JP7264784B2 - Method for manufacturing nuclear equipment components and nuclear equipment components - Google Patents

Method for manufacturing nuclear equipment components and nuclear equipment components Download PDF

Info

Publication number
JP7264784B2
JP7264784B2 JP2019174714A JP2019174714A JP7264784B2 JP 7264784 B2 JP7264784 B2 JP 7264784B2 JP 2019174714 A JP2019174714 A JP 2019174714A JP 2019174714 A JP2019174714 A JP 2019174714A JP 7264784 B2 JP7264784 B2 JP 7264784B2
Authority
JP
Japan
Prior art keywords
metal
space
pressure
gas
defining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019174714A
Other languages
Japanese (ja)
Other versions
JP2021050395A (en
Inventor
和馬 廣坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2019174714A priority Critical patent/JP7264784B2/en
Publication of JP2021050395A publication Critical patent/JP2021050395A/en
Application granted granted Critical
Publication of JP7264784B2 publication Critical patent/JP7264784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、原子力設備部材の製造方法及び原子力設備部材に関する。 TECHNICAL FIELD The present invention relates to a method for manufacturing a member for nuclear power equipment and a member for nuclear power equipment.

金属部材の処理技術として、熱間等方圧加圧法(HIP法)が知られている。HIP法に関する技術として、特許文献1に記載の技術が知られている。特許文献1には、一端が開口するカプセル内に処理材を充填し、該開口部を通じて真空脱気し、次いで該開口部を密封して処理体を製作した後、該処理体の密封部を下にして熱間静水圧加圧装置に供して、熱間静水圧加圧装置の下部の低温部に設けられた断熱材を有する支持具により前記密封部を囲撓して支持した状態で熱間静水圧加圧処理を行うことを特徴とする熱間静水圧加圧方法が記載されている。(特に請求項1参照)。 A hot isostatic pressing method (HIP method) is known as a processing technique for metal members. As a technique related to the HIP method, the technique described in Patent Document 1 is known. In Patent Document 1, a processing material is filled in a capsule having an opening at one end, vacuum degassed through the opening, and then the opening is sealed to manufacture a processing body. It is placed under the hot isostatic pressure pressurizing device, and heated in a state in which the sealing portion is surrounded and supported by a support having a heat insulating material provided in the lower low temperature portion of the hot isostatic pressure pressurizing device. A hot isostatic pressing method is described, which is characterized by performing a hot isostatic pressing treatment. (See especially claim 1).

特開平2-294407号公報JP-A-2-294407

ところで、HIP法を用いることで、異なる金属部材同士を接合(例えば拡散接合)できる。以下、このような接合を「HIP接合」という。しかし、特許文献1に記載の技術では、HIP接合可能な金属部材は、熱間等方圧加圧を行う高圧容器に収容可能な大きさに制限される。従って、従来の高圧容器には収容できない大型の金属部材に対してもHIP接合可能な新たな技術が望まれる。 By the way, by using the HIP method, different metal members can be joined together (for example, diffusion joining). Such bonding is hereinafter referred to as "HIP bonding". However, in the technique described in Patent Literature 1, a metal member that can be HIP-bonded is limited to a size that can be accommodated in a high-pressure container that performs hot isostatic pressing. Therefore, there is a demand for a new technique that enables HIP bonding even for large metal members that cannot be accommodated in conventional high-pressure vessels.

本発明が解決しようとする課題は、大型の金属部材であってもHIP接合可能な原子力設備部材の製造方法及び原子力設備部材を提供することである。 The problem to be solved by the present invention is to provide a method for manufacturing a nuclear power equipment member and a nuclear power equipment member capable of HIP joining even a large metal member.

本発明は、第1金属部材と、金属焼結体を介して前記第1金属部材に接合される第2金属部材とを備える原子力設備部材の製造方法であって、前記第1金属部材の第1接合面と前記第2金属部材の第2接合面との双方の接合面を臨む画成空間を画成する、可撓性を有する画成部材を配置する配置工程と、前記画成空間に金属原料を充填する充填工程と、前記画成部材の前記画成空間とは反対側に形成されるガス空間にガスを注入し、前記画成部材を介した前記金属原料へのガス圧の伝播によって前記画成空間内で前記金属原料の熱間等方圧加圧を行うことで前記画成空間内に前記金属焼結体を形成するHIP工程と、を含み、前記HIP工程は、前記画成空間の外部に配置された加熱機構の熱による加熱によって行われるとともに、前記画成空間を覆うように配置された前記加熱機構と、前記加熱機構の配置部位以外の、前記第1金属部材及び前記第2金属部材の少なくともいずれか一方の外表面に配置された冷却機構とを備える温度制御機構を用いて行われる原子力設備部材の製造方法に関する。その他の解決手段は発明を実施するための形態において後記する。 The present invention is a method for manufacturing a nuclear power facility member comprising a first metal member and a second metal member joined to the first metal member via a sintered metal, wherein the first metal member of the first metal member an arranging step of arranging a flexible defining member defining a defined space facing both the first joint surface and the second joint surface of the second metal member; a filling step of filling a metal raw material; and injecting a gas into a gas space formed on a side of the defining member opposite to the defining space, and propagating gas pressure to the metal raw material through the defining member. a HIP step of forming the metal sintered body in the defined space by performing hot isostatic pressing of the metal raw material in the defined space by Heating is performed by heat of a heating mechanism arranged outside the defined space, and the heating mechanism arranged so as to cover the defined space, and the first metal member other than the arrangement portion of the heating mechanism and a cooling mechanism disposed on the outer surface of at least one of the second metal members. Other solutions will be described later in the detailed description.

本発明によれば、大型の金属部材であってもHIP接合可能な原子力設備部材の製造方法及び原子力設備部材を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the nuclear power equipment member and the nuclear power equipment member which can HIP-join even a large-sized metal member can be provided.

