上記の問題を克服し、求められている機能を実装するために、本開示は、エンドエフェクタを矢状鋸ハンドピースに結合するためのブレードアダプタを提供する。ここで、様々な実施例が示される添付の図面を参照して、本発明の概念を以下でより完全に説明する。ただし、本発明の概念は、多くの様々な形態で具体化され得、本明細書に記載される実施例に限定されると解釈されるべきではない。むしろ、本開示が徹底的かつ完全になり、当業者に様々な本発明の概念の範囲を完全に伝えるように、これらの実施例が提供される。これらの実施例が相互排他的ではないことにも留意されたい。ある実施例からの構成要素が別の実施例に存在するまたは使用されることが暗黙のうちに前提とされ得る。
本明細書に開示される様々な実施例は、骨切り術を必要とする外科手術的介入を実施するときの外科手術システムの動作における改善を対象とする。外科手術システムは、エンドエフェクタとその機能部分を患者の解剖学的構造に関して3D空間に選択的に位置決めする外科手術ロボットを含み得る。本明細書に記載の実施例には、エンドエフェクタに結合可能な第1の結合機構、および1つ以上の切断を行う際に使用するための矢状鋸ハンドピースに結合可能な第2の結合機構が含まれる。ブレードアダプタとエンドエフェクタとの間のインターフェースは、ブレードアダプタをエンドエフェクタに結合することを容易にするために、1つ以上の側壁、ステージ、突起、空洞、スロット、チャネル、開口部などを含み得る。さらに、ブレードアダプタと矢状鋸ハンドピースとの間のインターフェースは、ブレードアダプタを矢状鋸ハンドピースに結合することを容易にするために、1つ以上の側壁、ステージ、突起、空洞、スロット、チャネル、開口部などを含み得る。いくつかの実施例では、第1および第2の結合機構は、ブレードアダプタの反対側にある。例えば、第1の結合機構は、エンドエフェクタの下側への結合に使用するためにブレードアダプタの上側にあり得、第2の結合機構は、矢状鋸ハンドピースの上面への結合に使用するためにブレードアダプタの下側にあり得る。このようにして、本明細書に記載の実施例は、エンドエフェクタおよび/または矢状鋸ハンドピースから独立して鋸ブレードを確実に拘束または保持するように構成される。
これらおよび他の関連する実施例は、外科手術のための他のロボットおよび手動の解決策と比較して、鋸ブレードの精度および信頼性を改善するように動作することができる。例えば、エンドエフェクタおよび鋸ブレードハンドピースから独立して鋸ブレードをしっかりと拘束または保持することにより、本明細書に記載のブレードアダプタは、鋸ブレードが破損し(例えば、ブレードの誘導軸および作動軸のずれによる)、または鋸ブレードが誘導されている間(例えば、エンドエフェクタを使用して)および/または作動されている間(例えば、矢状鋸ハンドピースを使用して)、矢状鋸ハンドピースが自動取り外しする(例えば、ブレードの振動による)可能性を低減する。さらに、鋸ブレードを切断面に拘束することにより、本明細書に記載のブレードアダプタは、鋸ブレードが高精度の切断を行うことを可能にする。さらに、エンドエフェクタと矢状鋸ハンドピースとの間に堅固な接続を提供することにより、本明細書に記載のブレードアダプタは、矢状鋸ハンドピースを使用する外科医が、1つ以上の切断を行いながら鋸ブレードの力フィードバックを確実に解釈することを可能にする。
図1は、本開示のいくつかの実施形態による、外科手術システム2の一実施形態を示す。整形外科手術の実施前に、例えば、図10のCアーム撮像デバイス104または図11のOアーム撮像デバイス106を使用して、またはコンピュータ断層撮影(CT)画像もしくはMRIなどの別の医療撮像デバイスから、患者の計画された外科手術エリアの三次元(「3D」)画像スキャンを行うことができる。このスキャンは、術前(例えば、最も一般的には処置の数週間前)または術中に行うことができる。しかしながら、外科手術システム2の様々な実施形態に従って、任意の既知の3Dまたは2D画像スキャンを使用することができる。画像スキャンは、外科手術ロボット800(例えば、図1のロボット2)および外科手術計画コンピュータ910を含む図9の外科手術システムコンピュータプラットフォーム900などの外科手術システム2と通信するコンピュータプラットフォームに送られる。外科手術計画コンピュータ910(図9)のディスプレイデバイス上の画像スキャンを概説する外科医は、患者の解剖学的構造が切断される目標面を規定する外科手術計画を生み出す。この平面は、患者の解剖学的制約、選択されたインプラント、およびそのサイズの関数である。いくつかの実施形態では、目標面を規定する外科手術計画は、ディスプレイデバイス上に表示される3D画像スキャン上で計画される。
図1の外科手術システム2は、例えば、使用するために用具を保持すること、用具を位置合わせすること、用具を使用すること、用具を誘導すること、および/または用具を位置決めすることによって、医療処置中に外科医を支援することができる。いくつかの実施形態では、外科手術システム2は、外科手術ロボット4と、カメラ追跡システム6と、を含む。両方のシステムを一緒に、任意の様々な機構によって機械的に結合することができる。好適な機構としては、機械的ラッチ、接合、クランプ、もしくはバットレス、または磁気もしくは磁化表面を挙げることができるが、これらに限定されない。外科手術ロボット4とカメラ追跡システム6とを機械的に結合する機能により、外科手術システム2を単一のユニットとして操作し、移動することが可能になり、外科手術システム2は面積の小さいフットプリントを有することが可能になり、狭い通路および曲がり角を通る動きをより容易にすることが可能になり、ならびにより狭い面積内のストレージを可能にすることができる。
整形外科手術処置は、外科手術システム2を医療ストレージから医療処置室まで移動させることで開始することができる。外科手術システム2は、出入口、ホール、およびエレベータから医療処置室に到達するまでずっと操作することができる。部屋の中で、外科手術システム2は、2つの分離した別個のシステム、外科手術ロボット4およびカメラ追跡システム6に、物理的に分離され得る。外科手術ロボット4は、医療従事者を適切に支援するために、任意の好適な場所で患者に隣接して位置決めされ得る。カメラ追跡システム6は、患者基部、患者の肩、または外科手術ロボット4および患者の部分の現在の姿勢および軌道の姿勢の動きを追跡するのに好適な任意の他の場所に位置決めすることができる。外科手術ロボット4およびカメラ追跡システム6は、オンボード電源によって電力供給され、かつ/または外部壁コンセントに差し込まれ得る。
外科手術ロボット4は、医療処置中に用具を保持しかつ/または使用することによって外科医を支援するのに使用され得る。用具を正しく利用し、保持するのに、外科手術ロボット4は、複数のモータ、コンピュータ、および/またはアクチュエータが正しく機能することに頼る場合がある。図1に示されるロボット本体8は、複数のモータ、コンピュータ、および/またはアクチュエータが外科手術ロボット4内で固定され得る構造体としての役割を果たし得る。ロボット本体8はまた、ロボット伸縮式支持アーム16のための支持を提供し得る。いくつかの実施形態では、ロボット本体8は、任意の好適な材料で作製され得る。好適な材料は、チタン、アルミニウム、もしくはステンレス鋼などの金属、炭素繊維、ガラス繊維、または頑丈なプラスチックであり得るが、これらに限定されない。ロボット本体8のサイズは、取り付けられたコンポーネントを支持する強固なプラットフォームを提供することができ、かつ取り付けられたコンポーネントを動作させることができる複数のモータ、コンピュータ、および/またはアクチュエータを収容し、隠し、かつ保護することができる。
ロボット基部10は、外科手術ロボット4の下部支持として作用することができる。いくつかの実施形態では、ロボット基部10は、ロボット本体8を支持することができ、ロボット本体8を複数の動力付き車輪12に取り付けることができる。車輪へのこの取り付けにより、ロボット本体8が空間を効率良く動くことが可能になる。ロボット基部10は、ロボット本体8の長さおよび幅に及び得る。ロボット基部10は、約2インチ~約10インチの高さであり得る。ロボット基部10は、任意の好適な材料で作製され得る。好適な材料は、チタン、アルミニウム、もしくはステンレス鋼などの金属、炭素繊維、ガラス繊維、または頑丈なプラスチックもしくは樹脂であり得るが、これらに限定されない。ロボット基部10は、動力付き車輪12を覆い、保護し、また支持することができる。
いくつかの実施形態では、図1に示されるように、少なくとも1つの動力付き車輪12をロボット基部10に取り付け得る。動力付き車輪12は、任意の場所でロボット基部10に取り付けられることができる。それぞれの個々の動力付き車輪12は、いずれの方向にも垂直軸を中心として回転することができる。モータは、動力付き車輪12の上に、中に、またはそれに隣接して配設され得る。このモータによって、外科手術システム2は、いずれの場所にも操作し、外科手術システム2を安定化させかつ/または水平にすることができる。動力付き車輪12内またはそれに隣接して位置するロッドは、モータによって表面に押し込められ得る。図示されていないロッドは、外科手術システム2を持ち上げるのに好適な任意の金属で作製され得る。好適な金属は、ステンレス鋼、アルミニウム、またはチタンであり得るが、これらに限定されない。さらに、ロッドは、接触面側の端部に、図示されていない緩衝材を備えることができ、緩衝材は、ロッドが滑ることを阻止し、かつ/または好適な接触面を作り出すことができる。その材料は、緩衝材として作用するのに好適な任意の材料であり得る。好適な材料は、プラスチック、ネオプレン、ゴム、またはテクスチャ加工された金属であり得るが、これらに限定されない。ロッドは、外科手術システム2を持ち上げることができる動力付き車輪10を、患者に対して外科手術システム2の向きを水平にするか、または別様に固定するのに必要な任意の高さまで持ち上げることができる。各車輪上のロッドによる小さな接触範囲を通して支持される、外科手術システム2の重さは、外科手術システム2が医療処置中に動くのを防ぐ。この堅固な位置決めは、物体および/または人々が偶発的に外科手術システム2を移動させることを阻止することができる。
外科手術システム2の移動を、ロボット手すり14を使用して容易にすることができる。ロボット手すり14は、人に、ロボット本体8を掴むことなく、外科手術システム2を動かす能力を与える。図1に例示されるように、ロボット手すり14は、ロボット本体8の長さ方向にロボット本体8より短く延びていてもよく、かつ/またはロボット本体8の長さより長く延びていてもよい。ロボット手すり14は、任意の好適な材料で作製され得る。好適な材料は、チタン、アルミニウム、もしくはステンレス鋼などの金属、炭素繊維、ガラス繊維、または頑丈なプラスチックであり得るが、これらに限定されない。ロボット手すり14は、ロボット本体8に対する保護をさらに備え、物体および/または従事者がロボット本体8に接触すること、ぶつかること、または衝突することを阻止することができる。
ロボット本体8は、以下で「SCARA」と称される、選択的コンプライアンス多関節ロボットアームに支持を与えることができる。SCARA24は、ロボットアームの再現性およびコンパクトさゆえに、外科手術システム2内で使用するのに都合の良いものであり得る。SCARAのコンパクトさは、医療専門家が、過度の動き回りや範囲を限定することなく、医療処置を行うことを可能にし得るさらなるスペースを医療処置内に与えることができる。SCARA24は、ロボット伸縮式支持体16、ロボット支持アーム18、および/またはロボットアーム20で構成され得る。ロボット伸縮式支持体16は、ロボット本体8に沿って配設され得る。図1に示されるように、ロボット伸縮式支持体16は、SCARA24およびディスプレイ34に支持を提供し得る。いくつかの実施形態では、ロボット伸縮式支持体16は、垂直方向に延在および収縮することができる。ロボット伸縮式支持体16は、任意の好適な材料で作製され得る。好適な材料は、チタンもしくはステンレス鋼などの金属、炭素繊維、ガラス繊維、または頑丈なプラスチックであり得るが、これらに限定されない。ロボット伸縮式支持体16の本体は、それに加えられる応力および重量を支持する任意の幅および/または高さであり得る。
いくつかの実施形態では、医療従事者は、医療従事者によって提出されたコマンドを介してSCARA24を移動させることができる。コマンドは、ディスプレイ34および/またはタブレットで受信された入力から生じ得る。コマンドは、スイッチの押し下げおよび/または複数のスイッチの押し下げに由来し得る。図4および5に最もよく例示されるように、起動アセンブリ60は、スイッチおよび/または複数のスイッチを含み得る。起動アセンブリ60は、移動コマンドをSCARA24に送信して、オペレータがSCARA24を手動で操作することを可能にするように動作可能であり得る。スイッチまたは複数のスイッチが押し下げられると、医療従事者はSCARA24を容易に移動させる能力を有することができる。さらに、SCARA24が移動させるためのコマンドを受信していないとき、SCARA24は、従事者および/または他の物体による偶発的な移動を阻止するように所定の位置にロックすることができる。所定の位置にロックすることにより、SCARA24は、図4および5に示される受動的なエンドエフェクタ1100および接続された外科手術鋸1140が医療手術で使用するための準備が整った強固なプラットフォームを提供する。
ロボット支持アーム18は、様々な機構によってロボット伸縮式支持体16上に配設され得る。いくつかの実施形態では、図1および2に最もよく見られるように、ロボット支持アーム18は、ロボット伸縮式支持体16に対して任意の方向に回転する。ロボット支持アーム18は、ロボット伸縮式支持体16の周りで360度回転することができる。ロボットアーム20は、任意の好適な場所でロボット支持アーム18に接続することができる。ロボットアーム20は、様々な機構によってロボット支持アーム16に取り付けられ得る。好適な機構は、ナットおよびボルト、ボールおよびソケット嵌合、圧入嵌合、溶接、接着、ねじ、リベット、クランプ、ラッチ、および/またはそれらの任意の組み合わせであり得るが、これらに限定されない。ロボットアーム20は、ロボット支持アーム18に対して任意の方向に回転することができ、実施形態では、ロボットアーム20は、ロボット支持アーム18に対して360度回転することができる。この自由な回転により、オペレータは計画どおりにロボットアーム20を位置決めすることができる。
図4および5の受動的なエンドエフェクタ1100は、任意の好適な場所でロボットアーム20に取り付けられ得る。以下でさらに詳細に説明されるように、受動的なエンドエフェクタ1100は、基部、第1の機構、および第2の機構を含む。基部は、外科手術ロボット4によって位置決めされるロボットアーム20のエンドエフェクタカプラ22に取り付けられるように構成される。基部をエンドエフェクタカプラ22に取り付けることができる様々な機構としては、ラッチ、クランプ、ナットおよびボルト、ボールおよびソケット嵌合、圧入嵌合、溶接、接着、ねじ、リベット、および/またはそれらの任意の組み合わせを挙げることができるが、これらに限定されない。第1の機構は、基部への回転可能な接続部と用具取り付け機構への回転可能な接続部との間に延在する。第2の機構は、基部への回転可能な接続部と用具取り付け機構への回転可能な接続部との間に延在する。第1および第2の機構は、回転可能な接続部を中心として旋回し、かつ用具取り付け機構の動きを作業面内の動きの範囲に制約するように構成され得る。回転可能な接続部は、1つの自由度(DOF)の運動を可能にする旋回関節であっても、2つのDOFの運動を可能にするユニバーサル関節であっても、3つのDOFの運動を可能にするボール関節であってもよい。用具取り付け機構は、鋸ブレードを有する外科手術鋸1140に接続されるか、または鋸ブレードに直接接続されるように構成される。外科手術鋸1140は、切断するために鋸ブレードを振動させるように構成され得る。第1および第2の機構は、作業面と平行になるように鋸ブレードの切断面を拘束するように構成され得る。旋回関節は、好ましくは、受動的なエンドエフェクタが、鋸ブレードの運動を切断面に制約するように構成される場合、平面状の機構を接続するために使用され得る。
用具取り付け機構は、ねじ、ナットおよびボルト、クランプ、ラッチ、接合、圧入嵌合、または磁石を含み得るが、これらに限定されない、様々な機構を介して、外科手術鋸1140または鋸ブレードに接続され得る。いくつかの実施形態では、動的基準アレイ52は、受動的なエンドエフェクタ1100、例えば、用具取り付け機構に取り付けられ、かつ/または外科手術鋸1140に取り付けられる。本明細書では「DRA」とも称される動的基準アレイは、ナビゲートされた外科手術処置において、患者、外科手術ロボット、受動的なエンドエフェクタ、および/または外科手術鋸に配設され得る堅固な本体である。カメラ追跡システム6または他の3D位置特定システムは、DRAの追跡マーカの姿勢(例えば、位置および回転の向き)をリアルタイムで追跡するように構成される。追跡マーカは、ボールまたは他の光学マーカの例示される配列を含み得る。追跡マーカの3D座標のこの追跡により、外科手術システム2は、図5の患者50の目標の解剖学的構造に関連する任意の空間におけるDRA52の姿勢を決定することができる。
図1に示されるように、光インジケータ28は、SCARA24の頂部上に位置決めされ得る。光インジケータ28は、外科手術システム2が現在動作している「状況」を示すために、任意のタイプの光として照明し得る。例えば、緑の照明は、すべてのシステムが正常であることを示し得る。赤く照明されているのは、外科手術システム2が正常に動作していないことを示し得る。パルス状の光とは、外科手術システム2が機能を実施していることを意味し得る。光とパルスの組み合わせにより、現在の動作状況、状態、または他の動作表示を通信するためのほぼ無限の量の組み合わせを作り出すことができる。いくつかの実施形態では、光は、光インジケータ28の周りにリングを形成し得るLED電球によって生成され得る。光インジケータ28は、光インジケータ28全体を通して光を輝かせることができる完全に透過性の材料を含み得る。
光表示器28は、下部ディスプレイ支持体30に取り付けられ得る。下部ディスプレイ支持体30は、図2に示されるように、オペレータが、任意の好適な位置にもディスプレイ34をうまく操作させるのを可能にし得る。下部ディスプレイ支持体30は、任意の好適な機構によって光インジケータ28に取り付けられ得る。実施形態では、下部ディスプレイ支持体30は、光インジケータ28を中心として回転し得る。実施形態では、下部ディスプレイ支持体30は、光インジケータ28にしっかりと取り付けられ得る。次いで、光インジケータ28は、ロボット支持アーム18を中心として360度回転し得る。下部ディスプレイ支持体30は、任意の好適な長さのものであってもよく、好適な長さは、約8インチ~約34インチであってもよい。下部ディスプレイ支持体30は、上部ディスプレイ支持体32の基部として作用し得る。
