JP7266168B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP7266168B2
JP7266168B2 JP2021163184A JP2021163184A JP7266168B2 JP 7266168 B2 JP7266168 B2 JP 7266168B2 JP 2021163184 A JP2021163184 A JP 2021163184A JP 2021163184 A JP2021163184 A JP 2021163184A JP 7266168 B2 JP7266168 B2 JP 7266168B2
Authority
JP
Japan
Prior art keywords
storage container
light
vegetables
compartment
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021163184A
Other languages
Japanese (ja)
Other versions
JP2022003297A (en
Inventor
健一 柿田
貴代志 森
豊志 上迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020137747A external-priority patent/JP6967710B2/en
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2021163184A priority Critical patent/JP7266168B2/en
Publication of JP2022003297A publication Critical patent/JP2022003297A/en
Application granted granted Critical
Publication of JP7266168B2 publication Critical patent/JP7266168B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、食品として特に野菜を長期保存するための冷蔵庫に関する。 TECHNICAL FIELD The present invention relates to a refrigerator for long-term storage of foods, especially vegetables.

近年では、冷蔵庫の貯蔵温度の多様化のみならず、環境への配慮や経済性に対する関心の高まりを背景に、保存期間の経過による劣化等で、食されることなく破棄される食材の無駄をなくすという機能が求められている。特に、野菜の鮮度を保持するためには、野菜室内をほぼ密閉状態にして、容器外周を循環する冷気で間接冷却したり、乾燥を防ぐため冷気を一部しか容器に導入しない方式が採られている。しなしながら、その湿度制御は成り行きの制御となり、収納した野菜の量や種類によっては、長期保存に必要な高湿度状態を維持することが困難になっている。 In recent years, not only has the storage temperature of refrigerators diversified, but there has also been a growing interest in environmental considerations and economic efficiency. There is a need for a function to eliminate In particular, in order to maintain the freshness of vegetables, a method is adopted in which the inside of the vegetable compartment is kept almost completely sealed, and cool air circulates around the circumference of the container for indirect cooling. ing. However, the humidity control is a random control, and depending on the amount and type of vegetables stored, it is difficult to maintain the high humidity required for long-term storage.

このような野菜室高湿度状態保持の課題に対し、野菜室内の実際の雰囲気湿度を検知して、その結果によって加湿装置からの水分噴霧で湿度制御を行っているものがある(例えば、特許文献1参照)。 In order to solve the problem of maintaining a high humidity state in the vegetable compartment, there is a system in which the actual atmospheric humidity in the vegetable compartment is detected and humidity is controlled by spraying water from a humidifying device according to the result (see, for example, Patent Documents 1).

図7は特許文献1に記載された従来の冷蔵庫の野菜室の縦断面図を示すものである。図7において、冷蔵室2と野菜室3は仕切壁4により区画され、さらに野菜室扉3aで野菜室3内は密閉構成となっている。仕切壁4の野菜室3側には湿度センサー26が埋設され、野菜室3内の湿度を検知している。また超音波振動子21と貯水タンク25で構成された加湿装置20も同様に、仕切壁4の野菜室3側に埋設され、超音波振動子21を動作させることで、野菜室3内へミスト噴霧を行うこととなる。この様な構成で、野菜室3内の湿度を湿度センサー26で検知して、低湿度の場合には野菜には好ましくない状態だと判断し、加湿装置20を動作させて野菜室3内を高湿度に維持させることになる。 FIG. 7 shows a longitudinal sectional view of a vegetable compartment of a conventional refrigerator described in Patent Document 1. As shown in FIG. In FIG. 7, the refrigerator compartment 2 and the vegetable compartment 3 are partitioned by a partition wall 4, and the inside of the vegetable compartment 3 is hermetically sealed by a vegetable compartment door 3a. A humidity sensor 26 is embedded in the vegetable compartment 3 side of the partition wall 4 to detect the humidity in the vegetable compartment 3 . A humidifier 20 composed of an ultrasonic vibrator 21 and a water storage tank 25 is also embedded in the partition wall 4 on the side of the vegetable compartment 3 . It will be sprayed. With such a configuration, the humidity in the vegetable compartment 3 is detected by the humidity sensor 26, and when the humidity is low, it is determined that the condition is not favorable for the vegetables, and the humidifier 20 is operated to increase the humidity in the vegetable compartment 3. Maintain high humidity.

特開2006-46768号公報JP-A-2006-46768

開示は、食品表面そのものの水分量を検知し、その増減率から食品自身の鮮度状態を判断して、食品の保鮮性能が向上できる冷蔵庫を提供することを目的とする。
An object of the present disclosure is to provide a refrigerator capable of improving the freshness preservation performance of food by detecting the moisture content of the surface of the food itself and judging the freshness state of the food itself from the increase/decrease rate.

本開示の冷蔵庫は、貯蔵室と、貯蔵室に設けられた収納容器と、収納容器の内部の食品の水分量を検知する水分量検知手段と、収納容器の内部を加湿する鮮度保持装置とを備え、鮮度保持装置は、水分量検知手段の検知結果に基づいて、収納容器の内部を加湿することを特徴とする。
A refrigerator according to the present disclosure includes a storage chamber , a storage container provided in the storage chamber , a water content detection means for detecting the water content of food inside the storage container , and a freshness keeping device for humidifying the inside of the storage container. and the freshness preserving device is characterized by humidifying the inside of the storage container based on the detection result of the moisture content detection means.

開示の冷蔵庫は、貯蔵室内の食品自身の水分量を直接検知することができるので、精度の高い食品鮮度状態の判断が可能になり、鮮度保持装置により食品保鮮性能を高めた冷蔵庫を提供することができる。 Since the refrigerator of the present disclosure can directly detect the moisture content of the food itself in the storage chamber , it is possible to judge the freshness of the food with high accuracy, and the freshness keeping device provides a refrigerator with improved food freshness performance. can do.

本発明の実施の形態1による冷蔵庫の縦断面図BRIEF DESCRIPTION OF THE DRAWINGS Longitudinal sectional view of a refrigerator according to Embodiment 1 of the present invention 本発明の実施の形態1による冷蔵庫の水分量検知手段の構成図FIG. 1 is a configuration diagram of moisture content detection means of a refrigerator according to Embodiment 1 of the present invention; 本発明の実施の形態1による冷蔵庫の野菜室の縦断面図FIG. 1 is a vertical cross-sectional view of a vegetable compartment of a refrigerator according to Embodiment 1 of the present invention; 本発明の実施の形態1による冷蔵庫の赤外分光器によるほうれん草の吸収スペクトル差を示す図FIG. 2 is a diagram showing the absorption spectrum difference of spinach by the infrared spectrometer of the refrigerator according to Embodiment 1 of the present invention; 本発明の実施の形態1による冷蔵庫のほうれん草の重量減少率と水分量検知手段の出力変化量の関係を示す図FIG. 4 is a graph showing the relationship between the weight reduction rate of spinach in the refrigerator and the amount of change in the output of the water content detection means according to the first embodiment of the present invention; 本発明の実施の形態2による冷蔵庫の野菜室の縦断面図A longitudinal sectional view of a vegetable compartment of a refrigerator according to Embodiment 2 of the present invention 従来の冷蔵庫の野菜室の縦断面図Vertical cross-sectional view of the vegetable compartment of a conventional refrigerator

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

(実施の形態1)
図1は本発明の実施の形態1による冷蔵庫の縦断面図、図2は同実施の形態1による冷蔵庫の水分量検知手段の構成図、図3は同実施の形態1による冷蔵庫の野菜室の縦断面図、図4は同実施の形態1による冷蔵庫の赤外分光器によるほうれん草の吸収スペクトル差を示す図、図5は同実施の形態1による冷蔵庫のほうれん草の重量減少率と水分量検知手段の出力変化量の関係を示す図である。
(Embodiment 1)
FIG. 1 is a vertical cross-sectional view of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a block diagram of moisture content detection means of the refrigerator according to Embodiment 1, and FIG. 3 is a vegetable compartment of the refrigerator according to Embodiment 1. FIG. 4 is a longitudinal sectional view, FIG. 4 is a diagram showing the absorption spectrum difference of spinach by the infrared spectroscope of the refrigerator according to the first embodiment, and FIG. is a diagram showing the relationship between the amount of change in the output of the .

