JP7267597B2 - Piezomagnetostrictive composites and power generation elements - Google Patents

Piezomagnetostrictive composites and power generation elements Download PDF

Info

Publication number
JP7267597B2
JP7267597B2 JP2019116217A JP2019116217A JP7267597B2 JP 7267597 B2 JP7267597 B2 JP 7267597B2 JP 2019116217 A JP2019116217 A JP 2019116217A JP 2019116217 A JP2019116217 A JP 2019116217A JP 7267597 B2 JP7267597 B2 JP 7267597B2
Authority
JP
Japan
Prior art keywords
piezoelectric
magnetostrictive
film
power generation
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019116217A
Other languages
Japanese (ja)
Other versions
JP2021002609A (en
Inventor
泰文 古屋
史生 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2019116217A priority Critical patent/JP7267597B2/en
Publication of JP2021002609A publication Critical patent/JP2021002609A/en
Application granted granted Critical
Publication of JP7267597B2 publication Critical patent/JP7267597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、圧電磁歪複合体および発電素子に関する。 The present invention relates to piezoelectric magnetostrictive composites and power generation elements.

振動等の機械的なエネルギーを電気的なエネルギーに変換する発電素子に注目が集まっている。例えば、圧電材料及び磁歪材料は、機械的なエネルギーを電気的なエネルギーに変換できる材料として知られている。圧電材料は、応力を受けると圧電効果により電荷又は電場を生み出す。磁歪材料は、歪が生じると逆磁歪効果により、周囲の磁場が変化し、誘導起電力を生み出す。 Attention is focused on power generation elements that convert mechanical energy such as vibration into electrical energy. For example, piezoelectric materials and magnetostrictive materials are known as materials capable of converting mechanical energy into electrical energy. Piezoelectric materials produce an electric charge or electric field due to the piezoelectric effect when stressed. When the magnetostrictive material is distorted, the surrounding magnetic field changes due to the inverse magnetostrictive effect, and an induced electromotive force is generated.

例えば、特許文献1には、圧電基板の一面に磁歪膜を成膜した圧電磁歪複合型磁気センサが記載されている。また特許文献2には、特性に優れた磁歪材料が記載されている。 For example, Patent Literature 1 describes a composite piezoelectric-electrostrictive magnetic sensor in which a magnetostrictive film is formed on one surface of a piezoelectric substrate. Further, Patent Document 2 describes a magnetostrictive material with excellent characteristics.

国際公開第2010/110423号WO2010/110423 特許第6112582号公報Japanese Patent No. 6112582

振動等の機械的なエネルギーは、十分な利用が図られていなかった。機械的なエネルギーをより効率的に電気的なエネルギーに変換できる発電素子が求められている。 Mechanical energy such as vibration has not been sufficiently utilized. There is a demand for a power generation element that can more efficiently convert mechanical energy into electrical energy.

本発明は上記問題に鑑みてなされたものであり、高出力な発電素子及びこれに用いられる圧電磁歪複合体を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a high-output power generating element and a piezoelectric magnetostrictive composite used therein.

本発明者らは、磁歪膜と圧電膜とを積層し、これらの界面に微小な凹凸を形成することで、ミクロ的な界面部における2材料の接触頻度を増やし、磁歪膜と圧電膜とが電磁物理的な相互作用を生じ、発電素子の出力特性が向上することを見出した。
すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。
The inventors of the present invention laminated a magnetostrictive film and a piezoelectric film, and formed microscopic unevenness at the interface between the two materials, thereby increasing the frequency of contact between the two materials at the microscopic interface. It was found that an electromagnetic physical interaction occurs and the output characteristics of the power generating element are improved.
That is, the present invention provides the following means in order to solve the above problems.

(1)第1の態様にかかる圧電磁歪複合体は、分極した圧電体を含む圧電膜と、前記圧電膜の少なくとも一面に積層された磁歪膜とを備え、前記磁歪膜の前記圧電膜側の第1面は、算術平均粗さが50μm以下の凹凸を有し、前記圧電膜の前記磁歪膜側の第2面は、前記第1面の凹凸に追従している。 (1) A piezoelectric-magnetostrictive composite according to a first aspect includes a piezoelectric film containing a polarized piezoelectric body and a magnetostrictive film laminated on at least one surface of the piezoelectric film, and the magnetostrictive film on the piezoelectric film side of the magnetostrictive film The first surface has unevenness with an arithmetic mean roughness of 50 μm or less, and the second surface of the piezoelectric film on the magnetostrictive film side follows the unevenness of the first surface.

(2)上記態様にかかる圧電磁歪複合体において、前記磁歪膜が、前記圧電膜の両面に積層されていてもよい。 (2) In the piezoelectric-magnetostrictive composite according to the aspect described above, the magnetostrictive films may be laminated on both sides of the piezoelectric film.

(3)上記態様にかかる圧電磁歪複合体において、前記圧電膜は、樹脂と、前記樹脂に分散された圧電体と、を備えてもよい。 (3) In the piezoelectric magnetostrictive composite according to the aspect described above, the piezoelectric film may include a resin and a piezoelectric material dispersed in the resin.