上部ディスプレイ支持体32は、任意の好適な機構によって下部ディスプレイ支持体30に取り付けられることができる。上部ディスプレイ支持体32は、任意の好適な長さのものであってもよく、好適な長さは、約8インチ~約34インチであってもよい。実施形態では、図1に例示されるように、上部ディスプレイ支持体32は、ディスプレイ34を上部ディスプレイ支持体32に対して360度回転させることができる。同様に、上部ディスプレイ支持体32は、下部ディスプレイ支持体30に対して360度回転することができる。
ディスプレイ34は、上部ディスプレイ支持体32によって支持され得る任意のデバイスであり得る。実施形態では、図2に例示されるように、ディスプレイ34は、カラー画像および/または白黒画像を生成し得る。ディスプレイ34の幅は、約8インチ~約30インチの幅であり得る。ディスプレイ34の高さは、約6インチ~約22インチの高さであり得る。ディスプレイ34の深さは、約1/2インチ~約4インチであり得る。
実施形態では、タブレットをディスプレイ34と併せて、および/またはディスプレイ34なしで使用することができる。実施形態では、テーブルは、ディスプレイ34の代わりに上部ディスプレイ支持体32上に配設されてもよく、医療手術中に上部ディスプレイ支持体32から取り外し可能であってもよい。さらに、タブレットは、ディスプレイ34と通信することができる。タブレットは、任意の好適な無線接続および/または有線接続によって、外科手術ロボット4に接続することが可能であり得る。いくつかの実施形態では、タブレットは、医療手術中、外科手術システム2をプログラムし、かつ/または制御することが可能であり得る。タブレットで外科手術システム2を制御する際、すべての入力コマンドおよび出力コマンドがディスプレイ34上に再現され得る。タブレットの使用により、オペレータは、患者50の周りで動くかつ/または外科手術ロボット4に移動する必要なく外科手術ロボット4を巧みに操ることができる。
図5に例示されるように、カメラ追跡システム6は、有線または無線の通信ネットワークを介して外科手術ロボット4と連動して働く。図1および5を参照すると、カメラ追跡システム6は、外科手術ロボット4と同様のいくつかの構成要素を含み得る。例えば、カメラ本体36は、ロボット本体8に見られる機能を提供することができる。ロボット本体8は、上にカメラ46が装着される構造を提供することができる。ロボット本体8内の構造も、カメラ追跡システム6を動作させるために使用される電子機器、通信デバイス、および電源のための支持を提供することができる。カメラ本体36は、ロボット本体8と同じ材料で作製され得る。カメラ追跡システム6は、無線および/または有線ネットワークによってタブレットおよび/またはディスプレイ34と直接通信して、タブレットおよび/またはディスプレイ34がカメラ追跡システム6の機能を制御することを可能にすることができる。
カメラ本体36は、カメラ基部38によって支持される。カメラ基部38は、ロボット基部10として機能し得る。図1の実施形態では、カメラ基部38は、ロボット基部10よりも広くてもよい。カメラ基部38の幅は、カメラ追跡システム6が外科手術ロボット4と接続することを可能にし得る。図1に例示されるように、カメラ基部38の幅は、ロボット基部10の外側に嵌合するのに十分な大きさであり得る。カメラ追跡システム6と外科手術ロボット4とが接続されているとき、カメラ基部38の追加の幅は、外科手術システム2の追加の操作性と外科手術システム2の支持を可能にし得る。
ロボット基部10と同様に、複数の動力付き車輪12がカメラ基部38に取り付けられることができる。動力付き車輪12により、カメラ追跡システム6は、ロボット基部10および動力付き車輪12の動作と同様に、患者50に対して固定された向きを安定化して水平にするか、またはそれを設定することができる。この安定化により、カメラ追跡システム6が医療処置中に移動することを阻止することができ、図5に示されるように、指定されたエリア56内の解剖学的構造54および/または用具58に接続された1つ以上のDRA52を見失うことからカメラ46を守り得る。追跡のこの安定性と維持は、カメラ追跡システム6で効果的に動作する外科手術ロボット4の能力を強化する。さらに、広いカメラ基部38は、カメラ追跡システム6に追加の支持を提供することができる。具体的には、図5に例示されるように、広いカメラ基部38により、カメラ46が患者の上に配設されたときに、カメラ追跡システム6が転倒するのを阻止し得る。広いカメラ基部38がない場合、広げられたカメラ46は、カメラ追跡システム6のバランスを崩す場合があり、その結果、カメラ追跡システム6が倒れる可能性がある。
カメラ伸縮式支持体40は、カメラ46を支持することができる。実施形態では、伸縮式支持体40は、カメラ46を垂直方向に上下に移動させることができる。伸縮式支持体40は、カメラ46を支持するための任意の好適な材料で作製され得る。好適な材料は、チタン、アルミニウム、もしくはステンレス鋼などの金属、炭素繊維、ガラス繊維、または頑丈なプラスチックであり得るが、これらに限定されない。カメラハンドル48は、任意の好適な場所でカメラ伸縮式支持体40に取り付けられ得る。カメラルハンドル48は、任意の好適なハンドル構成であり得る。好適な構成は、棒、円形、三角形、正方形、および/またはそれらの任意の組み合わせであり得るが、これらに限定されない。図1に例示されるように、カメラハンドル48は三角形であってもよく、それにより、オペレータは、医療手術の前にカメラ追跡システム6を計画された位置まで移動させることができる。実施形態では、カメラハンドル48を使用して、カメラ伸縮式支持体40を下降および上昇させることができる。カメラハンドル48は、ボタン、スイッチ、レバー、および/またはそれらの任意の組み合わせの押し下げによって、カメラ伸縮式支持体40の上昇および下降を実施することができる。
下部カメラ支持アーム42は、任意の好適な場所でカメラ伸縮式支持体40に取り付けることができ、実施形態では、図1に示されるように、下部カメラ支持アーム42は、伸縮式支持体40の周りで360度回転し得る。この自由な回転により、オペレータはカメラ46を任意の好適な場所に位置決めすることができる。下部カメラ支持アーム42は、カメラ46を支持するための任意の好適な材料で作製され得る。好適な材料は、チタン、アルミニウム、もしくはステンレス鋼などの金属、炭素繊維、ガラス繊維、または頑丈なプラスチックであり得るが、これらに限定されない。下部カメラ支持アーム42の断面は、任意の好適な形状であり得る。好適な断面形状は、円形、正方形、長方形、六角形、八角形、またはiビームであり得るが、これらに限定されない。断面の長さおよび幅は、約1~10インチであり得る。下部カメラ支持アームの長さは、約4インチ~約36インチであり得る。下部カメラ支持アーム42は、任意の好適な機構によって伸縮式支持体40に接続することができる。好適な機構は、ナットおよびボルト、ボールおよびソケット嵌合、圧入嵌合、溶接、接着、ねじ、リベット、クランプ、ラッチ、および/またはそれらの任意の組み合わせであり得るが、これらに限定されない。下部カメラ支持アーム42を使用して、カメラ46のための支持を提供することができる。カメラ46は、任意の好適な機構によって下部カメラ支持アーム42に取り付けられ得る。好適な機構は、ナットおよびボルト、ボールおよびソケット嵌合、圧入嵌合、溶接、接着、ねじ、リベット、および/またはそれらの任意の組み合わせであり得るが、これらに限定されない。カメラ46は、カメラ46と下部カメラ支持アーム42との間の取り付け面積で任意の方向に旋回することができる。実施形態では、湾曲レール44は、下部カメラ支持アーム42上に配設されることができる。
湾曲レール44は、下部カメラ支持アーム42上の任意の好適な場所に配設されることができる。図3に例示されるように、湾曲レール44は、任意の好適な機構によって下部カメラ支持アーム42に取り付けられ得る。好適な機構は、ナットおよびボルト、ボールおよびソケット嵌合、圧入嵌合、溶接、接着、ねじ、リベット、クランプ、ラッチ、および/またはそれらの任意の組み合わせであり得るが、これらに限定されない。湾曲レール44は、任意の好適な形状であり得、好適な形状は、三日月形、円形、卵形、楕円形、および/またはそれらの任意の組み合わせであり得る。実施形態では、湾曲レール44は、任意の適切な長さであり得る。適切な長さは、約1フィート~約6フィートであり得る。カメラ46は、湾曲レール44に沿って移動可能に配設され得る。カメラ46は、任意の好適な機構によって湾曲レール44に取り付けられ得る。好適な機構は、ローラ、ブラケット、ブレース、モータ、および/またはそれらの任意の組み合わせであり得るが、これらに限定されない。例示されていないモータおよびローラを使用して、湾曲レール44に沿ってカメラ46を移動させることができる。図3に例示されるように、医療処置中に、カメラ46が1つ以上のDRA52を視認することを物体が阻止している場合、モータは、ローラを使用して湾曲レール44に沿ってカメラ46を移動させ得る。この電動化された動きにより、カメラ46は、カメラ追跡システム6を移動させることなく、物体によってもはや妨げられない新しい位置に移動することができる。カメラ46がDRA52を視認することが妨げられている間、カメラ追跡システム6は、停止信号を外科手術ロボット4、ディスプレイ34、および/またはタブレットに送ることができる。停止信号は、カメラ46がDRA52を再び入手するまで、SCARA24が移動するのを阻止することができる。この停止により、外科手術システム2によって追跡されることなく、SCARA24および/またはエンドエフェクタカプラ22が医療用具を移動させ、かつ/または使用することが阻止され得る。
図6に例示されるように、エンドエフェクタカプラ22は、様々なタイプの受動的なエンドエフェクタを外科手術ロボット4に接続するように構成される。エンドエフェクタカプラ22は、鞍関節62、起動アセンブリ60、ロードセル64(図7)、およびコネクタ66を含み得る。鞍関節62は、エンドエフェクタカプラ22をSCARA24に取り付けることができる。鞍関節62は、任意の好適な材料で作製され得る。好適な材料は、チタン、アルミニウム、もしくはステンレス鋼などの金属、炭素繊維、ガラス繊維、または頑丈なプラスチックであり得るが、これらに限定されない。鞍関節62は、エンドエフェクタに追加の強度および耐久性を提供することができる単一の金属片で作製することができる。鞍関節62は、取り付け点68によってSCARA24に取り付けられ得る。鞍関節62の周りに配設された複数の取り付け点68があってもよい。取り付け点68は、鞍関節62上で陥没していても、鞍関節62と同じ高さであっても、かつ/または鞍関節62上に配設されていてもよい。いくつかの実施例では、ねじ、ナットおよびボルト、ならびに/またはそれらの任意の組み合わせは、取り付け点68を通過して、鞍関節62をSCARA24に固設することができる。ナットおよびボルトは、鞍関節62をSCARA24内の例示されていないモータに接続することができる。モータは、鞍関節62を任意の方向に移動させることができる。モータは、現在の場所で能動的にサーボ制御すること、またはばね作動式ブレーキをかけることによって、鞍関節62が偶発的な衝突および/または偶発的な接触により移動することをさらに阻止することができる。
エンドエフェクタカプラ22は、鞍関節62と、接続された受動的なエンドエフェクタとの間に介在するロードセル64を含み得る。ロードセル64は、図7に例示されるように、任意の好適な機構によって鞍関節62に取り付けられ得る。好適な機構は、ねじ、ナットおよびボルト、螺刻、圧入嵌合、および/またはそれらの任意の組み合わせであり得るが、これらに限定されない。
図8は、本開示のいくつかの実施形態による外科手術システム800の構成要素のブロック図を例示している。図7および8を参照すると、ロードセル64は、力を検出および測定するために使用される任意の好適な用具であり得る。いくつかの実施例では、ロードセル64は、6軸ロードセル、3軸ロードセル、または単軸ロードセルであり得る。ロードセル64を使用して、エンドエフェクタカプラ22に加えられた力を追跡することができる。いくつかの実施形態では、ロードセル64は、複数のモータ850、851、852、853、および/または854と通信することができる。ロードセル64が力を感知すると、加えられた力の量に関する情報が、スイッチアレイおよび/または複数のスイッチアレイからコントローラ846に分配され得る。コントローラ846は、ロードセル64から力情報を取得し、それをスイッチアルゴリズムで処理することができる。スイッチアルゴリズムは、コントローラ846によって使用されて、モータドライバ842を制御する。モータドライバ842は、モータのうちの1つ以上の動作を制御する。モータドライバ842は、特定のモータに、例えば、モータを介してロードセル64によって測定された等しい量の力を生成するように指示することができる。いくつかの実施形態では、生成される力は、コントローラ846の指示どおりに、複数のモータ、例えば、850~854から生じ得る。さらに、モータドライバ842は、コントローラ846から入力を受信することができる。コントローラ846は、ロードセル64によって感知された力の方向に関してロードセル64から情報を受信することができる。コントローラ846は、運動コントローラアルゴリズムを使用して、この情報を処理することができる。このアルゴリズムは、特定のモータドライバ842に情報を提供するのに使用され得る。力の方向を複製するために、コントローラ846は、特定のモータドライバ842を起動および/または起動解除することができる。コントローラ846は、1つ以上のモータ、例えば、850~854のうちの1つ以上を制御して、ロードセル64によって感知された力の方向に受動的なエンドエフェクタ1100の運動を誘発することができる。この力制御型の運動により、オペレータはSCARA24および受動的なエンドエフェクタ1100を楽に、かつ/またはほとんど抵抗なく移動させることができる。受動的なエンドエフェクタ1100の動きは、医療従事者が使用するために、受動的なエンドエフェクタ1100を任意の好適な姿勢(すなわち、規定された三次元(3D)直交基準軸に対する場所および角度の向き)に位置決めするように実施され得る。
コネクタ66は、受動的なエンドエフェクタ1100の基部に接続可能であるように構成されており、ロードセル64に接続される。コネクタ66は、取り付け点68、感知ボタン70、用具ガイド72、および/または用具接続部74を含み得る。図6および8に最もよく例示されているように、複数の取り付け点68があってもよい。取り付け点68は、コネクタ66をロードセル64に接続することができる。取り付け点68は、コネクタ66上に陥没していても、コネクタ66と同じ高さであっても、かつ/またはコネクタ66上に配設されてもよい。取り付け点68および76を使用して、コネクタ66をロードセル64および/または受動的なエンドエフェクタ1100に取り付けることができる。いくつかの実施例では、取り付け点68および76は、ねじ、ナットおよびボルト、圧入嵌合、磁気取り付け、および/またはそれらの任意の組み合わせを含み得る。
図6に例示されるように、感知ボタン70は、コネクタ66の中心の周りに配設され得る。受動的なエンドエフェクタ1100がSCARA24に接続されているとき、感知ボタン70を押し下げることができる。感知ボタン70を押し下げると、外科手術ロボット4、ひいては、医療従事者に、受動的なエンドエフェクタ1100がSCARA24に取り付けられていることを警告することができる。図6に例示されるように、ガイド72を使用し得、SCARA24への受動的なエンドエフェクタ1100の適切な取り付けを容易にする。ガイド72は、コネクタ66上に陥没していても、コネクタ66と同じ高さであっても、かつ/またはコネクタ66上に配設されてもよい。いくつかの実施例では、複数のガイド72があってもよく、任意の好適なパターンを有することができ、任意の好適な方向に向けられてもよい。ガイド72は、SCARA24への受動的なエンドエフェクタ1100の取り付けを容易にするように任意の好適な形状であってもよい。好適な形状は、円形、卵形、正方形、多面体、および/またはそれらの任意の組み合わせであり得るが、これらに限定されない。さらに、ガイド72は、斜角、一直線、および/またはそれらの任意の組み合わせで切断されてもよい。
コネクタ66は、取り付け点74を有し得る。図6に例示されるように、取り付け点74は、レッジおよび/または複数のレッジを形成し得る。取り付け点74は、受動的なエンドエフェクタ1100がクランプすることができる表面をコネクタ66に提供することができる。いくつかの実施形態では、取り付け点74は、コネクタ66の任意の表面の周りに配設され、コネクタ66に対して任意の好適な様式で向けられる。
図6および7に最もよく例示されている起動アセンブリ60は、コネクタ66を取り囲み得る。いくつかの実施形態では、起動アセンブリ60は、コネクタ66を包むブレスレットの形態をとることができる。いくつかの実施形態では、起動アセンブリ60は、外科手術システム2内の任意の好適なエリア内に位置し得る。いくつかの実施例では、起動アセンブリ60は、SCARA24の任意の部分、エンドエフェクタカプラ22の任意の部分に位置し得、医療従事者および/またはそれらの任意の組み合わせによって着用され(および無線で通信し)得る。起動アセンブリ60は、任意の好適な材料で作製され得る。好適な材料は、ネオプレン、プラスチック、ゴム、ゲル、炭素繊維、布帛、および/またはそれらの任意の組み合わせであり得るが、これらに限定されない。起動アセンブリ60は、一次ボタン78および二次ボタン80を備え得る。一次ボタン78および二次ボタン80は、コネクタ66の全体を取り囲んでもよい。
一次ボタン78は、図6に例示されるように、コネクタ66を取り囲んでもよい単一の隆起であってもよい。いくつかの実施例では、一次ボタン78は、鞍関節62から離れる方向に最も遠い端部に沿って起動アセンブリ60上に配設され得る。一次ボタン78は、図7に最もよく例示されている一次起動スイッチ82上に配設され得る。一次起動スイッチ82は、コネクタ66と起動アセンブリ60との間に配設され得る。いくつかの実施例では、一次ボタン78の全長に沿って一次ボタン78に隣接して真下に配設され得る、複数の一次起動スイッチ82があってもよい。一次起動スイッチ82上で一次ボタン78を押し下げることにより、オペレータはSCARA24およびエンドエフェクタカプラ22を移動させることができる。上で考察されるように、一旦設置されると、SCARA24およびエンドエフェクタカプラ22は、オペレータがSCARA24およびエンドエフェクタカプラ22を移動させるように外科手術ロボット4をプログラムするまで移動させることができないか、または一次ボタン78および一次起動スイッチ82を使用して移動される。いくつかの実施例では、SCARA24およびエンドエフェクタカプラ22がオペレータコマンドに応答する前に、少なくとも2つの隣接しない一次起動スイッチ82を押し下げることが必要な場合がある。少なくとも2つの一次起動スイッチ82を押し下げることにより、医療処置中のSCARA24およびエンドエフェクタカプラ22の偶発的な移動を阻止することができる。