本実施形態の製造方法を示すフローチャートである。It is a flow chart which shows the manufacturing method of this embodiment. 本実施形態の製造方法により製造される原子力設備部材を示す図である。It is a figure which shows the nuclear power equipment member manufactured by the manufacturing method of this embodiment. 配置工程を説明する図であり、第1金属部材と一体に形成された反応部に第2金属部材を嵌めた状態を示す図である。FIG. 10B is a view for explaining an arrangement step, and shows a state in which the second metal member is fitted in the reaction portion formed integrally with the first metal member. 図3のB-B線断面図である。4 is a cross-sectional view taken along the line BB of FIG. 3; FIG. 第1圧力調整工程を説明する図であり、画成部材をガス空間の側に張り出した状態を示す図である。FIG. 11 is a diagram for explaining the first pressure adjustment step, and is a diagram showing a state in which the defining member protrudes toward the gas space. 第2圧力調整工程を説明する図であり、金属原料を充填した画成空間を減圧する様子を示す図である。It is a figure explaining a 2nd pressure adjustment process, and is a figure which shows a mode that the defined space filled with the metal raw material is pressure-reduced. HIP工程を説明する図であり、ガス空間にガスを注入する様子を示す図である。It is a figure explaining a HIP process, and is a figure which shows a mode that gas is inject|poured into gas space. HIP工程を説明する図であり、金属原料を加熱する様子を示す図である。It is a figure explaining a HIP process, and is a figure which shows a mode that a metal raw material is heated. 冷却工程を説明する図であり、HIP工程で使用した加熱機構及び断熱材を第1金属部材及び第2金属部材から取り外した状態を示す図である。FIG. 10 is a diagram for explaining the cooling process, and shows a state in which the heating mechanism and heat insulating material used in the HIP process are removed from the first metal member and the second metal member. 切除工程を説明する図であり、図2のA部拡大図である。It is a figure explaining an excision process, and is an A section enlarged view of FIG. 図10Aの金属焼結体を拡大して示す図である。It is a figure which expands and shows the metal sintered compact of FIG. 10A. 別の実施形態に係る図であり、金属鍛造部材を画成空間に配置した反応部を示す図である。FIG. 10 is a view according to another embodiment, showing a reaction section with a metal forging member arranged in a defined space; 別の実施形態に係る図であり、冷却機構を備える温度制御機構を示す図である。FIG. 5 is a diagram according to another embodiment, showing a temperature control mechanism with a cooling mechanism;

以下、本発明を実施するための形態(本実施形態)を説明する。ただし、本発明は以下の内容及び図示の内容になんら限定されず、本発明の効果を著しく損なわない範囲で任意に変形して実施できる。本発明は、異なる実施形態同士を組み合わせて実施できる。以下の記載において、異なる実施形態において同じ部材については同じ符号を付し、重複する説明は省略する。 Hereinafter, a form (this embodiment) for carrying out the present invention will be described. However, the present invention is by no means limited to the following content and the content of the drawings, and can be arbitrarily modified within the scope that does not significantly impair the effects of the present invention. The present invention can be practiced by combining different embodiments. In the following description, the same reference numerals are given to the same members in different embodiments, and overlapping descriptions are omitted.

図1は、本実施形態の製造方法を示すフローチャートである。また、図2は、本実施形態の製造方法により製造される原子力設備部材を示す図である。図1に示す製造方法は、図2に示す原子力設備部材10を製造する方法である。 FIG. 1 is a flow chart showing the manufacturing method of this embodiment. Moreover, FIG. 2 is a figure which shows the nuclear power equipment member manufactured by the manufacturing method of this embodiment. The manufacturing method shown in FIG. 1 is a method for manufacturing the nuclear facility member 10 shown in FIG.

原子力設備部材10は、第1金属部材1と、金属焼結体3を介して第1金属部材1に接合される第2金属部材2とを備える。図2に示す例では、円管状の第1金属部材1と円管状の第2金属部材2とが金属焼結体3により接合される。金属焼結体3は、詳細は後記するが、HIP法により生成したものである。 A nuclear power facility member 10 includes a first metal member 1 and a second metal member 2 joined to the first metal member 1 via a metal sintered body 3 . In the example shown in FIG. 2 , a tubular first metal member 1 and a tubular second metal member 2 are joined by a metal sintered body 3 . The metal sintered body 3 is produced by the HIP method, the details of which will be described later.

原子力設備部材10は、例えば圧力容器(図示しない)である。圧力容器は、例えば圧力容器本体部(図示しない)、ノズル、隔離弁を備え、第1金属部材1は例えば圧力容器本体部に接合されるノズルであり、第2金属部材2はノズルに接合される隔離弁である。ノズル及び隔離弁はいずれも端部を円管状に構成され、端部の円管同士がHIP接合される。原子力設備部材10は、圧力容器の他にも、例えば、原子炉、格納容器、圧力制御室、タービン、発電機、復水器、これらを接続する長大配管、この長大配管に接続される弁等、比較的大型で従来のHIP法における高圧容器に収容が難しい原子力設備に適用可能である。
なお、図2のA部については、図3、図10A等を参照しながら後記する。
The nuclear facility member 10 is, for example, a pressure vessel (not shown). The pressure vessel includes, for example, a pressure vessel main body (not shown), a nozzle, and an isolation valve. The first metal member 1 is, for example, a nozzle joined to the pressure vessel main body, and the second metal member 2 is joined to the nozzle. It is an isolation valve that Both the nozzle and the isolation valve have circular tube ends, and the circular tubes at the ends are HIP-joined to each other. In addition to pressure vessels, nuclear facility members 10 include, for example, nuclear reactors, containment vessels, pressure control chambers, turbines, generators, condensers, long pipes connecting these, valves connected to these long pipes, and the like. , it is applicable to nuclear power facilities that are relatively large and difficult to accommodate in a high-pressure vessel in the conventional HIP method.
2 will be described later with reference to FIG. 3, FIG. 10A, and the like.

配置工程S1は、後記する図3に示すように、第1金属部材1の第1接合面1aと第2金属部材2の第2接合面2aとの双方の接合面を臨む画成空間30を画成する、可撓性を有する画成部材40を配置する工程である。配置工程S1について、図3を参照しながら説明する。 In the arranging step S1, as shown in FIG. 3, which will be described later, a defining space 30 facing both the joint surfaces of the first joint surface 1a of the first metal member 1 and the second joint surface 2a of the second metal member 2 is formed. This is the step of disposing the defining flexible defining member 40 . The placement step S1 will be described with reference to FIG.

図3は、配置工程S1を説明する図であり、第1金属部材1と一体に形成された反応部60に第2金属部材2を嵌めた状態を示す図である。図3は、上記のように例えば円管で構成された第1金属部材1及び第2金属部材2の接合部分を拡大して図示したものである。具体的には、図3に示す部分に対し、後記するHIP工程S5、切除工程S7等を経ることにより上記図2のA部が形成される。即ち、図3に示す部分において第1金属部材1と第2金属部材2とがHIP接合されることで、図2のA部に示すように、これらが金属焼結体3を介してHIP接合される。 FIG. 3 is a diagram for explaining the placement step S1, and shows a state in which the second metal member 2 is fitted in the reaction portion 60 integrally formed with the first metal member 1. As shown in FIG. FIG. 3 is an enlarged view of the joint portion between the first metal member 1 and the second metal member 2, which are made of circular pipes, for example, as described above. Specifically, the portion A shown in FIG. 2 is formed by subjecting the portion shown in FIG. That is, the first metal member 1 and the second metal member 2 are HIP-joined at the portion shown in FIG. be done.

