JP7266361B2 - Manufacturing method of hollow particles - Google Patents

Manufacturing method of hollow particles Download PDF

Info

Publication number
JP7266361B2
JP7266361B2 JP2017144260A JP2017144260A JP7266361B2 JP 7266361 B2 JP7266361 B2 JP 7266361B2 JP 2017144260 A JP2017144260 A JP 2017144260A JP 2017144260 A JP2017144260 A JP 2017144260A JP 7266361 B2 JP7266361 B2 JP 7266361B2
Authority
JP
Japan
Prior art keywords
hollow particles
spray
flame
nozzle
mist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017144260A
Other languages
Japanese (ja)
Other versions
JP2019025384A (en
Inventor
紀彦 三崎
雄一 館山
広樹 山崎
賢太 増田
克己 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2017144260A priority Critical patent/JP7266361B2/en
Publication of JP2019025384A publication Critical patent/JP2019025384A/en
Application granted granted Critical
Publication of JP7266361B2 publication Critical patent/JP7266361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glanulating (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

本発明は、噴霧熱分解法による中空粒子の製造法に関する。 The present invention relates to a method for producing hollow particles by spray pyrolysis.

噴霧熱分解法による微粒子の製造法としては、温度制御の容易さから、セラミックス製や金属製の熱分解炉を使用し、外部の電気ヒーター等で加熱する外熱式噴霧熱分解装置を用いる方法、あるいは、熱分解炉の内部に燃焼バーナーを配置させ、燃料の燃焼により粒子を直接加熱する内燃式噴霧熱分解装置を用いる方法が一般的である。このうち、内燃式噴霧分解装置としては、熱分解炉内のバーナーの火炎に、噴霧ミストを直接接触させる方法(特許文献1)、噴霧ノズルのまわりにバーナーを設置して熱分解する方法(特許文献2)、主炎孔と主炎孔の周囲に配置した補助炎孔とを用いて反応気体流を生じさせ、その間に原料溶液を噴霧する方法(特許文献3)、原料液ミストと噴霧制御ガスとの混合部にバーナーによる火炎を形成させる方法(特許文献4)等が報告されている。 As a method for producing fine particles by the spray pyrolysis method, a ceramic or metal pyrolysis furnace is used because of the ease of temperature control, and an externally heated spray pyrolysis apparatus is used for heating with an external electric heater or the like. Alternatively, a common method is to use an internal combustion spray pyrolysis apparatus in which a combustion burner is arranged inside the pyrolysis furnace and the particles are directly heated by combustion of fuel. Among them, as an internal combustion spray decomposition apparatus, a method of directly contacting the spray mist with the flame of the burner in the pyrolysis furnace (Patent Document 1), a method of installing a burner around the spray nozzle and thermally decomposing (Patent Document 2), A method of generating a reaction gas flow using a main flame hole and auxiliary flame holes arranged around the main flame hole, and spraying the raw material solution in the meantime (Patent Document 3), Raw material liquid mist and spray control A method of forming a flame by a burner in a gas mixing portion (Patent Document 4) and the like have been reported.

特開2001-17857号公報JP-A-2001-17857 特開2001-137699号公報JP-A-2001-137699 特開2008-194637号公報JP 2008-194637 A 特開2013-17957号公報JP 2013-17957 A

しかしながら、特許文献1、2及び4記載の方法では、噴霧ミストが火炎内で熱分解反応するため、反応自体は効率的で速やかであるが、得られる粒子は密実となり中空粒子は得られない。また、特許文献3記載の方法では、溶融した粒子同士が溶着するため、均一な中空粒子は得られない。
従って、本発明の課題は、一定品質の中空粒子を高収率で製造できる噴霧熱分解法を提供することにある。
However, in the methods described in Patent Documents 1, 2 and 4, since the spray mist undergoes a thermal decomposition reaction within the flame, the reaction itself is efficient and rapid, but the obtained particles are dense and hollow particles cannot be obtained. . Further, in the method described in Patent Document 3, the melted particles are welded to each other, so uniform hollow particles cannot be obtained.
Accordingly, an object of the present invention is to provide a spray pyrolysis method capable of producing hollow particles of constant quality at a high yield.