(4)第2の態様にかかる発電素子は、上記態様にかかる圧電磁歪複合体と、前記圧電磁歪複合体の周囲を巻回するコイルと、を備える。 (4) A power generation element according to a second aspect includes the piezoelectric-magnetostrictive composite according to the aspect described above and a coil wound around the piezoelectric-magnetostrictive composite.

高出力な発電素子及びこれに用いられる圧電磁歪複合体を提供できる。 It is possible to provide a high-output power generating element and a piezoelectric magnetostrictive composite used therefor.

第1実施形態にかかる発電素子の斜視図である。1 is a perspective view of a power generation element according to a first embodiment; FIG. 第1実施形態にかかる発電素子の磁歪膜と圧電膜との界面近傍を走査型電子顕微鏡で撮影した断面図である。FIG. 4 is a cross-sectional view of the vicinity of the interface between the magnetostrictive film and the piezoelectric film of the power generation element according to the first embodiment, taken with a scanning electron microscope; 第1実施形態にかかる発電素子の磁歪膜と圧電膜との界面近傍を拡大した断面図である。3 is an enlarged cross-sectional view of the vicinity of the interface between the magnetostrictive film and the piezoelectric film of the power generating element according to the first embodiment; FIG. 実施例1、比較例1及び比較例2の発電素子の発電特性を示した図である。3 is a diagram showing power generation characteristics of the power generation elements of Example 1, Comparative Examples 1 and 2. FIG.

以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, this embodiment will be described in detail with appropriate reference to the drawings. In the drawings used in the following description, there are cases where characteristic portions are enlarged for convenience in order to make it easier to understand the features of the present invention, and the dimensional ratios of each component may differ from the actual ones. be. The materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be implemented with appropriate modifications without changing the gist of the invention.

「第1実施形態」
(発電素子)
図1は、本実施形態にかかる発電素子100の斜視図である。発電素子100は、圧電磁歪複合体10とコイル20とを備える。発電素子100は、コイル20に生じる誘導起電力を出力する。誘導起電力は、電磁誘導の法則に従い、圧電磁歪複合体10の周囲の磁場の変化により生じる。
"First Embodiment"
(power generation element)
FIG. 1 is a perspective view of a power generating element 100 according to this embodiment. The power generation element 100 includes a piezoelectric magnetostrictive composite 10 and a coil 20 . The power generation element 100 outputs an induced electromotive force generated in the coil 20 . The induced electromotive force is caused by the changing magnetic field around the piezo-magnetostrictive composite 10 according to the law of electromagnetic induction.

<圧電磁歪複合体>
圧電磁歪複合体10は、磁歪膜1と圧電膜2とを備える。図1に示す圧電磁歪複合体10は、圧電膜2の両面に磁歪膜1が積層されている。磁歪膜1は、圧電膜2の一面のみに積層されていてもよい。
<Piezoelectric strain composite>
A piezoelectric magnetostrictive composite 10 comprises a magnetostrictive film 1 and a piezoelectric film 2 . A piezoelectric magnetostrictive composite 10 shown in FIG. 1 has magnetostrictive films 1 laminated on both sides of a piezoelectric film 2 . The magnetostrictive film 1 may be laminated only on one surface of the piezoelectric film 2 .

図2は、第1実施形態にかかる発電素子100の磁歪膜1と圧電膜2との界面近傍の走査型電子顕微鏡(SEM)画像である。図2では、理解の助けのために、磁歪膜1と圧電膜2との境界Bを図示した。図3は、第1実施形態にかかる発電素子100の磁歪膜1と圧電膜2との界面近傍を模式的に示した断面図である。磁歪膜1は、内部に複数の磁区M(図3では一部を模式的に図示した)を有し、圧電膜2は、内部に複数の分極ドメインP(図3では一部を模式的に図示した)を有する。 FIG. 2 is a scanning electron microscope (SEM) image of the vicinity of the interface between the magnetostrictive film 1 and the piezoelectric film 2 of the power generation element 100 according to the first embodiment. In FIG. 2, a boundary B between the magnetostrictive film 1 and the piezoelectric film 2 is illustrated to aid understanding. FIG. 3 is a cross-sectional view schematically showing the vicinity of the interface between the magnetostrictive film 1 and the piezoelectric film 2 of the power generation element 100 according to the first embodiment. The magnetostrictive film 1 has a plurality of magnetic domains M (partially schematically shown in FIG. 3) inside, and the piezoelectric film 2 has a plurality of polarization domains P (partially shown schematically in FIG. 3) inside. ).