図1~3において、冷蔵庫100の断熱箱体101は、主に鋼板を用いた外箱102と、ABSなどの樹脂で成型された内箱103と、外箱102と内箱103との間の空間に充填発泡される例えば硬質発泡ウレタンなどの発泡断熱材とからなり、周囲と断熱し、複数の貯蔵室に区分されている。 1 to 3, the heat insulating box body 101 of the refrigerator 100 includes an outer box 102 mainly using steel plates, an inner box 103 made of resin such as ABS, and a space between the outer box 102 and the inner box 103. The space is filled with a foamed heat insulating material such as rigid urethane foam, which is insulated from the surroundings and divided into a plurality of storage compartments.

最上部には第一の貯蔵室としての冷蔵室104が設けられ、その冷蔵室104の下部に左右に並んで第四の貯蔵室としての切換室105と第五の貯蔵室としての製氷室106が横並びに設けられ、その切換室105と製氷室106の下部に第二の貯蔵室としての野菜室107が設けられ、そして最下部に第三の貯蔵室としての冷凍室108が配置される構成となっている。 A refrigerating chamber 104 as a first storage chamber is provided at the top, and a switching chamber 105 as a fourth storage chamber and an ice making chamber 106 as a fifth storage chamber are arranged horizontally below the refrigerating chamber 104. are provided side by side, a vegetable compartment 107 as a second storage compartment is provided below the switching compartment 105 and the ice making compartment 106, and a freezer compartment 108 is arranged at the bottom as a third storage compartment. It has become.

冷蔵室104は、冷蔵保存のために凍らない温度を下限に通常1℃~5℃とし、野菜室107は、冷蔵室104と同等もしくは若干高い温度設定の2℃~7℃としている。冷凍室108は、冷凍温度帯に設定されており、冷凍保存のために通常-22℃~-15℃で設定されているが、冷凍保存状態の向上のために、例えば-30℃や-25℃の低温で設定されることもある。切換室105は、1℃~5℃で設定される冷蔵温度帯、2℃~7℃で設定される野菜用温度帯、通常-22℃~-15℃で設定される冷凍温度帯以外に、冷蔵温度帯から冷凍温度帯の間で予め設定された温度帯に切換えることができる。切換室105は製氷室106に並設された独立扉を備えた貯蔵室であり、引出し式の扉を備えることが多い。 The refrigerating compartment 104 is normally set to a temperature of 1° C. to 5° C., which is the lowest temperature that does not freeze for refrigerated storage. The freezer compartment 108 is set in a freezing temperature range, and is normally set at −22° C. to −15° C. for frozen storage. It may be set at a low temperature of °C. In addition to the refrigerating temperature range set between 1°C and 5°C, the vegetable temperature range set between 2°C and 7°C, and the freezing temperature range normally set between -22°C and -15°C, It is possible to switch to a preset temperature range between the refrigeration temperature range and the freezing temperature range. The switching compartment 105 is a storage compartment provided with an independent door provided side by side with the ice making compartment 106, and is often provided with a drawer type door.

尚、本実施の形態では、切換室105を、冷蔵、冷凍の温度帯までを含めた貯蔵室としているが、冷蔵は、冷蔵室104、野菜室107、冷凍は、冷凍室108に委ねて、冷蔵と冷凍の中間の上記温度帯のみの切換えに特化した貯蔵室としても構わない。また、特定の温度帯に固定された貯蔵室でもかまわない。 In the present embodiment, the switching compartment 105 is a storage compartment including the temperature range of refrigeration and freezing. The storage compartment may be specialized for switching only the temperature zone between refrigeration and freezing. Alternatively, a storage room fixed to a specific temperature zone may be used.

製氷室106は、冷蔵室104内の貯水タンク(図示せず)から送られた水で室内上部に設けられた自動製氷機(図示せず)で氷を作り、室内下部に配置した貯氷容器(図示せず)に貯蔵する。 The ice-making chamber 106 makes ice with an automatic ice-making machine (not shown) installed in the upper part of the room with water sent from a water storage tank (not shown) in the refrigerating room 104, and an ice storage container (not shown) arranged in the lower part of the room. (not shown).

断熱箱体101の天面部は、冷蔵庫100の背面方向に向かって階段状に凹みを設けた形状であり、この階段状の凹部に機械室101aを形成して圧縮機109、水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品が収容されている。すなわち、圧縮機109を配設する機械室101aは、冷蔵室104内の最上部の後方領域に食い込んで形成されることになる。 The top surface of the heat-insulating box 101 has a stepped recess toward the back of the refrigerator 100. A machine room 101a is formed in this stepped recess to accommodate a compressor 109 and a dryer for removing moisture. (not shown) and other high pressure side components of the refrigeration cycle are housed. That is, the machine room 101a in which the compressor 109 is installed is formed by cutting into the uppermost rear region in the refrigerating room 104. As shown in FIG.

尚、本実施の形態における、以下に述べる発明の要部に関する事項は、従来一般的であった断熱箱体101の最下部の貯蔵室後方領域に機械室を設けて、そこに圧縮機109を配置するタイプの冷蔵庫に適用しても構わない。また、冷凍室108と野菜室107の配置を入れ替えた、いわゆるミッドフリーザーの構成の冷蔵庫100であっても構わない。 In the present embodiment, regarding the essential part of the invention described below, a machine room is provided in the lowermost storage room rear region of the heat insulating box body 101, which has been conventionally common, and the compressor 109 is installed therein. It may be applied to the type of refrigerator that is arranged. Also, the refrigerator 100 may have a so-called mid-freezer configuration in which the freezer compartment 108 and the vegetable compartment 107 are interchanged.

次に、野菜室107と冷凍室108の背面には冷気を生成する冷却室110が設けられ、野菜室107と冷却室110の間もしくは冷凍室108と冷却室110との間には、断熱性を有する各室への冷気の搬送風路と、各室と断熱区画するために構成された奥面仕切壁111が構成されている。 Next, a cooling chamber 110 for generating cool air is provided behind the vegetable compartment 107 and the freezing compartment 108, and between the vegetable compartment 107 and the cooling compartment 110 or between the freezing compartment 108 and the cooling compartment 110, heat insulation is provided. and a rear partition wall 111 configured to separate each room from the heat-insulating air passage.