第1金属部材1は反応部60を備え、反応部60は第1金属部材1の端部で連続的に形成される。反応部60は、第1金属部材1の端部において張り出すように形成される。反応部60は、第1金属部材1の延びる側とは反対側に嵌合部61を備える。嵌合部61は、図3では図示しないが、本実施形態では、円管状の第1金属部材1の全周に亘って形成される。また、第2金属部材2の端部は、フランジのように張り出した張り出し部2bを備える。張り出し部2bも、図3では図示しないが、円管状の第2金属部材2の全周に亘って形成される。張り出し部2bの径方向長さ(図3での紙面上下方向長さ)は嵌合部61の径方向長さ(図3での紙面上下方向長さ)とほぼ一致しており、張り出し部2bは嵌合部61に嵌合可能である。 The first metal member 1 has a reaction portion 60 which is continuously formed at the end of the first metal member 1 . The reaction portion 60 is formed to protrude from the end portion of the first metal member 1 . The reaction portion 60 has a fitting portion 61 on the side opposite to the side where the first metal member 1 extends. Although not shown in FIG. 3 , the fitting portion 61 is formed along the entire circumference of the tubular first metal member 1 in this embodiment. Further, the end of the second metal member 2 is provided with an overhanging portion 2b that overhangs like a flange. The protruding portion 2b is also formed over the entire circumference of the cylindrical second metal member 2, although not shown in FIG. The radial length of the protruding portion 2b (length in the vertical direction of the paper surface in FIG. 3) substantially matches the radial length of the fitting portion 61 (the vertical length in the paper surface of FIG. 3). can be fitted into the fitting portion 61 .

嵌合部61と張り出し部2bとの嵌合部分には、これらの隙間を埋めるように、仮溶接部70が形成される。仮溶接部70により、詳細は後記するが、画成空間30の減圧状態を維持できる。 A temporary welded portion 70 is formed at the fitting portion between the fitting portion 61 and the projecting portion 2b so as to fill the gap between them. The decompression state of the defined space 30 can be maintained by the temporary welded portion 70, although the details will be described later.

反応部60は、画成空間30及びガス空間31を内部に備える。画成空間30は、第1金属部材1の第1接合面1aと第2金属部材2の第2接合面2aとの双方の接合面を臨む空間である。画成空間30は、第1接合面1a及び第2接合面2aに沿って円環状に形成される。反応部60は開口53及び連通路54を備える。画成空間30は連通路54により外部と連通しており、外部に露出した開口53を通じ、例えば粉末状の金属原料80(図3では図示しない)が充填可能である(後記する)。 The reaction section 60 internally includes a defined space 30 and a gas space 31 . The defined space 30 is a space facing both the first joint surface 1 a of the first metal member 1 and the second joint surface 2 a of the second metal member 2 . The defined space 30 is formed in an annular shape along the first joint surface 1a and the second joint surface 2a. The reaction section 60 has an opening 53 and a communication passage 54 . The defined space 30 communicates with the outside through a communication path 54, and can be filled with, for example, a powdered metal raw material 80 (not shown in FIG. 3) through an opening 53 exposed to the outside (described later).

ガス空間31は、画成空間30の径方向内側及び外側に形成される。反応部60は開口51及び連通路52を備える。ガス空間31は連通路52により外部と連通しており、外部に露出した開口51を通じ、高圧の不活性ガス(後記する)がガス空間31に注入可能である(後記する)。 The gas spaces 31 are formed radially inside and outside the defined space 30 . The reaction section 60 has an opening 51 and a communication passage 52 . The gas space 31 communicates with the outside through a communication passage 52, and a high-pressure inert gas (described later) can be injected into the gas space 31 through the opening 51 exposed to the outside (described later).

反応部60は、画成空間30とガス空間31とを区画するように配置された画成部材40を備える。画成部材40は、例えばロウ付け、溶接等により、反応部60の内壁60aに周方向全域に亘って固定される。画成部材40は、画成空間30の径方向内側の内壁60a及び外側の内壁60aのそれぞれに配置され、いずれも画成空間30とガス空間31とを気密にするように配置される。従って、画成空間30は、主に、画成部材40,40と第1接合面1aと第2接合面2aとにより画成される。画成部材40の配置場所について、図4を参照しながら説明する。 The reaction section 60 includes a defining member 40 arranged to separate the defining space 30 and the gas space 31 . The defining member 40 is fixed to the inner wall 60a of the reaction section 60 over the entire circumferential direction by, for example, brazing, welding, or the like. The defining member 40 is arranged on each of the radial inner wall 60a and the radially outer inner wall 60a of the defining space 30, and both are arranged so as to make the defining space 30 and the gas space 31 airtight. Therefore, the defining space 30 is defined mainly by the defining members 40, 40, the first joint surface 1a, and the second joint surface 2a. The location of the defining member 40 will be described with reference to FIG.

図4は、図3のB-B線断面図である。画成部材40,40は、図示のように、円環状の第1金属部材1の周方向に延在する。画成部材40,40の間には、画成空間30が形成される。画成空間30には、連通路54を通じて金属原料80(図4では図示しない)が充填可能である。画成部材40と連通路52との間には、ガス空間31が形成される。ガス空間31は、径方向外側及び内側にそれぞれ形成される。 4 is a cross-sectional view taken along the line BB of FIG. 3. FIG. The defining members 40 , 40 extend in the circumferential direction of the annular first metal member 1 as shown. A defined space 30 is formed between the defining members 40 , 40 . The defined space 30 can be filled with a metal raw material 80 (not shown in FIG. 4) through the communication passage 54 . A gas space 31 is formed between the defining member 40 and the communicating passage 52 . The gas spaces 31 are formed radially outward and inward, respectively.

図3に戻って、画成部材40は、可撓性を有する金属材料により構成され、例えば金属箔である。画成部材40を金属箔で構成することで、画成空間30とガス空間31との圧力差に応じて金属箔を変形でき、ガス空間31のガス圧を金属箔を介して画成空間30内部の金属原料80に伝播できる。画成部材40の金属材料としては例えばSUSであり、画成部材40の厚さは例えば5μm以上100μm以下である。 Returning to FIG. 3, the defining member 40 is made of a flexible metal material, such as metal foil. By configuring the defining member 40 with a metal foil, the metal foil can be deformed according to the pressure difference between the defining space 30 and the gas space 31, and the gas pressure in the gas space 31 can be applied to the defining space 30 via the metal foil. It can propagate to the metal raw material 80 inside. The metal material of the defining member 40 is, for example, SUS, and the thickness of the defining member 40 is, for example, 5 μm or more and 100 μm or less.

