of 34.0 wt %. It was produced in the same manner as Example 1, except that powder was used. Carrier calcination was performed at 740°C. Additionally, 4.0 wt% HNO3 was utilized in the preparation, based on the total weight of the carrier mass (alumina, acid and water). The testing and characterization of the catalyst of Comparative Example 2 was also the same as in Example 1. Table 1 shows the results. Finally, the desorption of Comparative Example 2 was performed in the same manner as in Example 1, except that the fixed bed reactor was charged with a 60:40 two-layer mixture by weight of Comparative Example 1 followed by Comparative Example 2. Metal activity, HDNi activity, HDV activity, HDNi activity/HDV activity, and desulfurization activity were measured.

比較例3. Comparative example 3.

比較例3の水素化処理触媒は、解膠条件を調整し、含浸条件を調整して、表1のモリブデン及びニッケル濃度を達成したことを除いて、比較例1と同様に調製した。コバルトは、担体内に含侵されなかった。更に、担体生地(アルミナ、酸及び水)の総重量に基づいて、3.0重量%のHNOが調製において利用された。比較例3の触媒の試験及び特性化もまた、実施例1と同様であった。結果を表1に示す。最後に、実施例1と同様にして、比較例3の脱金属活性、HDNi活性、HDV活性、HDNi活性/HDV活性、脱硫活性を測定した。 The hydrotreating catalyst of Comparative Example 3 was prepared similarly to Comparative Example 1 except that the peptization conditions were adjusted and the impregnation conditions were adjusted to achieve the molybdenum and nickel concentrations in Table 1. No cobalt was impregnated into the carrier. Additionally, 3.0 wt% HNO3 was utilized in the preparation, based on the total weight of the carrier mass (alumina, acid and water). Testing and characterization of the catalyst of Comparative Example 3 was also similar to Example 1. Table 1 shows the results. Finally, in the same manner as in Example 1, the demetallizing activity, HDNi activity, HDV activity, HDNi activity/HDV activity, and desulfurization activity of Comparative Example 3 were measured.

比較例4 Comparative example 4

比較例4の水素化処理触媒は、実施例3のアルミナを使用したことを除いて比較例1と同様に調製した。更に、担体生地(アルミナ、酸及び水)の総重量に基づいて、2.0重量%のHNOが調製において利用された。比較例4の水素化処理試験及び触媒特性化は、実施例1と同じ方法で実行された。結果を表1に示す。最後に、実施例1と同様にして、比較例4の脱金属活性、HDNi活性、HDV活性、HDNi活性/HDV活性、脱硫活性を測定した。結果を表1に示す。 The hydrotreating catalyst of Comparative Example 4 was prepared similarly to Comparative Example 1 except that the alumina of Example 3 was used. Additionally, 2.0 wt% HNO3 was utilized in the preparation, based on the total weight of the carrier mass (alumina, acid and water). Hydrotreating tests and catalyst characterization of Comparative Example 4 were carried out in the same manner as in Example 1. Table 1 shows the results. Finally, in the same manner as in Example 1, the demetallizing activity, HDNi activity, HDV activity, HDNi activity/HDV activity, and desulfurization activity of Comparative Example 4 were measured. Table 1 shows the results.

比較例5 Comparative example 5

比較例5の水素化処理触媒は、実施例3のアルミナを使用したことを除いて比較例3と同様に調製した。更に、担体生地(アルミナ、酸及び水)の総重量に基づいて、2.0重量%のHNOが調製において利用された。比較例5の水素化処理試験も比較例3と同様に実行された。比較例5の水素化処理触媒の特徴化は、実施例1と同じ方法で実施された。結果を表1に示す。最後に、実施例1と同様にして、比較例5の脱金属活性、HDNi活性、HDV活性、HDNi活性/HDV活性、及び脱硫活性を測定した。結果を表1に示す。 The hydrotreating catalyst of Comparative Example 5 was prepared similarly to Comparative Example 3 except that the alumina of Example 3 was used. Additionally, 2.0 wt% HNO3 was utilized in the preparation, based on the total weight of the carrier mass (alumina, acid and water). The hydrotreating test for Comparative Example 5 was also carried out in the same manner as for Comparative Example 3. Characterization of the hydrotreating catalyst of Comparative Example 5 was carried out in the same manner as in Example 1. Table 1 shows the results. Finally, in the same manner as in Example 1, the demetallizing activity, HDNi activity, HDV activity, HDNi activity/HDV activity, and desulfurization activity of Comparative Example 5 were measured. Table 1 shows the results.