そこで本発明者は、熱分解炉内において、噴霧されたミストが密実とならず、中空状に維持され、かつ他の粒子と溶着しない条件について種々検討したところ、噴霧ミストを燃焼バーナーの火炎に直接接触させるのではなく、接触させずに火炎の近傍を通過させれば、原料の熱分解により中空粒子が効率良く、かつ高収率で得られることを見出し、本発明を完成した。 Therefore, the present inventors have studied various conditions in which the sprayed mist does not become solid, is kept hollow, and does not fuse with other particles in the pyrolysis furnace. The inventors have found that hollow particles can be obtained efficiently and at a high yield by thermal decomposition of the raw material if the raw material is not brought into direct contact with the flame but passed through the vicinity of the flame without contact, and the present invention was completed.

すなわち、本発明は、次の〔1〕~〔4〕を提供するものである。 That is, the present invention provides the following [1] to [4].

〔1〕原料溶液を熱分解炉内に噴霧し、熱分解炉内に設けられた燃焼バーナーにより熱分解する中空粒子の製造法であって、噴霧ミストを燃焼バーナーの火炎に直接接触しない近傍を通過させることを特徴とする中空粒子の製造法。
〔2〕少なくとも火炎と接触する噴霧ミストの周囲に空気のシールドが形成されるように原料溶液を噴霧する〔1〕記載の中空粒子の製造法。
〔3〕得られる中空粒子の粒子密度が0.1~1.0g/cm3である〔1〕又は〔2〕記載の中空粒子の製造法。
〔4〕得られる中空粒子の平均粒子径が1~100μmである〔1〕~〔3〕のいずれかに記載の中空粒子の製造法。
[1] A method for producing hollow particles by spraying a raw material solution into a pyrolysis furnace and thermally decomposing it with a combustion burner provided in the pyrolysis furnace, wherein the spray mist does not come into direct contact with the flame of the combustion burner. A method for producing hollow particles, characterized by passing through.
[2] The method for producing hollow particles according to [1], wherein the raw material solution is sprayed so as to form an air shield around at least the sprayed mist that contacts the flame.
[3] The method for producing hollow particles according to [1] or [2], wherein the obtained hollow particles have a particle density of 0.1 to 1.0 g/cm 3 .
[4] The method for producing hollow particles according to any one of [1] to [3], wherein the obtained hollow particles have an average particle size of 1 to 100 μm.

本発明方法によれば、粒子が密実にならず、中空状の微粒子が、均一の品質でかつ高収率で得られる。本発明方法により得られる中空粒子は、中空で微粒子であるため、断熱性材料、遮熱性材料、触媒担体、建築材料、プラスチックフィラー等として有用である。 According to the method of the present invention, the particles are not condensed, and hollow microparticles of uniform quality can be obtained in a high yield. Since the hollow particles obtained by the method of the present invention are hollow fine particles, they are useful as heat-insulating materials, heat-shielding materials, catalyst carriers, building materials, plastic fillers, and the like.

実施例1における火炎と噴霧ミストの位置関係を示す。4 shows the positional relationship between the flame and spray mist in Example 1. FIG. 実施例1で得られた粒子のSEM像を示す。1 shows an SEM image of particles obtained in Example 1. FIG. 実施例2における火炎と噴霧ミストの位置関係を示す。4 shows the positional relationship between the flame and spray mist in Example 2. FIG. 実施例2で得られた粒子のSEM像を示す。4 shows an SEM image of the particles obtained in Example 2. FIG. 比較例1における火炎と噴霧ミストの位置関係を示す。3 shows the positional relationship between flame and spray mist in Comparative Example 1. FIG. 比較例1で得られた粒子のSEM像を示す。1 shows an SEM image of particles obtained in Comparative Example 1. FIG. 比較例2における火炎と噴霧ミストの位置関係を示す。3 shows the positional relationship between flame and spray mist in Comparative Example 2. FIG. 比較例2で得られた粒子のSEM像を示す。An SEM image of the particles obtained in Comparative Example 2 is shown. 実施例2で用いた噴霧ノズルを正面から見た像を示す。The image which looked at the spray nozzle used in Example 2 from the front is shown.