一次ボタン78および一次起動スイッチ82によって起動されると、ロードセル64は、オペレータ、すなわち、医療従事者によってエンドエフェクタカプラ22に及ぼされる力の大きさおよび/または方向を測定することができる。この情報は、SCARA24およびエンドエフェクタカプラ22を移動させるために使用することができる、SCARA24内のモータに転送され得る。ロードセル64によって測定された力の大きさおよび方向に関する情報により、モータは、ロードセル64によって感知された方向と同じ方向にSCARA24およびエンドエフェクタカプラ22を移動させることができる。この力制御型の動きにより、モータがSCARA24およびエンドエフェクタカプラ22を移動させるのと同時に、オペレータがSCARA24およびエンドエフェクタカプラ22を移動させるため、オペレータは、楽に、かつ大きな労力なしに、SCARA24およびエンドエフェクタカプラ22を移動することが可能になり得る。
図6に例示されるように、二次ボタン80は、鞍関節62に最も近い起動アセンブリ60の端部上に配設され得る。いくつかの実施例では、二次ボタン80は、複数の隆起を含み得る。複数の隆起は、互いに隣接して配設され得、コネクタ66を取り囲み得る。さらに、二次ボタン80は、二次起動スイッチ84上に配設され得る。図7に例示されるように、二次起動スイッチ84は、二次ボタン80とコネクタ66との間に配設され得る。いくつかの実施例では、二次ボタン80は、「選択」デバイスとしてオペレータによって使用され得る。医療手術中、外科手術ロボット4は、ディスプレイ34および/または光インジケータ28によって特定の状況を医療従事者に通知することができる。医療従事者は、外科手術ロボット4によって、機能、モードを選択し、かつ/または外科手術システム2の状況を評価するように促されることがある。二次起動スイッチ84上で二次ボタン80を1回押し下げると、特定の機能、モードを起動し、かつ/またはディスプレイ34および/もしくは光インジケータ28を介して医療従事者に伝達される情報を確認することができる。さらに、二次起動スイッチ84上で二次ボタン80を素早く連続して複数回押し下げると、追加の機能、モードを起動し、かつ/またはディスプレイ34および/もしくは光インジケータ28を介して医療従事者に伝達される情報を選択することができる。いくつかの実施例では、二次ボタン80が適切に機能する前に、少なくとも2つの隣接しない二次起動スイッチ84を押し下げることができる。この要件は、二次ボタン80の意図しない使用により医療従事者が起動アセンブリ60に偶発的に衝突することを阻止することができる。一次ボタン78および二次ボタン80は、ソフトウェアアーキテクチャ86を使用して、医療従事者のコマンドを外科手術システム2に通信することができる。
図8は、本開示のいくつかの実施形態に従って構成されており、上記の外科手術システム2に対応し得る、外科手術システム800の構成要素のブロック図を例示している。外科手術システム800は、プラットフォームサブシステム802、コンピュータサブシステム820、運動制御サブシステム840、および追跡サブシステム830を含む。プラットフォームサブシステム802は、バッテリ806、配電モジュール804、コネクタパネル808、および充電ステーション810を含む。コンピュータサブシステム820は、コンピュータ822、ディスプレイ824、およびスピーカ826を含む。運動制御サブシステム840は、ドライバ回路842、モータ850、851、852、853、854、安定化装置855、856、857、858、エンドエフェクタコネクタ844、およびコントローラ846を含む。追跡サブシステム830は、位置センサ832、およびカメラコンバータ834を含む。外科手術システム800はまた、取り外し可能なフットペダル880、および取り外し可能なタブレットコンピュータ890を含み得る。
入力電力は、配電モジュール804に提供され得る電源を介して外科手術システム800に供給される。配電モジュール804は、入力電力を受信し、かつ外科手術システム800の他のモジュール、構成要素、およびサブシステムに提供される異なる電源電圧を生み出すように構成される。配電モジュール804は、コンピュータ822、ディスプレイ824、スピーカ826、ドライバ842などの他の構成要素から、例えば、電力モータ850~854およびエンドエフェクタカプラ844に提供され、かつカメラコンバータ834および外科手術システム800の他の構成要素に提供され得る、異なる電圧供給をコネクタパネル808に提供するように構成され得る。配電モジュール804はまた、バッテリ806に接続されてもよく、バッテリ806は、配電モジュール804が入力電力から電力を受信しない場合の一時的な電源として役立つ。他の場合には、配電モジュール804は、バッテリ806を充電するのに役立つ場合がある。
コネクタパネル808は、異なるデバイスおよび構成要素を外科手術システム800ならびに/または関連付けられた構成要素およびモジュールに接続するのに役立つ場合がある。コネクタパネル808は、異なる構成要素からの配線または接続部を受容する1つ以上のポートを含み得る。例えば、コネクタパネル808は、外科手術システム800を他の機器にアースし得る接地端子ポートと、フットペダル880を接続するポートと、位置センサ832、カメラコンバータ834、およびマーカ追跡カメラ870を含み得る追跡サブシステム830に接続するポートと、を有し得る。コネクタパネル808は、コンピュータ822などの他の構成要素へのUSB通信、イーサネット通信、HDMI通信を可能にする他のポートも含み得る。
制御パネル816は、外科手術システム800の動作を制御し、かつ/またはオペレータが観察するための外科手術システム800からの情報を提供する、様々なボタンまたはインジケータを提供し得る。例えば、制御パネル816は、外科手術システム800の電源を入れたり切ったりするため、垂直支柱16を持ち上げたり下降させたりするため、ならびにキャスタ12と係合して外科手術システム800を物理的に移動しないようにロックするように設計され得る安定化装置855~858を持ち上げたり下降させたりするための、ボタンを含み得る。他のボタンは、緊急事態の際に外科手術システム800を停止することができ、これにより、すべてのモータ電力を取り除いて、機械的ブレーキを適用して、すべての運動の発生を停止することができる。制御パネル816はまた、配線電力インジケータまたはバッテリ806の充電状態などの特定のシステムの状況をオペレータに通知するインジケータを有することができる。
コンピュータサブシステム820のコンピュータ822は、外科手術システム800の割り当てられた機能を動作させるためのオペレーティングシステムおよびソフトウェアを含む。コンピュータ822は、情報をオペレータに表示するために、他の構成要素(例えば、追跡サブシステム830、プラットフォームサブシステム802、および/または運動制御サブシステム840)から情報を受信して処理することができる。さらに、コンピュータサブシステム820は、スピーカ826を介してオペレータに出力を提供することができる。スピーカは、外科手術ロボットの一部であっても、頭部装着型ディスプレイ構成要素の一部であっても、外科手術システム2の別の構成要素内にあってもよい。ディスプレイ824は、図1および2に示されるディスプレイ34に対応し得るか、またはシースルーディスプレイ画面に画像を投影し、シースルーディスプレイ画面を介して視認可能な実世界の物体にオーバーレイされる拡張現実(AR)画像を形成する、頭部装着型ディスプレイであり得る。
追跡サブシステム830は、位置センサ832、およびカメラコンバータ834を含むことができる。追跡サブシステム830は、図3のカメラ追跡システム6に対応し得る。マーカ追跡カメラ870は、位置センサ832と共に動作して、DRA52の姿勢を決定する。この追跡は、LEDまたは反射マーカなどのDRA52の能動的または受動的な要素の場所をそれぞれ追跡する赤外線または可視光技術の使用を含む、本開示に矛盾しない様式で行うことができる。DRA52などのこれらのタイプのマーカを有する構造の場所、向き、および位置は、コンピュータ822に提供され、ディスプレイ824上でオペレータに示すことができる。例えば、図4および5に示されるように、DRA52を有するか、またはこの様式で追跡されるDRA52を有するエンドエフェクタカプラ22に接続されている、外科手術鋸1240は、患者の解剖学的構造の三次元画像に関連してオペレータに示され得る(ナビゲーション空間とも称され得る)。
運動制御サブシステム840は、垂直柱16、上部アーム18、下部アーム20を物理的に移動させるか、またはエンドエフェクタカプラ22を回転させるように構成されることができる。物理的な動きは、1つ以上のモータ850~854の使用を通して行われ得る。例えば、モータ850は、垂直柱16を垂直に上げるまたは下げるように構成され得る。モータ851は、図2に示されるように垂直カラム16との係合点の周囲に、上部アーム18を横に移動させるように構成されてもよい。モータ852は、図2に示されるように上部アーム18との係合点の周囲に、下部アーム20を横に移動させるように構成されてもよい。モータ853および854は、エンドエフェクタカプラ22を移動させて、三次元軸の周りに沿って並進の動きおよび回転を提供するように構成され得る。図9に示される外科手術計画コンピュータ910は、エンドエフェクタカプラ22の動きを誘導するコントローラ846に制御入力を提供して、接続されている受動的なエンドエフェクタを、外科手術処理中に切断される解剖学的構造に対して、計画された姿勢(すなわち、規定された3D直交基準軸に対する場所および角度の向き)で位置決めすることができる。運動制御サブシステム840は、統合された位置センサ(例えば、符号化器)を使用して、受動的なエンドエフェクタ構造の位置を測定するように構成され得る。実施形態のうちの1つでは、位置センサは、受動的なエンドエフェクタ構造の少なくとも1つの関節に直接接続されているが、構造内の別の場所に位置決めし、タイミングベルト、ワイヤの相互接続、または任意の他の同期送信相互接続によって関節位置を遠隔で測定することもできる。
図9は、本開示のいくつかの実施形態による、外科手術ロボット800とは別個のものであり、外科手術ロボット800に動作可能に接続することができるか、または外科手術ロボット800内に少なくとも部分的に組み込むことができる外科手術計画コンピュータ910を含む、外科手術システムコンピュータプラットフォーム900のブロック図を例示している。代替的に、外科手術計画コンピュータ910について本明細書に開示される動作のうちの少なくとも一部分は、コンピュータサブシステム820などによる外科手術ロボット800の構成要素によって実施され得る。
図9を参照すると、外科手術計画コンピュータ910は、ディスプレイ912と、少なくとも1つのプロセッサ回路914(簡潔にするためにプロセッサとも称される)と、コンピュータ可読プログラムコード918を含む少なくとも1つのメモリ回路916(簡潔にするためにメモリとも称される)と、少なくとも1つのネットワークインターフェース920(簡潔にするためにネットワークインターフェースとも称される)と、を含む。ネットワークインターフェース920は、図10のCアーム撮像デバイス104、図11のOアーム撮像デバイス106、別の医療撮像デバイス、医療画像の画像データベース950、外科手術ロボット800の構成要素、および/または他の電子機器に接続するように構成され得る。
外科手術計画コンピュータ910が外科手術ロボット800内に少なくとも部分的に統合されているとき、ディスプレイ912は、図2のディスプレイ34および/または図8のタブレット890および/または頭部装着型ディスプレイに対応し得、ネットワークインターフェース920は、図8のプラットフォームネットワークインターフェース812に対応し得、プロセッサ914は、図8のコンピュータ822に対応し得る。
プロセッサ914は、汎用および/または専用プロセッサ、例えば、マイクロプロセッサおよび/またはデジタル信号プロセッサなどの1つ以上のデータ処理回路を含むことができる。プロセッサ914は、メモリ916内のコンピュータ可読プログラムコード918を実行して、外科手術計画コンピュータによって実施されるものとして本明細書に記載される動作の一部またはすべてを含み得る動作を実施するように構成される。
プロセッサ914は、撮像デバイス104および106のうちの一方から、および/またはネットワークインターフェース920を介して画像データベース950から受信された骨の画像をディスプレイデバイス912に表示するように動作し得る。プロセッサ914は、計画された外科手術切断のためにディスプレイ912上の場所を選択するオペレータタッチによって、または計画された外科手術切断の場所を規定するためにマウスベースのカーソルを使用することなどによって、1つ以上の画像で示される解剖学的構造、すなわち、1つ以上の骨が切断される場所のオペレータの規定を受信する。
外科手術計画コンピュータ910は、股関節の中心、角度の中心、天然の目印(例えば、トランス上顆線、ホワイトサイド線、後顆線など)などを決定する様々な角度の測定など、膝の外科手術に有用な解剖学的測定を可能にする。一部の測定は自動であってもよいが、一部の他の測定は、人間の入力または支援を伴う。この外科手術計画コンピュータ910により、オペレータは、サイズおよび一致度の選択を含む、患者のための正しいインプラントを選択することが可能になる。外科手術計画コンピュータ910は、CT画像または他の医療画像のための自動または半自動(人間の入力を伴う)セグメント化(画像処理)を可能にする。患者の外科手術計画は、外科手術ロボット800による検索のためにクラウドベースのサーバに記憶され得る。外科手術中、外科医は、コンピュータ画面(例えば、タッチスクリーン)または例えば、頭部装着型ディスプレイを介した拡張現実の相互作用を使用して、どの切断(例えば、後部大腿骨、近位脛骨など)を行うかを選択する。外科手術ロボット4は、計画された切断の目標面が外科手術鋸ブレードとロボットアーム20とを相互接続する受動的なエンドエフェクタの作業空間内に最適に配置されるように、外科手術鋸ブレードを計画された位置まで自動的に移動させることができる。動きを可能にするコマンドは、様々なモダリティ、例えば、フットペダルを使用してユーザによって与えられてもよい。
いくつかの実施形態では、外科手術システムコンピュータプラットフォーム900は、2つのDRAを使用して、1つは患者の脛骨、もう1つは患者の大腿骨に関して、患者の解剖学的位置を追跡することができる。プラットフォーム900は、位置合わせおよび確認のための標準のナビゲート器具(例えば、脊椎外科手術のためにGlobus ExcelsiusGPSシステムで使用されるものと同様のポインタ)を使用することができる。追跡された解剖学的形態に関連してDRAの動きを検出することができる追跡マーカを使用することもできる。
膝の外科手術における重要な困難は、膝のインプラントの位置をどのように計画するかであり、それを、多くの外科医は、3Dの解剖学的形態の2D表現であるコンピュータ画面で行うため苦労している。プラットフォーム900は、拡張現実(AR)頭部装着型ディスプレイを使用して、実際の患者の膝の周りにインプラントオーバーレイを生み出すことによって、この問題に対処することができる。例えば、外科医は、操作上、仮想ハンドルを表示させて、インプラントを把持して所望の姿勢まで移動させ、計画されたインプラント配置を調節することができる。その後、外科手術中に、プラットフォーム900は、AR頭部装着型ディスプレイを介してナビゲーションをレンダリングして、直接見えないものを外科医に示すことができる。また、骨を取り除く進捗、例えば、深さまたは切断をリアルタイムで表示することができる。ARを介して表示され得る他の特徴としては、関節運動の範囲に沿った間隙または靭帯のバランス、関節運動の範囲に沿ったインプラントの接触線、色または他のグラフィックオーバーレイによる靭帯の緊張および/または弛緩などを挙げることができるが、これらに限定されない。
いくつかの実施形態では、外科手術計画コンピュータ910により、標準インプラント、例えば、後方安定化インプラントおよび十字型保持インプラント、セメント固定およびセメントレスインプラント、例えば、膝関節全置換もしくは部分置換術、および/または股関節置換術、および/または外傷に関する外科手術のための是正システムの使用を計画することが可能になる。
プロセッサ912は、解剖学的構造を切断するためにオペレータによって選択された場所で、表示された解剖学的構造と交差する1つ以上の切断面をディスプレイ912上にグラフィカルに例示することができる。プロセッサ912はまた、外科手術鋸ブレードの切断面と目標面とを一致させて、オペレータが規定した切断を実施するように、エンドエフェクタカプラ22を位置決めしなければならない角度の向きおよび場所の1つ以上のセットを決定し、それらの角度の向きおよび場所のセットを外科手術計画データ構造内のデータとして記憶する。プロセッサ912は、受動的なエンドエフェクタの用具取り付け機構の動きの既知の範囲を使用して、ロボットアーム20に取り付けられたエンドエフェクタカプラ22を位置決めする必要がある場所を決定する。
外科手術ロボット800のコンピュータサブシステム820は、外科手術計画データ構造からのデータ、ならびに切断される解剖学的構造の現在の姿勢を示し、受動的なエンドエフェクタおよび/またはDRAを介して追跡された外科手術鋸の現在の姿勢を示すカメラ追跡システム6からの情報を受信する。コンピュータサブシステム820は、解剖学的構造が切断されるべき場所を規定する外科手術計画、および解剖学的構造の姿勢に基づいて、目標面の姿勢を決定する。コンピュータサブシステム820は、目標面の姿勢と外科手術鋸の姿勢との比較に基づいて操縦情報を生み出す。操縦情報は、鋸ブレードの切断面と目標面とが一致し、鋸ブレードが、受動的なエンドエフェクタの用具取り付け機構の動きの範囲内にある、切断される解剖学的構造からの距離に位置決めされるように、受動的なエンドエフェクタを移動させる必要がある場所を示す。
上で説明されるように、外科手術ロボットは、ロボット基部と、ロボット基部に接続されたロボットアームと、ロボット基部に対してロボットアームを移動させるように動作可能に接続された少なくとも1つのモータと、を含む。外科手術ロボットはまた、少なくとも1つのモータに接続され、動作を実施するように構成されている、少なくとも1つのコントローラ、例えば、コンピュータサブシステム820および運動制御サブシステム840を含む。
図12~19に関して以下でさらに詳細に説明されるように、受動的なエンドエフェクタは、ロボットアームの起動アセンブリに取り付けられるように構成された基部と、第1の機構と、第2の機構と、を含む。第1の機構は、基部への回転可能な接続部と用具取り付け機構への回転可能な接続部との間に延在する。第2の機構は、基部への回転可能な接続部と用具取り付け機構への回転可能な接続部との間に延在する。第1および第2の機構は、回転可能な接続部を中心として旋回し、用具取り付け機構の動きを作業面内の動きの範囲に制約するように構成され得る。回転可能な接続部は、1つの自由度(DOF)の運動を可能にする旋回関節であっても、2つのDOFの運動を可能にするユニバーサル関節であっても、3つのDOFの運動を可能にするボール関節であってもよい。用具取り付け機構は、切断用の鋸ブレードを含む外科手術鋸に接続するように構成される。第1および第2の機構は、作業面と平行になるように鋸ブレードの切断面を制約するように構成され得る。