なお、図3の例では、反応部60は第1金属部材1と一体に形成されているが、第2金属部材2と一体に形成されてもよい。 In addition, in the example of FIG. 3 , the reaction section 60 is formed integrally with the first metal member 1 , but may be formed integrally with the second metal member 2 .

図1に戻って、第1圧力調整工程S2は、配置工程S1後であって充填工程S3前に、画成空間30の圧力をガス空間31の圧力よりも高くする工程である。第1圧力調整工程S2を含むことで、画成部材40がダイアフラムのように撓み、画成部材40をガス空間31の側に張り出させることができる。第1圧力調整工程S2について、図5を参照しながら説明する。 Returning to FIG. 1, the first pressure adjustment step S2 is a step of making the pressure in the defined space 30 higher than the pressure in the gas space 31 after the placement step S1 and before the filling step S3. By including the first pressure adjustment step S<b>2 , the defining member 40 can be bent like a diaphragm, and the defining member 40 can be projected toward the gas space 31 . The first pressure adjustment step S2 will be described with reference to FIG.

図5は、第1圧力調整工程S2を説明する図であり、画成部材40をガス空間31の側に張り出した状態を示す図である。第1圧力調整工程S2は、例えば、ガス空間31を減圧することで行うことができる。ガス空間31の減圧は、例えば、開口51にホース90を接続し、実線矢印で示すようにホース90及び連通路52を介した脱気により行うことができる。ただし、開口53及び連通路54を介したガス空間31への注気により、画成空間30を昇圧してもよい。 FIG. 5 is a diagram for explaining the first pressure adjustment step S2, and shows a state in which the defining member 40 protrudes toward the gas space 31 side. The first pressure adjustment step S2 can be performed by reducing the pressure in the gas space 31, for example. The gas space 31 can be depressurized, for example, by connecting a hose 90 to the opening 51 and degassing via the hose 90 and the communication passage 52 as indicated by the solid line arrow. However, the defining space 30 may be pressurized by injecting air into the gas space 31 through the opening 53 and the communicating passage 54 .

脱気は、例えば真空ポンプ(図示しない)を用いることができる。減圧の程度は特に制限されないが、ガス空間31の圧力は例えば750hPa程度にできる。減圧速度は、例えば50Pa/分以下、好ましくは10Pa/分以下にできる。圧力及び減圧速度をこの程度にすることで、画成部材40の大きな変形を抑制でき、画成部材40の破損を抑制できる。 For degassing, for example, a vacuum pump (not shown) can be used. Although the degree of pressure reduction is not particularly limited, the pressure in the gas space 31 can be set to about 750 hPa, for example. The decompression speed can be, for example, 50 Pa/min or less, preferably 10 Pa/min or less. By setting the pressure and depressurization speed to this level, it is possible to suppress large deformation of the defining member 40 and to suppress breakage of the defining member 40 .

図1に戻って、充填工程S3は、画成空間30に金属原料80を充填する工程である。画成空間30への金属原料80の充填は、上記のように、開口53及び連通路54を通じて行うことができる。充填は、画成空間30に隙間が発生しないようにできるだけ密に充填することが好ましい。これにより、焼成後に生成する金属焼結体3での気孔3b(後記する)の含有量を減らすことができる。 Returning to FIG. 1, the filling step S3 is a step of filling the defined space 30 with the metal raw material 80 . Filling of the metal raw material 80 into the defined space 30 can be performed through the opening 53 and the communication path 54 as described above. It is preferable to fill the defined space 30 as densely as possible so as not to generate gaps. As a result, the content of pores 3b (described later) in the metal sintered body 3 generated after firing can be reduced.

ここで、上記の第1圧力調整工程S2での減圧後、画成部材40が撓んだ状態(例えばガス空間31の減圧状態)を維持することが好ましい。従って、充填工程S3は、画成空間30の圧力がガス空間31の圧力よりも高い状態で行われることが好ましい。これにより、画成部材40をガス空間31の側に張り出すことで内容積が大きくなった画成空間30に金属原料80を充填でき、画成空間30への金属原料80の充填量を多くできる。なお、充填後、ガス空間31の減圧状態を解除し、圧力を例えば大気圧等に戻すことが好ましい。 Here, it is preferable to maintain the state in which the defining member 40 is bent (for example, the depressurized state of the gas space 31) after depressurization in the first pressure adjustment step S2. Therefore, the filling step S<b>3 is preferably performed in a state where the pressure in the defined space 30 is higher than the pressure in the gas space 31 . As a result, the metal source material 80 can be filled into the demarcated space 30 whose internal volume is increased by projecting the delimiting member 40 toward the gas space 31 side, and the amount of the metal source material 80 filled into the demarcated space 30 can be increased. can. After filling, it is preferable to release the decompressed state of the gas space 31 and return the pressure to, for example, the atmospheric pressure.

充填する金属原料80の物性及び成分は特に制限されない。ただし、金属原料80は、後記するHIP工程S5での熱間等方圧加圧が進行し易い物性及び成分のものを使用することが好ましい。具体的には例えば、レーザ回折式粒度分布測定装置により測定される平均粒径が例えば100μm以下、好ましくは50μm以下の粒径を有するチタン-ニッケル基合金粉末により構成される金属原料80を使用できるが、これに限られるものではない。 The physical properties and components of the metal raw material 80 to be filled are not particularly limited. However, it is preferable to use the metal raw material 80 having physical properties and components that facilitate hot isostatic pressing in the HIP step S5 described later. Specifically, for example, a metal raw material 80 composed of a titanium-nickel-based alloy powder having an average particle size of 100 μm or less, preferably 50 μm or less as measured by a laser diffraction particle size distribution measuring device can be used. However, it is not limited to this.

充填は、例えば第1金属部材1及び第2金属部材2の全体を振動させながら行うことが好ましい。これにより、画成空間30の周方向全域において密に金属原料80を充填できる。また、充填する金属原料80は、予め乾燥させておくことが好ましい。乾燥により、金属原料80を画成空間30の周方向全域において密に充填し易くできる。 It is preferable to perform the filling while vibrating the whole of the first metal member 1 and the second metal member 2, for example. As a result, the metal raw material 80 can be densely filled in the defined space 30 in the entire circumferential direction. Moreover, it is preferable to dry the metal raw material 80 to be filled in advance. By drying, the metal raw material 80 can be easily and densely filled in the entire circumferential direction of the defined space 30 .