本発明の中空粒子の製造法は、原料溶液を熱分解炉内に噴霧し、熱分解炉内に設けられた燃焼バーナーにより熱分解する中空粒子の製造法であって、噴霧ミストを燃焼バーナーの火炎に直接接触しない近傍を通過させることを特徴とする。 The method for producing hollow particles of the present invention is a method for producing hollow particles in which a raw material solution is sprayed into a pyrolysis furnace and thermally decomposed by a combustion burner provided in the pyrolysis furnace. It is characterized by passing through a vicinity that does not come into direct contact with the flame.

本発明の製造方法においては、噴霧ノズルから中空粒子の原料となる原料化合物含有溶液(原料溶液ともいう)を、燃焼バーナーによる焼成雰囲気に噴霧する。 In the production method of the present invention, a raw material compound-containing solution (also referred to as a raw material solution), which is a raw material for hollow particles, is sprayed from a spray nozzle into the firing atmosphere of a combustion burner.

製造装置は、熱源として気体及び/又は液体燃料をバーナーにて、炉内で直接燃焼させる内燃式のロータリーキルンや竪型炉など、燃焼バーナーを装備した一般的な焼成炉であれば、何れも用いることができる。ロータリーキルンを用いると付着や凝集した粗粒子は、転動により窯前から排出されるため、安定した運転が維持できる。また、竪型炉は、省スペースにて設置可能で、設備費に優れるとともに、炉内に温度計を配置できることから、運転管理が容易である。 Any general firing furnace equipped with a combustion burner, such as an internal combustion rotary kiln or a vertical furnace that directly burns gas and / or liquid fuel with a burner as a heat source, can be used as the manufacturing equipment. be able to. When a rotary kiln is used, coarse particles adhered or agglomerated are discharged from the front of the kiln by rolling, so stable operation can be maintained. Further, the vertical furnace can be installed in a small space, is excellent in equipment cost, and can be easily operated and managed because a thermometer can be arranged in the furnace.

燃料は、LPG、都市ガス、アンモニアガス、気化した有機物などの気体燃料や、灯油、軽油、重油、再生油などの液体燃料であれば何れも用いることができる。 Any of gaseous fuels such as LPG, city gas, ammonia gas, and vaporized organic matter, and liquid fuels such as kerosene, light oil, heavy oil, and recycled oil can be used as the fuel.

噴霧する溶液は、中空粒子、すなわち酸化物を構成する元素を含む原料であればよく、例えば水等の溶媒に溶解する化合物であり、無機塩、金属アルコキシド等が挙げられる。より具体的には、アルミニウム塩、チタン塩、マグネシウム塩、カルシウム塩、ナトリウム塩、カリウム塩、リチウム塩、ホウ酸塩、リン酸塩、アルミノケイ酸塩、アルミニウムアルコキシドやテトラエトキシシラン、テトラメトキシシランなどのケイ酸アルコキシド等が挙げられる。
また、アルミニウム酸化物、ケイ素酸化物を溶媒に分散した溶液、アルミニウム酸化物、ケイ素酸化物のゾル溶液も原料溶液として用いることができる。さらに、溶融温度、耐熱性、粒子強度を調整するために、他の元素の原料を添加することもできる。
The solution to be sprayed may be a raw material containing hollow particles, that is, an element that constitutes an oxide. For example, it is a compound that dissolves in a solvent such as water, and examples thereof include inorganic salts and metal alkoxides. More specifically, aluminum salts, titanium salts, magnesium salts, calcium salts, sodium salts, potassium salts, lithium salts, borates, phosphates, aluminosilicates, aluminum alkoxides, tetraethoxysilane, tetramethoxysilane, etc. silicic acid alkoxide and the like.
A solution of aluminum oxide or silicon oxide dispersed in a solvent, or a sol solution of aluminum oxide or silicon oxide can also be used as the raw material solution. Furthermore, raw materials of other elements can be added in order to adjust the melting temperature, heat resistance and particle strength.