冷却室110内には、冷却器112が配設されており、冷却器112の上部空間には強制対流方式により冷却器112で冷却した冷気を冷蔵室104、切換室105、製氷室106、野菜室107、冷凍室108に送風する冷却ファン113が配置され、冷却器112の下部空間には、冷却時に冷却器112やその周辺に付着する霜や氷を除霜するためのガラス管製のラジアントヒータ114が設けられ、さらにその下部には除霜時に生じる除霜水を受けるためのドレンパン115、その最深部から庫外に貫通したドレンチューブ116が構成され、その下流側の庫外に蒸発皿117が構成されている。 A cooler 112 is disposed in the cooling chamber 110. In the space above the cooler 112, cold air cooled by the cooler 112 is supplied to the refrigerator chamber 104, the switching chamber 105, the ice making chamber 106, and the vegetables. A cooling fan 113 for blowing air to the chamber 107 and the freezer chamber 108 is arranged, and a glass tube radiant is provided in the lower space of the cooler 112 for defrosting frost and ice adhering to the cooler 112 and its surroundings during cooling. A heater 114 is provided, and a drain pan 115 for receiving defrosted water generated during defrosting is provided below the heater 114. A drain tube 116 penetrates from the deepest part of the heater 114 to the outside of the refrigerator. 117 are configured.

野菜室107には、野菜室107の引出し扉118に取り付けられたフレームに載置された下段収納容器119と、下段収納容器119の上に載置された上段収納容器120が配置されている。引出し扉118が閉ざされた状態で主に上段収納容器120を略密閉するための蓋体122が、野菜室107の上部に備えられた第一の仕切壁123及び内箱103に保持されている。引出し扉118が閉ざされた状態で蓋体122と上段収納容器120の上面の左右辺、奥辺が密接し、上面の前辺は略密接している。さらに、上段収納容器120の背面の左右下辺と下段収納容器119の境界部は、上段収納容器120が稼働する上で接触しない範囲で食品収納部の湿気が逃げないよう隙を詰めている。 In the vegetable compartment 107, a lower storage container 119 mounted on a frame attached to a drawer door 118 of the vegetable compartment 107 and an upper storage container 120 mounted on the lower storage container 119 are arranged. A lid body 122 for substantially sealing mainly the upper storage container 120 in a state where the drawer door 118 is closed is held by a first partition wall 123 and the inner box 103 provided in the upper part of the vegetable compartment 107. . When the drawer door 118 is closed, the lid body 122 and the upper storage container 120 are in close contact with each other at the left, right, and deep sides of the upper surface, and substantially in close contact with each other at the front side of the upper surface. Further, the boundary between the left and right bottom sides of the back surface of the upper storage container 120 and the lower storage container 119 is closed to prevent moisture from escaping from the food storage portion within a range where the upper storage container 120 does not come into contact with the upper storage container 120 during its operation.

蓋体122と第一の仕切壁123の間には、奥面仕切壁111に構成された野菜室107用の吐出口124から吐出された冷気の風路が設けられている。また、第一の仕切壁123の野菜室107側には水分量検知手段131が埋設され、本実施の形態では光学的に下段収納容器119に格納された野菜に対向するように配置されている。光学的とは赤外光や可視光が透過するように、蓋体122と上段収納容器120の必要な部分を切り取ったり、あるいは透過性樹脂で構成すれば良い。 Between the lid body 122 and the first partition wall 123, an air passage for cold air discharged from the discharge port 124 for the vegetable compartment 107 formed in the inner partition wall 111 is provided. In addition, the water content detection means 131 is embedded in the vegetable compartment 107 side of the first partition wall 123, and in the present embodiment, it is arranged so as to optically face the vegetables stored in the lower storage container 119. . Optically, necessary portions of the lid 122 and the upper storage container 120 may be cut off or made of transparent resin so that infrared light and visible light can be transmitted.

さらに、下段収納容器119と下段収納容器119の下の第二の仕切壁125との間にも空間が設けられ冷気風路を構成している。野菜室107の背面側に備えられた奥面仕切壁111の下部には、野菜室107内を冷却し熱交換された冷気が冷却器112に戻るための野菜室107用の吸込口126が設けられている。 Further, a space is also provided between the lower storage container 119 and the second partition wall 125 below the lower storage container 119 to form a cool air passage. A suction port 126 for the vegetable compartment 107 is provided in the lower part of the inner partition wall 111 provided on the back side of the vegetable compartment 107 for cooling the inside of the vegetable compartment 107 and returning the cool air, which has been heat-exchanged, to the cooler 112. It is

奥面仕切壁111は、ABSなどの樹脂で構成された表面と、風路や冷却室110を隔離、断熱性を確保するための発泡スチロールなどで構成された断熱材で構成されている。ここで、奥面仕切壁111の野菜室107側の壁面の一部には、本実施の形態では微粒子ミストを発生させる鮮度保持装置139が埋設されている。 The rear partition wall 111 is composed of a surface made of resin such as ABS, and a heat insulating material made of expanded polystyrene or the like for isolating the air passage and the cooling chamber 110 and ensuring heat insulation. In this embodiment, a freshness keeping device 139 for generating fine particle mist is embedded in a part of the wall surface of the inner partition wall 111 on the side of the vegetable compartment 107 .

鮮度保持装置139の具体例としては、静電気力によりピン先の水分を飛ばす静電霧化方式、圧電素子の振動により霧化させる超音波振動方式、ファンの風速で水を微細化する水破砕方式、微細孔ノズルを通過させて噴霧させるノズル噴霧方式等があり、目標性能や許容設置スペースに応じて方式は選定すればよい。鮮度保持装置139で発生された微粒子ミストが、下段収納容器119に噴霧されるように、上段収納容器120との隙間や配置が設計されている。また、冷気風路には、各貯蔵室を冷却する冷気を調整するためのダンパー145が埋設されている。 Specific examples of the freshness keeping device 139 include an electrostatic atomization method that blows water from the tip of the pin by electrostatic force, an ultrasonic vibration method that atomizes the water by vibration of a piezoelectric element, and a water crushing method that makes water finer by the wind speed of a fan. , a nozzle spraying method that sprays through a fine hole nozzle, etc., and the method can be selected according to the target performance and the allowable installation space. The gap and arrangement with the upper storage container 120 are designed so that the fine particle mist generated by the freshness keeping device 139 is sprayed onto the lower storage container 119 . Also, a damper 145 is embedded in the cool air passage for adjusting the cool air that cools each storage compartment.