比較例6 Comparative example 6

比較例6の水素化処理触媒は、実施例1のアルミナを使用したことを除いて比較例1と同様に調製した。更に、担体生地(アルミナ、酸及び水)の総重量に基づいて、0.5重量%のHNOが調製において利用された。比較例6の水素化処理試験及び触媒特性化は、実施例1と同じ方法で実行された。結果を表1に示す。最後に、実施例1と同様にして、比較例6の脱金属活性、HDNi活性、HDV活性、HDNi活性/HDV活性、脱硫活性を測定した。結果を表1に示す。

Figure 0007269247000001
Figure 0007269247000002
The hydrotreating catalyst of Comparative Example 6 was prepared similarly to Comparative Example 1 except that the alumina of Example 1 was used. Additionally, 0.5 wt% HNO3 was utilized in the preparation, based on the total weight of the carrier mass (alumina, acid and water). Hydrotreating tests and catalyst characterization of Comparative Example 6 were carried out in the same manner as in Example 1. Table 1 shows the results. Finally, in the same manner as in Example 1, the demetallizing activity, HDNi activity, HDV activity, HDNi activity/HDV activity, and desulfurization activity of Comparative Example 6 were measured. Table 1 shows the results.

Figure 0007269247000001
Figure 0007269247000002

表1に示すように、実施例1~3の水素化処理触媒は、比較例1~6の触媒と比較して、脱金属及び脱硫活性において優れた性能を実証することが確認された。本発明の実施例は、比較例よりも高い相対的HDS活性を実証する。付加的に、一般にバナジウムよりも除去が困難なニッケルは、比較例よりも本発明の実施例の方が大幅に高い選択性と活性で除去される。 As shown in Table 1, the hydrotreating catalysts of Examples 1-3 were confirmed to demonstrate superior performance in demetallization and desulfurization activity compared to the catalysts of Comparative Examples 1-6. The examples of the invention demonstrate higher relative HDS activity than the comparative examples. Additionally, nickel, which is generally more difficult to remove than vanadium, is removed with significantly higher selectivity and activity in the inventive examples than in the comparative examples.

本明細書において開示されている、他の特徴、本発明の利点及び実施形態は、前述の開示を一読した後、当業者には容易に明らかとなるであろう。これに関して、本発明の特定の実施形態をかなり詳細に説明してきたが、これらの実施形態の変更及び修正は、説明及び特許請求される本発明の精神及び範囲から逸脱することなく影響を受け得る。 Other features, advantages and embodiments of the invention disclosed herein will become readily apparent to those skilled in the art after reading the foregoing disclosure. In this regard, although specific embodiments of the invention have been described in considerable detail, alterations and modifications of these embodiments can be affected without departing from the spirit and scope of the invention as described and claimed. .

Claims (36)