また、これらの原料化合物から得られる酸化物としては、無機酸化物、例えば金属酸化物、アルミナ、シリカ、カルシア、マグネシア、アルミニウムおよびケイ素からなる酸化物等が挙げられ、より具体的には、アルミナ、シリカ、アルミニウムおよびケイ素からなる酸化物、チタン酸化物、マグネシウム酸化物、カルシウム酸化物、ナトリウム酸化物、カリウム酸化物、リチウム酸化物、ホウ素酸化物、リン酸化物、ジルコニウム酸化物、バリウム酸化物、セリウム酸化物、イットリウム酸化物等が挙げられ、これら酸化物を組みあわせた複合酸化物も挙げられる。
これらの酸化物を構成する元素の原料を溶解あるいは分散する溶媒としては、水及び有機溶媒が挙げられるが、環境への影響、製造コストの点から水が好ましく、溶液のpH調整剤として、酸やアルカリを添加しても良い。酸としては、塩酸、硝酸、硫酸、有機酸などを用いることができ、アルカリとしては、水酸化ナトリウム、水酸化カルシウム、水酸化カリウムなどを用いても良い。
Further, the oxides obtained from these raw material compounds include inorganic oxides such as metal oxides, alumina, silica, calcia, magnesia, oxides composed of aluminum and silicon, and more specifically, alumina , silica, oxides composed of aluminum and silicon, titanium oxide, magnesium oxide, calcium oxide, sodium oxide, potassium oxide, lithium oxide, boron oxide, phosphorus oxide, zirconium oxide, barium oxide , cerium oxide, yttrium oxide, etc., and composite oxides in which these oxides are combined.
Solvents for dissolving or dispersing the raw materials of the elements constituting these oxides include water and organic solvents, but water is preferable from the viewpoint of environmental impact and production costs. or alkali may be added. Examples of acids that can be used include hydrochloric acid, nitric acid, sulfuric acid, and organic acids. Examples of alkalis that can be used include sodium hydroxide, calcium hydroxide, potassium hydroxide, and the like.

前記溶液は、モノーポンプ、チューブポンプ、ダイヤフラムポンプなど、一般的なポンプを介して、噴霧ノズルに供給され、熱分解炉内に噴霧される。
前記溶液は、圧縮空気によって噴霧液滴とする2流体ノズルや4流体ノズルを用いる。
ここで2流体、および4流体のノズルの方式には、空気と前記溶液とをノズル内部で混合する内部混合方式と、ノズル外部で空気と前記溶液を混合する外部混合方式があるが、いずれも使用できる。
また、前記溶液の噴霧ノズルの他に、噴霧ノズルより霧化された溶液を燃料バーナーの火炎から保護する目的で、キャリアーとして、圧縮空気や圧縮水を噴霧ノズルの外周より噴霧されたミストを包み込むように、別途挿入しても良く、これらに0.1~1.0MPaのコンプレッサーエアーを用いると簡便で良い。さらに、これらは旋回流として挿入させると効果が高く好ましい。
また、キャリアーの挿入量は、圧縮空気は、2流体ノズルや4流体ノズルの一次空気量、圧縮水は、溶液挿入量と同量を目安にすると良いが、これに限定されない。
The solution is supplied to the spray nozzle via a general pump such as a mono pump, tube pump, diaphragm pump, etc., and sprayed into the pyrolysis furnace.
A two-fluid nozzle or a four-fluid nozzle is used to atomize the solution into droplets with compressed air.
Two-fluid and four-fluid nozzle systems include an internal mixing system in which air and the solution are mixed inside the nozzle and an external mixing system in which air and the solution are mixed outside the nozzle. Available.
In addition to the spray nozzle for the solution, for the purpose of protecting the solution atomized from the spray nozzle from the flame of the fuel burner, compressed air or compressed water is used as a carrier to wrap the mist sprayed from the outer periphery of the spray nozzle. , and it is convenient to use compressed air of 0.1 to 1.0 MPa for these. Furthermore, it is preferable to insert them as a swirling flow because the effect is high.
As for the amount of carrier to be inserted, it is preferable to use the same amount of compressed air as the amount of primary air for the two-fluid nozzle or four-fluid nozzle, and the amount of compressed water to be the same as the amount of solution inserted, but the present invention is not limited to this.