水分量検知手段131には、図2に示すように、内部に赤外線波長を発光する第一の発光素子146と第二の発光素子150があり、それぞれの光源は反射板147で反射され、測定対象物(ここでは野菜)が照射される。さらに、水分量検知手段131には特定の波長を透過し偏向させる第一の調角板148と第二の調角板151があり、測定対象物から反射してきた光を、内部にある第一の受光素子149と第二の受光素子152へそれぞれ伝える。このように構成された水分量検知手段131は、野菜室107内の測定対象物(野菜)が格納される位置で、野菜を照射してその反射光を受光するように、第一の発光素子146、第二の発光素子150、反射板147、第一の調角板148、第二の調角板151、第一の受光素子149、第二の受光素子152の配置と形状が調整され、野菜室107の天面になる第一の仕切壁123に、庫内容積やケース操作性に影響のない範囲で埋設されている。 As shown in FIG. 2, the water content detection means 131 has a first light emitting element 146 and a second light emitting element 150 that emit infrared wavelengths inside. An object (here a vegetable) is irradiated. Furthermore, the moisture content detection means 131 has a first angle adjusting plate 148 and a second angle adjusting plate 151 that transmit and deflect a specific wavelength, and the light reflected from the object to be measured is are transmitted to the second light receiving element 149 and the second light receiving element 152, respectively. The water content detection means 131 configured in this manner irradiates the vegetable at the position where the measurement object (vegetables) is stored in the vegetable compartment 107 and receives the reflected light from the first light emitting element. 146, the arrangement and shape of the second light emitting element 150, the reflector 147, the first angle adjustment plate 148, the second angle adjustment plate 151, the first light receiving element 149, and the second light receiving element 152 are adjusted, It is embedded in the first partition wall 123 that is the top surface of the vegetable compartment 107 within a range that does not affect the internal volume and case operability.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。 The operation and function of the refrigerator configured as described above will be described below.

まず、冷凍サイクルの動作について説明する。庫内の設定された温度に応じて制御基板(図示せず)からの信号により冷凍サイクルが動作して冷却運転が行われる。圧縮機109の動作により吐出された高温高圧の冷媒は、凝縮器(図示せず)である程度凝縮液化し、さらに冷蔵庫100の側面や背面、また冷蔵庫100の前面間口に配設された冷媒配管(図示せず)などを経由し冷蔵庫100の結露を防止しながら凝縮液化し、キャピラリーチューブ(図示せず)に至る。その後、キャピラリーチューブでは圧縮機109への吸入管(図示せず)と熱交換しながら減圧されて低温低圧の液冷媒となって冷却器112に至る。 First, the operation of the refrigeration cycle will be explained. A refrigerating cycle is operated in response to a signal from a control board (not shown) according to the set temperature in the refrigerator to perform the cooling operation. The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 109 is condensed and liquefied to some extent in a condenser (not shown), and further flows into refrigerant pipes ( (not shown), etc., while preventing dew condensation in the refrigerator 100, it is condensed and liquefied, and reaches a capillary tube (not shown). After that, in the capillary tube, the pressure is reduced while exchanging heat with a suction pipe (not shown) to the compressor 109 to become a low-temperature, low-pressure liquid refrigerant and reach the cooler 112 .

ここで、低温低圧の液冷媒は、冷却ファン113の動作により搬送する冷凍室108の吐出風路141などの各貯蔵室内の空気と熱交換され、冷却器112内の冷媒は蒸発気化する。この時、冷却室110内で各貯蔵室を冷却するための冷気を生成する。 Here, the low-temperature, low-pressure liquid refrigerant exchanges heat with the air in each storage chamber such as the discharge air passage 141 of the freezer compartment 108 conveyed by the operation of the cooling fan 113, and the refrigerant in the cooler 112 evaporates. At this time, cold air for cooling each storage compartment is generated in the cooling compartment 110 .

冷却室110内で生成された低温の冷気は、冷却ファン113から冷蔵室104、切換室105、製氷室106、野菜室107、冷凍室108に冷気を風路やダンパー145を用いて分流させ、それぞれの目的温度帯に冷却する。 The low-temperature cold air generated in the cooling chamber 110 is diverted from the cooling fan 113 to the refrigerating chamber 104, the switching chamber 105, the ice making chamber 106, the vegetable chamber 107, and the freezing chamber 108 using air paths and dampers 145. Cool to each target temperature zone.

冷蔵室104は、冷蔵室104に設けた温度センサ(図示せず)により、冷気量をダンパー145により調整され、目的温度に冷却されている。特に、野菜室107は、冷気の配分や加熱手段(図示せず)などのON/OFF運転により、2℃から7℃になるように調整される。 Refrigerating compartment 104 is cooled to a target temperature by adjusting the amount of cold air with damper 145 using a temperature sensor (not shown) provided in refrigerating compartment 104 . In particular, the temperature of the vegetable compartment 107 is adjusted from 2° C. to 7° C. by the distribution of cold air and the ON/OFF operation of heating means (not shown).

野菜室107は、冷蔵室104を冷却した後、その空気を冷却器112に循環させるための冷蔵室戻り風路の途中に構成された野菜室107用の吐出口124から野菜室107に吐出し、上段収納容器120や下段収納容器119の外周に流し間接的に冷却し、その後、野菜室107用の吸込口126から再び冷却器112に戻る。 After the refrigerator compartment 104 is cooled, the air in the vegetable compartment 107 is discharged to the vegetable compartment 107 from an outlet 124 for the vegetable compartment 107 formed in the middle of the refrigerator compartment return air path for circulating the air to the cooler 112 . , the outer periphery of the upper storage container 120 and the lower storage container 119 to indirectly cool it, and then return to the cooler 112 again from the suction port 126 for the vegetable compartment 107 .

このようにして野菜室107は、野菜にとって最適な温度に設定されるわけであるが、逆に冷却することは除湿作用もあるため、時間が経過するとどうしても野菜からの水分蒸散が加速され、野菜重量が減少し、特に葉野菜は萎びてきて商品価値が劣化してしまう。 In this way, the vegetable compartment 107 is set to the optimum temperature for the vegetables. Weight decreases, and leaf vegetables in particular wilt, deteriorating their commercial value.

次に、野菜の赤外線波長の吸収スペクトル特性の例について、図4の赤外分光器によるほうれん草の吸収スペクトルのグラフを用いて説明する。この結果は汎用の赤外分光器を用いて波長帯域800nm~1700nmで実際に測定したものである。測定光源としては波長出力レベルの安定性からハロゲンランプ等が良いが、今回は市販の白熱灯電球を使用した。図4において、一点鎖線が光源のみを直接分光器に入力した時の特性で、この帯域において緩やかな山型形状となっており、この特性がリファレンスとなる。 Next, an example of the absorption spectrum characteristics of vegetables at infrared wavelengths will be described using the graph of the absorption spectrum of spinach obtained by an infrared spectrometer in FIG. 4 . This result was actually measured in a wavelength band of 800 nm to 1700 nm using a general-purpose infrared spectroscope. As a light source for measurement, a halogen lamp or the like is preferable because of the stability of the wavelength output level. In FIG. 4, the one-dot chain line is the characteristic when only the light source is directly input to the spectroscope, and it has a gentle mountain shape in this band, and this characteristic is used as a reference.

次に、新鮮なほうれん草にこの光源から光を照射し、その反射光を分光器に入射させたときの分光器出力がグラフ中の実線である。グラフから分かるように波長1450nmを頂点とした波長付近で、リファレンス(光源のみ)に対して出力が大きく落ち込んでいる(変化量:A)。これは、すなわち新鮮な野菜は水分が多く、葉表面でも水分量が豊富で、その水分によりこの波長が吸収され、反射光として分光器に戻っていないことを意味しており、実際この波長1450nmは理化学的にも水分測定に利用されている。 Next, the solid line in the graph is the spectroscope output when fresh spinach is irradiated with light from this light source and the reflected light is made incident on the spectroscope. As can be seen from the graph, in the vicinity of the wavelength with the wavelength of 1450 nm as the peak, the output drops significantly with respect to the reference (light source only) (variation: A). This means that fresh vegetables have a lot of moisture, and even the surface of the leaves has a lot of moisture, and this wavelength is absorbed by the moisture and does not return to the spectroscope as reflected light. is also used physicochemically for moisture measurement.

