JP7266981B2 - Composition containing sulfide-based solid electrolyte, method for storing sulfide-based solid electrolyte in air, and method for regenerating sulfide-based solid electrolyte - Google Patents

Composition containing sulfide-based solid electrolyte, method for storing sulfide-based solid electrolyte in air, and method for regenerating sulfide-based solid electrolyte Download PDF

Info

Publication number
JP7266981B2
JP7266981B2 JP2018175289A JP2018175289A JP7266981B2 JP 7266981 B2 JP7266981 B2 JP 7266981B2 JP 2018175289 A JP2018175289 A JP 2018175289A JP 2018175289 A JP2018175289 A JP 2018175289A JP 7266981 B2 JP7266981 B2 JP 7266981B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
sulfide
based solid
moisture
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018175289A
Other languages
Japanese (ja)
Other versions
JP2020047485A (en
Inventor
誠 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018175289A priority Critical patent/JP7266981B2/en
Publication of JP2020047485A publication Critical patent/JP2020047485A/en
Application granted granted Critical
Publication of JP7266981B2 publication Critical patent/JP7266981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、硫化物系固体電解質を含む組成物、大気中で硫化物系固体電解質を保管する方法及び硫化物系固体電解質の再生方法に関する。 TECHNICAL FIELD The present invention relates to a composition containing a sulfide-based solid electrolyte, a method for storing a sulfide-based solid electrolyte in the air, and a method for regenerating a sulfide-based solid electrolyte.

近年におけるパソコン、ビデオカメラ、及び携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。該電池の中でも、エネルギー密度が高いという観点から、リチウムイオン電池が注目を浴びている。また、車載用等の動力源やロードレベリング用といった大型用途におけるリチウム二次電池についても、高エネルギー密度、電池特性向上が求められている。 2. Description of the Related Art In recent years, with the rapid spread of information-related equipment and communication equipment such as personal computers, video cameras, and mobile phones, the development of batteries used as power sources for these devices has been emphasized. Among these batteries, lithium ion batteries are attracting attention because of their high energy density. High energy density and improved battery characteristics are also required for lithium secondary batteries used in large-scale applications such as power sources for vehicles and load leveling.

ただ、リチウムイオン電池の場合は、電解液は有機化合物が大半であり、たとえ難燃性の化合物を用いたとしても火災に至る危険性が全くなくなるとは言いきれない。こうした液系リチウムイオン電池の代替候補として、電解質を固体とした全固体リチウムイオン電池が近年注目を集めている。その中でも、固体電解質としてLi2S-P25などの硫化物やそれにハロゲン化リチウムを添加した全固体リチウムイオン電池が主流となりつつある。 However, in the case of lithium-ion batteries, most of the electrolytes are organic compounds, and even if flame-retardant compounds are used, the risk of fire cannot be completely eliminated. In recent years, all-solid-state lithium-ion batteries with a solid electrolyte have been attracting attention as a candidate to replace such liquid-type lithium-ion batteries. Among them, all-solid-state lithium ion batteries in which sulfides such as Li 2 SP 2 S 5 and lithium halide are added as solid electrolytes are becoming mainstream.

しかしながら、硫化物系固体電解質は、大気中の水分と反応して硫化水素を発生するとともに、潮解性を示し、固体電解質におけるイオン伝導度の急激な劣化が生じる。 However, a sulfide-based solid electrolyte reacts with moisture in the atmosphere to generate hydrogen sulfide and exhibits deliquescence, resulting in rapid deterioration of ionic conductivity in the solid electrolyte.

このような問題に対し、例えば、非特許文献1では、75Li2S・25P25組成の固体電解質ガラスにFeSなどを添加することで、大気中での水分との反応を低減し、硫化水素の発生量を減少させる技術が開示されている。 To address this problem, for example, in Non-Patent Document 1, by adding FeS or the like to a solid electrolyte glass having a 75Li 2 S/25P 2 S 5 composition, the reaction with moisture in the air is reduced and sulfidation is reduced. Techniques for reducing the amount of hydrogen generated have been disclosed.

また、特許文献1及び2には、それぞれ固体電解質の組成を制御することで大気安定性を高め、硫化水素の発生が抑制された硫化物固体電解質を提供する技術が開示されている。 In addition, Patent Documents 1 and 2 each disclose a technique for providing a sulfide solid electrolyte in which atmospheric stability is improved and generation of hydrogen sulfide is suppressed by controlling the composition of the solid electrolyte.

特許第5458740号公報Japanese Patent No. 5458740 特開2018-41671号公報JP 2018-41671 A

Suppression of H2S gas generation from the 75Li2S・25P2S5 glass electrolyte by additives, J. Mater. Sci., 48 (2013) 4137Suppression of H2S gas generation from the 75Li2S・25P2S5 glass electrolyte by additives, J. Mater. Sci., 48 (2013) 4137

しかしながら、非特許文献1に記載の技術では、どのような組成の固体電解質であってもFeSを添加することで大気中での水分との反応を低減することができるわけではない。また、75Li2S・25P25組成の固体電解質ガラスにおいても、大気安定性を上げるために固体電解質に添加物を加えると、イオン伝導度の低下や電子伝導性の増加といった固体電解質の特性上の劣化を引き起こしてしまうおそれがある。 However, in the technique described in Non-Patent Document 1, the addition of FeS to the solid electrolyte of any composition does not necessarily reduce the reaction with moisture in the atmosphere. Also, in the solid electrolyte glass of 75Li 2 S and 25P 2 S 5 composition, if an additive is added to the solid electrolyte to improve atmospheric stability, the properties of the solid electrolyte, such as a decrease in ionic conductivity and an increase in electronic conductivity, will be affected. It may lead to deterioration.