本発明においては、噴霧ミストを燃焼バーナーの火炎に直接接触しない近傍を通過させる。噴霧ミストを燃焼バーナーの火炎に直接接触させない手段としては、例えば図1のように、噴霧ミストを燃焼バーナーの火炎の上部を通過させる手段が挙げられる。このとき、噴霧ミストの外縁と火炎の外縁とが接触しないようにすればよく、噴霧ミストの外縁と火炎の外縁との距離が1mm以上500mm以下となるようにするのが好ましく、5mm以上300mm以下とするのがより好ましく、10mm以上200mm以下とするのがさらに好ましい。 In the present invention, the atomized mist is passed through the vicinity of the combustion burner where it does not come into direct contact with the flame. Means for preventing the spray mist from coming into direct contact with the flame of the combustion burner include, for example, means for passing the spray mist over the flame of the combustion burner as shown in FIG. At this time, the outer edge of the spray mist and the outer edge of the flame should be kept from contact, and the distance between the outer edge of the spray mist and the outer edge of the flame is preferably 1 mm or more and 500 mm or less, and 5 mm or more and 300 mm or less. and more preferably 10 mm or more and 200 mm or less.

また、噴霧ミストを燃焼バーナーの火炎に直接接触させない手段としては、少なくとも火炎と接触する噴霧ミストの周囲に空気のシールドが形成されるように原料溶液を噴霧する手段も好ましい(図3)。具体的には、図9のように噴霧ノズルを二重にし、圧縮空気や圧縮水を、噴霧ノズルの外周より噴霧されたミストを、図3のように包み込むように噴出させるのが好ましい。このとき、図9のように、噴霧ノズルは、圧縮空気が旋回流を形成するような二重ノズルとするのが好ましい。このとき、噴霧ミストの周囲に形成される空気のシールド層は、厚さ0.1mm以上300mm以下が好ましく、0.5mm以上100mm以下がより好ましく、1.0mm以上50mm以下がさらに好ましい。 As a means for preventing the spray mist from directly contacting the flame of the combustion burner, it is also preferable to spray the raw material solution so that an air shield is formed at least around the spray mist that contacts the flame (Fig. 3). Specifically, it is preferable to double the spray nozzles as shown in FIG. 9, and to spray compressed air or compressed water so as to wrap the mist sprayed from the periphery of the spray nozzles as shown in FIG. At this time, as shown in FIG. 9, the spray nozzle is preferably a double nozzle in which the compressed air forms a swirling flow. At this time, the thickness of the air shield layer formed around the spray mist is preferably 0.1 mm or more and 300 mm or less, more preferably 0.5 mm or more and 100 mm or less, and even more preferably 1.0 mm or more and 50 mm or less.

本発明方法によれば、噴霧ミストが燃焼バーナーの火炎と直接接触しないことから噴霧液滴は乾燥後に熱分解が生じるため、密実とならず、中空粒子となる。すなわち、噴霧液滴が乾燥されて無機化合物の膜を形成し、それを起点に内部液が乾燥されるため粒子が中空形状になる。次いで、高温で熱分解反応が生じるため、中空構造を強固にすることにより、中空室を区画する殻を有する中空粒子であって、殻の厚さの一定な中空粒子が得られる。 According to the method of the present invention, since the spray mist does not come into direct contact with the flame of the combustion burner, the spray droplets are thermally decomposed after drying. That is, the sprayed droplets are dried to form a film of the inorganic compound, and the internal liquid is dried starting from the film, so that the particles become hollow. Then, a thermal decomposition reaction occurs at a high temperature, so that by strengthening the hollow structure, hollow particles having a shell defining a hollow chamber and having a uniform shell thickness can be obtained.

本発明により得られる中空粒子は、中空形状を有するため、粒子密度が0.1~1.0g/cm3、好ましくは0.3~0.8g/cm3と小さくなる。粒子密度は、JIS R 1620「ファインセラミックス粉末の粒子密度測定方法」の気体置換法により測定できる。 Since the hollow particles obtained by the present invention have a hollow shape, the particle density is as small as 0.1 to 1.0 g/cm 3 , preferably 0.3 to 0.8 g/cm 3 . The particle density can be measured by the gas replacement method of JIS R 1620 "Method for measuring particle density of fine ceramic powder".