いくつかの実施形態では、外科手術ロボットの少なくとも1つのコントローラによって実施される動作には、鋸ブレードの切断面と目標面とが一致し、鋸ブレードが、受動的なエンドエフェクタの用具取り付け機構の動きの範囲内にある、切断される解剖学的構造からの距離に位置決めされるように、操縦情報に基づいて少なくとも1つのモータの動きを制御して、受動的なエンドエフェクタを再位置決めすることも含まれる。操縦情報は、外科手術鋸のオペレータの動きを誘導するように表示されてもよいし、かつ/または外科手術鋸を自動的に移動させるように少なくとも1つのコントローラによって使用されてもよい。
一実施形態では、外科手術ロボットの少なくとも1つのコントローラによって実施される動作には、鋸ブレードの切断面と目標面とが一致し、鋸ブレードが、受動的なエンドエフェクタの用具取り付け機構の動きの範囲内にある、切断される解剖学的構造からの距離に位置決めされるように、操縦情報を表示用にディスプレイデバイスに提供して、受動的なエンドエフェクタのオペレータの動きを誘導することも含まれる。ディスプレイデバイスは、ディスプレイ824(図8)、図1のディスプレイ34、および/または頭部装着型ディスプレイに対応し得る。
例えば、操縦情報は、シースルーディスプレイ画面に画像を投影し、シースルーディスプレイ画面を介して視認可能な実世界の物体にオーバーレイされる拡張現実画像を形成する、頭部装着型ディスプレイ上に表示され得る。本動作は、骨にオーバーレイされた姿勢と、それらの間の相対的な向きとを有する目標面のグラフィック表現を表示することができ、骨をどのように切断するかを計画するための外科手術計画に対応する。本動作は、代替的にまたは追加的に、鋸ブレードの切断面のグラフィック表現を表示することができ、それにより、オペレータは、切断面と、骨を切断するための計画された目標面とをより容易に一致させることができる。それによって、オペレータは、鋸ブレードの切断面と目標面とを一致させる動きを視覚的に監視および実施することができ、それにより、鋸ブレードは、骨に対して計画された姿勢で、かつ受動的なエンドエフェクタの用具取り付け機構の動きの範囲内に位置決めされる。
自動撮像システムを外科手術計画コンピュータ910および/または外科手術システム2と併せて使用して、患者の術前、術中、術後、および/またはリアルタイムの画像データを取得することができる。例示的な自動撮像システムが、図10および11に例示されている。実施形態によっては、自動撮像システムは、Cアーム104(図10)撮像デバイスまたはOアーム(登録商標)106(図11)である.(Oアーム(登録商標)は、米国コロラド州ルイビルに事業所があるMedtronic Navigation,Inc.が著作権を所有している)X線システムで必要とされ得る、患者の頻繁な手動による再位置決めを必要とすることなく、いくつかの異なる位置から患者のX線を撮影することが望ましい場合がある。Cアーム104のX線診断機器は、頻繁な手動による再位置決めの問題を解決することができ、外科手術および他の介在する処置の医療分野でよく知られている場合がある。図10に示されるように、Cアームは、「C」形状の対向する遠位端112で終端する細長いC形状の部材を含む。C形状の部材は、X線源114および画像受信器116に取り付けられている。アームのCアーム104内の空間は、X線支持構造からの干渉が実質的にない状態で医師が患者に付き添う余地を提供する。
Cアームは、2つの自由度でのアームの回転運動を可能にするように(すなわち、球面運動での2つの直角軸を中心として)据え付けられている。Cアームは、X線支持構造に摺動可能に装着され、これにより、Cアームの曲率中心を中心とした周回回転方向の動きが可能になり、X線源114および画像受信器116を垂直および/または水平方向に選択的に向けることを可能にすることができる。Cアームはまた、横方向(すなわち、患者の幅および長さの双方に対するX線源114および画像受信器116の選択的に調節可能な位置決めを可能にする周回方向に対して直交方向)に回転可能であってもよい。Cアーム装置の球面回転の態様により、医師は、撮像されている特定の解剖学的条件に関して確定された通りに最適な角度で患者のX線写真を撮ることができる。
図11に例示されているOアーム(登録商標)106は、例示されていない画像キャプチャ部分を取り囲むことができるガントリハウジング124を含む。画像キャプチャ部分は、X線源および/または放射部分と、X線受信および/または画像受信部分と、を含み、これらを互いに約180度に配設し、画像キャプチャ部分の追跡に対してロータ(例示せず)上に装着することができる。画像キャプチャ部分は、画像取得中に360度回転するように動作可能であってもよい。画像取り込み部分は、中心点および/または軸を中心として回転することができ、患者の画像データが複数の方向から、または複数の平面で取得されることを可能にする。
ガントリハウジング124を備えたOアーム(登録商標)106は、撮像される物体の周りに位置決めするための中央開口部と、ガントリハウジング124の内部の周りで回転可能な放射線源と、を有し、放射線源は、複数の異なる投影角度から放射線を投影するように適合され得る。検出器システムは、投射角ごとに放射線を検出して、物体画像を複数の投射平面から擬似同時的に取得するように適合されている。ガントリは、カンチレバー様式で、車輪を備えた車輪付き移動式カートなどの支持構造Oアーム(登録商標)支持構造体に取り付けられ得る。位置決めユニットは、好ましくはコンピュータ化された運動制御システムの制御下で、ガントリを予定の位置および向きに並進させかつ/または傾斜させる。ガントリは、ガントリ上で互いに対向して配設された供給源と検出器とを含み得る。供給源および検出器は、供給源および検出器を互いに協調する状態でガントリの内部を中心として回転させることができるモータ付きロータに固定され得る。供給源は、ガントリの内側に位置する目標物体の多平面撮像のために、部分的および/または完全360度の回転にわたって複数の位置および向きでパルス化され得る。ガントリは、ロータが回転するときにロータを誘導するためのレールおよび軸受けシステムをさらに備えることができ、このシステムは、供給源および検出器を担持することができる。Oアーム(登録商標)106およびCアーム104の両方および/またはいずれかを自動撮像システムとして使用して、患者をスキャンし、情報を外科手術システム2に送ることができる。
自動撮像システムによってキャプチャされた画像は、外科手術計画コンピュータ910、外科手術ロボット800、および/または外科手術システム2の別の構成要素のディスプレイデバイスに表示され得る。
ここで、外科手術システムで使用するように構成される受動的なエンドエフェクタの様々な実施形態を、図12~19の文脈において記載する。
以下でさらに詳細に説明されるように、図12~19に例示される様々な受動的なエンドエフェクタは各々、基部、第1のプレーナ機構、および第2のプレーナ機構を含む。基部は、外科手術ロボットによって位置決めされるロボットアーム(例えば、図1および2のロボットアーム18)のエンドエフェクタカプラ(例えば、図4および5のエンドエフェクタカプラ22)に取り付けられるように構成される。様々なクランプ機構を使用して、基部をエンドエフェクタカプラにしっかりと取り付け、バックラッシュを取り除き、好適な剛性を確保することができる。基部をエンドエフェクタカプラに取り付けるために使用され得る不可逆的なクランプ機構としては、トグル関節機構または不可逆的なロックねじを挙げることができるが、これらに限定されない。ユーザは、ねじドライバ、トルクレンチ、またはドライバなどの追加の用具を使用して、クランプ機構を起動または締着することができる。第1の機構は、2つの基部への回転可能な接続部と用具取り付け機構への回転可能な接続部との間に延在する。第2の機構は、基部への回転可能な接続部と用具取り付け機構への回転可能な接続部との間に延在する。第1および第2の機構は、回転可能な接続部を中心として旋回する。回転可能な接続部は、1つの自由度(DOF)の運動を可能にする旋回関節であっても、2つのDOFの運動を可能にするユニバーサル関節であっても、3つのDOFの運動を可能にするボール関節であってもよい。旋回関節を使用する場合、第1および第2の機構は、用具取り付け機構の動きを作業面内の動きの範囲に制約するように構成され得る。用具取り付け機構は、切断するために振動するように構成される鋸ブレードを有する外科手術鋸に接続するように構成される。第1および第2の機構は、例えば、1つのDOFの運動を有する旋回関節を介して、作業面と平行になるように鋸ブレードの切断面を制約するように構成され得る。用具取り付け機構は、ねじ、ナットおよびボルト、クランプ、ラッチ、接合、圧入嵌合、または磁石を含み得るが、これらに限定されない、様々な機構を介して、外科手術鋸または鋸ブレードに接続され得る。DRAを用具取り付け機構または外科手術鋸に接続して、カメラ追跡システム6(図3)による鋸ブレードの姿勢の追跡を可能にすることができる。
上で説明されるように、外科手術システム(例えば、図1および2の外科手術システム2)は、外科手術ロボット(例えば、図1および2の外科手術ロボット4)と、鋸ブレードによって切断される解剖学的構造の姿勢を決定し、鋸ブレードの姿勢を決定するように構成される追跡システム(例えば、図1および3のカメラ追跡システム6)と、を含む。外科手術ロボットは、ロボット基部と、ロボット基部に回転可能に接続され、受動的なエンドエフェクタを位置決めするように構成されたロボットアームと、を含む。少なくとも1つのモータは、ロボット基部に対してロボットアームを移動させるように動作可能に接続されている。少なくとも1つのコントローラは、少なくとも1つのモータに接続され、かつ解剖学的構造が切断される場所を規定する外科手術計画と、解剖学的構造の姿勢とに基づいて、目標面の姿勢を決定することを含む、動作を実施するように構成されており、外科手術計画は、オペレータ、例えば、外科医または他の外科手術従事者からの入力に基づいて、図9の外科手術計画コンピュータ910によって作成され得る。本動作は、目標面の姿勢と外科手術鋸の姿勢との比較に基づいて操縦情報を生み出すことをさらに含む。操縦情報は、鋸ブレードの切断面と目標面とが一致するように、受動的なエンドエフェクタの作業面を位置決めするために、受動的なエンドエフェクタを移動させる必要がある場所を示す。
いくつかのさらなる実施形態では、少なくとも1つのコントローラによって実施される動作には、鋸ブレードの切断面と目標面とが一致し、鋸ブレードが、受動的なエンドエフェクタの用具取り付け機構の動きの範囲内にある、切断される解剖学的構造からの距離に位置決めされるように、操縦情報に基づいて少なくとも1つのモータの動きを制御して、受動的なエンドエフェクタを再位置決めすることもさらに含まれる。
本動作には、鋸ブレードの切断面と目標面とが一致し、鋸ブレードが、受動的なエンドエフェクタの用具取り付け機構の動きの範囲内にある、切断される解剖学的構造からの距離に位置決めされるように、操縦情報を表示用にディスプレイデバイスに提供して、受動的なエンドエフェクタのオペレータの動きを誘導することが含まれ得る。
上で説明されるように、いくつかの外科手術システムは、外科医、診療看護師、および/または外科手術処置を支援する他の人物が着用することができる頭部装着型ディスプレイデバイスを含み得る。外科手術システムは、着用者が受動的なエンドエフェクタをより正確に位置決めすること、および/または鋸ブレードと、解剖学的構造上の計画された場所を切断するための目標面とが一致した状態で、受動的なエンドエフェクタが正確に位置決めされたことを確認することを可能にする情報を表示することができる。ディスプレイデバイスに操縦情報を提供する動作には、鋸ブレードの切断面と目標面とが一致し、鋸ブレードが、受動的なエンドエフェクタの用具取り付け機構の動きの範囲内にある、解剖学的構造からの距離に位置決めされるように、切断される解剖学的構造上のオーバーレイとして操縦情報を表示するシースルーディスプレイ画面を有する頭部装着型ディスプレイデバイスへの表示用に操縦情報を構成して、受動的なエンドエフェクタのオペレータの動きを誘導することが含まれ得る。
頭部装着型ディスプレイデバイスへの表示用に操縦情報を構成する動作には、切断される解剖学的構造に係留され、それと一致したオーバーレイとして表示される目標面のグラフィック表現を生み出すことと、鋸ブレードに係留され、それと一致したオーバーレイとして表示される鋸ブレードの切断面の別のグラフィック表現を生み出すことと、が含まれ得る。それによって、着用者は、外科手術鋸を移動させて、グラフィカルにレンダリングされた目標面とグラフィカルにレンダリングされた切断面との間に視覚的に観察された一致を提供することができる。
頭部装着型ディスプレイデバイス上への表示用に操縦情報を構成する動作には、切断されている解剖学的構造のグラフィック表現内に、鋸ブレードによって行われた切断の深さのグラフィック表現を生み出すことが含まれ得る。したがって、着用者は、切断が組織または他の構造によって妨げられていることを直接観察しているにもかかわらず、鋸ブレードがどのように骨を貫いて切断しているかをよりよく監視するために、切断の深さのグラフィック表現を使用することができる。
追跡システムは、追跡マーカ、例えば、解剖学的構造に取り付けられたDRAの姿勢を決定することに基づいて、鋸ブレードによって切断される解剖学的構造の姿勢を決定するように構成され得、外科手術鋸および受動的なエンドエフェクタのうちの少なくとも1つに接続された追跡マーカの姿勢を決定することに基づいて、外科手術鋸の姿勢を決定するように構成され得る。追跡システムは、用具取り付け機構が作業面内で動いている間、第1および第2の機構の回転位置を測定するように構成される回転式位置センサに基づいて、外科手術鋸の姿勢を決定するように構成され得る。上で説明されるように、位置センサは、受動的なエンドエフェクタ構造の少なくとも1つの関節に直接接続され得るが、構造内の別の場所に位置決めし、タイミングベルト、ワイヤの相互接続、または任意の他の同期送信相互接続によって関節位置を遠隔で測定することもできる。さらに、鋸ブレードの姿勢は、構造基部に取り付けられた追跡マーカ、受動的な構造の位置センサ、および構造の運動学的なモデルに基づいて決定され得る。
本明細書に開示される様々な受動的なエンドエフェクタは、滅菌可能なまたは非滅菌(滅菌ドレープで被覆された)の受動的な3つのDOF(自由度)の機械構造であってもよく、鋸ブレードに平行な平面における2回の並進(切断面を規定する)、およびこの切断面と直交する1回の回転(器具の向き)に沿った、矢状鋸などの外科手術鋸または鋸ブレードの機械的誘導を可能にする。外科手術中、外科手術ロボット4は、切断されるすべての骨が受動的なエンドエフェクタの作業空間内にあるように、エンドエフェクタカプラ22、ならびに受動的なエンドエフェクタおよびそこに取り付けられた外科手術鋸を、膝または他の解剖学的構造に近い位置まで自動的に移動させる。この位置は、行われる切断、ならびに外科手術計画およびインプラント構築物に依存する。図12に示されるように、受動的なエンドエフェクタは、切断面で矢状鋸または鋸ブレードを誘導するための3つのDOFを有することができ、2回の並進(XおよびY方向)と1回の(Z軸を中心とした)回転を提供する。
外科手術ロボット4は、計画された位置に到達すると、その位置を(ブレーキまたは能動的なモータ制御のいずれかで)保持し、特定の骨の切断中に移動しない。計画された目標面に沿って外科手術鋸の鋸ブレードを動かすことを可能にするのが受動的なエンドエフェクタである。かかる平面状の切断は、すべての骨の切断が平面状である古典的な膝関節置換術に特に有用である。膝関節置換術では、「オンレイ」と呼ばれる特別なタイプのインプラントがあり、これを鋸で準備した骨表面(saw-prepared bone surfaces)と併せて使用することができる。様々な受動的なエンドエフェクタは、古典的なジグよりも高い精度で切断時の誘導の精度を確保することができる機械構造を有し、計画されたすべての骨を切断するための作業空間範囲の十分な範囲を提供し、かつ一方で、外科医が加える力および骨の反動力に加えて、外科手術鋸から生じると考えられるかなりの量の振動にもかかわらず、(ロックされたDOFに対応する)十分な横剛性を提供する。
同時に、外科手術ロボット4が外科医にどれだけの骨が取り除かれたか(処置の進捗)を知らせることが可能であるため、受動的なエンドエフェクタの位置を測定することが好ましい。骨の取り除きに関するリアルタイムの情報を提供する1つの方法は、骨が切断された場所のみをブレードは通過することができるため、鋸ブレードが骨に関してどこを通過したかを、外科手術ロボット4が測定することである。鋸ブレードの位置を測定するために、DRAを外科手術鋸および/または受動的なエンドエフェクタに装着することができる。これにより、3D空間での鋸の位置を直接または間接的に測定することができる。鋸ブレードの位置を測定する代替的な方法は、受動的なエンドエフェクタの幾何学形状の位置と鋸ブレードの先端の位置との間の規定された関係の数理モデルを使用して鋸ブレードの位置を計算するために、受動的なエンドエフェクタの位置情報に位置(回転または並進)センサ(例えば、エンコーダ、リゾルバ)を統合することである。
一実施形態では、従来の矢状鋸機構を、ほとんどまたはまったく変更することなく、外科手術システムコンピュータプラットフォーム900と共に使用することができる。潜在的な変更は、外科手術鋸を受動的なエンドエフェクタに簡単に取り付けることを可能にするように外部シールドを適合することを伴うことになるが、必ずしも内部機構の変更を伴うとは限らない。受動的なエンドエフェクタは、例えば、DeSoutter社によって提供される従来の矢状鋸に接続するように構成され得る。さらに、鋸ブレードは、鋸ハンドピースなしで受動的なエンドエフェクタに直接取り付けられてもよい。
外科手術ロボット4が受動的なエンドエフェクタを位置決めするときに、鋸が意図しない受動的なエンドエフェクタの動きを阻止するため、例えば、重力によって外科手術鋸が患者の上に落ちるのを阻止するために、受動的なエンドエフェクタは、係合動作と係脱動作との間で移動するロック機構を含み得る。係合している間、ロック機構は、外科手術鋸の自由度(DOF)をロックすることによって直接的に、または受動的なエンドエフェクタの特定の関節にブレーキをかけるか、もしくは当該関節をロックすることによって間接的に、ロボットエンドエフェクタカプラに対する鋸ブレードの動きを阻止する。係脱されている間、受動的なエンドエフェクタの第1および第2の機構は、ロック機構からの干渉なしに、基部に対して移動することができる。ロック機構はまた、外科医が外科手術鋸を保持し、外科手術鋸に力およびトルクを加えることによって外科手術ロボット4の動きを制御するときに使用されてもよい。外科手術ロボット4は、ロボットアーム22の遠位端に統合されている、図6および7のロードセル64を使用して、加えられた力およびトルクを測定し、応答する力およびトルクをロボットアーム22上に生み出すため、外科医は、より簡単に受動的なエンドエフェクタを前後左右に移動させ、様々な軸を中心として回転を加えることができる。