尚、波長1940nmも、さらに水分を大きく吸収する帯域であることが一般に知られているが、波長1600nm~2100nmは野菜の水以外の成分(炭水化物・デンプン・糖・タンパク質等)も吸収する帯域でもあり、無機質ではない野菜の水分量を精度よく検知できない可能性がある。また、冷蔵庫特有の環境として一般に野菜室107内は高湿状態であり、波長が長いほど環境水蒸気分に吸収されやすく、野菜に測定光が到達する前に減衰してしまう可能性もある。 It is generally known that the wavelength of 1940 nm is also a band that absorbs more water, but the wavelength of 1600 nm to 2100 nm is a band that also absorbs components other than water (carbohydrates, starches, sugars, proteins, etc.). There is a possibility that the moisture content of non-mineral vegetables cannot be detected with high accuracy. In addition, as an environment specific to a refrigerator, the inside of the vegetable compartment 107 is generally in a high-humidity state, and the longer the wavelength, the more likely it is to be absorbed by environmental water vapor, and the measurement light may attenuate before reaching the vegetables.

従って、後述する水分量検知手段131で使用する測定光の波長は1450nmとしている。 Therefore, the wavelength of the measurement light used by the water content detection means 131, which will be described later, is set to 1450 nm.

図4のグラフに戻り、ほうれん草が萎れてきて重量減少率が30%(すなわち重量が初期の70%)となった時に、新鮮な時と同様の測定方法で測定した結果が、点線で示す特性である。やはり新鮮な時ほどではないが、波長1450nmを頂点とした波長付近で、リファレンス(光源のみ)に対して出力が落ち込んでいる(変化量:B)。新鮮な時ほど落ち込みが大きくないのは、吸収する水分量が少ないからである。従って、重量減少率と波長1450nm波長の変化量の相関を、明確にすれば野菜の萎れ検知が可能になる。 Returning to the graph in FIG. 4, when the spinach has wilted and the weight reduction rate has reached 30% (that is, the weight is 70% of the initial weight), the result measured by the same measurement method as when it was fresh is the characteristic indicated by the dotted line. is. Although it is not as good as when it is fresh, the output drops (variation: B) with respect to the reference (light source only) near the peak wavelength of 1450 nm. The reason why the drop is not as great as when it is fresh is that it absorbs less water. Therefore, if the correlation between the weight reduction rate and the amount of change in the wavelength of 1450 nm is clarified, the wilting of vegetables can be detected.

次に、水分量検知手段131の動作について、図2を用いて説明する。測定光である赤外線1450nmの波長を有する第一の発光素子146から一定光量の光が、経路aで反射板147に入射されると、予め規定された角度で反射され経路bを通って対象物(野菜)に照射される。続いて、野菜で吸収された光量以外の測定光が反射光として経路cを通り、第一の調角板148に入光され波長1450nmの測定光が選択的に経路dを経由して第一の受光素子149に取り込まれる。 Next, the operation of the water content detection means 131 will be described with reference to FIG. When a certain amount of light from the first light emitting element 146 having a wavelength of 1450 nm, which is the measurement light, is incident on the reflecting plate 147 along the path a, it is reflected at a predetermined angle and passes through the path b to reach the object. (vegetables) are irradiated. Subsequently, measurement light other than the amount of light absorbed by the vegetables passes through path c as reflected light, and the measurement light with a wavelength of 1450 nm is incident on the first angle adjustment plate 148 selectively via path d. is taken into the light receiving element 149 of the

また、図4に示すように、1330nmは水分に吸収されない波長であり、野菜が新鮮であっても、萎れていても分光器の出力に変化はない。すなわちこの波長を参考光として同時に測定し、測定光と参考光の差分で判断することで、外乱要因(外乱光・測定距離・反射角度等)が排除でき検知精度の向上につながる。参考光の波長を1330nmとしたのは水分に吸収されず、かつ外乱要因による変動傾向が測定光と同方向となるように、測定光1450nmと波長を近づけるためである。図2に戻り、この参考光である赤外線1330nmの波長を有する第二の発光素子150から一定光量の光が発光されると、測定光の時と同様の構成物により経路e→f→g→hを通って、水分による減衰のない波長1330nmの参考光が第二の受光素子152に取り込まれる。 Moreover, as shown in FIG. 4, 1330 nm is a wavelength that is not absorbed by water, and the output of the spectroscope does not change whether the vegetables are fresh or wilted. That is, by simultaneously measuring this wavelength as a reference light and determining the difference between the measurement light and the reference light, disturbance factors (disturbance light, measurement distance, reflection angle, etc.) can be eliminated, leading to an improvement in detection accuracy. The reason why the wavelength of the reference light is set to 1330 nm is to bring the wavelength closer to that of the measurement light of 1450 nm so that it is not absorbed by moisture and the fluctuation tendency due to disturbance factors is in the same direction as the measurement light. Returning to FIG. 2, when a certain amount of light is emitted from the second light emitting element 150 having a wavelength of infrared 1330 nm, which is the reference light, the path e→f→g→ h, the reference light with a wavelength of 1330 nm, which is not attenuated by moisture, is taken into the second light receiving element 152 .

このように測定された測定光と参考光からの反射光は、冷蔵庫100内部にあるマイコン等の制御装置(図示せず)で差分演算されて外乱要因による誤差が取り除かれ、水分量検知手段131が検知した水分量出力値として判断される。そのほうれん草での結果を、図5の重量減少率と水分量検知手段131の出力変化量の関係で示す。図5において、黒丸のプロットは、野菜を実際に経時的に乾燥させて、定期的に上皿天秤で重量減少率を計測し、同時に水分量検知手段131で水分量を測定したものである。尚、図5の縦軸は図4の分光器出力値との相関が分かりやすいように、数値補正して初期からの変化量ΔVとしている。図5に示すように、その特性グラフは右下がりの直線特性となる。すなわち、重量(水分量)が減少すると水分量検知手段131の出力値変化量ΔVも、点線で示すバラツキ幅を持って減少することが分かる。 A control device (not shown) such as a microcomputer inside the refrigerator 100 performs a difference operation on the reflected light from the measurement light and the reference light measured in this way, and removes errors due to disturbance factors. is determined as the detected moisture content output value. The results for spinach are shown in FIG. In FIG. 5 , the black circle plots are obtained by actually drying the vegetables over time, periodically measuring the weight loss rate with the top pan balance, and measuring the water content with the water content detection means 131 at the same time. Note that the vertical axis of FIG. 5 is numerically corrected to represent the amount of change ΔV from the initial stage so that the correlation with the spectrometer output values of FIG. 4 can be easily understood. As shown in FIG. 5, the characteristic graph is a linear characteristic that descends to the right. That is, it can be seen that when the weight (moisture content) decreases, the amount of change ΔV in the output value of the moisture content detection means 131 also decreases with the variation width indicated by the dotted line.