磁歪膜1は、圧電膜2側の第1面1aに凹凸を有する。また圧電膜2は、磁歪膜1側の第2面2aが第1面1aに追従する。ここで「第2面2aが第1面1aに追従する」とは、図2に示すように、磁歪膜1の第1面1aの凹凸と圧電膜2の第2面2aの凹凸とが互いに嵌合し、第1面1aと第2面2aとが一致する場合に限られない。第1面1aが圧電磁歪複合体10の積層方向と直交する特定の基準面に対して凹部となる位置において、第2面2aが凸部となっていれば、「第2面2aが第1面1aに追従する」関係を満たす。すなわち、磁歪膜1の第1面1aの凹部に対して圧電膜2の一部が入り込んでいれば、「第2面2aが第1面1aに追従する」関係を満たす。例えば、磁歪膜1と圧電膜2との間に接着層等を有する場合、第1面1aの凹凸と第2面2aの凹凸とが嵌合しない場合もある。 The magnetostrictive film 1 has unevenness on the first surface 1a on the piezoelectric film 2 side. The piezoelectric film 2 has a second surface 2a on the magnetostrictive film 1 side that follows the first surface 1a. Here, "the second surface 2a follows the first surface 1a" means that, as shown in FIG. It is not limited to the case where they are fitted and the first surface 1a and the second surface 2a match. If the second surface 2a is a convex portion at a position where the first surface 1a is a concave portion with respect to a specific reference plane perpendicular to the lamination direction of the piezoelectric-magnetostrictive composite 10, "the second surface 2a is the first It satisfies the relation "follows surface 1a". That is, if a part of the piezoelectric film 2 enters into the concave portion of the first surface 1a of the magnetostrictive film 1, the relationship "the second surface 2a follows the first surface 1a" is satisfied. For example, when an adhesive layer or the like is provided between the magnetostrictive film 1 and the piezoelectric film 2, the unevenness of the first surface 1a and the unevenness of the second surface 2a may not fit.

第1面1aの凹凸は、平均算術粗さが50μm以下である。第1面1aの凹凸は、平均算術粗さが1μm以上30μm以下であることが好ましく、平均算術粗さが5μm以上10μm以下であることがより好ましい。また第1面1aの凹凸の最大高さは、100μm以下であることが好ましく、2μm以上80μm以下であることがより好ましく、10μm以上60μm以下であることが好ましい。また第1面1aの10点平均粗さRzjsは、100μm以下であることが好ましく、2μm以上80μm以下であることがより好ましく、10μm以上50μm以下であることが好ましい。 The unevenness of the first surface 1a has an average arithmetic roughness of 50 μm or less. The unevenness of the first surface 1a preferably has an average arithmetic roughness of 1 μm or more and 30 μm or less, more preferably 5 μm or more and 10 μm or less. The maximum height of the unevenness of the first surface 1a is preferably 100 μm or less, more preferably 2 μm or more and 80 μm or less, and preferably 10 μm or more and 60 μm or less. The ten-point average roughness Rzjs of the first surface 1a is preferably 100 μm or less, more preferably 2 μm or more and 80 μm or less, and preferably 10 μm or more and 50 μm or less.

第1面1aの凹凸は、例えば、走査型プローブ顕微鏡、非接触型干渉顕微鏡、レーザー顕微鏡、接触針法等を用いて求めることができる。 The unevenness of the first surface 1a can be determined using, for example, a scanning probe microscope, a non-contact interference microscope, a laser microscope, a contact needle method, or the like.

磁歪膜1は、磁性体を含む。磁歪膜1は、Co、Pd、Ga又は希土類元素を含むFe系合金であることが好ましい。磁歪膜1は、例えば、Tb-Dy-Fe合金、FeGa合金、FeCo合金等を含む。磁歪膜1は、67質量%以上87質量%以下のCoを含むCo過剰なFeCo合金であることが特に好ましい。Coが過剰なFeCo合金は、機械加工性に優れ、磁歪特性にも優れる。 The magnetostrictive film 1 contains a magnetic material. The magnetostrictive film 1 is preferably made of Co, Pd, Ga, or an Fe-based alloy containing rare earth elements. The magnetostrictive film 1 contains, for example, Tb--Dy--Fe alloy, FeGa alloy, FeCo alloy, or the like. It is particularly preferable that the magnetostrictive film 1 is a Co-excess FeCo alloy containing 67% by mass or more and 87% by mass or less of Co. An FeCo alloy with excessive Co has excellent machinability and excellent magnetostrictive properties.

磁歪膜1がbcc構造のFeCo合金を含む場合、X線回折(XRD)で(200)ピークと(211)ピークとが確認される。XRDにおける(200)ピークのピーク強度は、(211)ピークのピーク強度の5倍以上であることが好ましく、8倍以上であることがより好ましい。磁歪膜1の結晶配向状態により磁歪膜1の磁気特性(例えば、飽和磁化、残留磁化、保磁力)が変化する。上記範囲を満たすと磁歪特性が向上する。 When the magnetostrictive film 1 contains the FeCo alloy of the bcc structure, the (200) peak and the (211) peak are confirmed by X-ray diffraction (XRD). The peak intensity of the (200) peak in XRD is preferably 5 times or more, more preferably 8 times or more, that of the (211) peak. The magnetic properties of the magnetostrictive film 1 (eg, saturation magnetization, residual magnetization, coercive force) change depending on the crystal orientation of the magnetostrictive film 1 . When the above range is satisfied, the magnetostrictive properties are improved.