受動的なエンドエフェクタの第1の実施形態が図12に示されている。図12を参照すると、受動的なエンドエフェクタ1200は、外科手術ロボットによって位置決めされるロボットアーム(例えば、図1および2のロボットアーム18)のエンドエフェクタカプラ(例えば、図4および5のエンドエフェクタカプラ22)に取り付けられるように構成された、基部1202を含む。受動的なエンドエフェクタ1200は、基部1202への回転可能な接続部と用具取り付け機構への回転可能な接続部との間に延在する、第1および第2の機構をさらに含む。回転可能な接続部は、1つの自由度(DOF)の運動を可能にする旋回関節であっても、2つのDOFの運動を可能にするユニバーサル関節であっても、3つのDOFの運動を可能にするボール関節であってもよい。第1および第2の機構は、外科手術鋸の回転軸を切断面に位置決めする平行アーキテクチャを形成する。
第1および第2の連結セグメント1210aおよび1220aは第1のプレーナ機構を形成し、第3および第4の連結セグメント1210bおよび1220bは第2のプレーナ機構を形成する。第1の連結セグメント1210aは、基部1202上の第1の場所への回転可能な接続部と第2の連結セグメント1220aの端部への回転可能な接続部との間に延在する。第3の連結セグメント1210bは、基部1202上の第2の場所への回転可能な接続部と第4の連結セグメント1220bの端部への回転可能な接続部との間に延在する。基部1202上の第1および第2の場所は、ロボットアームによって回転されたときに、基部カラーの回転軸の両側に離間されている。用具取り付け機構は、基部1202に対して第2の連結セグメント1220aおよび第4の連結セグメント1220bの遠位端への回転可能な接続部の間に延在する第5の連結セグメントによって形成される。第1および第2の機構(第1および第2の連結セグメント1210a~1220a、ならびに第3および第4の連結セグメント1210b~1220b)は、それらの回転可能な接続部を中心として旋回して、用具取り付け機構1230の動きを作業面内の動きの範囲に制約する。用具取り付け機構1230は、切断するために振動するように構成される鋸ブレード1242を有する外科手術鋸1240に接続するように構成される。第1および第2の機構(第1および第2の連結セグメント1210a~1220a、ならびに第3および第4の連結セグメント1210b~1220b)は、例えば、1つのDOFの運動を有する旋回関節を介して、作業面と平行になるように鋸ブレード1242の切断面を制約するように構成され得る。用具取り付け機構1230は、ねじ、ナットおよびボルト、クランプ、ラッチ、接合、圧入嵌合、または磁石を含み得るが、これらに限定されない、様々な機構を介して、外科手術鋸1240に接続され得る。DRA52を用具取り付け機構1230または外科手術鋸1240に接続して、カメラ追跡システム6(図3)による鋸ブレード1242の姿勢の追跡を可能にすることができる。
受動的なエンドエフェクタ1200は、外科手術鋸1240の受動的な誘導を提供して、鋸ブレード1242を規定された切断面に拘束し、その可動性を3つの自由度(DOF)、鋸ブレード1242の切断面に平行な平面での2回の並進TxおよびTyと、切断面と直交する軸を中心とした1回の回転Rzと、に低減する。
いくつかの実施形態では、追跡システムは、受動的なエンドエフェクタ1200の連結セグメントのうちの少なくともいくつかの回転関節に接続された回転式位置センサに基づいて、鋸ブレード1242の姿勢を決定するように構成される。回転式位置センサは、作業面内で用具取り付け機構が動いている間、接合された連結セグメントの回転位置を測定するように構成される。例えば、回転式位置センサは、基部1202に対する第1の連結セグメント1210aの回転を測定するように構成することができ、別の回転式位置センサは、第1の連結セグメント1210aに対する第2の連結セグメント1220aの回転を測定するように構成することができ、別の回転式位置センサは、第2の連結セグメント1220aに対する用具取り付け機構1230の回転を測定するように構成することができる。外科手術鋸1240は、用具取り付け機構1230に対して固定された向きを有するように接続され得る。直列化された連結セグメントおよび旋回関節を有する、鋸ブレード1242およびロボットアーム22を接続する受動的なエンドエフェクタ1200の直列の運動学的な連鎖は、必要な可動性を外科手術鋸1240に提供する。受動的な運動学的な連鎖によって画定された、平面における鋸ブレード1242の先端の位置は、回転式位置センサを介して感知される関節角度、および相互接続された連結セグメントの構造上の幾何学形状によって完全に決定され得る。したがって、例えば、基部1202と外科手術鋸1240との間の1つ以上の相互接続経路に沿った、接続された各連結セグメント間の相対的な角度を測定することによって、切断空間における鋸ブレード1242の先端の位置を、提案された順運動学的なモデルを使用してコンピュータ化することができる。骨に対するロボットアーム22の遠位端の位置および向きの位置および向きが既知である場合、骨に対する鋸ブレード1242の位置および向きをコンピュータ化し、外科医へのフィードバックとして表示することができる。鋸ブレードが受動的なエンドエフェクタに直接取り付けられている例示的な実装例では、回転式位置センサによって提供される測定の周波数は、振幅中でも鋸ブレードの位置を測定するために、鋸ブレードの振幅周波数より少なくとも2倍高くなり得る。
本明細書における受動的なエンドエフェクタと共に使用され得る回転式位置センサの例示的なタイプとしては、電位差計センサ、光学センサ、容量式センサ、回転式可変差動変圧器(RVDT)センサ、線形可変差動変圧器(LVDT)センサ、ホール効果センサ、およびインコーダ(incoder)センサを挙げることができるが、これらに限定されない。
電位差計ベースのセンサは、受動的な電子構成要素である。電位差計は、均一な抵抗を横切って、摺動接点の位置を変化させることによって機能する。電位差計では、入力電圧全体は抵抗器の全長を横切って加えられ、出力電圧は固定接点と摺動接点との間の電圧降下である。受信するため、および絶対位置、キャリブレーション位置が必要である。電位差計は、360°より小さい測定範囲を有する場合がある。
光学エンコーダは、回転ディスク、光源、および光検出器(光センサ)を含み得る。回転シャフト上に装着されたディスクには、不透明および透明なセクタのパターンがディスクにコード化されている。ディスクが回転すると、これらのパターンが、光検出器に照射される光を遮り、デジタルまたはパルス信号出力を生み出す。ディスク上での信号のエンコードにより、絶対測定および相対測定、ならびにマルチターン測定が可能である。
容量式エンコーダは、高周波数基準信号を使用して容量の変化を検出する。これは、固定送信機、ロータ、および固定受信機の3つの主要部分で達成される。容量式エンコーダはまた、ロータおよび送信機/受信機の組み合わせとの2つの部分の構成で提供され得る。ロータは、正弦波パターンでエッチングされてもよく、ロータが回転するにつれて、このパターンが予測可能な方法で送信機の高周波数信号を変調する。エンコーダはマルチターンエンコーダであってもよいが、絶対測定は実現が困難である。スタートアップ時のキャリブレーションが必要である。
RVDTセンサおよびLVDTセンサは、変圧器のコアがヌルの位置にある場合に動作し、一次および二次の2つの巻線の出力電圧の大きさは等しいが、方向は反対である。ヌルの位置の全体的な出力は常にゼロである。ヌルの位置からの角度変位は、合計差動出力電圧を誘発している。したがって、合計角度変位は、線形差動出力電圧に正比例する。差動出力電圧は、時計回りに増加し、反時計回りに減少する。このエンコーダは絶対測定で機能し、マルチターンとは互換性がない場合がある。アセンブリ時のキャリブレーションが必要である。
ホール効果センサでは、金属の薄いストリップに沿って電流が加えられる。磁場の存在下で、金属ストリップ内の電子は、1つのエッジに向かって偏向し、ストリップの短辺を横切って、すなわち、給電電流と直交して電圧勾配を生成する。その最も単純な形態では、センサは、アナログトランスデューサとして動作し、直接電圧を戻す。既知の磁場を用いて、ホールプレートからの距離を決定することができる。センサのグループを使用して、磁石の相対的な位置を推定することができる。複数のセンサ要素とパターン化された磁石プレートとを組み合わせることによって、光学エンコーダと同様に、絶対位置と相対位置を検出することができる。
インコーダセンサは、回転式可変変圧器センサ、ブラシレスレゾルバ、またはシンクロと同様な方法で機能する。ステータは、DC電力を受信し、ステータとロータとの間に低電力のAC電磁場を生成する。この磁場は、角度に応じてロータによって修正される。ステータは、結果として生じる磁場を感知し、回転角度をアナログまたはデジタル信号として出力する。リゾルバとは異なり、インコーダは、巻線スプールではなく、積層回路を使用する。この技術により、高精度の設置を伴わずに、インコーダをコンパクトな形態、低質量、低慣性、高精度にすることができる。1回のフル回転をカウントする信号(Z)が送信される。マルチターンおよび絶対感知が可能である。
受動的なエンドエフェクタの第2の実施形態が図13に示されている。図13を参照すると、受動的なエンドエフェクタ1300は、外科手術ロボットによって位置決めされるロボットアーム(例えば、図1および2のロボットアーム18)のエンドエフェクタカプラ(例えば、図4および5のエンドエフェクタカプラ22)に取り付けられるように構成された、基部1302を含む。受動的なエンドエフェクタ1300は、基部1302への回転可能な接続部と用具取り付け機構への回転可能な接続部との間に延在する、第1および第2の機構をさらに含む。回転可能な接続部は、1つのDOFの運動を可能にする旋回関節であっても、2つのDOFの運動を可能にするユニバーサル関節であっても、3つのDOFの運動を可能にするボール関節であってもよい。第1および第2の連結セグメント1310aおよび1320aは第1のプレーナ機構を形成し、第3および第4の連結セグメント1310bおよび1320bは第2のプレーナ機構を形成する。第1の連結セグメント1310aは、基部1302上の第1の場所への回転可能な接続部と第2の連結セグメント1320aの端部への回転可能な接続部との間に延在する。第3の連結セグメント1310bは、基部1302上の第2の場所への回転可能な接続部と第4の連結セグメント1320bの端部への回転可能な接続部との間に延在する。基部1302上の第1および第2の場所は、ロボットアームによって回転されたときに、基部カラーの回転軸の両側に離間されている。基部1302からの第2の連結セグメント1320aおよび第4の連結セグメント1320bの遠位端は、互いに、および用具取り付け機構1330に回転可能に接続される。第1および第2の機構(第1および第2の連結セグメント1310a~1320a、ならびに第3および第4の連結セグメント1310b~1320b)は、それらの回転可能な接続部を中心として、例えば、1つのDOFの運動を有する旋回関節を介して旋回して、用具取り付け機構1330の動きを作業面内の動きの範囲に制約するように構成され得る。用具取り付け機構1330は、切断するために振動するように構成される鋸ブレード1242を有する外科手術鋸1240に接続するように構成される。第1および第2の機構(第1および第2の連結セグメント1310a~1320a、ならびに第3および第4の連結セグメント1310b~1320b)は、作業面と平行になるように鋸ブレード1242の切断面を制約する。用具取り付け機構1330は、ねじ、ナットおよびボルト、クランプ、ラッチ、接合、圧入嵌合、または磁石を含み得るが、これらに限定されない、様々な機構を介して、外科手術鋸1240に接続され得る。DRAを用具取り付け機構1330または外科手術鋸1240に接続して、カメラ追跡システム6(図3)による鋸ブレード1242の姿勢の追跡を可能にすることができる。
受動的なエンドエフェクタの第2の実施形態が図14に示されている。図14を参照すると、受動的なエンドエフェクタ1400は、外科手術ロボットによって位置決めされるロボットアーム(例えば、図1および2のロボットアーム18)のエンドエフェクタカプラ(例えば、図4および5のエンドエフェクタカプラ22)に取り付けられるように構成された、基部1402を含む。基部1402は、ロボットアームによって回転されたときに、基部1402の回転軸の両側の離間された場所から延在する、第1および第2の細長い基部セグメント1404aおよび1404bを含む。第1および第2の細長い基部セグメント1404aおよび1404bは、受動的なエンドエフェクタ1400に取り付けられたときに、ロボットアームのエンドエフェクタカプラから離れる方向に延在する。受動的なエンドエフェクタ1400は、細長い基部セグメント1404aおよび1404bへの回転可能な接続部と用具取り付け機構への回転可能な接続部との間に延在する、第1および第2の機構をさらに含む。この実施形態について開示される回転可能な接続部のうちの1つ以上は、1つのDOFの運動を可能にする旋回関節であっても、2つのDOFの運動を可能にするユニバーサル関節であっても、3つのDOFの運動を可能にするボール関節であってもよい。
第1の機構は、第1の連結セグメント1411a、第2の連結セグメント1410a、第3の連結セグメント1420a、および第4の連結セグメント1430aを含む。第1および第2の連結セグメント1411aおよび1410aは、第1の細長い基部セグメント1404a上の離間された場所への回転可能な接続部と、第3の連結セグメント1420a上の離間された場所への回転可能な接続部との間で互いに平行に延在する。第3の連結セグメント1420aの端部は、第4の連結セグメント1430aの端部に回転可能に接続されている。
第2の機構は、第5の連結セグメント1411b、第6の連結セグメント1410b、および第7の連結セグメント1420bを含む。第5および第6の連結セグメント1411bおよび1410bは、第2の細長い基部セグメント1404b上の離間された場所への回転可能な接続部と、第7の連結セグメント1420b上の離間された場所への回転可能な接続部との間で互いに平行に延在する。用具取り付け機構は、基部1402から第4および第7の連結セグメント1430aおよび1420bの遠位端への回転可能な接続部の間で延在する、第8の連結セグメント1440を含む。さらなる実施形態では、用具取り付け機構の第8の連結セグメント1440は、基部1402から離れる方向に、外科手術鋸1240に接続するように構成される回転可能なコネクタまで延在する、取り付け部材1442を含む。取り付け部材1442は、第7の連結セグメント1420bよりも第4の連結セグメント1430aに近い、第8の連結セグメント1440上の場所から延在する。
第1および第2の機構(連結セグメント1411a、1410a、1420a、1430aのセット、および連結セグメント1411b、1410b、1420bのセット)は、それらの回転可能な接続部を中心として旋回して、用具取り付け機構1440の動きを作業面内の動きの範囲に制約するように構成され得る。用具取り付け機構1440は、切断するために振動するように構成される鋸ブレード1242を有する外科手術鋸1240に接続するように構成される。第1および第2の機構は、例えば、1つのDOFの運動を有する旋回関節を介して、作業面と平行になるように鋸ブレード1242の切断面を制約するように構成され得る。用具取り付け機構1440は、ねじ、ナットおよびボルト、クランプ、ラッチ、接合、圧入嵌合、または磁石を含み得るが、これらに限定されない、様々な機構を介して、外科手術鋸1240に接続され得る。DRAを、取り付け部材1442などの用具取り付け機構1440、または外科手術鋸1240に接続することができ、カメラ追跡システム6(図3)による鋸ブレード1242の姿勢の追跡を可能にする。
図14の受動的なエンドエフェクタ1400は、切断面での回転軸を中心とした外科手術鋸の位置決めを可能にする平行アーキテクチャを有する。横平行四辺形の同期および/または異なる運動により、外科手術鋸の回転軸を切断面に位置決めすることができる。
受動的なエンドエフェクタの第4の実施形態が図15に示されている。受動的なエンドエフェクタ1500は、外科手術ロボットによって位置決めされるロボットアーム(例えば、図1および2のロボットアーム18)のエンドエフェクタカプラ(例えば、図4および5のエンドエフェクタカプラ22)に取り付けられるように構成される、基部1502を含む。基部1502は、ロボットアームによって回転されたときに、基部1502の回転軸の両側の離間された場所から延在する、第1および第2の細長い基部セグメントを含み得る。第1および第2の細長い基部セグメントは、互いに離れる方向に延在する。受動的なエンドエフェクタ1500は、基部1502への回転可能な接続部と用具取り付け機構への回転可能な接続部との間に延在する、第1および第2の機構をさらに含む。この実施形態について開示される回転可能な接続部のうちの1つ以上は、1つのDOFの運動を可能にする旋回関節であっても、2つのDOFの運動を可能にするユニバーサル関節であっても、3つのDOFの運動を可能にするボール関節であってもよい。
第1の機構は、第1の連結セグメント1510aを含む。第2の機構は、第2のセグメント1510bを含む。用具取り付け機構は、第3の連結セグメント1520、第4の連結セグメント1530、第5の連結セグメント1540a、第6の連結セグメント1540b、および第7の連結セグメント1550を含む。第1および第2の連結セグメント1510aおよび1510bはそれぞれ、基部1502上の第1および第2の場所、例えば、基部1502から離れる方向に延在する第1および第2の細長い基部セグメントへの回転可能な接続部と、第3の連結セグメント1520の両端部にある回転可能な接続部との間に延在する。基部1502上の第1および第2の場所は、ロボットアームによって回転されたときに、基部の回転軸の両側に離間されている。第4の連結セグメント1530は、第3の連結セグメント1520から基部1502に向かう方向に延在する。第5および第6の連結セグメント1540aおよび1540bは、第4の連結セグメント1530上の離間された場所への回転可能な接続部と、第7の連結セグメント1550上の離間された場所への回転可能な接続部との間で互いに平行に延在する。第7の連結セグメント1550は、外科手術鋸1240に接続するように構成される回転可能なコネクタを有するように構成される。