また、本発明により得られる中空粒子の平均粒径は1~100μmと微粒子であり、また平均粒子径1~50μmの微粒子とすることもでき、さらに平均粒子径1~30μmの微粒子とすることもできる。 The hollow particles obtained by the present invention have an average particle diameter of 1 to 100 μm, and can be fine particles having an average particle diameter of 1 to 50 μm, and can also be fine particles having an average particle diameter of 1 to 30 μm. can.

本発明により得られる中空粒子は、篩い、重力、慣性、遠心、及び、風力分級機などで粒子径の調整をしてもよく、分級機は、乾式、湿式を問わず用いることができる。また、比重分離機などを用いて、比重の調整をしても良い。 Hollow particles obtained by the present invention may be subjected to particle size adjustment by sieving, gravity, inertia, centrifugation, wind classifiers, and the like, and dry or wet classifiers can be used. Also, the specific gravity may be adjusted using a specific gravity separator or the like.

次に実施例を挙げて、本発明を更に詳細に説明する。なお、実施例においては、炉内温度は、K熱電対で測定した。また、粒子密度はアキュピックで測定した。粒度分布はマイクロトラック(レーザー回折散乱式)で測定した。
(1)製造条件
イオン交換水100Lに、オルトケイ酸テトラエチル1992g、硝酸アルミニウム九水和物131g、硝酸マグネシウム六水和物455g、硝酸カルシウム四水和物516g、四ホウ酸ナトリウム十水和物1666g、濃硝酸1Lをロータリーキルン、または、竪型ガス炉の溶液タンクに投入し攪拌した。投入された水溶液は送液ポンプにより2流体ノズルを介してミスト状でロータリーキルン(Φ350×4000)、または、竪型ガス炉(Φ1000×3000)に噴霧され、目標温度になるよう燃料の焚き量を調整して合成した中空粒子をバグフィルターにて回収した。
EXAMPLES Next, the present invention will be described in more detail with reference to examples. In the examples, the temperature inside the furnace was measured with a K thermocouple. Also, the particle density was measured with an Accupic. The particle size distribution was measured by Microtrac (laser diffraction scattering method).
(1) Production conditions To 100 L of ion-exchanged water, 1992 g of tetraethyl orthosilicate, 131 g of aluminum nitrate nonahydrate, 455 g of magnesium nitrate hexahydrate, 516 g of calcium nitrate tetrahydrate, 1666 g of sodium tetraborate decahydrate, 1 L of concentrated nitric acid was put into a rotary kiln or a solution tank of a vertical gas furnace and stirred. The injected aqueous solution is sprayed into a rotary kiln (Φ350 x 4000) or a vertical gas furnace (Φ1000 x 3000) in a mist form through a two-fluid nozzle by a liquid feed pump, and the amount of fuel burned is adjusted to reach the target temperature. Hollow particles prepared and synthesized were recovered with a bag filter.

(2)実施例及び比較例の条件
実施例1
炉内温度を900℃に設定し、図1のように、噴霧ミストが火炎の上部を通過するように調整した。実施例1により得られた中空粒子のSEM像を図2に示す。
(2) Conditions of Examples and Comparative Examples Example 1
The furnace temperature was set to 900° C., and the spray mist was adjusted to pass over the flame as shown in FIG. A SEM image of the hollow particles obtained in Example 1 is shown in FIG.

実施例2
炉内温度を950℃に設定し、図3のように、2本の噴霧ノズル(図9の二重ノズルで、ミストの周囲に圧縮空気の旋回流のシールドを形成)で、火炎の上部に噴霧した。
Example 2
The temperature inside the furnace was set to 950°C, and as shown in Fig. 3, two spray nozzles (the double nozzles in Fig. 9 form a swirl flow shield of compressed air around the mist), and the mist was sprayed over the top of the flame. sprayed.

実施例2により得られた中空粒子のSEM像を図4に示す。 A SEM image of the hollow particles obtained in Example 2 is shown in FIG.