磁歪膜1の厚みは、30μm以上1mm以下であることが好ましく、50μm以上300μm以下であることがより好ましく、80μm以上200μm以下であることがより好ましい。磁歪膜1が薄すぎると、磁歪膜1を単体で搬送することが困難になる。単体の磁歪膜1は、製造時のハンドリングが容易であり、圧電磁歪複合体10の量産性に優れる。一方で、磁歪膜1の厚みが厚すぎると、応力に対する磁歪膜1の変位が小さくなる。 The thickness of the magnetostrictive film 1 is preferably 30 μm or more and 1 mm or less, more preferably 50 μm or more and 300 μm or less, and more preferably 80 μm or more and 200 μm or less. If the magnetostrictive film 1 is too thin, it becomes difficult to transport the magnetostrictive film 1 alone. The single magnetostrictive film 1 is easy to handle during manufacturing and is excellent in mass productivity of the piezoelectric-magnetostrictive composite 10 . On the other hand, if the thickness of the magnetostrictive film 1 is too thick, the displacement of the magnetostrictive film 1 against stress becomes small.

磁歪膜1の第1面1aの凹凸は、表面加工により形成される。表面加工は、例えば、研磨、サンドブラスト等を用いることができる。例えば、磁歪膜1の第1面1aを♯2000番メッシュで研磨すると、微小な凹凸が第1面1aに形成できる。 The unevenness of the first surface 1a of the magnetostrictive film 1 is formed by surface processing. For surface processing, for example, polishing, sandblasting, or the like can be used. For example, when the first surface 1a of the magnetostrictive film 1 is polished with a #2000 mesh, minute unevenness can be formed on the first surface 1a.

圧電膜2は、分極した圧電体を含む。圧電体は、圧電体に所定の電圧を印加すると分極する。 The piezoelectric film 2 contains a polarized piezoelectric material. A piezoelectric body is polarized when a predetermined voltage is applied to the piezoelectric body.

圧電体は、例えば、チタン酸バリウム(BaTiO)、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O:以下、PZTという)、ニオブ酸カリウム(KNbO)等である。圧電体は、PZTであることが好ましい。PZTは、キュリー温度が300℃以上であり、大きな圧電効果を示す。 The piezoelectric material is, for example, barium titanate (BaTiO 3 ), lead zirconate titanate (Pb(Zr,Ti)O 3 : hereinafter referred to as PZT), potassium niobate (KNbO 3 ), or the like. Preferably, the piezoelectric material is PZT. PZT has a Curie temperature of 300° C. or higher and exhibits a large piezoelectric effect.

圧電膜2は、樹脂と、樹脂に分散された圧電体とを備えることが好ましい。すなわち、圧電体は、樹脂に分散された形で存在することが好ましい。圧電体は、粒子、フィラー等として、樹脂中に分散する。圧電体は、セラミックであり硬い。樹脂に圧電体が分散すると、磁歪膜1に圧電膜2を接着した際に、磁歪膜1の凹凸に圧電体が入り込みやすくなる。 The piezoelectric film 2 preferably includes a resin and a piezoelectric material dispersed in the resin. That is, it is preferable that the piezoelectric body exist in a form dispersed in the resin. The piezoelectric material is dispersed in the resin as particles, fillers, or the like. The piezoelectric body is ceramic and hard. If the piezoelectric material is dispersed in the resin, the piezoelectric material is likely to enter the irregularities of the magnetostrictive film 1 when the piezoelectric film 2 is adhered to the magnetostrictive film 1 .

樹脂は、圧電体を分散でき、セラミックより柔らかいものが用いられる。例えば、エポキシ樹脂等を樹脂として用いることができる。例えば、エポキシ樹脂系接着剤のアラルダイト(ハンツマン・ジャパン社製)を用いることができる。 A resin that can disperse the piezoelectric material and is softer than ceramic is used. For example, an epoxy resin or the like can be used as the resin. For example, Araldite (manufactured by Huntsman Japan), which is an epoxy resin adhesive, can be used.

圧電膜2の厚みは、30μm以上1mm以下であることが好ましく、100μm以上700μm以下であることがより好ましく、150μm以上500μm以下であることがより好ましい。圧電膜2が薄すぎると、圧電膜2を単体で搬送することが困難になる。単体の圧電膜2は、製造時のハンドリングが容易であり、圧電磁歪複合体10の量産性に優れる。一方で、圧電膜2の厚みが厚すぎると、圧電磁歪複合体10が大型化する。 The thickness of the piezoelectric film 2 is preferably 30 μm or more and 1 mm or less, more preferably 100 μm or more and 700 μm or less, and more preferably 150 μm or more and 500 μm or less. If the piezoelectric film 2 is too thin, it becomes difficult to transport the piezoelectric film 2 alone. The single piezoelectric film 2 is easy to handle during manufacturing, and is excellent in mass productivity of the piezoelectric-magnetostrictive composite 10 . On the other hand, if the thickness of the piezoelectric film 2 is too thick, the piezoelectric magnetostrictive composite 10 becomes large.