第1~第6の連結セグメント1510aおよびb、1520、1530、ならびに1540aおよびbは、それらの回転可能な接続部を中心として旋回して、第7の連結セグメント1550の動きを作業面内の動きの範囲に制約するように構成され得る。第7の連結セグメント1550は、切断するために振動するように構成される鋸ブレード1242を有する外科手術鋸1240に接続するように構成される。第1~第6の連結セグメント1510aおよびb、1520、1530、ならびに1540aおよびbは、例えば、1つのDOFの運動を有する旋回関節を介して、作業面に平行になるように鋸ブレード1242の切断面を制約するように構成され得る。第7の連結セグメント1550は、ねじ、ナットおよびボルト、クランプ、ラッチ、接合、圧入嵌合、または磁石を含み得るが、これらに限定されない、様々な機構を介して、外科手術鋸1240に接続され得る。DRAを第7の連結セグメント1550または外科手術鋸1240に接続して、カメラ追跡システム6(図3)による鋸ブレード1242の姿勢の追跡を可能にすることができる。
受動的なエンドエフェクタの第5の実施形態が図16に示されている。受動的なエンドエフェクタ1600は、外科手術ロボットによって位置決めされるロボットアーム(例えば、図1および2のロボットアーム18)のエンドエフェクタカプラ(例えば、図4および5のエンドエフェクタカプラ22)に取り付けられるように構成される、基部1602を含む。受動的なエンドエフェクタ1600は、基部1502への回転可能な接続部と用具取り付け機構への回転可能な接続部との間に延在する、第1および第2の機構をさらに含む。第1の機構は、第1の連結セグメント1610aを含む。第2の機構は、第2のセグメント1610bを含む。用具取り付け機構は、第3の連結セグメント1620、第4の連結セグメント1630、第5の連結セグメント1640a、第6の連結セグメント1640b、および第7の連結セグメント1650を含む。この実施形態について開示される回転可能な接続部のうちの1つ以上は、1つのDOFの運動を可能にする旋回関節であっても、2つのDOFの運動を可能にするユニバーサル関節であっても、3つのDOFの運動を可能にするボール関節であってもよい。
第1および第2の連結セグメント1610aおよび1610bはそれぞれ、基部1602上の第1および第2の場所への回転可能な接続部と、第3の連結セグメント1620の両端部にある回転可能な接続部との間に延在する。基部1602上の第1および第2の場所は、ロボットアームによって回転されたときに、基部1602の回転軸の両側に離間される。第4の連結セグメント1630は、第3の連結セグメント1620から、基部1602から離れる方向延在する。第5および第6の連結セグメント1640aおよび1640bは、第4の連結セグメント1630上の離間された場所への回転可能な接続部と、第7の連結セグメント1650上の離間された場所への回転可能な接続部との間で互いに平行に延在する。第7の連結セグメント1650は、外科手術鋸1240に接続するように構成される回転可能なコネクタを有するように構成される。
第1~第6の連結セグメント1610aおよびb、1620、1630、ならびに1640aおよびbは、それらの回転可能な接続部を中心として旋回して、第7の連結セグメント1650の動きを作業面内の動きの範囲に制約するように構成され得る。第7の連結セグメント1650は、切断するために振動するように構成される鋸ブレード1242を有する外科手術鋸1240に接続するように構成される。第1~第6の連結セグメント1610aおよびb、1620、1630、ならびに1640aおよびbは、作業面に平行になるように鋸ブレード1242の切断面を拘束しながら旋回するように構成され得る。第7の連結セグメント1650は、ねじ、ナットおよびボルト、クランプ、ラッチ、接合、圧入嵌合、または磁石を含み得るが、これらに限定されない、様々な機構を介して、外科手術鋸1240に接続され得る。DRAを第7の連結セグメント1650または外科手術鋸1240に接続して、カメラ追跡システム6(図3)による鋸ブレード1242の姿勢の追跡を可能にすることができる。
受動的なエンドエフェクタ1600は、外科手術鋸の回転軸を切断面に位置決めするための2つの直交する並進の動きを提供し、この2つの並進は、平行四辺形によって実装される。
受動的なエンドエフェクタの第6の実施形態が図17に示されている。受動的なエンドエフェクタ1700は、外科手術ロボットによって位置決めされるロボットアーム(例えば、図1および2のロボットアーム18)のエンドエフェクタカプラ(例えば、図4および5のエンドエフェクタカプラ22)に取り付けられるように構成される、基部1702を含む。受動的なエンドエフェクタ1700は、基部1702への回転可能な接続部と用具取り付け機構への回転可能な接続部との間に延在する、第1および第2の機構をさらに含む。この実施形態について開示される回転可能な接続部のうちの1つ以上は、1つのDOFの運動を可能にする旋回関節であっても、2つのDOFの運動を可能にするユニバーサル関節であっても、3つのDOFの運動を可能にするボール関節であってもよい。第1および第2の機構は、平行四辺形の中心から各辺までの距離に沿って並進を提供するように接続される。第1の機構は、第1および第2の連結セグメント1710および1720bを含む。第1の連結セグメント1710は、基部1702への回転可能な接続部と第2の連結セグメント1720bの端部への回転可能な接続部との間に延在する。第2の機構は、第3の連結セグメント1720aを含む。用具取り付け機構は、第4の連結セグメント1730を含む。第2および第3の連結セグメント1720bおよび1720aは、基部1702から離れる方向に、第1の連結セグメント1710上の離間された場所への回転可能な接続部と第4の連結セグメント1730上の離間された場所への回転可能な接続部との間で互いに平行に延在する。第4の連結セグメント1730は、基部から離れる方向に、外科手術鋸1240に接続するように構成される回転可能なコネクタまで延在する、取り付け部材1732を含む。取り付け部材1732は、第2の連結セグメント1720bよりも第3の連結セグメント1720aに近い、第4の連結セグメント1730上の場所から延在する。
第1~第3の連結セグメント1710、1720b、1720aは、それらの回転可能な接続部を中心として旋回して、第4の連結セグメント1730の動きを作業面内の動きの範囲に制約するように構成され得る。第4の連結セグメント1730は、切断するために振動するように構成される鋸ブレード1242を有する外科手術鋸1240に接続するように構成される。第1~第3の連結セグメント1710、1720b、1720aは旋回し、かつ作業面に平行になるように鋸ブレード1242の切断面を制約するように構成され得る。第4の連結セグメント1730、例えば、その取り付け部材1732は、ねじ、ナットおよびボルト、クランプ、ラッチ、接合、圧入嵌合、または磁石を含み得るが、これらに限定されない、様々な機構を介して、外科手術鋸1240に接続され得る。DRAを、第4の連結セグメント1730、例えば、取り付け部材1732、または外科手術鋸1240に接続して、カメラ追跡システム6(図3)による鋸ブレード1242の姿勢の追跡を可能にすることができる。
受動的なエンドエフェクタの第7の実施形態が図18に示されている。受動的なエンドエフェクタ1800は、外科手術ロボットによって位置決めされるロボットアーム(例えば、図1および2のロボットアーム18)のエンドエフェクタカプラ(例えば、図4および5のエンドエフェクタカプラ22)に取り付けられるように構成される、基部1802を含む。受動的なエンドエフェクタ1800は、基部1802への回転可能な接続部と用具取り付け機構への回転可能な接続部との間に延在する、第1および第2の機構をさらに含む。この実施形態について開示される回転可能な接続部のうちの1つ以上は、1つのDOFの運動を可能にする旋回関節であっても、2つのDOFの運動を可能にするユニバーサル関節であっても、3つのDOFの運動を可能にするボール関節であってもよい。第1の機構は、第1の連結セグメント1810aを含む。第2の機構は、第2の連結セグメント1810bを含む。用具取り付け機構は、第3の連結セグメント1820を含む。第1および第2の連結セグメント1810aおよび1810bはそれぞれ、基部1802上の第1および第2の場所への回転可能な接続部と、第3の連結セグメント1820の両端部にある回転可能な接続部との間に延在する。基部1802上の第1および第2の場所は、ロボットアームによって回転されたときに、基部1802の回転軸の両側に離間される。第3の連結セグメント1820は、基部1802から離れる方向に、外科手術鋸1240に接続するように構成される回転可能なコネクタまで延在する、取り付け部材1822を含む。取り付け部材1822は、第2の連結セグメント1810bよりも第1の連結セグメント1810aに近い、第3の連結セグメント1820上の場所から延在する。この実施形態について開示される回転可能な接続部のうちの1つ以上は、1つのDOFの運動を可能にする旋回関節であっても、2つのDOFの運動を可能にするユニバーサル関節であっても、3つのDOFの運動を可能にするボール関節であってもよい。
第1および第2の連結セグメント1810aおよび1810bは、それらの回転可能な接続部を中心として、基部1802と第3の連結セグメント1820との間で旋回して、取り付け部材1822の動きを作業面内の動きの範囲に制約するように構成され得る。いくつかの他の実施形態では、回転可能な接続部のうちの1つ以上は、動きが作業面に拘束されないように、2つのDOFの運動を可能にするユニバーサル関節であっても、3つのDOFの運動を可能にするボール関節であってもよい。取り付け部材1822は、切断するために振動するように構成される鋸ブレード1242を有する外科手術鋸1240に接続するように構成される。第1および第2の連結セグメント1810aおよび1810bは、作業面に平行になるように鋸ブレード1242の切断面を拘束しながら旋回する。取り付け部材1822は、ねじ、ナットおよびボルト、クランプ、ラッチ、接合、圧入嵌合、または磁石を含み得るが、これらに限定されない、様々な機構を介して、外科手術鋸1240に接続され得る。DRAを、第3の連結セグメント1820、例えば、取り付け部材1822、または外科手術鋸1240に接続して、カメラ追跡システム6(図3)による鋸ブレード1242の姿勢の追跡を可能にすることができる。
受動的なエンドエフェクタの第8の実施形態が図19に示されている。受動的なエンドエフェクタ1900は、外科手術ロボットによって位置決めされるロボットアーム(例えば、図1および2のロボットアーム18)のエンドエフェクタカプラ(例えば、図4および5のエンドエフェクタカプラ22)に取り付けられるように構成される、基部1902を含む。受動的なエンドエフェクタ1900は、第1の連結セグメント1910および第2の連結セグメント1920をさらに含む。第1の連結セグメント1910は、基部1902への回転可能な接続部と、第2の連結セグメント1920の一方の端部への回転可能な接続部との間に延在する。第2の連結セグメント1920のもう一方の端部は、用具取り付け機構に回転可能に接続される。回転軸q1、q2、およびq3は、ブレード1242に平面状の切断面を提供するように、互いに平行である。したがって、鋸1240の3つのDOFの運動には、x方向Tx、y方向Ty、およびz軸を中心とした回転方向Rzが含まれる。この実施形態について開示される回転可能な接続部のうちの1つ以上は、1つのDOFの運動を可能にする旋回関節であっても、2つのDOFの運動を可能にするユニバーサル関節であっても、3つのDOFの運動を可能にするボール関節であってもよい。
骨(例えば、脛骨および大腿骨)上の追跡マーカと共に、エンドエフェクタ基部1902および鋸1240に取り付けられた追跡マーカ52を使用して、切断中の患者の骨に対するブレード1242およびブレード先端のリアルタイムの場所を正確かつ連続的に監視することができる。他の図には明示的に示されていないが、切断中の患者の骨に対するブレードの場所を追跡するために、すべての実施形態において、追跡マーカを鋸1240およびすべてのエンドエフェクタ1902に取り付けることができる。示されていないが、追跡マーカの代替として、または追跡マーカに加えて、常に鋸ブレードの先端がどこにあるかを正確に決定するために、エンコーダを連結セグメント1910および1920の各々の中に位置決めすることができる。
(例示的な外科手術処置)
手術室(OR)で外科手術ロボット4を使用する例示的な外科手術処置としては、以下を挙げることができる。
任意選択のステップ:外科手術は医療画像に基づいて術前に計画される。
1.外科手術ロボット4システムは、手術室(OR)の外側にある。看護師は、患者が外科手術のために準備されているときに、システムをORに運ぶ。
2.看護師は、ロボットの電源を入れ、ロボットアームを展開する。看護師は、ロボットおよび追跡システムの精度を検証する。
3.滅菌された受動的なエンドエフェクタの場合、手術室看護師がロボットアーム上に滅菌ドレープを付け、矢状鋸を備えた受動的なエンドエフェクタをロボットアーム上に装着する。手術室看護師は、受動的なエンドエフェクタをロック機構でロックする。(必要な場合)手術室看護師はドレープを介してDRAを受動的な構造に取り付ける。滅菌されていない受動的なエンドエフェクタの場合、ロボットアーム上に受動的なエンドエフェクタを取り付けた後にドレープが配置され、DRAは間にドレープが介在する状態で受動的なエンドエフェクタに取り付けられ、滅菌鋸または鋸ブレードは間にドレープが介在する状態で受動的なエンドエフェクタに取り付けられる。エンドエフェクタカプラに対する鋸ブレードの位置を固定するために、ロック機構を係合させる。
4.外科医は、ナビゲーションマーカを患者の骨、例えば、脛骨および大腿骨に取り付ける。骨は、例えば、Hornポイントツーポイントアルゴリズム、面合わせアルゴリズム、または他のアルゴリズムを使用して、カメラ追跡システム6と位置合わせされる。軟部組織バランスの評価を実施することができ、これにより、本システムは、例えば、外科医が異なる方向に力(例えば、内反/外反力)を加えたときの大腿骨と脛骨の相対的な動きを追跡することによって、外科医が手術室内で軟部組織バランスを評価することを可能にする。軟部組織バランスの情報を使用して、外科手術計画を変更することができる(例えば、インプラント部品の移動、インプラントタイプの変更など)。
5.外科医が骨を切断する準備が整うと、手術室看護師は、外科手術ロボット4を手術される膝の近くに手術台へと運び、床上で外科手術ロボット4を安定化する。本システムは、すべての切断面がロボットおよび受動的な構造の作業空間にあるように、ロボット4の位置を見つける際に看護師を誘導することができる。
6.外科医は、外科手術ロボット4の画面上で、最初の切断を行うために、外科手術の計画に従って、異なるパラメータ(切断される骨、所望の切断計画など)を選択する。
7.外科手術ロボット4は、鋸ブレードの切断面と目標面とが一致し、鋸ブレードが、受動的なエンドエフェクタの用具取り付け機構の動きの範囲内にある、切断される解剖学的構造からの距離に位置決めされるように、ロボットアーム22を自動的に移動させて、受動的なエンドエフェクタを再位置決めする。
8.外科医は受動的なエンドエフェクタをロック解除する。
9.外科医は、受動的なエンドエフェクタによって提供される切断面に制約された切断を実施する。外科手術ロボット4は、骨に対する鋸ブレードの追跡された場所のリアルタイム表示を提供することができ、それにより、外科医は骨を取り除く進捗を監視することができる。1つの方法では、追跡サブシステムは、カメラ画像と、鋸、ロボットアーム、エンドエフェクタ、大腿骨、および脛骨に取り付けられた様々な追跡マーカとに基づいて、骨に対する鋸の場所をリアルタイムで処理する。次いで、外科医は、切断が完了すると、ロック機構を使用して受動的なエンドエフェクタをロックすることができる。
10.外科医は、画面上で実行する次の切断を選択し、前と同じように続行する。
11.外科医は、試行的なインプラント配置および中間の軟部組織バランス評価を実施することができ、かつそれらに基づいて、インプラント計画および関連付けられた切断を変更することができる。
12.すべての切断の完了後、看護師は外科手術ロボット4を手術台から取り除き、受動的なエンドエフェクタをロボットアームから装着解除する。
13.外科医は、インプラントを配置し、外科手術を終了する。
上記のステップ9では、骨の周りの組織および靭帯と、切断により作り出されるデブリと、骨の近くにある他の外科手術器具とにより、医師が切断の進捗を視覚的に確認することが困難な場合がある。目視による確認が許容可能な場合でも、骨の後方部分が切断されるなど、医師が見ることができない骨のエリアがある。
有利には、本発明の1つのロボットシステムの実施形態は、骨が多次元で切断されている進捗を医師が確認するための方法を提供する。カメラ追跡システム6は、エンドエフェクタ基部(1100、1202、1302、1402、1502、1602、1702、1802、1902)、ロボットアーム20、および鋸(1140、1240)に取り付けられた追跡マーカと共に、追跡サブシステム830およびコンピュータサブシステム820が、骨に対する鋸ブレードの正確な位置をリアルタイムで計算することを可能にし、それにより、外科医は、骨の取り除きの進捗を監視することができる。
図20は、外科手術処置中の骨の切断の進捗を示すディスプレイのスクリーンショットである。図20は、側面図、A-P図、および上面図の3つの画像を表示するサブシステム830および820を示している。各画像において、骨(例えば、脛骨2000)に対する鋸ブレード1242のリアルタイムの場所がディスプレイ34に表示される。側面図および上面図は、簡単には見ることができない鋸ブレードの位置を表示するため、医師にとってとりわけ有用な場合がある。ディスプレイの最上部分で、コンピュータサブシステム830、820は、切断プログラムの数、および現在作動中のプログラムがなんであるかを表示する。例えば、スクリーンショットが示すように、医師は、6つの平面状の切断をプログラムしている場合があり、現在の切断プログラムは第1の切断である。また、サブシステム830および820は、ブレードが進んだ可能性のある場所を追跡マーカによって追跡することができるため、特定の切断プログラムの骨の切断(切断されたエリア)がどれだけ完了したかを決定することができ、進捗率がディスプレイ34に表示される。骨画像自体は、より正確な表現のために、患者の身体の実際の画像から得られることが好ましい。骨画像は、皮質骨2004および海綿骨2002を示す輪郭線を用いてサブシステム820によって拡張される。切断に対する抵抗の量は2つのタイプの骨の間で大きく異なるため、これは医師にとって重要な場合がある。
拡張現実(AR)頭部装着型ディスプレイが使用される場合、コンピュータサブシステム820は、皮質骨および海綿骨を示す同じ輪郭線を生み出し、それを、医師が自身の頭を移動するのにつれて連続的に実際の脚の上に重ねることができる。すでに切断されたエリアを、暗い色合いで実際の骨の上にオーバーレイさせることができる。さらに、切断面積にわたって挿入されるインプラントを骨の上にオーバーレイさせて、医師がインプラントの平面に沿って切断が正しく行われていることを示すこともできる。これは、サブシステム830および820が追跡マーカおよびカメラサブシステムと共にブレードの位置および骨に対するブレードの動きの履歴を追跡することができるため、すべて可能である。