担体と、前記担体に含浸された金属成分と、を含む、水素化処理触媒であって、
-前記担体が、アルミナを含み、
-前記金属成分が、第1の金属画分及び第2の金属画分を含み、前記第1の金属画分が、クロム、モリブデン、又はタングステンから選択される少なくとも1つの金属を含み、前記第2の金属画分が、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、又はプラチナから選択される少なくとも2つの金属を含み、
前記触媒が、12nm~16nm未満の細孔径を有する細孔に対して0.28~0.45mL/gの第1の細孔容積、及び2.0nm~12.0nm未満の細孔に対して0.15~0.28mL/gの第2の細孔容積を有する、触媒。
A hydrotreating catalyst comprising a support and a metal component impregnated in the support,
- said support comprises alumina,
- said metal component comprises a first metal fraction and a second metal fraction, said first metal fraction comprising at least one metal selected from chromium, molybdenum or tungsten; the two metal fractions comprise at least two metals selected from cobalt, rhodium, iridium, nickel, palladium, or platinum;
The catalyst has a first pore volume of 0.28 to 0.45 mL/g for pores with pore sizes of 12 nm to less than 16 nm, and for pores of 2.0 nm to less than 12.0 nm. A catalyst having a secondary pore volume of 0.15-0.28 mL/g.
2.0~6.0の範囲の前記第2の金属画分に対する前記第1の金属画分の重量比を更に含む、請求項1に記載の触媒。 2. The catalyst of claim 1, further comprising a weight ratio of said first metal fraction to said second metal fraction in the range of 2.0 to 6.0. 前記重量比が、3.0~5.0の範囲である、請求項2に記載の触媒。 Catalyst according to claim 2, wherein said weight ratio ranges from 3.0 to 5.0. 前記重量比が、3.5~4.5の範囲である、請求項3に記載の触媒。 Catalyst according to claim 3, wherein said weight ratio is in the range of 3.5 to 4.5. 前記第2の金属画分が、コバルト、ロジウム、又はイリジウムから選択される第1の金属サブグループからの少なくとも1つの金属と、ニッケル、パラジウム、又は白金から選択される第2の金属サブグループからの少なくとも1つの金属と、を含む、請求項1に記載の触媒。 wherein said second metal fraction comprises at least one metal from a first metal subgroup selected from cobalt, rhodium, or iridium and from a second metal subgroup selected from nickel, palladium, or platinum; and at least one metal of 前記第1の金属サブグループが、前記触媒の総重量に基づいて0.5~2.0重量%の量で存在し、前記第2の金属サブグループが、前記触媒の総重量に基づいて0.3~1.0重量%の量で存在する、請求項5に記載の触媒。 The first metal subgroup is present in an amount of 0.5-2.0 wt% based on the total weight of the catalyst and the second metal subgroup is 0 based on the total weight of the catalyst. A catalyst according to claim 5, present in an amount of .3 to 1.0% by weight. 前記触媒の総重量に基づいて、前記第1の金属サブグループが、0.80~1.20重量%の量で存在し、前記第2の金属サブグループが、0.40~0.60重量%の量で存在する、請求項6に記載の触媒。 The first metal subgroup is present in an amount of 0.80 to 1.20 wt% and the second metal subgroup is present in an amount of 0.40 to 0.60 wt%, based on the total weight of the catalyst. 7. The catalyst of claim 6 present in an amount of %. 前記第2の金属画分が、前記第1の金属サブグループからの1つの金属と、前記第2の金属サブグループからの1つの金属と、を含む、請求項5に記載の触媒。 6. The catalyst of claim 5, wherein said second metal fraction comprises one metal from said first metal subgroup and one metal from said second metal subgroup. 前記第1の金属画分及び前記第2の金属画分の総重量が、前記触媒の総重量に基づいて3.0~12.0重量%である、請求項1に記載の触媒。 Catalyst according to claim 1, wherein the total weight of said first metal fraction and said second metal fraction is from 3.0 to 12.0 wt% based on the total weight of said catalyst. 前記第1の金属画分及び前記第2の金属画分の総重量が、5.0~10.0重量%である、請求項9に記載の触媒。 Catalyst according to claim 9, wherein the total weight of said first metal fraction and said second metal fraction is from 5.0 to 10.0 wt%. 前記第1の金属画分及び前記第2の金属画分の総重量が、6.0~8.0重量%である、請求項10に記載の触媒。 Catalyst according to claim 10, wherein the total weight of said first metal fraction and said second metal fraction is from 6.0 to 8.0 wt%. 前記第1の金属画分が、モリブデンである、請求項1に記載の触媒。 Catalyst according to claim 1, wherein the first metal fraction is molybdenum. 前記第2の金属画分が、コバルト及びニッケルを含む、請求項1に記載の触媒。 2. The catalyst of claim 1, wherein said second metal fraction comprises cobalt and nickel. 前記金属成分が、モリブデン、コバルト及びニッケルを含む、請求項1に記載の触媒。 Catalyst according to claim 1, wherein the metal components comprise molybdenum, cobalt and nickel. 前記第1の細孔容積が、0.30~0.40mL/gである、請求項1に記載の触媒。 Catalyst according to claim 1, wherein the first pore volume is between 0.30 and 0.40 mL/g. 前記第1の細孔容積が、0.32~0.36mL/gである、請求項15に記載の触媒。 16. The catalyst of claim 15, wherein said first pore volume is between 0.32 and 0.36 mL/g. 前記第2の細孔容積が、0.16~0.25mL/gである、請求項1に記載の触媒。 