比較例1
炉内温度を900℃に設定し、図5のように、火炎の中心部に噴霧ミストを噴霧した。比較例1により得られた粒子のSEM像を図6に示す。
Comparative example 1
The furnace temperature was set to 900° C., and atomized mist was sprayed to the center of the flame as shown in FIG. A SEM image of the particles obtained in Comparative Example 1 is shown in FIG.

比較例2
炉内温度950℃に設定し、図7のように、火炎の上部に噴霧ミストが直接接触するように噴霧した。比較例2により得られた粒子のSEM像を図8に示す。
Comparative example 2
The temperature inside the furnace was set to 950° C., and the spray mist was sprayed so that it was in direct contact with the upper part of the flame as shown in FIG. A SEM image of the particles obtained in Comparative Example 2 is shown in FIG.

実施例1、2及び比較例1、2で得られた粒子の性状を表1に示す。 Table 1 shows the properties of the particles obtained in Examples 1 and 2 and Comparative Examples 1 and 2.

Figure 0007266361000001
Figure 0007266361000001

比較例1の粒子密度は、2.50g/cm3となり、理論密度と同等のため、図6のSEM像も考慮してすべて中実粒子と考えられる。
また、比較例2の中実粒子の割合を求めるため、水による比重分離を行い、その割合を求めた。この結果、比較例2の中実粒子の混入率は、25%であった。また、図8のSEM像からも密実粒子と中空粒子の混合物である。
The particle density of Comparative Example 1 is 2.50 g/cm 3 , which is equivalent to the theoretical density. Therefore, considering the SEM image of FIG. 6, all the particles are considered to be solid particles.
Further, in order to determine the proportion of solid particles in Comparative Example 2, gravity separation was performed with water to determine the proportion. As a result, the mixing rate of solid particles in Comparative Example 2 was 25%. Also, the SEM image in FIG. 8 indicates a mixture of solid particles and hollow particles.

実施例1及び2で得られた粒子は、図2及び図4、さらに表1から、均一かつ微細な中空粒子であった。 The particles obtained in Examples 1 and 2 were uniform and fine hollow particles, as shown in FIGS. 2 and 4 and Table 1.

Claims (4)

原料溶液を熱分解炉内に噴霧し、熱分解炉内に設けられた燃焼バーナーにより熱分解する中空粒子の製造法であって、噴霧ミストを燃焼バーナーの火炎に直接接触しない近傍を通過させることを特徴とする中空粒子の製造法であり、
当該噴霧ミストを燃焼バーナーの火炎に直接接触させない手段が、噴霧ノズルを内側に2流体ノズルと外側にノズルを有する二重ノズルとし、外側ノズルから圧縮空気を噴霧して、内側の2流体ノズルから噴霧されたミストを圧縮空気で包み込むようにして、噴霧ミストの周囲に厚さ1.0mm以上50mm以下の空気のシールドが形成されるようにする手段である、中空粒子の製造法。
A method for producing hollow particles in which a raw material solution is sprayed into a pyrolysis furnace and thermally decomposed by a combustion burner provided in the pyrolysis furnace, wherein the spray mist is passed through the vicinity of the combustion burner where it does not come into direct contact with the flame. A method for producing hollow particles characterized by
A means for preventing the spray mist from directly contacting the flame of the combustion burner is a double nozzle having an inner two-fluid nozzle and an outer nozzle, and sprays compressed air from the outer nozzle and from the inner two-fluid nozzle. A method for producing hollow particles, which is a means for forming an air shield with a thickness of 1.0 mm or more and 50 mm or less around the atomized mist by enveloping the atomized mist with compressed air.
噴霧ノズルが、圧縮空気が旋回流を形成するような二重ノズルである請求項1記載の中空粒子の製造法。 2. The method for producing hollow particles according to claim 1, wherein the spray nozzle is a double nozzle in which the compressed air forms a swirling flow . 得られる中空粒子の粒子密度が0.1~1.0g/cm3である請求項1又は2記載の中空粒子の製造法。 3. The method for producing hollow particles according to claim 1, wherein the resulting hollow particles have a particle density of 0.1 to 1.0 g/cm 3 . 得られる中空粒子の平均粒子径が1~100μmである請求項1~3のいずれか1項記載の中空粒子の製造法。 The method for producing hollow particles according to any one of claims 1 to 3, wherein the resulting hollow particles have an average particle size of 1 to 100 µm.
JP2017144260A 2017-07-26 2017-07-26 Manufacturing method of hollow particles Active JP7266361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017144260A JP7266361B2 (en) 2017-07-26 2017-07-26 Manufacturing method of hollow particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017144260A JP7266361B2 (en) 2017-07-26 2017-07-26 Manufacturing method of hollow particles