圧電膜2の第2面2aは、例えば、磁歪膜1と貼り合わせることで凹凸が形成される。圧電膜2の第2面2aの凹凸は、磁歪膜1の第1面1aの凹凸と同様の範囲内であることが好ましい。 The second surface 2a of the piezoelectric film 2 is, for example, laminated with the magnetostrictive film 1 to form unevenness. The unevenness of the second surface 2 a of the piezoelectric film 2 is preferably within the same range as the unevenness of the first surface 1 a of the magnetostrictive film 1 .

圧電膜2の第2面2aの凹凸は、表面加工により形成してもよい。表面加工は、例えば、研磨、サンドブラスト等を用いることができる。また圧電膜2が圧電体を分散して有する場合、分散した圧電体により第2面2aに凹凸が形成される。 The unevenness of the second surface 2a of the piezoelectric film 2 may be formed by surface processing. For surface processing, for example, polishing, sandblasting, or the like can be used. Further, when the piezoelectric film 2 has dispersed piezoelectric bodies, unevenness is formed on the second surface 2a by the dispersed piezoelectric bodies.

また磁歪膜1と圧電膜2との間に、接着層を有してもよい。接着層は、磁歪膜1の第1面1a及び圧電膜2の第2面2aの凹凸を埋めない程度に薄いことが好ましい。 An adhesive layer may be provided between the magnetostrictive film 1 and the piezoelectric film 2 . The adhesive layer is preferably thin enough not to fill the unevenness of the first surface 1 a of the magnetostrictive film 1 and the second surface 2 a of the piezoelectric film 2 .

<コイル>
コイル20は、圧電磁歪複合体10の周囲を巻回する。コイル20は、圧電磁歪複合体10の周囲の磁場が変化すると、誘導起電力を出力する。圧電磁歪複合体10は磁歪特性に優れ、圧電磁歪複合体10が応力を受けると、圧電磁歪複合体10の周囲の磁場が大きく変化する。従って、コイル20は、少ない巻き数でも大きな誘導起電力を出力できる。コイル20の巻き数が少ないと、発電素子100が小型化する。
<Coil>
A coil 20 is wound around the piezo-magnetostrictive composite 10 . Coil 20 outputs an induced electromotive force when the magnetic field around piezo-electrostrictive composite 10 changes. The piezoelectric-magnetostrictive composite 10 has excellent magnetostrictive properties, and when the piezoelectric-magnetostrictive composite 10 receives stress, the magnetic field around the piezoelectric-magnetostrictive composite 10 changes greatly. Therefore, the coil 20 can output a large induced electromotive force even with a small number of turns. When the number of turns of the coil 20 is small, the size of the power generation element 100 is reduced.

本実施形態にかかる発電素子100は、第1面1a及び第2面2aにおいて磁歪膜1と圧電膜2とが相互作用することで、大きな出力電圧を出力する。第1面1a及び第2面2aに微小な凹凸が形成されて、物理的な接触表面積が増大することで、磁歪膜1と圧電膜2との電磁的な相互作用が促される。 The power generation element 100 according to this embodiment outputs a large output voltage due to the interaction between the magnetostrictive film 1 and the piezoelectric film 2 on the first surface 1a and the second surface 2a. Microscopic unevenness is formed on the first surface 1a and the second surface 2a to increase the physical contact surface area, thereby promoting electromagnetic interaction between the magnetostrictive film 1 and the piezoelectric film 2. FIG.

圧電磁歪複合体10が応力を受けると、図3に示すように、圧電膜2の第2面2a近傍には分極ドメインPが複数形成される。分極ドメインPが形成されると、圧電膜2の第2面2aには電荷が生じる。生じた電荷は、磁歪膜1の第1面1aの近傍に作用し、磁区Mの発生を促進する。その結果、圧電磁歪複合体10の周囲の磁場が大きく変化し、コイル20に大きな誘導起電力が生じる。発電素子100は、この誘導起電力を出力するため、発電素子100の出力特性が向上する。第1面1a及び第2面2aが凹凸を有することで、磁歪膜1の第1面1aに蓄積される磁荷(スピン)と、圧電膜2の第2面2aに蓄積される電荷(エレクトロン)との相互作用が促進され、発電素子100の出力特性が向上する。 When the piezoelectric magnetostrictive composite 10 receives stress, a plurality of polarization domains P are formed near the second surface 2a of the piezoelectric film 2, as shown in FIG. When the polarization domains P are formed, charges are generated on the second surface 2 a of the piezoelectric film 2 . The generated electric charge acts on the vicinity of the first surface 1a of the magnetostrictive film 1 and promotes the generation of magnetic domains M. As shown in FIG. As a result, the magnetic field around the piezo-electrostrictive composite 10 changes significantly, and a large induced electromotive force is generated in the coil 20 . Since the power generation element 100 outputs this induced electromotive force, the output characteristics of the power generation element 100 are improved. Since the first surface 1a and the second surface 2a have unevenness, the magnetic charges (spins) accumulated on the first surface 1a of the magnetostrictive film 1 and the charges (electrons) accumulated on the second surface 2a of the piezoelectric film 2 ) is promoted, and the output characteristics of the power generation element 100 are improved.