Catalyst according to claim 1, wherein said second pore volume is between 0.16 and 0.25 mL/g. 前記第2の細孔容積が、0.17~0.22mL/gである、請求項17に記載の触媒。 Catalyst according to claim 17, wherein the second pore volume is between 0.17 and 0.22 mL/g. 16nm~60nmの細孔に対して、0.01~0.20mL/gの第3の細孔容積を更に含む、請求項1に記載の触媒。 The catalyst of claim 1, further comprising a third pore volume of 0.01-0.20 mL/g for pores of 16 nm-60 nm. 前記第3の細孔容積が、0.02~0.19mL/gである、請求項19に記載の触媒。 20. The catalyst of claim 19, wherein said third pore volume is between 0.02 and 0.19 mL/g. 前記第3の細孔容積が、0.10~0.18mL/gである、請求項20に記載の触媒。 21. The catalyst of claim 20, wherein said third pore volume is between 0.10 and 0.18 mL/g. 前記第1の細孔容積及び前記第3の細孔容積の総計が、0.32~0.60mL/gである、請求項19に記載の触媒。 20. The catalyst of claim 19 , wherein the sum of said first pore volume and said third pore volume is between 0.32 and 0.60 mL/g. 前記第1の細孔容積及び前記第3の細孔容積の総計が、0.42~0.55mL/gである、請求項22に記載の触媒。 23. The catalyst of claim 22, wherein the sum of said first pore volume and said third pore volume is between 0.42 and 0.55 mL/g. 前記第1の細孔容積及び前記第3の細孔容積の総計が、0.46~0.52mL/gである、請求項23に記載の触媒。 24. The catalyst of claim 23, wherein the sum of said first pore volume and said third pore volume is between 0.46 and 0.52 mL/g. 0.63~0.75mL/gの総細孔容積を更に含む、請求項1に記載の触媒。 The catalyst of claim 1, further comprising a total pore volume of 0.63-0.75 mL/g. 総細孔容積が、0.64~0.74mL/gである、請求項25に記載の触媒。 26. The catalyst of claim 25, having a total pore volume of 0.64-0.74 mL/g. 総細孔容積が、0.65~0.73mL/gである、請求項26に記載の触媒。 27. The catalyst of claim 26, having a total pore volume of 0.65-0.73 mL/g. 180~230m/gの比表面積を更に含む、請求項1に記載の触媒。 Catalyst according to claim 1, further comprising a specific surface area of 180-230 m 2 /g. 前記比表面積が、185~225m/gである、請求項28に記載の触媒。 Catalyst according to claim 28, wherein the specific surface area is between 185 and 225 m 2 /g. 前記比表面積が、190~220m/gである、請求項29に記載の触媒。 A catalyst according to claim 29, wherein said specific surface area is between 190 and 220 m 2 /g. 10.0~16.0nmの中央細孔径を更に含む、請求項1に記載の触媒。 The catalyst of claim 1, further comprising a median pore size of 10.0-16.0 nm. 前記中央細孔径が、11.0~15.0nmである、請求項31に記載の触媒。 32. The catalyst of claim 31, wherein said median pore size is between 11.0 and 15.0 nm. 前記中央細孔径が、13.4~14.3nmである、請求項32に記載の触媒。 33. The catalyst of claim 32, wherein the median pore size is 13.4-14.3 nm. 前記触媒の総重量に基づいて、1000ppmの最大リン含有量を更に含む、請求項1に記載の触媒。 2. The catalyst of claim 1, further comprising a maximum phosphorus content of 1000 ppm based on the total weight of said catalyst. 前記最大リン含有量が、200ppmである、請求項34に記載の触媒。 35. A catalyst according to claim 34, wherein said maximum phosphorus content is 200 ppm. 水素化処理触媒を生成するためのプロセスであって、金属成分を担体上へ含侵させることを含み、
-前記担体が、アルミナを含み、
-前記金属成分が、第1の金属画分及び第2の金属画分を含み、前記第1の金属画分が、クロム、モリブデン、タングステン、又はそれらの混合物から選択される少なくとも1つの金属を含み、前記第2の金属画分が、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、プラチナ、又はそれらの混合物から選択される少なくとも2つの異なる金属を含み、
前記触媒が、12nm~16nm未満の細孔径を有する細孔に対して0.28~0.45mL/gの第1の細孔容積、及び2.0nm~12.0nm未満の細孔に対して0.15~0.28mL/gの第2の細孔容積を有する、プロセス。
1. A process for producing a hydroprocessing catalyst comprising impregnating a metal component onto a support,
- said support comprises alumina,
- said metal component comprises a first metal fraction and a second metal fraction, said first metal fraction comprising at least one metal selected from chromium, molybdenum, tungsten, or mixtures thereof; wherein said second metal fraction comprises at least two different metals selected from cobalt, rhodium, iridium, nickel, palladium, platinum, or mixtures thereof;
The catalyst has a first pore volume of 0.28 to 0.45 mL/g for pores with pore sizes of 12 nm to less than 16 nm, and for pores of 2.0 nm to less than 12.0 nm. A process having a secondary pore volume of 0.15-0.28 mL/g.
JP2020539077A 2018-01-31 2019-01-25 Hydrotreating catalyst for reduction of metals and sulfur in heavy oil Active JP7269247B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862624236P 2018-01-31 2018-01-31
US62/624,236 2018-01-31
PCT/US2019/015107 WO2019152268A1 (en) 2018-01-31 2019-01-25 Hydroprocessing catalyst for the reduction of metals and sulfur in heavy feeds