また、特許文献1及び2に記載の技術についても、決まった組成の固体電解質のみに対して大気安定性を高めるものであり、組成が変わると、そのような効果を得ることができない。 Also, the techniques described in Patent Documents 1 and 2 are intended to improve atmospheric stability only for solid electrolytes with a fixed composition, and if the composition changes, such an effect cannot be obtained.

本発明の実施形態では、硫化物系固体電解質がどのような組成であっても、大気中での劣化を良好に抑制することができる硫化物系固体電解質を含む組成物を提供することを目的とする。 An object of an embodiment of the present invention is to provide a composition containing a sulfide-based solid electrolyte that can satisfactorily suppress deterioration in the air regardless of the composition of the sulfide-based solid electrolyte. and

本発明者は、種々の検討を行った結果、硫化物系固体電解質と、硫化物系固体電解質の周囲に存在する水分不透過性マトリックスとを有し、水分不透過性マトリックスが硫化物系固体電解質と反応性を示さず、炭化水素系溶媒に可溶である硫化物系固体電解質を含む組成物によれば、上述の課題が解決されることを見出した。 As a result of various studies, the present inventors have found a sulfide-based solid electrolyte and a moisture-impermeable matrix existing around the sulfide-based solid electrolyte, wherein the moisture-impermeable matrix is a sulfide-based solid. It has been found that the above problems can be solved by a composition containing a sulfide-based solid electrolyte that does not exhibit reactivity with electrolytes and is soluble in hydrocarbon-based solvents.

上記知見を基礎にして完成した本発明は実施形態において、粉末の硫化物系固体電解質と、前記硫化物系固体電解質の周囲に存在する固体の水分不透過性マトリックスとを有し、前記水分不透過性マトリックスはパラフィンであり、前記水分不透過性マトリックスが、前記硫化物系固体電解質の表面を被覆する被覆層を構成している硫化物系固体電解質を含む組成物である。 In an embodiment of the present invention, which has been completed based on the above findings, a powdery sulfide-based solid electrolyte and a solid moisture-impermeable matrix existing around the sulfide-based solid electrolyte, and the moisture-impermeable The permeable matrix is paraffin , and the moisture-impermeable matrix is a composition containing a sulfide-based solid electrolyte forming a coating layer covering the surface of the sulfide-based solid electrolyte.

本発明は別の実施形態において、粉末の硫化物系固体電解質と、前記硫化物系固体電解質の周囲に存在する固体の水分不透過性マトリックスとを有し、前記水分不透過性マトリックスはパラフィンであり、前記硫化物系固体電解質が、前記水分不透過性マトリックスに埋没している硫化物系固体電解質を含む組成物である。 In another embodiment, the present invention comprises a powdered sulfide-based solid electrolyte and a solid moisture-impermeable matrix surrounding said sulfide-based solid electrolyte, said moisture-impermeable matrix being paraffinic . and wherein the sulfide-based solid electrolyte comprises a sulfide-based solid electrolyte embedded in the moisture-impermeable matrix.

本発明の硫化物系固体電解質を含む組成物は更に別の実施形態において、前記硫化物系固体電解質がLiを含み、前記硫化物系固体電解質中のLi原子数が前記硫化物系固体電解質中の全原子数の30~50%である。 In still another embodiment of the composition containing a sulfide-based solid electrolyte of the present invention, the sulfide-based solid electrolyte contains Li, and the number of Li atoms in the sulfide-based solid electrolyte is is 30 to 50% of the total number of atoms of

本発明の硫化物系固体電解質を含む組成物は更に別の実施形態において、前記硫化物系固体電解質が、Li10GeP212、Li10.35[Sn0.27Si1.08]P1.6512、Li6PS5Cl、及び、75Li2S・25P25から選択される少なくとも1種で構成される。 In still another embodiment of the composition containing the sulfide-based solid electrolyte of the present invention, the sulfide-based solid electrolyte is Li 10 GeP 2 S 12 , Li 10.35 [Sn 0.27 Si 1.08 ]P 1.65 S 12 , Li 6 It is composed of at least one selected from PS 5 Cl and 75Li 2 S.25P 2 S 5 .

本発明は別の実施形態において、本発明の実施形態に係る組成物を得た後、前記組成物を大気中に移す工程を含む、大気中で硫化物系固体電解質を保管する方法である。 In another embodiment of the present invention, a method for storing a sulfide-based solid electrolyte in the air, comprising the step of transferring the composition into the air after obtaining the composition according to the embodiment of the present invention.