以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to specific embodiments, and various can be transformed or changed.

(実施例1)
<磁歪膜の作製>
厚さ1mmのFe30Co70合金を準備した。準備したFe30Co70合金を冷間圧延し、厚さ0.1mm、幅2.0mm、長さ20.0mmの磁歪膜を作製した。磁歪膜の表面は、♯2000番メッシュで研磨した。研磨後の磁歪膜の表面には、凹凸が形成され、この凹凸は算術平均粗さRaが6.85μm、最大高さRzが50.5μm、10点平均粗さRzjsが43.8μmであった。作製した磁歪膜は、580℃で1時間加熱し、室温で徐冷した。加熱処理後の磁歪膜をXRDで測定したところ(200)ピークのピーク強度は、(211)ピークのピーク強度の7倍であった。
(Example 1)
<Production of magnetostrictive film>
A 1 mm thick Fe 30 Co 70 alloy was prepared. The prepared Fe 30 Co 70 alloy was cold rolled to produce a magnetostrictive film having a thickness of 0.1 mm, a width of 2.0 mm and a length of 20.0 mm. The surface of the magnetostrictive film was polished with #2000 mesh. After polishing, unevenness was formed on the surface of the magnetostrictive film, and the unevenness had an arithmetic average roughness Ra of 6.85 μm, a maximum height Rz of 50.5 μm, and a ten-point average roughness Rzjs of 43.8 μm. . The produced magnetostrictive film was heated at 580° C. for 1 hour and slowly cooled at room temperature. When the heat-treated magnetostrictive film was measured by XRD, the peak intensity of the (200) peak was seven times the peak intensity of the (211) peak.

<圧電膜の作製>
圧電膜は、圧電体を樹脂に分散させて作製した。圧電体は、PZT粉末(C-2材、フジセラミックス)を用いた。樹脂は、エポキシ樹脂系接着剤であるアラルダイト(ハンツマン・ジャパン社製)を用いた。アラルダイトとPTZ粉末とは、重量比1:1で混合攪拌した。この混合物を型枠に流し込み、室温で12時間放置し、硬化させた。圧電膜は、厚さ0.3mm、幅2.0mm、長さ20.0mmとした。圧電膜の厚さは、研磨により調整した。
<Fabrication of piezoelectric film>
The piezoelectric film was produced by dispersing a piezoelectric material in a resin. PZT powder (C-2 material, Fuji Ceramics) was used as the piezoelectric body. Araldite (manufactured by Huntsman Japan), which is an epoxy resin adhesive, was used as the resin. Araldite and PTZ powder were mixed and stirred at a weight ratio of 1:1. The mixture was poured into molds and left at room temperature for 12 hours to cure. The piezoelectric film had a thickness of 0.3 mm, a width of 2.0 mm, and a length of 20.0 mm. The thickness of the piezoelectric film was adjusted by polishing.

次いで、作製した圧電膜の両面に導電性テープを貼り、これを電極として分極処理を行った。分極処理は、直流電流源を用いて、1000Vの電圧を30分かけることで行った。分極処理は、100℃のシリコンオイル中で行った。 Next, a conductive tape was attached to both surfaces of the produced piezoelectric film, and a polarization treatment was performed using this as an electrode. The polarization treatment was performed by applying a voltage of 1000 V for 30 minutes using a direct current source. The polarization treatment was performed in silicon oil at 100°C.

<発電素子の作製>
作製した圧電膜の両面に、磁歪膜を接着し、圧電磁歪複合体を作製した。圧電膜の表面には、磁歪膜の表面の凹凸を反映した凹凸が形成された。接着はストレインゲージセメントCC-33A(KYOWA社製)を用いて行った。作製した圧電磁歪複合体の周囲に、巻き数が4100巻、抵抗値が784Ω、線径が0.03mmのコイルを設置し、発電素子とした。
<Production of power generation element>
A magnetostrictive film was adhered to both surfaces of the produced piezoelectric film to produce a piezoelectric magnetostrictive composite. Concavities and convexities reflecting the concavity and convexity of the surface of the magnetostrictive film were formed on the surface of the piezoelectric film. Adhesion was performed using strain gauge cement CC-33A (manufactured by Kyowa). A coil having 4100 turns, a resistance value of 784Ω, and a wire diameter of 0.03 mm was placed around the manufactured piezoelectric-magnetostrictive composite to form a power generating element.

<発電特性の測定>
発電特性は、片持ち梁の根本部分に発電素子を両面テープで設置し、加振器を用いて片持ち梁を振動させた際に、発電素子から出力される出力電圧を測定した。測定は、片持ち梁の長さは100mm、共振周波数は略40Hz、片持ち梁先端の最大振幅は15mmの条件で行った。片持ち梁の端部には、バイアス磁石を設置した。測定結果を図4に示す。
<Measurement of power generation characteristics>
For power generation characteristics, a power generation element was installed at the base of the cantilever with double-sided tape, and the output voltage output from the power generation element was measured when the cantilever was vibrated using a vibrator. The measurement was performed under the conditions that the cantilever length was 100 mm, the resonance frequency was approximately 40 Hz, and the maximum amplitude at the tip of the cantilever was 15 mm. A bias magnet was installed at the end of the cantilever beam. The measurement results are shown in FIG.