第2圧力調整工程S4は、充填工程S3後であってHIP工程S5前に、画成空間30を減圧する工程である。第2圧力調整工程S4について、図6を参照しながら説明する。 The second pressure adjustment step S4 is a step of depressurizing the defined space 30 after the filling step S3 and before the HIP step S5. The second pressure adjustment step S4 will be described with reference to FIG.

図6は、第2圧力調整工程S4を説明する図であり、金属原料80を充填した画成空間30を減圧する様子を示す図である。画成空間30の減圧は、例えば、開口53にホース91を接続し、実線矢印で示すようにホース91及び連通路54を介した脱気により行うことができる。減圧は、例えば真空ポンプを用いることができる。減圧の程度は真空又は真空に近いことが好ましく、画成空間30の圧力は例えば10Pa以下、好ましくは1Pa以下、より好ましくは0.1Pa以下である。減圧速度は、例えば50Pa/分以下、好ましくは10Pa/分以下にできる。 FIG. 6 is a diagram for explaining the second pressure adjustment step S4, and shows how the defined space 30 filled with the metal raw material 80 is decompressed. Depressurization of the defined space 30 can be performed, for example, by connecting a hose 91 to the opening 53 and degassing via the hose 91 and the communication passage 54 as indicated by the solid line arrow. For decompression, for example, a vacuum pump can be used. The degree of pressure reduction is preferably vacuum or close to vacuum, and the pressure in the defined space 30 is, for example, 10 Pa or less, preferably 1 Pa or less, and more preferably 0.1 Pa or less. The decompression speed can be, for example, 50 Pa/min or less, preferably 10 Pa/min or less.

第2圧力調整工程S4により、HIP工程前に画成空間30を減圧でき、HIP工程後に生成する金属焼結体3中の気孔3b(後記する)の含有量を減らすことができる。また、充填工程S3後の減圧により、充填した金属原料80に沿ってガス空間31の側に張り出していた画成部材40は、画成空間30の側に張り出そうと金属原料80に密着し、画成部材40の変形が制限される。これにより、画成部材40の大きな変形を抑制でき、画成部材40の破損を抑制できる。 By the second pressure adjustment step S4, the defined space 30 can be decompressed before the HIP step, and the content of pores 3b (described later) in the metal sintered body 3 generated after the HIP step can be reduced. In addition, due to the reduced pressure after the filling step S3, the defining member 40 protruding toward the gas space 31 side along the filled metal raw material 80 comes into close contact with the metal raw material 80 so as to protrude toward the defining space 30 side. , the deformation of the defining member 40 is limited. As a result, large deformation of the defining member 40 can be suppressed, and breakage of the defining member 40 can be suppressed.

画成空間30の減圧後、開口53に仮溶接部71(図7参照)が形成され、画成空間30が密封される。 After the defined space 30 is decompressed, a temporary weld 71 (see FIG. 7) is formed in the opening 53 to seal the defined space 30 .

図1に戻って、HIP工程S5は、画成部材40の画成空間30とは反対側に形成されるガス空間31にガスを注入し、画成部材40を介した金属原料80へのガス圧の伝播によって画成空間30内で金属原料80の熱間等方圧加圧を行うことで画成空間30内に金属焼結体3を形成する工程である。HIP工程S5について、図7及び図8を参照しながら説明する。 Returning to FIG. 1, in the HIP step S5, gas is injected into the gas space 31 formed on the opposite side of the defining member 40 from the defining space 30, and the gas is introduced into the metal raw material 80 via the defining member 40. This is a step of forming the metal sintered body 3 in the defined space 30 by performing hot isostatic pressurization of the metal raw material 80 in the defined space 30 by pressure propagation. The HIP step S5 will be described with reference to FIGS. 7 and 8. FIG.

図7は、HIP工程S5を説明する図であり、ガス空間31にガスを注入する様子を示す図である。ガス空間31へのガスの注入は、開口51にホース90を接続し、実線矢印で示すようにホース90及び連通路52を介した注入により行うことができる。注入は、例えば高圧ポンプ(図示しない)を用いて行うことができる。注入するガスは不活性ガスであることが好ましく、例えばアルゴンガス、窒素ガス等である。 FIG. 7 is a diagram for explaining the HIP step S5, showing how gas is injected into the gas space 31. As shown in FIG. Gas can be injected into the gas space 31 by connecting a hose 90 to the opening 51 and injecting through the hose 90 and the communication passage 52 as indicated by the solid line arrow. Injection can be performed, for example, using a high pressure pump (not shown). The injected gas is preferably an inert gas such as argon gas or nitrogen gas.

ここで、金属原料80は、ガス空間31の側に張り出した画成部材40に沿って画成空間30に密に充填されている。このため、ガス空間31にガスが注入されても、画成部材40の変形が制限されることから、画成部材40は図示のようにガス空間31の側に張り出したままになっている。 Here, the metal raw material 80 is densely filled in the defining space 30 along the defining member 40 protruding toward the gas space 31 side. Therefore, even if the gas is injected into the gas space 31, the deformation of the defining member 40 is restricted, so that the defining member 40 remains projecting toward the gas space 31 as shown.

ガスの注入は、ガス空間31の圧力が金属原料80の熱間等方圧加圧を行う所定圧力になるように行うことが好ましい。ここでいう所定圧力は、第1金属部材1及び第2金属部材の構成金属及び金属原料80の構成金属によっても異なるが、概ね75MPa以上250MPa以下に含まれる圧力値である。即ち、HIP工程S5は、ガス空間31での圧力として75MPa以上250MPa以下の圧力で行われることが好ましい。ガス空間31の圧力をこの範囲にすることで、画成部材40を介したガス圧の伝播により、75MPa以上250MPa以下の圧力で金属原料80の熱間等方圧加圧を行うことができる。なお、ガス空間31の圧力は、好ましくは100MPa以上200MPa以下である。 It is preferable to inject the gas so that the pressure in the gas space 31 reaches a predetermined pressure for hot isostatic pressurization of the metal raw material 80 . The predetermined pressure referred to here differs depending on the constituent metals of the first metal member 1 and the second metal member and the constituent metals of the metal raw material 80, but is generally a pressure value within the range of 75 MPa or more and 250 MPa or less. That is, the HIP step S5 is preferably performed at a pressure of 75 MPa or more and 250 MPa or less as the pressure in the gas space 31 . By setting the pressure of the gas space 31 within this range, the gas pressure is propagated through the defining member 40, and hot isostatic pressurization of the metal raw material 80 can be performed at a pressure of 75 MPa or more and 250 MPa or less. In addition, the pressure of the gas space 31 is preferably 100 MPa or more and 200 MPa or less.