本発明は更に別の実施形態において、本発明の実施形態に係る組成物を炭化水素系溶媒に浸漬し、前記炭化水素系溶媒中に前記水分不透過性マトリックスを溶解させる工程を含む、硫化物系固体電解質の再生方法である。 In yet another embodiment of the present invention, the step of immersing a composition according to an embodiment of the present invention in a hydrocarbon- based solvent to dissolve said moisture impermeable matrix in said hydrocarbon-based solvent. A method for regenerating a solid electrolyte.

本発明によれば、硫化物系固体電解質がどのような組成であっても、大気中での劣化を良好に抑制することができる硫化物系固体電解質を含む組成物を提供することができる。 According to the present invention, it is possible to provide a composition containing a sulfide-based solid electrolyte that can satisfactorily suppress deterioration in the air regardless of the composition of the sulfide-based solid electrolyte.

水分不透過性マトリックスが硫化物系固体電解質の表面を被覆する被覆層を構成している本発明の実施形態に係る組成物の断面模式図である。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view of a composition according to an embodiment of the present invention, in which a water-impermeable matrix constitutes a coating layer covering the surface of a sulfide-based solid electrolyte; 硫化物系固体電解質が水分不透過性マトリックスに埋没している本発明の実施形態に係る組成物の断面模式図である。1 is a schematic cross-sectional view of a composition according to an embodiment of the present invention in which a sulfide-based solid electrolyte is embedded in a moisture-impermeable matrix; FIG.

(硫化物系固体電解質を含む組成物)
本発明の実施形態に係る硫化物系固体電解質を含む組成物は、硫化物系固体電解質と、硫化物系固体電解質の周囲に存在する水分不透過性マトリックスとを有する。
(Composition containing sulfide-based solid electrolyte)
A composition containing a sulfide-based solid electrolyte according to an embodiment of the present invention has a sulfide-based solid electrolyte and a moisture-impermeable matrix surrounding the sulfide-based solid electrolyte.

硫化物系固体電解質としては特に限定されないが、Li10GeP212、Li10.35[Sn0.27Si1.08]P1.6512、Li6PS5Cl、及び、75Li2S・25P25から選択される少なくとも1種で構成されてもよい。硫化物系固体電解質は、Liを含み、硫化物系固体電解質中のLi原子数が硫化物系固体電解質中の全原子数の30~50%であるのが好ましい。硫化物系固体電解質中のLi原子数が硫化物系固体電解質中の全原子数の30%未満であると、イオン伝導度の低下という問題が生じるおそれがある。硫化物系固体電解質中のLi原子数が硫化物系固体電解質中の全原子数の50%を超えると、分解電圧の低下という問題が生じるおそれがある。硫化物系固体電解質中のLi原子数が硫化物系固体電解質中の全原子数の35~48%であるのがより好ましく、37.5~46.2%であるのが更により好ましい。 The sulfide- based solid electrolyte is not particularly limited, but may be selected from Li10GeP2S12 , Li10.35 [ Sn0.27Si1.08 ] P1.65S12 , Li6PS5Cl , and 75Li2S.25P2S5 . It may be composed of at least one kind of The sulfide-based solid electrolyte contains Li, and the number of Li atoms in the sulfide-based solid electrolyte is preferably 30 to 50% of the total number of atoms in the sulfide-based solid electrolyte. If the number of Li atoms in the sulfide-based solid electrolyte is less than 30% of the total number of atoms in the sulfide-based solid electrolyte, there is a risk that the ionic conductivity will decrease. If the number of Li atoms in the sulfide-based solid electrolyte exceeds 50% of the total number of atoms in the sulfide-based solid electrolyte, there is a risk that the decomposition voltage will drop. The number of Li atoms in the sulfide-based solid electrolyte is more preferably 35-48% of the total number of atoms in the sulfide-based solid electrolyte, and even more preferably 37.5-46.2%.

硫化物系固体電解質の周囲には水分不透過性マトリックスが存在し、当該水分不透過性マトリックスは硫化物系固体電解質と反応性を示さず、炭化水素系溶媒に可溶である。このような構成によれば、本発明の実施形態に係る硫化物系固体電解質を含む組成物が大気に暴露したときでも、硫化物系固体電解質の周囲に存在する水分不透過性マトリックスが大気中の水分を透過させず、硫化物系固体電解質の大気中の水分と反応することによる劣化を良好に抑制することができる。また、水分不透過性マトリックスは硫化物系固体電解質と反応性を示さないため、硫化物系固体電解質の劣化をより良好に抑制することができる。さらに、水分不透過性マトリックスは炭化水素系溶媒に可溶であるため、本発明の実施形態に係る硫化物系固体電解質を含む組成物の大気中での管理が終了した後、硫化物系固体電解質を使用する際に、当該組成物に対し、炭化水素系溶媒を用いて水分不透過性マトリックスを除去することができる。また、水分不透過性マトリックスと硫化物系固体電解質との間には大気が存在せず、水分不透過性マトリックス表面から硫化物系固体電解質が露出していない構成とすることで硫化物系固体電解質の劣化をより良好に抑制することができる。 A water-impermeable matrix exists around the sulfide-based solid electrolyte, and the water-impermeable matrix does not show reactivity with the sulfide-based solid electrolyte and is soluble in hydrocarbon-based solvents. According to such a configuration, even when the composition containing the sulfide-based solid electrolyte according to the embodiment of the present invention is exposed to the atmosphere, the water-impermeable matrix existing around the sulfide-based solid electrolyte is exposed to the atmosphere. It is possible to satisfactorily suppress deterioration of the sulfide-based solid electrolyte due to reaction with moisture in the atmosphere. In addition, since the moisture-impermeable matrix does not exhibit reactivity with the sulfide-based solid electrolyte, deterioration of the sulfide-based solid electrolyte can be better suppressed. Furthermore, since the moisture-impermeable matrix is soluble in a hydrocarbon solvent, after the composition containing the sulfide-based solid electrolyte according to the embodiment of the present invention has been managed in the air, the sulfide-based solid When using an electrolyte, the composition can be treated with a hydrocarbon solvent to remove the moisture impermeable matrix. In addition, there is no air between the moisture-impermeable matrix and the sulfide-based solid electrolyte, and the sulfide-based solid electrolyte is not exposed from the surface of the moisture-impermeable matrix. Deterioration of the electrolyte can be better suppressed.