(比較例1)
比較例1は、圧電膜を分極処理しなかった点が、実施例1と異なる。その他の作製及び測定条件は実施例1と同様とした。比較例1の発電素子の測定結果を図4に示す。
(Comparative example 1)
Comparative Example 1 differs from Example 1 in that the piezoelectric film was not subjected to polarization treatment. Other fabrication and measurement conditions were the same as in Example 1. FIG. 4 shows the measurement results of the power generation element of Comparative Example 1. As shown in FIG.

(比較例2)
比較例2は、圧電磁歪複合体の周囲にコイルを巻かずに、磁歪膜に配線を接続した点が異なる。すなわち、比較例2は、圧電磁歪複合体に配線を接続したものを発電素子とした。その他の作製及び測定条件は実施例1と同様とした。比較例1の発電素子の測定結果を図4に示す。
(Comparative example 2)
Comparative Example 2 is different in that wiring is connected to the magnetostrictive film without winding a coil around the piezoelectric-magnetostrictive composite. That is, in Comparative Example 2, the power generation element was a piezoelectric magnetostrictive composite body connected to a wiring. Other fabrication and measurement conditions were the same as in Example 1. FIG. 4 shows the measurement results of the power generation element of Comparative Example 1. As shown in FIG.

分極処理を施した実施例1に係る発電素子の出力電圧は、分極処理を施していない比較例1にかかる発電素子の出力電圧より大きかった。実施例1に係る発電素子は分極した圧電膜と磁歪膜との界面で相互作用が生じているのに対し、比較例1に係る発電素子は圧電膜が分極していないため相互作用が生じなかったためと考えられる。すなわち、実施例1は、圧電膜と磁歪膜との相互作用により生じた出力電圧であり、比較例1は、磁歪膜単独で生み出した出力電圧である。 The output voltage of the power generating element according to Example 1 subjected to polarization treatment was higher than the output voltage of the power generating element according to Comparative Example 1 not subjected to polarization treatment. In the power generation element according to Example 1, interaction occurred at the interface between the polarized piezoelectric film and the magnetostrictive film, whereas in the power generation element according to Comparative Example 1, the piezoelectric film was not polarized, so no interaction occurred. It is thought that this is because That is, Example 1 is the output voltage generated by the interaction between the piezoelectric film and the magnetostrictive film, and Comparative Example 1 is the output voltage generated by the magnetostrictive film alone.

また比較例2にかかる発電素子は、実施例1に係る発電素子と比較して出力電圧が小さかった。比較例2にかかる発電素子において、磁歪膜は単なる電極として存在しているだけである。すなわち、比較例2は、圧電膜単独で生み出した出力電圧である。 Also, the power generating element according to Comparative Example 2 had a lower output voltage than the power generating element according to Example 1. In the power generation element according to Comparative Example 2, the magnetostrictive film merely exists as an electrode. In other words, Comparative Example 2 is the output voltage produced by the piezoelectric film alone.

したがって、実施例1に係る発電素子は、圧電膜と磁歪膜とが相互作用することで、高い出力電圧を示すことが確認された。 Therefore, it was confirmed that the power generating element according to Example 1 exhibits a high output voltage due to the interaction between the piezoelectric film and the magnetostrictive film.

1 磁歪膜
2 圧電膜
10 圧電磁歪複合体
20 コイル
100 発電素子
1 Magnetostrictive Film 2 Piezoelectric Film 10 Piezoelectric Electrostrictive Composite 20 Coil 100 Power Generation Element

Claims (4)

分極した圧電体を含む圧電膜と、
前記圧電膜の少なくとも一面に積層された磁歪膜と、を備え、
前記磁歪膜の前記圧電膜側の第1面は、算術平均粗さRaが50μm以下の凹凸を有し、
前記圧電膜の前記磁歪膜側の第2面は、前記第1面の凹凸に追従している、圧電磁歪複合体。
a piezoelectric film including a polarized piezoelectric body;
a magnetostrictive film laminated on at least one surface of the piezoelectric film;
a first surface of the magnetostrictive film on the piezoelectric film side has irregularities with an arithmetic mean roughness Ra of 50 μm or less,
A piezoelectric magnetostrictive composite, wherein a second surface of the piezoelectric film on the magnetostrictive film side follows the irregularities of the first surface.
前記磁歪膜が、前記圧電膜の両面に積層されている、請求項1に記載の圧電磁歪複合体。 2. The piezoelectric magnetostrictive composite according to claim 1, wherein said magnetostrictive film is laminated on both sides of said piezoelectric film. 前記圧電膜は、樹脂と、前記樹脂に分散された圧電体と、を備える、請求項1又は2に記載の圧電磁歪複合体。 3. The piezoelectric magnetostrictive composite according to claim 1, wherein said piezoelectric film comprises a resin and a piezoelectric material dispersed in said resin. 請求項1~3のいずれか一項に記載の圧電磁歪複合体と、
前記圧電磁歪複合体の周囲を巻回するコイルと、を備える、発電素子。
A piezoelectric magnetostrictive composite according to any one of claims 1 to 3;
and a coil wound around the piezoelectric-magnetostrictive composite.
JP2019116217A 2019-06-24 2019-06-24 Piezomagnetostrictive composites and power generation elements Active JP7267597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019116217A JP7267597B2 (en) 2019-06-24 2019-06-24 Piezomagnetostrictive composites and power generation elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019116217A JP7267597B2 (en) 2019-06-24 2019-06-24 Piezomagnetostrictive composites and power generation elements