一般に野菜の場合、初期からの重量減少率が10%を超えると、肉眼でも判別できる萎びた状態だと識別される。従って本実施の形態では図5に示すように、初期から経時変化しΔV=Cとなった時を制御装置で萎れ状態だと判断する。ここで萎れ検知変化量ΔVをCとしたのは、バラツキで重量減少率10%以上を萎れていないと判断することを回避する、安全側を考慮しているからである。 In the case of vegetables in general, when the rate of weight loss from the initial stage exceeds 10%, it is identified as a withered state that can be discerned with the naked eye. Therefore, in the present embodiment, as shown in FIG. 5, the control device determines that the withered state occurs when .DELTA.V=C after a change over time from the initial stage. The reason why the wilting detection change amount ΔV is set to C here is to avoid judging that the weight reduction rate is not withered at a rate of 10% or more due to variations, which is a safety side.

また、本実施の形態の説明では、水分量検知手段131を1個で1ポイント位置での検知としたが、複数個を設置したり、アクチュエーターを搭載して検知範囲をスキャンするなどすれば、検知精度が向上できる。また、水分量検知手段131に利用する測定光、参考光の赤外線波長が、野菜のラップ等の梱包材料を透過しにくい場合は、その波長帯を透過する梱包材料に置き換えれば更に精度アップが可能になる。尚、水分量検知手段131の測定光と参考光を別光源としたが、1330nmと1450nmの両波長を包含する帯域の広い1つの光源としても良い。 In addition, in the description of the present embodiment, one water content detection means 131 is used for detection at one point position. Detection accuracy can be improved. In addition, if the infrared wavelengths of the measurement light and reference light used for the moisture content detection means 131 are difficult to pass through packaging materials such as vegetable wraps, the accuracy can be further improved by replacing them with packing materials that allow transmission of that wavelength band. become. Although the measurement light and the reference light of the water content detection means 131 are different light sources, they may be a single light source with a wide band including both wavelengths of 1330 nm and 1450 nm.

また、葉野菜の代表としてほうれん草で説明したが、小松菜・チンゲン菜等の他野菜でもよく、キャベツ、白菜、あるいは水分の少ない根菜類であっても、予め種類が分かっていれば、萎れ検知判定値のCの値を変更すれば応用ができる。 Spinach was explained as a typical leaf vegetable, but other vegetables such as Japanese mustard spinach and bok choy may be used. It can be applied by changing the value of C.

以上のように、本実施の形態においては、断熱区画された貯蔵室である野菜室107と、野菜室107内の野菜の水分量を検知する水分量検知手段131と、野菜の鮮度を保持するための鮮度保持装置139とを野菜室107内に設け、水分量検知手段131からの情報により鮮度保持装置139を制御することにより、野菜室107内の雰囲気湿度から野菜鮮度を推定する従来の方式ではなく、野菜表面そのものの水分量を水分量検知手段131が検知して鮮度状態を判断するので、正確な野菜の鮮度状態判定で鮮度保持装置139の制御が行え、保鮮性品質をより向上させることができる。 As described above, in the present embodiment, the vegetable compartment 107 which is a heat-insulated storage compartment, the moisture amount detection means 131 for detecting the moisture amount of the vegetables in the vegetable compartment 107, and the freshness of the vegetables are maintained. A conventional method of estimating the freshness of vegetables from the atmospheric humidity in the vegetable compartment 107 by providing a freshness maintaining device 139 for Instead, the moisture content detection means 131 detects the moisture content of the vegetable surface itself to determine the freshness state, so that the freshness keeping device 139 can be controlled by accurately judging the freshness state of the vegetables, and the freshness preservation quality is further improved. be able to.

また、水分量検知手段131は一定強度の赤外線波長を発光し、野菜室107内の野菜を照射して、その野菜からの反射光の受光した大きさにより計測する非接触方式としたことにより、水分の赤外波長吸収スペクトル差を応用するので、直接野菜に水分量検知手段131が触れることなく野菜表面の水分量が検知でき、清潔で応答性が良い検知が可能となるばかりでなく、ハーネス接続が課題となる可動収納容器への設置が不要となり、接続が容易な本体側に水分量検知手段131を、発光素子と受光素子だけの簡単な原理構成で設置することができる。 In addition, the water content detection means 131 emits an infrared wavelength of a certain intensity, irradiates the vegetables in the vegetable compartment 107, and adopts a non-contact method for measuring the size of the reflected light from the vegetables. Since the infrared wavelength absorption spectrum difference of moisture is applied, the moisture content on the surface of the vegetables can be detected without the moisture content detection means 131 directly touching the vegetables. Installation to a movable storage container, which poses a problem of connection, becomes unnecessary, and the water content detection means 131 can be installed on the main body side, which is easy to connect, with a simple principle configuration of only a light emitting element and a light receiving element.

また、鮮度保持装置139は微粒子ミストを発生させ、野菜室107内に流入させることにより、野菜の重量が減少し水分量が低下して劣化(萎び)し始めた時に加湿するので、常時高湿保存する場合に発生する過剰な加湿による収納容器の水溜りや、それに伴う野菜の水腐れ等の不具合が防止できる。 In addition, the freshness keeping device 139 generates fine particle mist and makes it flow into the vegetable compartment 107 to humidify the vegetables when the weight of the vegetables decreases and the amount of moisture decreases and they begin to deteriorate (wither). It is possible to prevent water puddles in storage containers due to excessive humidification during storage, and problems such as water rot of vegetables associated therewith can be prevented.

尚、本実施の形態において、冷蔵庫100における水分量を検知する貯蔵室は、野菜室107としたが、冷蔵室104や切換室105などの他の温度帯の貯蔵室でもよく、特に切換室105の場合、肉や魚等を保存するチルドやパーシャルの温度帯での、様々な食品水分量検知の用途に展開が可能となる。また、水分量検知手段131は非接触で食品表面の水分量、すなわち乾燥度合いが測定できるので、乾物食品の保存装置や、ドライフルーツ等の乾燥装置での乾燥度検知手段としても応用できる。 In the present embodiment, the vegetable compartment 107 is used as the storage compartment for detecting the amount of moisture in the refrigerator 100. However, a storage compartment with other temperature zones such as the refrigerating compartment 104 or the switchable compartment 105 may be used. In the case of , it is possible to develop various applications for detecting the moisture content of food in the chilled and partial temperature zones where meat, fish, etc. are preserved. In addition, since the water content detection means 131 can measure the water content on the food surface, ie, the degree of dryness, in a non-contact manner, it can be applied as a dryness detection means in a storage device for dried foods and a device for drying dried fruits and the like.

(実施の形態2)
図6は本発明の実施の形態2による冷蔵庫の野菜室の縦断面図である。なお、実施の形態1と同一構成については同一符号を付して、詳細な説明は省略し、異なる部分について説明する。
(Embodiment 2)
FIG. 6 is a longitudinal sectional view of a vegetable compartment of a refrigerator according to Embodiment 2 of the present invention. The same reference numerals are given to the same configurations as in the first embodiment, detailed descriptions thereof are omitted, and different portions will be described.