水分不透過性マトリックスは、図1に示すように硫化物系固体電解質の表面を被覆する被覆層を構成していてもよい。硫化物系固体電解質の表面を被覆する水分不透過性マトリックスの被覆層の厚さは、例えば0.1~100μmであってもよく、0.5~20μmであってもよく、1~10μmであってもよい。 The moisture-impermeable matrix may constitute a coating layer that covers the surface of the sulfide-based solid electrolyte as shown in FIG. The thickness of the coating layer of the moisture-impermeable matrix covering the surface of the sulfide-based solid electrolyte may be, for example, 0.1 to 100 μm, 0.5 to 20 μm, or 1 to 10 μm. There may be.

硫化物系固体電解質は、図2に示すように、水分不透過性マトリックスに埋没していてもよい。硫化物系固体電解質を水分不透過性マトリックスに埋没させることで、水分不透過性マトリックスと硫化物系固体電解質との間に大気が存在せず、水分不透過性マトリックス表面から硫化物系固体電解質が露出していない構成とすることがより容易となり、硫化物系固体電解質の劣化をさらに良好に抑制することができる。 The sulfide-based solid electrolyte may be embedded in a moisture impermeable matrix, as shown in FIG. By burying the sulfide-based solid electrolyte in the moisture-impermeable matrix, there is no air between the moisture-impermeable matrix and the sulfide-based solid electrolyte, and the sulfide-based solid electrolyte is separated from the moisture-impermeable matrix surface. is not exposed, and the deterioration of the sulfide-based solid electrolyte can be suppressed more satisfactorily.

水分不透過性マトリックスは、炭化水素系重合体で構成するのが好ましい。炭化水素系重合体で構成することにより、硫化物系固体電解質と簡便に複合化できるという効果が得られる。水分不透過性マトリックスの炭化水素系重合体としては、パラフィン、オレフィン、ナフテン、芳香族炭化水素等のうち室温で固体であるものを用いることができる。 The moisture impermeable matrix is preferably composed of a hydrocarbon polymer. By using a hydrocarbon-based polymer, it is possible to easily form a composite with a sulfide-based solid electrolyte. As the hydrocarbon-based polymer for the moisture-impermeable matrix, those that are solid at room temperature, such as paraffins, olefins, naphthenes, and aromatic hydrocarbons, can be used.

炭化水素系溶媒は硫化物系固体電解質と反応性が乏しいか全く反応しないものを用いる。炭化水素系溶媒としては、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、及び、ドデカンから選択される少なくとも1種であるのが好ましい。 The hydrocarbon-based solvent used has poor reactivity or does not react at all with the sulfide-based solid electrolyte. The hydrocarbon solvent is preferably at least one selected from hexane, heptane, octane, nonane, decane, undecane, and dodecane.

(硫化物系固体電解質を含む組成物の製造方法)
次に、本発明の実施形態に係る硫化物系固体電解質を含む組成物の製造方法について説明する。まず、所定の組成の硫化物系固体電解質の粉末を準備する。次に、ArやN2等の不活性ガス雰囲気下で水分不透過性マトリックスを融解し、この融液に当該硫化物系固体電解質の粉末を加えて撹拌し、スラリーを得る。次に、当該スラリーを室温まで冷却することで、図2に示すような硫化物系固体電解質が水分不透過性マトリックスに埋没した組成物が得られる。
(Method for producing composition containing sulfide-based solid electrolyte)
Next, a method for producing a composition containing a sulfide-based solid electrolyte according to an embodiment of the present invention will be described. First, powder of a sulfide-based solid electrolyte having a predetermined composition is prepared. Next, the water-impermeable matrix is melted in an atmosphere of an inert gas such as Ar or N 2 , and the sulfide-based solid electrolyte powder is added to the melt and stirred to obtain a slurry. Next, by cooling the slurry to room temperature, a composition in which the sulfide-based solid electrolyte is embedded in a moisture-impermeable matrix as shown in FIG. 2 is obtained.