Publications (2)

Publication Number Publication Date
JP2021511951A JP2021511951A (en) 2021-05-13
JP7269247B2 true JP7269247B2 (en) 2023-05-08

Family

ID=67479431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020539077A Active JP7269247B2 (en) 2018-01-31 2019-01-25 Hydrotreating catalyst for reduction of metals and sulfur in heavy oil

Country Status (4)

Country Link
US (1) US11318448B2 (en)
EP (1) EP3746219A4 (en)
JP (1) JP7269247B2 (en)
WO (1) WO2019152268A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7011479B2 (en) * 2018-01-31 2022-01-26 Eneos株式会社 Hydrocarbon oil manufacturing method
KR20200086983A (en) * 2019-01-10 2020-07-20 코아텍주식회사 Metal oxide catalysts for removal of large capacity perfluorinated compounds and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520567A (en) 1994-07-29 2001-10-30 シェブロン ユー.エス.エー. インコーポレイテッド Low macro porosity resid conversion catalyst.
JP2007512132A (en) 2003-11-20 2007-05-17 アドヴァンスト・リファイニング・テクノロジーズ,リミテッド・ライアビリティ・カンパニー Hydrogen conversion catalyst and process for producing and using the same
JP2011502047A (en) 2007-10-31 2011-01-20 シェブロン ユー.エス.エー. インコーポレイテッド Hydroconversion process using polymetallic catalyst and method for producing the same
US20140124410A1 (en) 2012-11-06 2014-05-08 Instituto Mexicano Del Petroleo Mesoporous composite of molecular sieves for hydrocracking of heavy crude oils and residues
JP2014529502A (en) 2011-09-01 2014-11-13 アドバンスド・リフアイニング・テクノロジーズ・エルエルシー Catalyst support and catalyst prepared therefrom
WO2016195973A1 (en) 2015-05-29 2016-12-08 Advanced Refining Technologies Llc High hdn selectivity hydrotreating catalyst