反応部60では、金属原料80に対し、円管状の第1金属部材1及び第2金属部材2の軸方向(紙面左右方向)からの圧力はかからない。即ち、金属原料80に対し、画成部材40を介して径方向(紙面上下方向)からの圧力がかかるが、軸方向(紙面左右方向)からの圧力はかからない。これは、金属原料80から見て、第1金属部材1の第1接合面1a及び第2金属部材2の第2接合面2aは固定端であることに起因する。このため、画成部材40を介してガス圧が伝播された金属原料80の移動は、第1接合面1a及び第2接合面2aにより制限される。従って、画成部材40を介したガス圧により、金属原料80は第1接合面1a及び第2接合面2aで押し返される(作用反作用の法則)。この結果、金属原料80は全方向から概ね同程度の圧力で加圧され、HIP接合が実現される。 In the reaction section 60 , no pressure is applied to the metal raw material 80 from the axial direction (horizontal direction of the drawing) of the cylindrical first metal member 1 and the second metal member 2 . That is, pressure is applied to the metal raw material 80 from the radial direction (vertical direction on the paper surface) through the defining member 40, but no pressure is applied from the axial direction (horizontal direction on the paper surface). This is because the first joint surface 1a of the first metal member 1 and the second joint surface 2a of the second metal member 2 are fixed ends when viewed from the metal raw material 80 . Therefore, the movement of the metal raw material 80 to which the gas pressure is propagated through the partition member 40 is restricted by the first joint surface 1a and the second joint surface 2a. Therefore, the metal raw material 80 is pushed back by the first joint surface 1a and the second joint surface 2a by the gas pressure via the partitioning member 40 (law of action and reaction). As a result, the metal raw material 80 is pressurized from all directions with approximately the same pressure, and HIP bonding is realized.

図示の例では、金属原料80からみて径方向に対象になるように(紙面上下方向で対象になるように)、画成部材40が配置される。配置される画成部材40の数は1つのみ、即ち、金属原料80へのガス圧の伝播を行う部分は1箇所のみでもよいが、より同じ圧力で金属原料80を全方向から加圧する観点から、図示のように複数の画成部材40を配置することが好ましく、中でも、図示のように金属原料80からみて対称になるように画成部材40を配置することが好ましい。 In the illustrated example, the defining members 40 are arranged so as to be symmetrical in the radial direction when viewed from the metal raw material 80 (symmetrical in the vertical direction of the paper surface). Only one defining member 40 may be arranged, that is, only one portion may be used for propagating the gas pressure to the metal raw material 80, but the viewpoint is to pressurize the metal raw material 80 from all directions with the same pressure. Therefore, it is preferable to arrange a plurality of defining members 40 as shown in the drawing, and it is particularly preferable to arrange the defining members 40 so as to be symmetrical with respect to the metal raw material 80 as shown in the drawing.

ガスの注入は、ガス空間31での昇圧速度が10Pa/分以上50Pa以下/分以下になるように行うことが好ましい。ガス空間31の圧力を、金属原料80の熱間等方圧加圧を行う所定圧力まで上記昇圧速度で上昇させることで、画成空間30とガス空間31との圧力差に起因して変動する画成部材40の変形を緩やかにできる。これにより、画成部材40の破損を抑制できる。 It is preferable to inject the gas so that the pressure increase rate in the gas space 31 is 10 Pa/min or more and 50 Pa/min or less. By increasing the pressure in the gas space 31 at the above-described pressure increase rate to a predetermined pressure at which hot isostatic pressurization of the metal raw material 80 is performed, the pressure fluctuates due to the pressure difference between the defining space 30 and the gas space 31 . Deformation of the defining member 40 can be moderated. As a result, damage to the defining member 40 can be suppressed.

ガス空間に供給されるガスの温度は、5℃以上40℃以下であることが好ましい。常温又は常温に近い温度である5℃以上40℃以下のガスを用いることで、常温で使用可能な汎用の高圧ポンプを使用できる。 The temperature of the gas supplied to the gas space is preferably 5°C or higher and 40°C or lower. By using a gas of 5° C. or more and 40° C. or less, which is normal temperature or a temperature close to normal temperature, a general-purpose high-pressure pump that can be used at normal temperature can be used.

HIP工程S5は、画成空間30の外部に配置された加熱機構100の熱による加熱によって行われることが好ましい。外部に配置された加熱機構100の熱による加熱を行うことで、簡便な方法で金属原料80を加熱できる。加熱機構100について、図8を参照しながら説明する。 The HIP step S5 is preferably performed by heating with the heat of the heating mechanism 100 arranged outside the defined space 30 . By heating with the heat of the heating mechanism 100 arranged outside, the metal raw material 80 can be heated by a simple method. The heating mechanism 100 will be described with reference to FIG.

図8は、HIP工程S5を説明する図であり、金属原料80を加熱する様子を示す図である。図8では、図示の都合上、加熱機構100の内側にホース90が配置されるが、ホース90は加熱機構100の外側に配置されてもよい。 FIG. 8 is a diagram for explaining the HIP step S5, showing how the metal raw material 80 is heated. In FIG. 8 , the hose 90 is arranged inside the heating mechanism 100 for convenience of illustration, but the hose 90 may be arranged outside the heating mechanism 100 .

HIP工程S5での反応部60の加熱は、加熱機構100を備える温度制御機構65によって行われる。加熱機構100は、画成空間30を覆うように反応部60の外表面に配置される。具体的には、加熱機構100は例えば高周波誘導加熱用コイルであり、高周波誘導用加熱コイルは、画成空間30を覆うように、円管状の第1金属部材1の周方向全域に亘って第1金属部材1に巻回される。高周波誘導加熱用コイルには電源装置(図示しない)が接続され、電源装置による通電によって、加熱機構100が画成空間30内の金属原料80を加熱できる。 Heating of the reaction section 60 in the HIP step S<b>5 is performed by a temperature control mechanism 65 having a heating mechanism 100 . The heating mechanism 100 is arranged on the outer surface of the reaction section 60 so as to cover the defined space 30 . Specifically, the heating mechanism 100 is, for example, a high-frequency induction heating coil. 1 is wound around a metal member 1; A power supply (not shown) is connected to the high-frequency induction heating coil, and the heating mechanism 100 can heat the metal raw material 80 in the defined space 30 by energizing the power supply.