また、本発明の別の実施形態に係る硫化物系固体電解質を含む組成物の製造方法について説明する。まず、所定の組成の硫化物系固体電解質の粉末を準備する。次に、ArやN2等の不活性ガス雰囲気下で水分不透過性マトリックスを融解し、この融液に当該硫化物系固体電解質の粉末を加えて撹拌し、スラリーを得る。次に、当該スラリーを濾過した後、室温まで冷却することで、図1に示すような水分不透過性マトリックスが硫化物系固体電解質の表面を被覆する被覆層を構成している組成物が得られる。スラリーを濾過してから室温まで冷却することで、水分不透過性マトリックスが硫化物系固体電解質の表面を被覆する被覆層を構成するが、このような構成であれば、当該組成物のハンドリング性が良好となる。 Also, a method for producing a composition containing a sulfide-based solid electrolyte according to another embodiment of the present invention will be described. First, powder of a sulfide-based solid electrolyte having a predetermined composition is prepared. Next, the water-impermeable matrix is melted in an atmosphere of an inert gas such as Ar or N 2 , and the sulfide-based solid electrolyte powder is added to the melt and stirred to obtain a slurry. Next, the slurry is filtered and then cooled to room temperature to obtain a composition in which a water-impermeable matrix constitutes a coating layer covering the surface of the sulfide-based solid electrolyte as shown in FIG. be done. By filtering the slurry and then cooling it to room temperature, the water-impermeable matrix constitutes a coating layer covering the surface of the sulfide-based solid electrolyte. becomes good.

(大気中で硫化物系固体電解質を保管する方法)
次に、本発明の実施形態に係る大気中で硫化物系固体電解質を保管する方法について説明する。まず、上述のようにして硫化物系固体電解質を、水分不透過性マトリックス中に浸漬させて本発明の実施形態に係る組成物を得た後、当該組成物を大気中に移して、大気中で当該組成物を所定期間保管する。このように本発明の実施形態に係る硫化物系固体電解質を含む組成物は大気中でそのまま保管しても、大気中の水分が硫化物系固体電解質と反応しないため大気安定性が良好であり、硫化物系固体電解質の劣化を良好に抑制することができる。
(Method for storing sulfide-based solid electrolyte in air)
Next, a method for storing a sulfide-based solid electrolyte in the atmosphere according to an embodiment of the present invention will be described. First, after obtaining the composition according to the embodiment of the present invention by immersing the sulfide-based solid electrolyte in the moisture-impermeable matrix as described above, the composition is transferred to the atmosphere, and to store the composition for a predetermined period of time. As described above, even if the composition containing the sulfide-based solid electrolyte according to the embodiment of the present invention is stored in the atmosphere as it is, the atmospheric stability is good because moisture in the atmosphere does not react with the sulfide-based solid electrolyte. , the deterioration of the sulfide-based solid electrolyte can be suppressed satisfactorily.

(硫化物系固体電解質の再生方法)
次に、本発明の実施形態に係る硫化物系固体電解質の再生方法について説明する。まず、本発明の実施形態に係る硫化物系固体電解質を含む組成物を炭化水素系溶媒に浸漬し、炭化水素系溶媒中に水分不透過性マトリックスを溶解させる。その後、硫化物系固体電解質を乾燥させる。これにより硫化物系固体電解質の周囲に存在していた水分不透過性マトリックスを除去することができ、硫化物系固体電解質が再生する。
(Method for regenerating sulfide-based solid electrolyte)
Next, a method for regenerating a sulfide-based solid electrolyte according to an embodiment of the present invention will be described. First, a composition containing a sulfide-based solid electrolyte according to an embodiment of the present invention is immersed in a hydrocarbon-based solvent to dissolve a water-impermeable matrix in the hydrocarbon-based solvent. After that, the sulfide-based solid electrolyte is dried. As a result, the water-impermeable matrix existing around the sulfide-based solid electrolyte can be removed, and the sulfide-based solid electrolyte is regenerated.

(リチウムイオン電池)
本発明の実施形態に係る硫化物系固体電解質の再生方法によって再生された硫化物系固体電解質によって固体電解質層を形成し、当該固体電解質層、正極層及び負極層を備えた全固体リチウムイオン電池を作製することができる。
(lithium ion battery)
An all-solid lithium ion battery comprising a solid electrolyte layer formed from a sulfide-based solid electrolyte regenerated by a method for regenerating a sulfide-based solid electrolyte according to an embodiment of the present invention, the solid electrolyte layer, a positive electrode layer, and a negative electrode layer. can be made.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。
(実施例1)
Ar雰囲気のグローブボックス内でパラフィン(融点44~46℃)を120℃に加熱して融解し、この融液10mLにLi10GeP212の粉末1gを加えて撹拌してスラリーを得た。次に、当該スラリーを濾過した後、室温まで冷却することでLi10GeP212粉末をパラフィンで覆った組成物を作製した。得られた組成物を大気中に取り出して3時間暴露した。その後、当該組成物を再びAr雰囲気のグローブボックス内に導入し、10mLのヘプタンで3回洗浄を行い、真空乾燥することでLi10GeP212粉末を覆っていたパラフィンを取り除いた。このLi10GeP212粉末0.2gに550MPaで印加して両面に金電極を取り付けた直径10mmのペレットを作製し、25℃において1Hz~1MHzまでの交流インピーダンス測定を行い、イオン伝導度(表1の「大気暴露試験後の固体電解質のイオン伝導度」)を求めた。このように、試料を大気に暴露するとき以外は、Ar雰囲気のグローブボックス内で試料を取り扱った。なお、上記パラフィンで覆う前の原料となるLi10GeP212の粉末についても、同様の条件でイオン伝導度(表1の「試験に使用する前の固体電解質のイオン伝導度」)を求めておいた。
The following examples are provided for a better understanding of the invention and its advantages, but the invention is not limited to these examples.
(Example 1)
Paraffin (melting point: 44 to 46°C) was heated to 120°C to melt in a glove box in an Ar atmosphere, and 1 g of Li 10 GeP 2 S 12 powder was added to 10 mL of this melt and stirred to obtain a slurry. Next, the slurry was filtered and then cooled to room temperature to prepare a composition in which the Li 10 GeP 2 S 12 powder was covered with paraffin. The resulting composition was taken out to the air and exposed for 3 hours. After that, the composition was again introduced into the glove box under an Ar atmosphere, washed with 10 mL of heptane three times, and vacuum-dried to remove the paraffin covering the Li 10 GeP 2 S 12 powder. A pressure of 550 MPa was applied to 0.2 g of this Li 10 GeP 2 S 12 powder to prepare a pellet with a diameter of 10 mm with gold electrodes attached on both sides. "Ionic conductivity of solid electrolyte after atmospheric exposure test" in Table 1) was obtained. Thus, the samples were handled in an Ar atmosphere glove box, except when the samples were exposed to the atmosphere. The ionic conductivity of the Li 10 GeP 2 S 12 powder, which is the raw material before being covered with paraffin, was also determined under the same conditions (“Ionic conductivity of solid electrolyte before use in test” in Table 1). I left it.