Publications (2)

Publication Number Publication Date
JP2021002609A JP2021002609A (en) 2021-01-07
JP7267597B2 true JP7267597B2 (en) 2023-05-02

Family

ID=73995141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019116217A Active JP7267597B2 (en) 2019-06-24 2019-06-24 Piezomagnetostrictive composites and power generation elements

Country Status (1)

Country Link
JP (1) JP7267597B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024209614A1 (en) * 2023-04-06 2024-10-10 三菱電機株式会社 Magnetoelectric conversion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145147A (en) 2008-12-17 2010-07-01 Seiko Epson Corp Magnetic sensor element and magnetic sensor
US20110057458A1 (en) 2009-09-08 2011-03-10 Electronics And Telecommunications Research Institute Piezoelectric energy harvester and method of manufacturing the same
WO2016117450A1 (en) 2015-01-21 2016-07-28 アルプス電気株式会社 Piezoelectric device
JP2019028052A (en) 2017-07-26 2019-02-21 株式会社村田製作所 Magnetic sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2896127B2 (en) * 1997-10-22 1999-05-31 工業技術院長 Functional element comprising composite layer of magnetostrictive material and piezoelectric material and magnetic head provided with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145147A (en) 2008-12-17 2010-07-01 Seiko Epson Corp Magnetic sensor element and magnetic sensor
US20110057458A1 (en) 2009-09-08 2011-03-10 Electronics And Telecommunications Research Institute Piezoelectric energy harvester and method of manufacturing the same
WO2016117450A1 (en) 2015-01-21 2016-07-28 アルプス電気株式会社 Piezoelectric device
JP2019028052A (en) 2017-07-26 2019-02-21 株式会社村田製作所 Magnetic sensor

Also Published As

Publication number Publication date
JP2021002609A (en) 2021-01-07

Similar Documents

Publication Publication Date Title
Ryu et al. Effect of the magnetostrictive layer on magnetoelectric properties in lead zirconate titanate/terfenol‐D laminate composites
KR101536973B1 (en) Composite including piezoelectric fibers consisting of single crystal and magnetoelectric composite laminate containing the same
US6362559B1 (en) Piezoelectric transformer with segmented electrodes
Fetisov et al. Inverse magnetoelectric effects in a ferromagnetic–piezoelectric layered structure
US10536097B2 (en) Ultrasonic motor, drive control system, optical apparatus, and vibrator
KR20110026644A (en) The piezoelectric energy harvester and manufacturing method thereof
Yu et al. A PMNN‐PZT piezoceramic based magneto‐mechano‐electric coupled energy harvester
Palneedi et al. Strong and anisotropic magnetoelectricity in composites of magnetostrictive Ni and solid-state grown lead-free piezoelectric BZT–BCT single crystals
US10825983B2 (en) Magnetoelectric energy harvester and manufacturing method thereof
JP7267597B2 (en) Piezomagnetostrictive composites and power generation elements
JP2010145147A (en) Magnetic sensor element and magnetic sensor
Pan et al. Magnetoelectric effect in a Ni–PZT–Ni cylindrical layered composite synthesized by electro-deposition
Hosur et al. A comprehensive study on magnetoelectric transducers for wireless power transfer using low-frequency magnetic fields
US20230163631A1 (en) Low-power high-frequency directional tunable ac magnetic field
TWI656668B (en) Vibrator, vibration wave drive device, vibration wave motor, and electronical device
Liu et al. Self‐biased magnetoelectric composite for energy harvesting
Yoo et al. 15-Mode piezoelectric composite and its application in a magnetoelectric laminate structure
KR20180024042A (en) Magnetoelectric energy harvester and manufacturing method thereof
Fetisov et al. Magnetoelectric effect in amorphous FeNiSiC ferromagnet-piezoelectric planar structures
Ci et al. A square-plate piezoelectric linear motor operating in two orthogonal and isomorphic face-diagonal-bending modes
TW201810741A (en) Electric power generator comprising a magnetic-electrical converter and the related manufacturing process
CN115642388A (en) Very low frequency magnetoelectric antenna based on Rosen type structure
Dong et al. Tunable features of magnetoelectric transformers
Chen et al. Magnetoelectric transducer employing piezoelectric ceramic/ferromagnetic alloy/high-permeability FeCuNbSiB composite
Huang et al. Large stroke high fidelity PZN-PT single-crystal “Stake” actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230413

R150 Certificate of patent or registration of utility model

Ref document number: 7267597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150