Publications (2)

Publication Number Publication Date
JP2019025384A JP2019025384A (en) 2019-02-21
JP7266361B2 true JP7266361B2 (en) 2023-04-28

Family

ID=65475233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017144260A Active JP7266361B2 (en) 2017-07-26 2017-07-26 Manufacturing method of hollow particles

Country Status (1)

Country Link
JP (1) JP7266361B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365223B2 (en) * 2019-12-13 2023-10-19 太平洋セメント株式会社 Spray pyrolysis equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194637A (en) 2007-02-14 2008-08-28 Hosokawa Funtai Gijutsu Kenkyusho:Kk Fine particle producing device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360422A (en) * 1988-10-31 1991-03-15 Tokai Carbon Co Ltd Production of silica balloon
JPH0764547B2 (en) * 1990-04-19 1995-07-12 東海カーボン株式会社 Silica balloon manufacturing method
JPH04243911A (en) * 1991-01-25 1992-09-01 Tokai Carbon Co Ltd Production of silica balloon
JPH0796165A (en) * 1992-12-11 1995-04-11 Asahi Glass Co Ltd Production of crystalline fine hollow body and crystalline fine hollow body
JP3650422B2 (en) * 1994-08-03 2005-05-18 パルテック株式会社 Method for producing low bulk density fine particles of alkali metal compound
JP4420690B2 (en) * 2004-02-04 2010-02-24 ホソカワミクロン株式会社 Fine particle production method and fine particle production apparatus
JP5735607B2 (en) * 2013-10-16 2015-06-17 中外炉工業株式会社 Powder production equipment
JP6422679B2 (en) * 2014-06-06 2018-11-14 太平洋セメント株式会社 Hollow particle production equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194637A (en) 2007-02-14 2008-08-28 Hosokawa Funtai Gijutsu Kenkyusho:Kk Fine particle producing device

Also Published As

Publication number Publication date
JP2019025384A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP7007826B2 (en) Spray pyrolyzer
JP6422679B2 (en) Hollow particle production equipment
JP7117186B2 (en) Spray pyrolysis equipment
JP7261043B2 (en) Method for producing inorganic oxide particles
JP6385168B2 (en) Method for producing hollow particles
JP7266361B2 (en) Manufacturing method of hollow particles
JP7379089B2 (en) Spray pyrolysis equipment
JP7232024B2 (en) Method for producing inorganic oxide hollow particles
JP7341813B2 (en) Method for producing inorganic oxide particles
JP7190338B2 (en) Method for producing inorganic oxide particles
JP6763740B2 (en) Spray thermal decomposition device
JP7365223B2 (en) Spray pyrolysis equipment
JP7046518B2 (en) Manufacturing method of fine particles
JP7292833B2 (en) Spray pyrolysis equipment
JP7341812B2 (en) Method for producing inorganic oxide particles
JP7352423B2 (en) Method for producing inorganic oxide particles
JP7202810B2 (en) Spray pyrolysis equipment
JP5771161B2 (en) Method for producing spherical ceramic particles
JP7022594B2 (en) Method for producing hollow oxide particles
JP6997633B2 (en) Fine particle production equipment by spray pyrolysis
JP2023032546A (en) Nozzle for atomizing pyrolysis plant or atomizing dryer
JP2019123643A (en) Apparatus for producing inorganic oxide hollow particles
JP6807711B2 (en) Method for producing hollow oxide particles
JP6851230B2 (en) Equipment for producing fine particles by spray pyrolysis method
JP2022127997A (en) Atomization pyrolysis plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211004

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211004

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211018

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211019

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211224

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220104

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220906

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221129

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230314

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230411

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230418

R150 Certificate of patent or registration of utility model

Ref document number: 7266361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150