(実施例2)
Li10GeP212粉末の代わりにLi10.35[Sn0.27Si1.08]P1.6512粉末を用いた以外は、実施例1と同様に行った。
(Example 2)
The procedure of Example 1 was repeated except that Li10.35 [ Sn0.27Si1.08 ] P1.65S12 powder was used instead of Li10GeP2S12 powder.

(実施例3)
Li10GeP212粉末の代わりにLi6PS5Cl粉末を用いた以外は、実施例1と同様に行った。
(Example 3)
The procedure of Example 1 was repeated except that the Li 6 PS 5 Cl powder was used instead of the Li 10 GeP 2 S 12 powder.

(実施例4)
Li10GeP212粉末の代わりに75Li2S・25P25ガラス粉末を用いた以外は、実施例1と同様に行った。
(Example 4)
The procedure of Example 1 was repeated except that 75Li 2 S.25P 2 S 5 glass powder was used instead of the Li 10 GeP 2 S 12 powder.

(実施例5)
Ar雰囲気のグローブボックス内でパラフィン(融点44~46℃)を120℃に加熱して融解し、この融液10mLにLi10GeP212の粉末1gを加えて撹拌してスラリーを得た。次に、当該スラリーを濾過せずに、室温まで冷却することでLi10GeP212粉末をパラフィンで覆った組成物を作製した。得られた組成物を大気中に取り出して3時間暴露した。その後、当該組成物を再びAr雰囲気のグローブボックス内に導入し、10mLのヘプタンで3回洗浄を行い、真空乾燥することでLi10GeP212粉末を覆っていたパラフィンを取り除いた。このLi10GeP212粉末0.2gに550MPaで印加して両面に金電極を取り付けた直径10mmのペレットを作製し、25℃において1Hz~1MHzまでの交流インピーダンス測定を行い、イオン伝導度を求めた。このように、試料を大気に暴露するとき以外は、Ar雰囲気のグローブボックス内で試料を取り扱った。なお、上記パラフィンで覆う前の原料となるLi10GeP212の粉末についても、同様の条件でイオン伝導度を求めておいた。
(Example 5)
Paraffin (melting point: 44 to 46°C) was heated to 120°C to melt in a glove box in an Ar atmosphere, and 1 g of Li 10 GeP 2 S 12 powder was added to 10 mL of this melt and stirred to obtain a slurry. Next, the slurry was cooled to room temperature without filtering to prepare a composition in which the Li 10 GeP 2 S 12 powder was covered with paraffin. The resulting composition was taken out to the air and exposed for 3 hours. After that, the composition was again introduced into the glove box under an Ar atmosphere, washed with 10 mL of heptane three times, and dried in a vacuum to remove the paraffin covering the Li 10 GeP 2 S 12 powder. A pressure of 550 MPa was applied to 0.2 g of this Li 10 GeP 2 S 12 powder to prepare a pellet with a diameter of 10 mm with gold electrodes attached on both sides. asked. Thus, the samples were handled in an Ar atmosphere glove box, except when the samples were exposed to the atmosphere. The ionic conductivity of the raw material Li 10 GeP 2 S 12 powder before being covered with paraffin was obtained under the same conditions.

(比較例1)
Li10GeP212粉末を大気中に3時間暴露した。その結果、潮解により粉末を得ることができなかった。
(Comparative example 1)
The Li10GeP2S12 powder was exposed to air for 3 hours. As a result, powder could not be obtained due to deliquescence.

(比較例2)
Li10.35[Sn0.27Si1.08]P1.6512粉末を大気中に3時間暴露した。その結果、潮解により粉末を得ることができなかった。
(Comparative example 2)
The Li10.35 [ Sn0.27Si1.08 ] P1.65S12 powder was exposed to air for 3 hours . As a result, powder could not be obtained due to deliquescence.