図6において、奥面仕切壁111の野菜室107側の壁面の一部には、鮮度保持装置139が埋設されている。鮮度保持装置139には赤外線発光素子153が複数個内蔵されており、赤外線発光素子153の発光側には透過フィルター154が外枠に保持されている。赤外線発光素子153からの放射光は、透過フィルター154を通過し、下段収納容器119と上段収納容器120の隙間から、あるいは下段収納容器119越しに、対象物(野菜)を照射するように、各部品は光学設計と最適配置がされている。 In FIG. 6, a freshness keeping device 139 is embedded in a part of the wall surface of the back partition wall 111 on the side of the vegetable compartment 107 . A plurality of infrared light emitting elements 153 are built in the freshness keeping device 139, and a transmission filter 154 is held on the light emitting side of the infrared light emitting elements 153 by the outer frame. The emitted light from the infrared light emitting element 153 passes through the transmission filter 154 and irradiates the object (vegetables) through the gap between the lower storage container 119 and the upper storage container 120 or through the lower storage container 119. Components are optically designed and optimally placed.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。 The operation and function of the refrigerator configured as described above will be described below.

実施の形態1で説明した動作と同様に、水分量検知手段131により野菜が萎れ状態だと判断されると、鮮度保持装置139が動作を開始する。具体的には、赤外線発光素子153を点灯させ、700nm~2500nmの範囲の赤外線波長を発光させる。特に良いのは850nm付近の波長で、透過フィルター154に帯域パス性を持たせたり、あるいは赤外線発光素子153そのものを850nmピークのLEDにすれば良い。 Similar to the operation described in the first embodiment, when the moisture detection means 131 determines that the vegetables are in a wilted state, the freshness keeping device 139 starts operating. Specifically, the infrared light emitting element 153 is turned on to emit an infrared wavelength in the range of 700 nm to 2500 nm. A particularly good wavelength is around 850 nm, and the transmission filter 154 may be provided with a band-pass property, or the infrared light emitting element 153 itself may be an LED with a peak of 850 nm.

ここで野菜の生体反応について説明する。葉野菜には気孔があり、酸素や二酸化炭素の出し入れのための呼吸、開閉作用で水分調整を行う。また、野菜は光、温度等の外乱を受けると防御反応として気孔を閉じる性質がある。特に、赤外線が照射されると気孔が閉じて水分蒸散が抑制されることが一般に知られている。 Here, the biological reaction of vegetables will be explained. Leafy vegetables have stomata, which regulate moisture by respiration and opening and closing actions for taking in and out oxygen and carbon dioxide. In addition, vegetables have the property of closing their stomata as a defensive reaction when exposed to external disturbances such as light and temperature. In particular, it is generally known that irradiation with infrared rays closes the pores and suppresses water evaporation.

本実施の形態では、この野菜の生体反応を利用するもので、鮮度保持装置139が動作されると赤外線波長が野菜に照射され、その刺激に反応して気孔が閉塞し野菜内からの水分蒸散が抑制されることになる。 In the present embodiment, this biological reaction of vegetables is used. When the freshness keeping device 139 is operated, the vegetables are irradiated with an infrared wavelength, and in response to the stimulus, the stomata are closed and water transpiration from the vegetables is caused. will be suppressed.

以上のように、本実施の形態において、鮮度保持装置139は内部に赤外線発光素子153を有し、赤外線発光素子153から赤外線波長を発光させ、野菜室107内に収納された野菜を照射して野菜の気孔を制御することにより、野菜の重量が減少し水分量が低下して劣化(萎び)し始めた時に気孔を閉塞させるので、野菜からの水分蒸散が抑制でき、水分を扱う加湿のような複雑な構造は不要で、低コストで設置自由度も大きい鮮度保持装置139が実現できる。尚、本実施の形態1および2においては、野菜の萎れ状態を検知して鮮度保持させる内容を説明したが、野菜が新鮮で水分量が十分にある時は、野菜室107内に結露発生の可能性もある。よって、新鮮な時には逆に野菜室107内の湿度を若干低下させるように、ダンパーで密閉構造を緩めるような調湿機能を鮮度保持装置139として採用しても良い。 As described above, in the present embodiment, the freshness keeping device 139 has the infrared light emitting element 153 inside, and emits an infrared wavelength from the infrared light emitting element 153 to irradiate the vegetables stored in the vegetable compartment 107. By controlling the stomata of vegetables, the stomata are closed when the weight of the vegetables decreases and the amount of moisture in the vegetables decreases and they begin to deteriorate (wither). The freshness keeping device 139 can be realized at a low cost and with a large degree of installation freedom without requiring a complicated structure. In the first and second embodiments, the content of detecting the wilting state of vegetables and maintaining the freshness of the vegetables has been described. It is possible. Therefore, the freshness keeping device 139 may have a humidity control function that loosens the sealing structure with a damper so that the humidity in the vegetable compartment 107 is slightly lowered when the vegetables are fresh.

以上のように、本発明にかかる冷蔵庫は、貯蔵室内で適切な野菜の水分量保持を実現ができるので、家庭用又は業務用冷蔵庫もしくは野菜専用庫に対して実施することはもちろん、野菜以外の食品も含めた低温流通、倉庫などの用途にも適用できる。 As described above, the refrigerator according to the present invention can realize appropriate moisture retention of vegetables in the storage compartment, so it can be applied not only to household or business refrigerators or vegetable storages, but also to vegetables other than vegetables. It can also be applied to applications such as low-temperature distribution including food and warehouses.

100 冷蔵庫
101 断熱箱体
102 外箱
103 内箱
104 冷蔵室
105 切換室
106 製氷室
107 野菜室(貯蔵室)
108 冷凍室
109 圧縮機
110 冷却室
111 奥面仕切壁
112 冷却器
113 冷却ファン
114 ラジアントヒータ
115 ドレンパン
116 ドレンチューブ
117 蒸発皿
118 引出し扉
119 下段収納容器
120 上段収納容器
122 蓋体
123 第一の仕切壁
124 吐出口
125 第二の仕切壁
126 吸込口
131 水分量検知手段
139 鮮度保持装置
145 ダンパー
146 第一の発光素子(測定光)
147 反射板
148 第一の調角板
149 第一の受光素子
150 第二の発光素子(参考光)
151 第二の調角板
152 第二の受光素子
153 赤外線発光素子
154 透過フィルター
100 Refrigerator 101 Insulation Box 102 Outer Box 103 Inner Box 104 Refrigerator Chamber 105 Switching Chamber 106 Ice Making Chamber 107 Vegetable Compartment (Storage Compartment)
108 freezer compartment 109 compressor 110 cooling compartment 111 back partition wall 112 cooler 113 cooling fan 114 radiant heater 115 drain pan 116 drain tube 117 evaporating dish 118 drawer door 119 lower storage container 120 upper storage container 122 lid 123 first partition Wall 124 Discharge port 125 Second partition wall 126 Suction port 131 Moisture content detection means 139 Freshness keeping device 145 Damper 146 First light emitting element (measurement light)
147 Reflector 148 First adjusting plate 149 First light receiving element 150 Second light emitting element (reference light)
151 second adjusting plate 152 second light receiving element 153 infrared light emitting element 154 transmission filter

Claims (7)