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900427A (en) * 1970-12-28 1975-08-19 Exxon Research Engineering Co Hydroprocessing catalyst
BE832072A (en) * 1974-08-12 1975-12-01 IMPROVED COMPOSITIONS FOR CATALYSIS AND THEIR PREPARATION PROCESS
US4154812A (en) 1977-03-25 1979-05-15 W. R. Grace & Co. Process for preparing alumina
JPS6197035A (en) * 1984-10-19 1986-05-15 Nippon Kokan Kk <Nkk> Catalyst for hydrogenating coal tar and hydrogenating method
US5210061A (en) 1991-09-24 1993-05-11 Union Oil Company Of California Resid hydroprocessing catalyst
CA2093412C (en) 1992-04-20 2002-12-31 Gerald Verdell Nelson Novel hydroconversion process employing catalyst with specified pore size distribution
US5827421A (en) * 1992-04-20 1998-10-27 Texaco Inc Hydroconversion process employing catalyst with specified pore size distribution and no added silica
US6015485A (en) * 1994-05-13 2000-01-18 Cytec Technology Corporation High activity catalysts having a bimodal mesopore structure
US6403526B1 (en) 1999-12-21 2002-06-11 W. R. Grace & Co.-Conn. Alumina trihydrate derived high pore volume, high surface area aluminum oxide composites and methods of their preparation and use
MX2007009504A (en) * 2007-08-07 2009-02-06 Mexicano Inst Petrol Catalyst for the first stage of hydro demetallization in a hydro processing system with multiple reactors for the improvement of heavy and extra-heavy crudes.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520567A (en) 1994-07-29 2001-10-30 シェブロン ユー.エス.エー. インコーポレイテッド Low macro porosity resid conversion catalyst.
JP2007512132A (en) 2003-11-20 2007-05-17 アドヴァンスト・リファイニング・テクノロジーズ,リミテッド・ライアビリティ・カンパニー Hydrogen conversion catalyst and process for producing and using the same
JP2011502047A (en) 2007-10-31 2011-01-20 シェブロン ユー.エス.エー. インコーポレイテッド Hydroconversion process using polymetallic catalyst and method for producing the same
JP2014529502A (en) 2011-09-01 2014-11-13 アドバンスド・リフアイニング・テクノロジーズ・エルエルシー Catalyst support and catalyst prepared therefrom
US20140124410A1 (en) 2012-11-06 2014-05-08 Instituto Mexicano Del Petroleo Mesoporous composite of molecular sieves for hydrocracking of heavy crude oils and residues
WO2016195973A1 (en) 2015-05-29 2016-12-08 Advanced Refining Technologies Llc High hdn selectivity hydrotreating catalyst

Also Published As

Publication number Publication date
US20200360903A1 (en) 2020-11-19
EP3746219A1 (en) 2020-12-09
WO2019152268A1 (en) 2019-08-08
JP2021511951A (en) 2021-05-13
US11318448B2 (en) 2022-05-03
EP3746219A4 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
JP6506430B2 (en) Improved resid hydroprocessing catalyst containing titania
KR101645726B1 (en) Hydrodemetallization and hydrodesulphurization catalysts, and use in a single formulation in a concatenated process
EP2750792B1 (en) Catalyst support and catalysts prepared therefrom
CN106922134B (en) Catalyst with bimodal porosity, method for producing same by blending active phases and use thereof for hydrogenation of hydrocarbon residues
JP2016016404A (en) Hydrotreatment catalyst with high density of molybdenum, and process for its preparation
JP2003340281A (en) Treatment method for hydro-refining and/or hydro- conversion of hydrocarbon raw material load by using catalyst
US20040163999A1 (en) HPC process using a mixture of catalysts
CN110841674B (en) Extruded resid demetallization catalysts
JP2019522076A (en) Improved system and method for heavy oil
JP2018521837A (en) High HDN selective hydrotreating catalyst
WO2014041152A1 (en) Process for the preparation of a hydrocracking catalyst
EP1567617A1 (en) Hydroprocessing of hydrocarbon using a mixture of catalysts
KR20150132484A (en) Novel resid hydrotreating catalyst
JP7269247B2 (en) Hydrotreating catalyst for reduction of metals and sulfur in heavy oil
RU2690843C2 (en) Method for hydrotreatment of distillate fractions using catalyst based on amorphous mesoporous aluminium oxide having high coherence of structure
US20040256293A1 (en) Two-stage hpc process
RU2689116C2 (en) Method for hydrotreatment of gas-oil fractions using catalyst based on amorphous mesoporous aluminium oxide having high coherence of structure
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
US11148124B2 (en) Hierarchical zeolite Y and nano-sized zeolite beta composite
RU2497585C2 (en) Catalyst for hydrofining of oil fractions and raffinates of selective purification and method of its preparation
WO2008085517A1 (en) Selective hydrocracking process using beta zeolite
JPH083568A (en) Mild hydrocracking of heavy hydrocarbon feedstock using silica/alumina catalyst

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200804

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230421

R150 Certificate of patent or registration of utility model

Ref document number: 7269247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150