ここで図21~32を参照すると、整形外科手術の文脈において直接的なブレード誘導システムの例示的な実施形態が記載されている。図21、22、29、および30に示されるように、直接的なブレード誘導システム2100は、エンドエフェクタアーム(EEA)2102を保持するロボットシステムを含み得る。EEA2102は、ロボットアームのエンドエフェクタカプラに取り付けるように構成された基部を含み得る。本開示の原理に矛盾しないエンドエフェクタアームの他の例示的な実施形態は、図12~19に関して記載されている。平面状の切断を達成するために、鋸ブレード2104は、それが振動する平面内で誘導されるべきである。鋸ブレードの高い振動周波数(例えば、200~300Hz)は、機械的誘導の実現を困難にする。EEA2102は、EEA2102の先端2110の平面上での動きを実現するために使用され得る、いくつかの関節および連結部2106、2108を含み得る。図12~18の実施形態と同様に、EEA2102の先端2110は、3つの自由度、平面上での2つの方向の動き、およびその平面に垂直な軸を中心とした回転を有し得る。EEA2102は、平面状の切断を可能にし、すべての角度から目標の骨に近づくことができる。システム2100は、ハンドピース2112およびブレードアダプタ2114を含むこともでき、各々は、EEA2102およびブレード2104に接続される。
鋸ブレード2104を直接誘導する概念は、連結部2110の遠位端(EEA2102の遠位回転関節2116)の回転軸とブレードの振動軸とを一致させることを含む。矢状鋸は、鋸ブレード取り付け部に近い軸を中心として鋸ブレードの小さな回転の動き(振動/振幅)を生み出す実装機構の大部分に存在する。回転軸とEEA2102の遠位回転関節2116とを(連結部2108の遠位端で)一致させることにより、関節2116を、一般的な鋸ハンドピースの回転を可能にし、鋸ブレードの振動を可能にするように構成することができる。
鋸ブレード2104は、ブレードアダプタ2114によってEEA2102の遠位関節回転軸に連結されるように構成され得る。ブレードアダプタ2114は、鋸ブレード2104を締着するように構成され得る。ブレードアダプタ2114を適合させることにより、異なる矢状鋸をシステム2100に統合することができる。本開示に矛盾しないブレードアダプタ2114の例示的な構成を以下で考察する。例示的なブレードアダプタが図31に例示される。
(恒久固定)
恒久固定構成では、ブレード2104は、ブレードアダプタ2114に恒久的にクランプされ得る。ユーザ(例えば、手術室看護師)は、外科医が外科手術野を準備している間に、ブレード2104をブレードアダプタ2114に組み立てることができる。例示的な恒久固定構成は、以下を含み得る。
・ブレード2104は、ブレード2104に対してクランプ力を提供するように構成されたねじまたはばね式ラッチなどの構成要素を使用して、ブレードアダプタ2114にしっかりとクランプされ得る。
・ブレード2104は、ブレード2104をブレードアダプタ2114に固定するように構成されたスルーホールなどのインターフェースを含み得る。
・ブレード2104およびブレードアダプタ2114は、後でEEA2102上に提供される単一の再利用可能なデバイスとして製造され得る。例示的な実装例は、PEEKまたはステンレス鋼のブレードアダプタに取り付けられた金属ブレードを伴う。ブレードアダプタへのブレードの組み立ては、手術室看護師によって実施される。
・ブレード2104およびブレードアダプタはまた、滅菌状態で届けられる使い捨て(シングルユース)デバイスとして製造されてもよい。例示的な実装例は、プラスチック射出成形技術を使用してオーバーモールドされた金属ブレードを伴う。
図22は、本開示の原理に矛盾しない例示的な実施形態であるシステム2200を例示している。この実施形態では、ブレードアダプタは、鋸ブレードの回転軸を中心として回転することができる基部、およびねじによってブレードをブレードアダプタ基部にクランプするクランプ構成要素内で鋸ブレードに恒久的に付着することができる。図23は、この構成に矛盾しないブレード2204、ブレードアダプタ2214、遠位回転関節2216、およびクランプ2218を例示している。これらの構成要素は、図21に関して先に記載される構成要素と同じであっても、同様であってもよい。
(分離可能な固定)
分離可能な固定構成では、ブレードを現場で迅速にブレードアダプタに取り付け、かつブレードアダプタから分離することができる。ブレードアダプタは、能動的(通常は閉じられており、電気信号によって開くクランプ機構)であっても、受動的(迅速結合および/または迅速解放機構)であってもよい、クランプ機構を統合する。
(慣性モーメント)
ブレードアダプタ2114は、ブレードの回転軸を中心として回転する結合された「ブレード/ブレードアダプタ」の慣性モーメントを大幅に増加させ得る。ブレードアダプタ2114が鋸ブレード2104と一緒に振動するとすぐに、不均衡な慣性により動的な力およびトルクが生み出され、力およびトルクが機械構造ならびに外科医の手に伝えられる。実装例を最適化するために、振動軸を中心とする振動要素の慣性を最小限に抑えることができる。つまり、振動軸と比べて振動要素の質量が軽く、近いほど優れている。ハンドピース誘導の概念に関する振動軸を中心とした鋸ブレード要素の慣性モーメントは次のとおりである。
Ih=Id+MD2
Dはブレード振動軸と遠位関節回転軸との間の距離であり、Mはブレードの重量(鋸ブレード要素の重量)であり、Idはブレード振動軸を中心とした鋸ブレード要素の慣性モーメントである。次いで、慣性モーメントは、直接的なブレード誘導の概念を用いてMD2だけ低減する。これは、振動軸とブレード振動軸との間の距離が0である(軸が組み合わされている)ため、最小値である。
図24は、標準的なジグ2402を使用したシステムを例示している。本明細書で考察される原理の下では、直接的なブレード誘導は、図24に例示されるジグ2402などの標準的なジグによって提供されるものよりも長い、ブレードの有効切断長を提供し得る。LGは誘導長(鋸ブレードが誘導される長さ)を表し、LEはブレードの有効長を表す。直接的なブレード誘導の概念により誘導長を短くすることができるため、ブレードの有効長は結果的に長くなる。これは、外科医にとってより快適な場合があり、外科医はより多くの骨を貫いて切断することができる。
切断の精度は、ロボットシステム、EEA2102、ハンドピース矢状鋸、鋸ブレードの振幅機構(ブレードアダプタ2114または2214)、および鋸ブレード2104、2204を含む、床から鋸ブレードの先端までの、ロボットシステムを構成する種々の要素の剛性によって決まる。直接的なブレード誘導では、鋸ブレードがブレードアダプタと直接締着されるため、ハンドピースのバックラッシュおよび不正確さが大幅に最小化されるか、または完全に阻止される場合がある。
さらに、直接的なブレード誘導の概念は、様々な既存の矢状鋸との統合が容易になる場合があるブレードアダプタは、形状を単純にすることができる鋸ブレードを締着するだけでよい要素であるため、矢状鋸の形状に固有(製造業者固有)の構成要素を構築する必要がない場合がある。さらに、ブレードアダプタは簡単に滅菌することができる。これは、小さく軽量で比較的単純な機械要素であり、いずれの狭い空間もなく、簡単に分解することができるような方法で作製することができる。前述のように、ブレードアダプタを含むブレードは、単一の再利用可能なデバイスとして届けられる場合がある。
(追跡)
図25は、矢状鋸ハンドピース2112に取り付けられたナビゲーションマーカまたは一連のマーカ2500を含み得る、直接的なブレード誘導システム2100を例示している。マーカ2500により、矢状鋸をカメラ追跡システム6などのカメラによって追跡することが可能になる。光学追跡により、鋸の位置を測定することができるが、切断中に直接的な鋸ブレードの位置を測定することが難しい場合がある(ブレードの振動の高い周波数)。さらに、ブレード/鋸ハンドピース接続の剛性が低いため、追跡は、ブレード2104に対する鋸ハンドピース2112の偏向を直接測定することになる。
直接的な鋸ブレードの位置を測定するために、図26は、EEA2102の関節に統合された符号化器2600、2602、および2604を備えたシステム2100を例示している。エンコーダ測定は通常、光学追跡を使用するよりも高い周波数と回転精度で行うことができる。例えば、測定周波数は、鋸ブレードの振幅の周波数よりも少なくとも2倍高い場合がある。ブレードの位置信号を用いると、鋸の振動周波数、オン/オフ状態、(例えば、振動およびその派生物を解釈することによって)鋸ブレードが骨の中で動かなくなることなどの追加の有用な情報を抽出することができる。
本開示の原理に矛盾しない例示的な実施形態では、外科医によって保持される矢状鋸ハンドピースの振動を低減することができる。ハンドピースの振動を減少させることにより、触覚フィードバックを改善することができ、切断効率を増加させることができる。前述のように、外科医の手に伝えられる振動は、ブレード回転軸を中心としたブレード/ブレードアダプタの結合の不均衡な慣性によって生み出された、伝えられた動的な力およびトルクから生じる。
振動をフィルタリングすることにより、振動を低減するための1つのアプローチを達成することができる。図27では、減衰要素2700が、ハンドピース2112とEEA2102との間に接続され得る。これは、ゴム片、空気圧または油圧シリンダを使用して実装され得る。振動を低減するための別のアプローチは、鋸の回転軸を中心とした、結合された鋸/鋸アダプタの慣性を動的に平衡化することによって達成され得る。これは、同じ動力学で正反対の動きを実施する補正慣性を使用して、振動する鋸ブレードによって生み出された、伝えられる力およびトルクを動的に補正することによって実装することができる。図28および32は、機械的インバータ2800を使用して平衡化するために補正慣性を主慣性に結合することができる、例示的な実施形態を例示している。
(例示的なブレードアダプタ)
ここで図33~37を参照すると、例示的なシステム3100は、連結部アーム2108に対して自由に回転可能な回転インターフェース3112を有するエンドエフェクタ、矢状鋸ハンドピース3120、および矢状鋸ハンドピース3120を回転インターフェース3112に結合するブレードアダプタ3130を含む。ブレードアダプタ3130は、本明細書に記載のハンドピース(例えば、外科手術鋸1140または1240またはハンドピース2112)のいずれかを、本明細書に記載のエンドエフェクタ(例えば、エンドエフェクタ1100、1200、1300、1400、1500、1600、1700、1800、または1900)のいずれかに結合するように構成され得る。平面状の切断を達成するために、回転インターフェース3112は、それが振動する平面内に鋸ブレード3132(例えば、鋸ブレード1242、2104、または2204)を位置決めするように誘導され得る。回転インターフェース3112は、複数の角度から目標の骨に接近するように構成される。いくつかの実施例では、回転インターフェース3112は、平面上で2つの方向に並進され、その平面に垂直な軸の周りで回転されるというように、3つの自由度で移動され得る。
図34および35に示されるように、ブレードアダプタ3130は、回転インターフェース3112に面するブレードアダプタ3130の第1の側(例えば、上側)にエンドエフェクタインターフェースまたは第1の結合機構3140を有する。第1の結合機構3140は、例えば、空洞3144を画定する側壁3142と、空洞3144内で第1の方向(例えば、上向き)に突出する1つ以上のステージ3146とを含み得る。いくつかの実施例では、側壁3142およびステージ3146は同心であり得る。第1の結合機構3140は、回転インターフェース3112の機械的インターフェース3148(図36に示される)と係合するようにサイズ設定、成形、および/または構成されている。例えば、機械的インターフェース3148は、回転インターフェース3112をブレードアダプタ3130に結合することを容易にするために、空洞3144内に位置決めされ得る。
いくつかの実施例では、ステージ3146は、基部と、基部から第1の方向(例えば、上向き)に延びる1つ以上の突起3150(図34および35に示される)とを含む。突起3150は、第1の軸3154(例えば、垂直軸)(例えば、図33に示される)の周りのブレードアダプタ3130の回転を制御する際に使用するために、機械的インターフェース3148に画定された1つ以上の開口部3152(図36に示される)内に位置決めされ得る。このようにして、回転インターフェース3112は、第1の軸3154を中心として回転して、ブレードアダプタ3130を回転させ、したがって、鋸ブレード3132も、第1の軸3154を中心に回転させ得る。
固定機構3160は、第1の結合機構3140および/または機械的インターフェース3148を通って延在し得、回転インターフェース3112に対する第1の軸3154に沿ったブレードアダプタ3130の並進を制御する。このようにして、ブレードアダプタ3130は、回転インターフェース3112にしっかりと結合され得る。いくつかの実施例では、固定機構3160は、システム3100の使用中固定機構3160が(例えば、振動によって)緩まないようにすることを容易にするために、回転インターフェース3112(例えば、機械的インターフェース3148)に位置されたばねによって予荷重をかけられる捕捉されたねじを含み得る。
いくつかの例では、鋸ブレード3132は、現場でブレードアダプタ3130に迅速に取り付けられ、そしてブレードアダプタ3130から取り外され得る。図35に示されるように、ブレードアダプタ3130は、例えば、ブレードアダプタ3130に対する鋸ブレード3132の動きを阻止または制限するためのチャネル3164(図35に示される)を画定するプレートまたは下部分3162を含み得る。いくつかの実施例では、下部分3162の第1の側(例えば、上側)は、中間ばめまたは締まりばめを使用してチャネル3164内の鋸ブレード3132を受容するようにサイズ設定、成形、および/または構成され得る。追加的または代替的に、ブレードアダプタ3130は、ブレードアダプタ3130に対する鋸ブレード3132の動きを阻止または制限するために、下部分3162および/または鋸ブレード3132を通って延在する1つ以上の固定機構3166を含み得る。
図36に示されるように、ブレードアダプタ3130は、ハンドピース3120に面するブレードアダプタ3130の第2の側(例えば、下側)にハンドピースインターフェースまたは第2の結合機構3170を有し得る。第2の結合機構3170は、ハンドピース3120(図34および35に示される)の機械的インターフェース(ブレード3132をハンドピースに取り付けるブレードインターフェース)3178と係合するようにサイズ設定、成形、および/または構成され得る。
図38は、エンドエフェクタ(例えば、回転インターフェース3112)を矢状鋸ハンドピース(例えば、ハンドピース3120)に結合するための例示的な方法3200のフローチャートである。方法3200は、動作3210でブレードアダプタ3130を提供することを含む。ブレードアダプタ3130は、ブレードアダプタ3130の上側にある第1の結合機構3140、およびブレードアダプタ3130の下側にある第2の結合機構3170を含み得る。
第1の結合機構3140は、動作3220で回転インターフェース3112の機械的インターフェース3148に結合される。いくつかの実施例では、第1の結合機構3140は、1つ以上の突起3150を含み得る。突起3150は、機械的インターフェース3148に画定された1つ以上の開口部3152に挿入され得、回転インターフェース3112が第1の軸3154の周りでブレードアダプタ3130を回転させることを可能にする。いくつかの実施例では、固定機構3160は、第1の結合機構3140および/または機械的インターフェース3148を通って延在し、ブレードアダプタ3130を回転インターフェース3112に固定する。固定機構3160は、例えば、第1の結合機構3140で画定されたクリアランス開口部を通って延在し、機械的インターフェース3148のねじ付き開口部にねじ込まれ、これによってブレードアダプタ3130が回転インターフェース3112にクランプされている。
鋸ブレード3132は、ブレードアダプタ3130から第1の軸3154に垂直な方向に延在し得る。いくつかの実施例では、ブレードアダプタ3130は、ブレードアダプタ3130の下部分3162および鋸ブレード3132に画定されたクリアランス開口部を通って延在し、本体またはブレードアダプタ3130の上部分のねじ付き開口部にねじ込まれる1つ以上の固定機構3166を含み、これによって鋸ブレード3132の近接部分がブレードアダプタ3130の下部分3162と上部分との間にクランプされている。第2の結合機構3170は、動作3230でハンドピース3120の機械的インターフェース3178に結合される。
図39~43は、エンドエフェクタ3312を矢状鋸ハンドピース3120(図33および34に示されている)に結合するための別の例示的なシステム3300を示している。システム3300は、ブレードアダプタ3330と、ブレードアダプタ3330に結合された鋸ブレード3332とを含む。図33-37と図39-43の比較から理解できるように、図39-43に示されるエンドエフェクタ3312、ブレードアダプタ3330、および鋸ブレード3332は、図面に示され、本明細書に記載されるいくつかの例外があるが、回転インターフェース3112、ブレードアダプタ3130、および図33~37に示される鋸ブレード3132と実質的に類似している。
図40および41に示されるように、ブレードアダプタ3330は、その第1の側(例えば、上側)にエンドエフェクタインターフェースまたは第1の結合機構3340を有する。第1の結合機構3340は、空洞3344を画定する側壁3342と、空洞3344内で第1の方向(例えば、上向き)に突出する1つ以上のステージ3346とを含み得る。いくつかの実施例では、側壁3342およびステージ3346は同心であり得る。第1の結合機構3340は、エンドエフェクタ3312の機械的インターフェース3348(図42に示される)と係合するようにサイズ設定、成形、および/または構成されている。例えば、機械的インターフェース3348は、エンドエフェクタ3312をブレードアダプタ3330に結合することを容易にするために、空洞3344内に位置決めされ得る。