貯蔵室と、
前記貯蔵室に設けられた収納容器と、
前記収納容器の内部の食品の水分量を検知する水分量検知手段と、
前記収納容器の内部を加湿する鮮度保持装置とを備え、
前記鮮度保持装置は、前記水分量検知手段の検知結果に基づいて、前記収納容器の内部を加湿することを特徴とする冷蔵庫。
a storage room;
a storage container provided in the storage room;
moisture content detection means for detecting the moisture content of the food inside the storage container;
A freshness keeping device that humidifies the inside of the storage container,
The refrigerator according to the present invention, wherein the freshness keeping device humidifies the interior of the storage container based on the detection result of the moisture content detection means.
前記鮮度保持装置は、基準値からの変化量が所定値よりも小さいときに前記収納容器の内部を加湿することを特徴とする請求項1に記載の冷蔵庫。 2. The refrigerator according to claim 1, wherein said freshness keeping device humidifies the interior of said storage container when the amount of change from a reference value is smaller than a predetermined value. 前記鮮度保持装置は、前記収納容器の内部にミストを放出することを特徴とする請求項1または2に記載の冷蔵庫。 3. The refrigerator according to claim 1, wherein said freshness keeping device emits mist into said storage container. 前記収納容器の上に設けられた上段収納容器を更に備え、
前記上段収納容器と前記収納容器の隙間が前記貯蔵室の背面側に設けられ、
前記鮮度保持装置は、前記貯蔵室の背面のうち前記上段収納容器と前記収納容器の隙間に対向する位置に設けられていることを特徴とする請求項1から3のいずれか一項に記載の冷蔵庫。
Further comprising an upper storage container provided on the storage container,
A gap between the upper storage container and the storage container is provided on the back side of the storage chamber,
4. The freshness keeping device according to any one of claims 1 to 3, wherein the freshness keeping device is provided at a position facing a gap between the upper storage container and the storage container on the back surface of the storage chamber. refrigerator.
前記水分量検知手段は、第一の測定手段と第二の測定手段とを有し、
前記第一の測定手段は、第一の発光素子により発光された波長1450nmを有する赤外線のうち前記食品で吸収されなかった波長1450nmの赤外線を測定光として測定し、
前記第二の測定手段は、第二の発光素子により発光された波長1330nmを有する赤外線のうち前記食品で吸収されなかった波長1330nmの赤外線を参考光として測定し、
前記測定光と前記参考光を同時に測定し、前記測定光と前記参考光の差分により前記水分量を検知することを特徴とする請求項1から4のいずれか一項に記載の冷蔵庫。
The moisture content detection means has a first measurement means and a second measurement means,
The first measuring means measures, as measurement light, infrared rays having a wavelength of 1450 nm that are not absorbed by the food among the infrared rays having a wavelength of 1450 nm emitted by the first light emitting element,
The second measuring means measures, as reference light, infrared rays having a wavelength of 1330 nm that are not absorbed by the food among the infrared rays having a wavelength of 1330 nm emitted by the second light emitting element,
5. The refrigerator according to claim 1, wherein the measurement light and the reference light are measured simultaneously, and the moisture content is detected from a difference between the measurement light and the reference light.
前記水分量検知手段は、前記第一の発光素子と前記第二の発光素子の両波長を包含する帯域の広い一つの光源を備えることを特徴とする請求項5に記載の冷蔵庫。 6. The refrigerator according to claim 5, wherein said moisture amount detection means comprises a single light source with a wide band including both wavelengths of said first light emitting element and said second light emitting element. 前記食品は、野菜であることを特徴とする請求項1から6のいずれか一項に記載の冷蔵庫。 7. The refrigerator according to any one of claims 1 to 6, wherein the food is vegetables.
JP2021163184A 2020-08-18 2021-10-04 refrigerator Active JP7266168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021163184A JP7266168B2 (en) 2020-08-18 2021-10-04 refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020137747A JP6967710B2 (en) 2016-06-17 2020-08-18 refrigerator
JP2021163184A JP7266168B2 (en) 2020-08-18 2021-10-04 refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020137747A Division JP6967710B2 (en) 2016-06-17 2020-08-18 refrigerator

Publications (2)

Publication Number Publication Date
JP2022003297A JP2022003297A (en) 2022-01-11
JP7266168B2 true JP7266168B2 (en) 2023-04-28

Family

ID=79246855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021163184A Active JP7266168B2 (en) 2020-08-18 2021-10-04 refrigerator

Country Status (1)

Country Link
JP (1) JP7266168B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242824A (en) 2005-03-04 2006-09-14 Chino Corp Optical measuring device
JP2008089202A (en) 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd Refrigerator
JP2009039000A (en) 2007-08-07 2009-02-26 Panasonic Corp Food drying method, and storehouse equipped with food drying means
JP2009115373A (en) 2007-11-06 2009-05-28 Panasonic Corp Refrigerator
JP2009174792A (en) 2008-01-25 2009-08-06 Panasonic Corp Refrigerator
US20100055259A1 (en) 2008-08-28 2010-03-04 Frito-Lay North America, Inc. Method for Real Time Measurement of Acrylamide in a Food Product
JP2011182690A (en) 2010-03-08 2011-09-22 Mitsubishi Electric Corp Refrigerator
JP6967710B2 (en) 2016-06-17 2021-11-17 パナソニックIpマネジメント株式会社 refrigerator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545280A (en) * 1990-09-13 1993-02-23 Arakawa Chem Ind Co Ltd Managerial method for rosin type solder flux detergent solution of non-halogen series
JP3169756B2 (en) * 1993-12-07 2001-05-28 オルガノ株式会社 Infrared moisture measurement device
JPH0972847A (en) * 1995-09-07 1997-03-18 Iseki & Co Ltd Measuring method for moisture in hull on object to be measured

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242824A (en) 2005-03-04 2006-09-14 Chino Corp Optical measuring device
JP2008089202A (en) 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd Refrigerator
JP2009039000A (en) 2007-08-07 2009-02-26 Panasonic Corp Food drying method, and storehouse equipped with food drying means
JP2009115373A (en) 2007-11-06 2009-05-28 Panasonic Corp Refrigerator
JP2009174792A (en) 2008-01-25 2009-08-06 Panasonic Corp Refrigerator
US20100055259A1 (en) 2008-08-28 2010-03-04 Frito-Lay North America, Inc. Method for Real Time Measurement of Acrylamide in a Food Product
JP2011182690A (en) 2010-03-08 2011-09-22 Mitsubishi Electric Corp Refrigerator
JP6967710B2 (en) 2016-06-17 2021-11-17 パナソニックIpマネジメント株式会社 refrigerator

Also Published As

Publication number Publication date
JP2022003297A (en) 2022-01-11

Similar Documents

Publication Publication Date Title
JP6967710B2 (en) refrigerator
JP2017223420A (en) refrigerator
KR101322590B1 (en) Refrigerator
CN102538341A (en) Refrigerator
CN101970961A (en) Refrigerator
WO2011154423A2 (en) A cooling device
JP7016002B2 (en) refrigerator
JP2008256349A (en) Refrigerator
WO2015050515A1 (en) A refrigerator comprising a drawer with humidity control
JP6928504B2 (en) refrigerator
JP4076804B2 (en) refrigerator
JP7266168B2 (en) refrigerator
WO2021157473A1 (en) Refrigerator
JP6298982B2 (en) refrigerator
JP5347260B2 (en) refrigerator
JP2008292140A (en) Refrigerator
KR100678777B1 (en) Refrigerator
JP7170165B2 (en) refrigerator
JP5487553B2 (en) refrigerator
WO2023204130A1 (en) Refrigerator
JP5326285B2 (en) refrigerator
JP5320794B2 (en) refrigerator
JP2015014423A (en) Refrigerator
WO2023176004A1 (en) Refrigerator
JP2023078534A (en) refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211101

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R151 Written notification of patent or utility model registration

Ref document number: 7266168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151