(比較例3)
Li6PS5Cl粉末を大気中に3時間暴露した。このLi6PS5Cl粉末0.2gに550MPaで印加して両面に金電極を取り付けた直径10mmのペレットを作製し、25℃において1Hz~1MHzまでの交流インピーダンス測定を行いイオン伝導度を求めた。試料を大気に暴露するとき以外は、Ar雰囲気のグローブボックス内で試料を取り扱った。
(Comparative Example 3)
The Li 6 PS 5 Cl powder was exposed to air for 3 hours. A pressure of 550 MPa was applied to 0.2 g of this Li 6 PS 5 Cl powder to prepare a pellet having a diameter of 10 mm with gold electrodes attached on both sides. . Samples were handled in an Ar atmosphere glove box, except when the samples were exposed to the atmosphere.

(比較例4)
Li6PS5Cl粉末の代わりに75Li2S・25P25ガラス粉末を用いた以外は、比較例3と同様に行った。
上記各実施例及び各比較例について、評価結果を表1に示す。また、表2は、実施例及び比較例で用いた各硫化物系固体電解質中のLi原子数の、硫化物系固体電解質中の全原子数に対する割合(%)を示す。
(Comparative Example 4)
The procedure was carried out in the same manner as in Comparative Example 3 except that 75Li 2 S.25P 2 S 5 glass powder was used instead of the Li 6 PS 5 Cl powder.
Table 1 shows the evaluation results for each of the above Examples and Comparative Examples. Table 2 shows the ratio (%) of the number of Li atoms in each sulfide-based solid electrolyte used in Examples and Comparative Examples to the total number of atoms in the sulfide-based solid electrolyte.

Figure 0007266981000001
Figure 0007266981000001

Figure 0007266981000002
Figure 0007266981000002

(評価結果)
実施例1~5については、大気暴露試験後のイオン伝導度の劣化が良好に抑制されていた。
比較例1及び2については、大気暴露試験によって固体電解質の潮解が発生し、イオン伝導度を測定することができなかった。
比較例3及び4については、大気暴露試験後のイオン伝導度の劣化が非常に大きかった。
(Evaluation results)
In Examples 1 to 5, the deterioration of ionic conductivity after the atmospheric exposure test was well suppressed.
In Comparative Examples 1 and 2, deliquescence of the solid electrolyte occurred in the air exposure test, and ionic conductivity could not be measured.
Regarding Comparative Examples 3 and 4, the deterioration of ionic conductivity after the air exposure test was very large.

Claims (5)

粉末の硫化物系固体電解質と、前記硫化物系固体電解質の周囲に存在する固体の水分不透過性マトリックスとを有し、
前記水分不透過性マトリックスはパラフィンであり、
前記硫化物系固体電解質が、前記水分不透過性マトリックスに埋没している硫化物系固体電解質を含む組成物。
A powdery sulfide-based solid electrolyte and a solid moisture-impermeable matrix surrounding the sulfide-based solid electrolyte,
the moisture impermeable matrix is paraffin ;
The composition, wherein the sulfide-based solid electrolyte comprises a sulfide-based solid electrolyte embedded in the moisture-impermeable matrix.
前記硫化物系固体電解質がLiを含み、前記硫化物系固体電解質中のLi原子数が前記硫化物系固体電解質中の全原子数の30~50%である請求項に記載の組成物。 The composition according to claim 1 , wherein the sulfide-based solid electrolyte contains Li, and the number of Li atoms in the sulfide-based solid electrolyte is 30 to 50% of the total number of atoms in the sulfide-based solid electrolyte. 前記硫化物系固体電解質が、Li10GeP212、Li10.35[Sn0.27Si1.08]P1.6512、Li6PS5Cl、及び、75Li2S・25P25から選択される少なくとも1種で構成される請求項に記載の組成物。 The sulfide- based solid electrolyte is at least one selected from Li10GeP2S12 , Li10.35 [ Sn0.27Si1.08 ] P1.65S12 , Li6PS5Cl , and 75Li2S.25P2S5 3. The composition of claim 2 , comprising seeds. 請求項1~のいずれか一項に記載の組成物を得た後、前記組成物を大気中に移す工程を含む、大気中で硫化物系固体電解質を保管する方法。 A method for storing a sulfide-based solid electrolyte in the atmosphere, comprising the step of transferring the composition to the atmosphere after obtaining the composition according to any one of claims 1 to 3 . 請求項1~のいずれか一項に記載の組成物を炭化水素系溶媒に浸漬し、前記炭化水素系溶媒中に前記水分不透過性マトリックスを溶解させる工程を含む、硫化物系固体電解質の再生方法。 A sulfide-based solid electrolyte, comprising the step of immersing the composition according to any one of claims 1 to 3 in a hydrocarbon- based solvent and dissolving the moisture-impermeable matrix in the hydrocarbon-based solvent. How to play.
JP2018175289A 2018-09-19 2018-09-19 Composition containing sulfide-based solid electrolyte, method for storing sulfide-based solid electrolyte in air, and method for regenerating sulfide-based solid electrolyte Active JP7266981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018175289A JP7266981B2 (en) 2018-09-19 2018-09-19 Composition containing sulfide-based solid electrolyte, method for storing sulfide-based solid electrolyte in air, and method for regenerating sulfide-based solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018175289A JP7266981B2 (en) 2018-09-19 2018-09-19 Composition containing sulfide-based solid electrolyte, method for storing sulfide-based solid electrolyte in air, and method for regenerating sulfide-based solid electrolyte