いくつかの実施例では、ステージ3346は様々な構成を有し得る。例えば、ステージ3346は、1つ以上の開口部3350(図40に示される)が画定されている基部を含み得る。ステージ3346は、第2の方向(例えば、下向き)に延びる機械的インターフェース3348の1つ以上の突起3352(図42に示される)を受容するようにサイズ設定、成形、および/または構成され得る。突起3352は、第1の軸3354(例えば、垂直軸)(図39に示される)の周りのブレードアダプタ3330の回転を制御する際に使用するために、開口部3350内に位置決めされ得る。いくつかの実施例では、第1の結合機構3340は、第1の方向(例えば、上向き)に延びる1つ以上の突起3356を含み得る。突起3356は、第1の軸3354の周りで第1の結合機構3340をセンタリングする際に使用するために、機械的インターフェース3348で画定された1つ以上の開口部内に位置決めし得る。
固定機構3360は、エンドエフェクタ3312に対する第1の軸3354に沿ったブレードアダプタ3330の並進を制御するために、第1の結合機構3340および/または機械的インターフェース3348を通って延在し得る。いくつかの実施例では、固定機構3360は、第1の結合機構3340で定義されたクリアランス開口部を通って延在し、機械的インターフェース3348のねじ付き開口部にねじ込まれ、これによってブレードアダプタ3330がエンドエフェクタ3312にクランプされている。
ブレードアダプタ3330は、例えば、鋸ブレード3332をそれらの間にクランプするように構成された上部分3361および下部分3362を含み得る。いくつかの実施例では、上部分3361および下部分3362は、それらの間の相対的な動きを防止または制限するためにキー付き関節を形成する。上部分3361および/または下部分3362は、ブレードアダプタ3330に対する鋸ブレード3332の動きを阻止または制限することを容易にするために鋸ブレード3332を受容することができるチャネルまたは凹部3364を画定し得る。図41に示されるように、鋸ブレード3332の近接部分は、環状またはリング構成を有し得る。追加的または代替的に、ブレードアダプタ3330は、ブレードアダプタ3330に対する鋸ブレード3332の動きを阻止または制限するために、下部分3362および/または鋸ブレード3332を通って延びる1つ以上の固定機構3366を含み得る。いくつかの実施例では、固定機構3366は、下部分3362および鋸ブレード3332で画定されたクリアランス開口部を通って延在し、かつ上部分3361でねじ付き開口部の中にねじ込まれ、その結果、鋸ブレード3332の近接部分が、ブレードアダプタ3330の上部分3361と下部分3362との間に、クランプされている。
図41および42に示されるように、ブレードアダプタ3330は、ブレードアダプタ3330の第2の側(例えば、下側)にハンドピースインターフェースまたは第2の結合機構3370を有し得る。第2の結合機構3370は、ハンドピース3120(図34および35に示される)の機械的インターフェース3178と係合するようにサイズ設定、成形、および/または構成され得る。例えば、第2の結合機構3370は、機械的インターフェース3178の一部を受容するようにサイズ設定、成形、および/または構成された開口部3382に対してラジアルスロット3380を画定し得る。図41および図42に示されるように、開口部3382は星形の構成を有し得る。このようにして、ハンドピース3120は、鋸ブレード3332に直接接続されることなく、ブレードアダプタ3330にしっかりと結合され得る。
図44~48は、エンドエフェクタ3412を矢状鋸ハンドピース3120(図33および34に示されている)に結合するためのさらに別の例示的なシステム3400を示している。システム3400は、ブレードアダプタ3430と、ブレードアダプタ3430に結合された鋸ブレード3432とを含む。図33~37、図39~43、および図44~48の比較から理解できるように、図44~48に示されるエンドエフェクタ3412、ブレードアダプタ3430、および鋸ブレード3432は、実質的に図33-37に示される回転インターフェース3112、ブレードアダプタ3130、および鋸ブレード3132、および/または図39-43に示されるエンドエフェクタ3312、ブレードアダプタ3330、および鋸ブレード3332に、図面および明細書に記載のようにいくつかの例外があるが、実質的に類似している。
図45および46に示されるように、ブレードアダプタ3430は、その第1の側(例えば、上側)にエンドエフェクタインターフェースまたは第1の結合機構3440を有する。第1の結合機構3440は、側壁3442、第1の方向(例えば、上向き)に突出する1つ以上のステージ3446、および側壁3442から半径方向外向きに延びる1つ以上のフランジ3447を含み得る。いくつかの実施例では、側壁3442、ステージ3446、およびフランジ3447は同心であり得る。第1の結合機構3440は、エンドエフェクタ3412(図47に示される)の機械的インターフェース3448と係合するようにサイズ設定、成形、および/または構成されている。例えば、機械的インターフェース3448は、ステージ3446を取り囲むように、および/またはエンドエフェクタ3412をブレードアダプタ3430に結合することを容易にするためにフランジ3447と係合するように位置決めされ得る。
いくつかの実施例では、ステージ3446は、基部と、基部から第1の方向(例えば、上向き)に延びる1つ以上の突起3450とを含む。突起3450は、第1の軸3454(例えば、垂直軸)(図44に示される)の周りのブレードアダプタ3430の回転を制御する際に使用するために、機械的インターフェース3448に画定された1つ以上の開口部3452(図47に示される)内に配置され得る。このようにして、エンドエフェクタ3412を第1の軸3454の周りで回転させ得、ブレードアダプタ3430を回転させることができ、したがって、鋸ブレード3432も第1の軸3454の周りで回転させることができる。いくつかの実施例では、ステージ3446は、機械的インターフェース3448の1つ以上の突起3458(図47に示される)を受容するようにサイズ設定、成形、および/または構成された1つ以上の開口部またはギャップ3455(図45に示される)を画定し得る。突起3458は、第1の軸3454の周りで第1の結合機構3440を配向または整列させるのに使用するために、ギャップ3455内に位置決めされ得る。
固定機構3460は、第1の結合機構3440および/または機械的インターフェース3448を通って延在され得、エンドエフェクタ3412に対する第1の軸3454に沿ったブレードアダプタ3430の並進を制御する。いくつかの実施例では、固定機構3460は、第1の結合機構3440で画定されたクリアランス開口部を通って延在し、機械的インターフェース3448のねじ付き開口部にねじ込まれ、ブレードアダプタ3430がエンドエフェクタ3412にクランプされているように捕捉されたねじを含む。
図47に示されるように、ブレードアダプタ3430は、ブレードアダプタ3430の第2の側(例えば、下側)にハンドピースインターフェースまたは第2の結合機構3470を有し得る。第2の結合機構3470は、ハンドピース3120(図34および35に示される)の機械的インターフェース3178と係合するようにサイズ設定、成形、および/または構成され得る。例えば、第2の結合機構3470は、ラジアルスロット3480、輪郭のあるエッジ3481、および機械的インターフェース3178の一部を受容するように構成された1つ以上の開口部3482を画定し得る。このようにして、ハンドピース3120は、鋸ブレード3432に直接接続されることなく、ブレードアダプタ3430にしっかりと結合され得る。
図49A、49Bおよび50は、本発明の一態様を示す。図49Aは、ブレードロックが取り外された標準的なブレードインターフェース3178を示している。ブレードインターフェース3178は、通常、主ドリル3120に取り外し可能に取り付けられている。代わりに、ヘッド付きピン3160は、ブレードロックが配置されていた場所に挿入さる。ヘッド付きピン3160は、回転インターフェース3112の雌ねじにねじ込まれる外ねじを有する。ブレードインターフェース3178、次にブレードアダプタ3130、次に回転インターフェース3112を通って挿入され、回転インターフェースにねじ込まれると、ヘッド付きピン3160は、ブレードインターフェース3178、ブレードアダプタ3130、およびエンドエフェクタ3100の回転インターフェース3112を一緒にロックし、それによってそれらは一緒に回転または関節運動できる。図50に見られるように、ピン3160の少なくとも一部(例えば、ピンヘッドのヘッドの一部)は、ブレードインターフェース3178内、ならびにブレードアダプタ3130および回転インターフェース3112内に捕捉/位置決めされて、ハンドピース3120とブレード3132との間に剛性を提供して、ハンドピースの下向きまたは上向きの動きが、ヘッド付きピン3160の周りのインターフェースでブレードを曲げないようにする。図49~50に示す実施形態では、ブレード3132、ブレードインターフェース3178、ブレードアダプタ3130、および回転インターフェース3112がすべて、ハンドピースインターフェースの振動軸と同一直線上にある、同じ垂直軸3154(図33参照)の周りで回転または振動することに留意することも重要である。標準のブレードインターフェース3178が、ヘッド付きピン3160の挿入を可能にしない場合、ブレードインターフェースのわずかな修正が必要となり得る。ブレードを安定化するためのブレードインターフェース3178、ブレードアダプタ3130、および回転インターフェース3112の内側に配置されるピン3160の概念は、図33~48に示されるように、すべての実施形態を通じて実施することができる。
(さらなる定義および実施形態)
エンドエフェクタを矢状鋸ハンドピースに結合するための例示的なシステムおよび方法は、本明細書に記載され、添付の図面に示されている。この書面による説明は、例を使用して、開示の態様を開示し、また、当業者が、上記のシステムを作成または使用し、上記の方法を実行または行うことを含む態様を実施できるようにする。本明細書に記載の実施例は、矢状鋸ハンドピースをロボットのエンドエフェクタアームに堅固に結合して鋸ブレードを作動させることを可能にし、これにより、ユーザの視点からの感覚が改善される。さらに、ハンドピースが鋸ブレードに直接接続されていないため、ブレード誘導および作動軸の位置合わせが制御および保証され、ブレード誘導および/または作動軸の位置ずれによる鋸ブレードがインターフェースで破損するリスクが軽減され、および自動取り外し式ハンドピースのリスクも軽減される。さらに、インターフェースはハンドピースシステムに非依存である。これにより、既製のハンドピースとの統合に関して柔軟性を提供する。つまり、既製のハンドピースへの変更が減り、ハンドピース本体を「再加工」する必要がなくなる。
前述の説明は、本質的に単なる例示であり、開示、その適用、または使用を制限することを決して意図するものではない。別段に定義されない限り、本明細書で使用されるすべての技術用語および科学用語は、本発明の概念が属する当技術分野の当業者によって一般に理解されるのと同じ意味を有する。一般的に使用される辞書に定義されるような用語は、本明細書および関連する技術分野の文脈におけるそれらの意味に矛盾しない意味を有するものとして解釈されるべきであり、本明細書で明確にそのように定義された理想化された、または過度に形式的な意味では解釈されないことがさらに理解されよう。本開示の広範な教示は、様々な形態で実施することができる。したがって、本開示には特定の例が含まれているが、図面、明細書、および以下の特許請求の範囲を検討すると他の修正が明らかになるため、開示の真の範囲はそれほど限定されるべきではない。本開示の原理を変更することなく、方法内の1つ以上のステップを異なる順序で(または同時に)実行できることを理解されたい。さらに、実施形態のそれぞれは特定の特徴を有するものとして上に記載されているが、本開示の任意の実施形態に関して記載されているこれらの特徴のいずれか1つ以上は、たとえその組み合わせが明示的に説明されていなくとも、他の実施形態のいずれかの特徴に実装され、および/またはそれらと組み合わせることができる。言い換えれば、説明された実施形態は相互に排他的ではなく、1つ以上の実施形態の相互の順列は、本開示の範囲内にとどまる。
要素間の(例えば、モジュール間の)空間的および機能的な関係は、「接続された」、「係合された」、「インターフェースされた」、「結合された」などのさまざまな用語を使用して説明される。「直接」であると明示的に説明されない限り、第1の要素と第2の要素との間の関係が上記の開示で説明される場合、その関係は、第1の要素と第2の要素との間に他の介在要素が存在しない直接関係、および1つ以上の介在要素が(空間的または機能的に)第1の要素と第2の要素の間に存在する。本明細書において使用される場合、単数形「a」、「an」、および「the」は、文脈がそうでないことを明確に示さない限り、複数形も含むことを意図している。「および/または」という用語は、関連する列挙された項目のうちの1つ以上のいずれかおよびすべての組み合わせを含む。本明細書で使用される場合、A、B、およびCのうちの少なくとも1つの句は、非排他的論理ORを使用して、論理(A OR B OR C)を意味すると解釈されるべきであり、「Aの少なくとも1つ、Bの少なくとも1つ、Cの少なくとも1つ」を意味すると解釈されるべきではない。
本明細書では、第1、第2、第3などの用語を使用して様々な要素/動作を説明することがあるが、これらの要素/動作は、これらの用語によって限定されるべきではないことが理解されよう。これらの用語は、ある要素/動作を他の要素/動作から区別するためにのみ使用される。したがって、いくつかの実施形態における第1の要素/動作は、本発明の概念の教示から逸脱することなく、他の実施形態における第2の要素/動作と呼ぶことができる。
本明細書において使用される場合、「備える(comprise)」、「備える(comprising)」、「備える(comprises)」、「含む(include)」、「含む(including)」、「含む(includes)」、「有する(have)」、「有する(has)」、「有する(having)」という用語、またはそれらの変異型は、限定がなく、1つ以上の記された特徴、整数、要素、ステップ、コンポーネント、または機能を含むが、1つ以上の他の特徴、整数、要素、ステップ、コンポーネント、機能、またはそれらのグループの存在もしくは追加を排除するものではない。さらにまた、本明細書において使用される場合、ラテン語の「例えば(exempli gratia)」から派生した一般的な略語「例えば(e.g.)」は、前述の項目の全般的な例を紹介または指定するために使用されてもよく、かかる項目を限定することを意図するものではない。ラテン語の「すなわち(id est)」から派生した一般的な略語「すなわち(i.e.)」は、より全般的な列挙から特定の項目を指定するために使用されてもよい。
図では、矢印で示されている矢印の方向は、概して、図に関係する情報(データや指示など)の流れを示している。例えば、要素Aと要素Bがさまざまな情報を交換するが、要素Aから要素Bに送信される情報が図に関連する場合、矢印は要素Aから要素Bを指し得る。この一方向の矢印は、要素Bから要素Aに送信される他の情報がないことを意味するものではない。さらに、要素Aから要素Bに送信される情報について、要素Bは、情報の要求または受信確認を要素Aに送信し得る。サブセットという用語は、必ずしも適切なサブセットを必要としない。言い換えれば、第1のセットの第1のサブセットは、第1のセットと同一の広がりを有する(等しい)可能性がある。
例示的な実施形態は、コンピュータ実装方法、装置(システムおよび/もしくはデバイス)、ならびに/またはコンピュータプログラム製品を示すブロック図および/またはフローチャート図を参照して本明細書において説明される。ブロック図および/またはフローチャート図のブロック、ならびにブロック図および/またはフローチャート図におけるブロックの組み合わせは、1つ以上のコンピュータ回路によって実行されるコンピュータプログラム命令によって実装されることができることが理解される。これらのコンピュータプログラム命令を汎用コンピュータ回路、専用コンピュータ回路、および/または他のプログラム可能なデータ処理回路のプロセッサ回路に提供して機械を生成することができ、それにより、コンピュータのプロセッサおよび/または他のプログラム可能なデータ処理装置を介して実行される命令は、トランジスタ、メモリの場所に記憶された値、およびかかる回路網内の他のハードウェアコンポーネントを変換および制御して、ブロック図および/またはフローチャートブロックにおいて指定された機能/作用を実装し、かつそれによって、ブロック図および/またはフローチャートブロックにおいて指定された機能/作用を実装するための手段(機能)および/または構造を作り出す。
これらのコンピュータプログラム命令はまた、コンピュータ可読媒体に記憶された命令がブロック図および/またはフローチャートブロックまたは複数のブロックにおいて指定された機能/作用を実装する命令を含む製造物品を製造するように、コンピュータまたは他のプログラム可能なデータ処理装置が特定の方法で機能するように指示することができる有形のコンピュータ可読媒体に記憶されてもよい。したがって、本発明の概念の実施形態は、集合的に「回路網」、「モジュール」、またはそれらの変異型と称されることができる、デジタル信号プロセッサなどのプロセッサで動作するハードウェアおよび/またはソフトウェア(ファームウェア、常駐ソフトウェア、マイクロコードなどを含む)で具体化されることができる。
また、いくつかの代替実装形態では、ブロックに記載されている機能/作用が、フローチャートに記載されている順序とは異なる順序で発生する場合があることにも留意されたい。例えば、連続して示されている2つのブロックは、関与する機能/作用に応じて、実際には実質的に同時に実行されてもよいかまたはブロックが逆の順序で実行されてもよい。さらに、フローチャートおよび/またはブロック図の所与のブロックの機能は、複数のブロックに分離されてもよく、および/またはフローチャートおよび/またはブロック図の2つ以上のブロックの機能は、少なくとも部分的に統合されてもよい。最後に、本発明の概念の範囲から逸脱することなく、図示されているブロックの間に他のブロックが追加/挿入されてもよく、および/またはブロックまたは動作が省略されてもよい。さらに、いくつかの図は、通信の主要な方向を示すために通信経路上に矢印を含んでいるが、通信は、描かれた矢印と反対の方向で発生する場合があることを理解されたい。本発明の概念の原理から実質的に逸脱することなく、実施形態に多くの変形および修正を加えることができる。すべてのこのような変更および修正は、本発明概念の範囲内で本明細書に含まれることが意図されている。したがって、上で開示された発明の対象は、限定的ではなく例示的であると見なされるべきであり、付け加えられた実施形態の例は、本発明概念の趣旨および範囲内にあるすべてのこのような修正、強化、および他の実施形態に及ぶことが意図されている。したがって、法律によって許される最大限の範囲で、本発明概念の範囲は、以下の実施形態の例およびそれらの均等物を含む本開示の最も広い許容可能な解釈によって決定されるべきであり、前述の発明を実施するための形態に制限または限定されるものではないとする。