加熱機構100と第1金属部材1との間には、断熱材101(保温材)が設置される。断熱材101は、第1金属部材1及び第2金属部材2の表面において、少なくとも画成空間30を覆うように設置される。断熱材101の設置により、加熱機構100による加熱効率を高めることができる。 A heat insulating material 101 (heat insulating material) is installed between the heating mechanism 100 and the first metal member 1 . The heat insulating material 101 is installed so as to cover at least the defined space 30 on the surfaces of the first metal member 1 and the second metal member 2 . By installing the heat insulating material 101, the heating efficiency of the heating mechanism 100 can be enhanced.

加熱温度は、第1金属部材1及び第2金属部材2の構成金属及び金属原料80の構成金属によっても異なるが、概ね800℃以上1200℃以下であることが好ましい。即ち、HIP工程S5は、所定の加熱温度である800℃以上1200℃以下での加熱により行われることが好ましい。この温度範囲にすることで、画成空間30で金属原料80を焼結できる。加熱時間は、上記温度範囲の温度になる時間として、例えば1時間以上10時間以下にできる。 Although the heating temperature varies depending on the constituent metals of the first metal member 1 and the second metal member 2 and the constituent metals of the metal raw material 80, it is preferably approximately 800° C. or higher and 1200° C. or lower. That is, the HIP step S5 is preferably performed by heating at a predetermined heating temperature of 800° C. or higher and 1200° C. or lower. By setting the temperature within this range, the metal raw material 80 can be sintered in the defined space 30 . The heating time can be, for example, 1 hour or more and 10 hours or less as the time to reach the temperature within the above temperature range.

所定の加熱温度までの加熱は、画成空間30の昇温速度を、例えば2℃/分以上好ましくは5℃/分以上、上限として例えば10℃/分以下好ましくは7℃/分以下の速度で昇温することによって行われることが好ましい。昇温速度を上記範囲にすることで昇温に伴う画成空間30の圧力変動を小さくできる。 For heating to a predetermined heating temperature, the rate of temperature increase in the defined space 30 is, for example, 2° C./min or more, preferably 5° C./min or more, and the upper limit is, for example, 10° C./min or less, preferably 7° C./min or less. It is preferably carried out by raising the temperature at . By setting the temperature rise rate within the above range, the pressure fluctuation in the defined space 30 accompanying the temperature rise can be reduced.

加熱は、高圧ポンプ(図示しない)に接続されたホース90を開口51に接続し、ガス空間31でのガス圧を所定圧力(上記の例では75MPa以上250MPa以下)に維持した状態で行うことが好ましい。即ち、HIP工程S5は、ガス空間31でのガス圧を所定圧力に維持した状態で行われることが好ましい。これにより、加熱によって金属原料80、周囲の部材等が熱伸縮して画成空間30の圧力が変動しそうになっても、画成空間30の圧力変動に応じて画成部材40が撓み、画成空間30の圧力をガス空間31の圧力に維持できる。 Heating can be performed in a state in which a hose 90 connected to a high-pressure pump (not shown) is connected to the opening 51 and the gas pressure in the gas space 31 is maintained at a predetermined pressure (75 MPa or more and 250 MPa or less in the above example). preferable. That is, the HIP step S5 is preferably performed while the gas pressure in the gas space 31 is maintained at a predetermined pressure. As a result, even if the pressure in the defining space 30 is likely to fluctuate due to thermal expansion and contraction of the metal raw material 80 and surrounding members due to heating, the defining member 40 is bent in accordance with the pressure fluctuation in the defining space 30, and the image is drawn. The pressure in the gas space 30 can be maintained at the pressure in the gas space 31 .

金属原料80の加圧及び加熱により、金属原料80が画成空間30で熱間等方加圧状態となり、第1接合面1aと第2接合面2aとが金属焼結体3によってHIP接合される。 By pressurizing and heating the metal raw material 80, the metal raw material 80 is put into a hot isostatic press state in the defined space 30, and the first joint surface 1a and the second joint surface 2a are HIP-joined by the metal sintered body 3. be.

図1に戻って、冷却工程S6は、加熱機構100による加熱後、例えば自然冷却によって第1金属部材1及び第2金属部材2を冷却する工程である。冷却は、加熱機構100及び断熱材101を第1金属部材1及び第2金属部材2から取り外し、例えば室温で放置することで、行うことができる。 Returning to FIG. 1, the cooling step S6 is a step of cooling the first metal member 1 and the second metal member 2 by, for example, natural cooling after being heated by the heating mechanism 100. FIG. Cooling can be performed by removing the heating mechanism 100 and the heat insulating material 101 from the first metal member 1 and the second metal member 2 and leaving them at room temperature, for example.

図9は、冷却工程S6を説明する図であり、HIP工程S5で使用した加熱機構100及び断熱材101を第1金属部材1及び第2金属部材2から取り外した状態を示す図である。図示のように、画成空間30の金属原料(図8等参照)は加熱及び加圧によって焼結し、画成空間30には金属焼結体3が生成する。金属焼結体3は、第1金属部材1の第1接合面1aと、第2金属部材2の第2接合面とを接合する。 FIG. 9 is a diagram for explaining the cooling step S6, and shows a state in which the heating mechanism 100 and the heat insulating material 101 used in the HIP step S5 are removed from the first metal member 1 and the second metal member 2. FIG. As shown in the drawing, the metal raw material in the defined space 30 (see FIG. 8, etc.) is sintered by heating and pressurization, and the metal sintered body 3 is generated in the defined space 30 . The metal sintered body 3 joins the first joint surface 1 a of the first metal member 1 and the second joint surface of the second metal member 2 .

図示の例では、第1金属部材1における反応部60の形成部分以外の外延(即ち、外側に張り出した部分以外の外延)と、第2金属部材2における張り出し部2bの形成部分以外の外延(即ち外側に張り出した部分以外の外延)とは、いずれも、二点鎖線で示す同一直線C上に位置する。円管状の第1金属部材1及び第2金属部材2の径方向外側に位置する直線Cの外側、及び、径方向内側に位置する直線Cの内側には、それぞれ、連通路54、仮溶接部70,71、画成部材40等が存在する。従って、後記する切除工程S7において、直線C,Cでの切除により、周方向外側の直線Cの更に外側の部分、及び、周方向内側の直線Cの更に内側の部分である不要な部分が除去される。 In the illustrated example, the extension of the first metal member 1 other than the portion forming the reaction portion 60 (that is, the extension of the portion other than the portion projecting outward) and the extension of the second metal member 2 other than the portion forming the projecting portion 2b ( That is, the extensions other than the portions that protrude outward) are all located on the same straight line C indicated by the two-dot chain line. Outside the straight line C located radially outward of the circular tubular first metal member 1 and the circular tubular second metal member 2, and inside the straight line C located radially inward, the communicating path 54 and the temporary welded portion are provided, respectively. 70, 71, defining member 40, etc. are present. Therefore, in the cutting step S7, which will be described later, by cutting along the straight lines C, C, an unnecessary portion that is a portion further outside the straight line C on the outer side in the circumferential direction and an unnecessary portion further inside the straight line C on the inner side in the circumferential direction is removed. be done.