Publications (2)

Publication Number Publication Date
JP2020047485A JP2020047485A (en) 2020-03-26
JP7266981B2 true JP7266981B2 (en) 2023-05-01

Family

ID=69901553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018175289A Active JP7266981B2 (en) 2018-09-19 2018-09-19 Composition containing sulfide-based solid electrolyte, method for storing sulfide-based solid electrolyte in air, and method for regenerating sulfide-based solid electrolyte

Country Status (1)

Country Link
JP (1) JP7266981B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032539A (en) 2007-07-27 2009-02-12 Toyota Motor Corp Solid battery
JP2009117168A (en) 2007-11-06 2009-05-28 Sumitomo Electric Ind Ltd All solid battery, and manufacturing method thereof
JP2010033732A (en) 2008-07-25 2010-02-12 Idemitsu Kosan Co Ltd Coated solid electrolyte for lithium battery, and all-solid secondary battery using the same
JP2012138346A (en) 2010-12-09 2012-07-19 Idemitsu Kosan Co Ltd Composition including lithium ion conductive solid electrolyte and method for preserving the same
WO2012164724A1 (en) 2011-06-02 2012-12-06 トヨタ自動車株式会社 Solid electrolyte material, solid cell, and method for manufacturing solid electrolyte material
WO2013001623A1 (en) 2011-06-29 2013-01-03 トヨタ自動車株式会社 Solid electrolyte layer, electrode layer for secondary cell, and all-solid-state secondary cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110652B2 (en) * 1971-08-24 1976-04-06
JP2018022638A (en) * 2016-08-05 2018-02-08 Tdk株式会社 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032539A (en) 2007-07-27 2009-02-12 Toyota Motor Corp Solid battery
JP2009117168A (en) 2007-11-06 2009-05-28 Sumitomo Electric Ind Ltd All solid battery, and manufacturing method thereof
JP2010033732A (en) 2008-07-25 2010-02-12 Idemitsu Kosan Co Ltd Coated solid electrolyte for lithium battery, and all-solid secondary battery using the same
JP2012138346A (en) 2010-12-09 2012-07-19 Idemitsu Kosan Co Ltd Composition including lithium ion conductive solid electrolyte and method for preserving the same
WO2012164724A1 (en) 2011-06-02 2012-12-06 トヨタ自動車株式会社 Solid electrolyte material, solid cell, and method for manufacturing solid electrolyte material
WO2013001623A1 (en) 2011-06-29 2013-01-03 トヨタ自動車株式会社 Solid electrolyte layer, electrode layer for secondary cell, and all-solid-state secondary cell

Also Published As

Publication number Publication date
JP2020047485A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
US11088365B2 (en) Core-shell structured nanoparticles for lithium-sulfur cells
Park et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all‐solid‐state batteries
Sun et al. Design strategies to enable the efficient use of sodium metal anodes in high‐energy batteries
Lin et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism
Yang et al. An electron/ion dual‐conductive alloy framework for high‐rate and high‐capacity solid‐state lithium‐metal batteries
Judez et al. Solid electrolytes for safe and high energy density lithium-sulfur batteries: promises and challenges
Fu et al. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface
Fan et al. The recent research status quo and the prospect of electrolytes for lithium sulfur batteries
Wei et al. Covalent organic frameworks and their derivatives for better metal anodes in rechargeable batteries
Bi et al. Protecting lithium metal anodes in lithium–sulfur batteries: A review
EP3132483B1 (en) Lithium-sulfur batteries
JP5425107B2 (en) Lithium-sulfur battery and its cathode
Xiao et al. Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries
KR101837235B1 (en) Lithium-sulfur rechargeable battery containing porous carbon sulfur composite and multi-layer separator, method for manufacturing thereof
Zhang et al. Polydopamine-coated separator for high-performance lithium-sulfur batteries
Ryu et al. A game changer: functional nano/micromaterials for smart rechargeable batteries
JP2014524120A (en) Composite protective layer for lithium metal anode and method of manufacturing the same
KR101289425B1 (en) Method of chemical protection of metal surface
KR20110139197A (en) Sodium-sulfur battery with a substantially non-porous membrane and enhanced cathode utilization
JPWO2017204028A1 (en) SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY
Feng et al. Progress and perspective of interface design in garnet electrolyte‐based all‐solid‐state batteries
US20130202920A1 (en) Dendrite-Inhibiting Salts in Electrolytes of Energy Storage Devices
CN114556664A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP7266981B2 (en) Composition containing sulfide-based solid electrolyte, method for storing sulfide-based solid electrolyte in air, and method for regenerating sulfide-based solid electrolyte
De Luna et al. All-solid lithium-sulfur batteries: Present situation and future progress

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230124

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230203

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230419

R151 Written notification of patent or utility model registration

Ref document number: 7266981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151