冷却工程S6後、後記する切除工程S7の前に、必要に応じて再度の熱処理工程を行ってもよい。この場合、加圧が不要であれば、ホース90は開口51から取り外してもよい。 After the cooling step S6 and before the later-described cutting step S7, another heat treatment step may be performed as necessary. In this case, the hose 90 may be removed from the opening 51 if pressurization is unnecessary.

図1に戻って、切除工程S7は、不要部分の切除により原子力設備部材10を形成する工程である。具体的には、図9を参照して説明したように、図9の直線C,Cの部分で周方向外側及び内側がそれぞれ切除される。 Returning to FIG. 1, the cutting step S7 is a step of forming the nuclear facility member 10 by cutting unnecessary portions. Specifically, as described with reference to FIG. 9, the outer and inner portions in the circumferential direction are cut off along straight lines C and C in FIG.

図10Aは、切除工程S7を説明する図であり、図2のA部拡大図である。上記図9において直線C,Cの部分で周方向外側及び内側がそれぞれ切除されると、図10Aに示す原子力設備部材10が形成する。図10Aに示す部分は、上記の図2におけるA部拡大図に相当する。 FIG. 10A is a diagram for explaining the cutting step S7, and is an enlarged view of part A in FIG. When the outer side and the inner side in the circumferential direction are cut off along straight lines C and C in FIG. 9, the nuclear power facility member 10 shown in FIG. 10A is formed. The portion shown in FIG. 10A corresponds to the enlarged view of the portion A in FIG. 2 described above.

図10Bは、図10Aの金属焼結体3を拡大して示す図である。金属焼結体3は、金属の結晶粒3aの集合により構成される。金属焼結体3はHIP法により生成した金属焼結体である。従って、金属焼結体3に含まれる気孔3bの大きさは、鋳造、鍛造、溶接等により得られる金属組織中の気孔と比べて小さい。具体的には、原子力設備部材10において、電子顕微鏡による金属焼結体3の観察断面(例えば図10Bに示す断面)において、金属焼結体3に含まれる気孔3bの大きさは50nm以上200nm以下、好ましくは100nm以下である。このため、金属焼結体3が密になっており、第1金属部材1と第2金属部材2との接合強度を高めることができる。この結果、原子力設備部材10の信頼性を高めることができる。 FIG. 10B is an enlarged view of the metal sintered body 3 of FIG. 10A. The metal sintered body 3 is composed of a set of metal crystal grains 3a. The metal sintered body 3 is a metal sintered body produced by the HIP method. Therefore, the size of the pores 3b included in the metal sintered body 3 is smaller than the pores in the metal structure obtained by casting, forging, welding, or the like. Specifically, in the nuclear power equipment member 10, the size of the pores 3b contained in the metal sintered body 3 is 50 nm or more and 200 nm or less in the observation cross section of the metal sintered body 3 with an electron microscope (for example, the cross section shown in FIG. 10B). , preferably 100 nm or less. Therefore, the metal sintered body 3 is dense, and the bonding strength between the first metal member 1 and the second metal member 2 can be increased. As a result, the reliability of the nuclear equipment member 10 can be improved.

金属焼結体3に含まれる気孔3bの大きさは、例えば走査型電子顕微鏡等によって金属焼結体3の任意の断面を観察し、観察された断面における気孔3bの大きさ(最も長い部分の大きさ)を測定することで、決定できる。 The size of the pores 3b contained in the metal sintered body 3 can be determined by observing an arbitrary cross section of the metal sintered body 3 with a scanning electron microscope or the like, and measuring the size of the pores 3b in the observed cross section (the longest part size) can be determined.

上記の観察断面において、金属焼結体3に含まれる気孔3bのうちの70%以上の気孔3bの大きさは50nm以上100nm以下であることが好ましい。これにより、全ての気孔3bのうち特に小さな気孔3bの数を70%以上にでき、第1金属部材1と第2金属部材2との接合強度を更に高めることができる。この結果、原子力設備部材10の信頼性を更に高めることができる。 In the above observed cross section, it is preferable that 70% or more of the pores 3b contained in the metal sintered body 3 have a size of 50 nm or more and 100 nm or less. As a result, the number of particularly small pores 3b among all the pores 3b can be increased to 70% or more, and the bonding strength between the first metal member 1 and the second metal member 2 can be further increased. As a result, the reliability of the nuclear equipment member 10 can be further improved.

観察断面における70%以上の気孔3bとは、任意の1つの観察断面で観察される全ての気孔3bのうち、70%以上の個数の気孔3bの大きさが上記範囲であることを意味する。 70% or more of the pores 3b in the observation cross section means that the size of 70% or more of all the pores 3b observed in any one observation cross section is within the above range.

金属焼結体3の気孔率は好ましくは0.5%以下であり、より好ましくは0.3%以下であり、特に好ましくは0.1%以下である。気孔率がこの範囲にあることで、気孔3bの含有率を小さくでき、金属焼結体3の強度を向上できる。これにより、原子力設備部材10の強度を向上できる。 The porosity of the metal sintered body 3 is preferably 0.5% or less, more preferably 0.3% or less, and particularly preferably 0.1% or less. When the porosity is within this range, the content of pores 3b can be reduced, and the strength of the metal sintered body 3 can be improved. Thereby, the intensity|strength of the nuclear power equipment member 10 can be improved.

気孔率は、外部と連通する気孔(開気孔)の容積と、内部に封入された気孔(閉気孔)の容積との和を、全容積で割ることで決定できる。 The porosity can be determined by dividing the sum of the volume of pores communicating with the outside (open pores) and the volume of pores enclosed inside (closed pores) by the total volume.

本実施形態の製造方法、特に配置工程S1、充填工程S3及びHIP工程S5を含む製造方法によれば、画成部材40の配置によって形成された画成空間30内に金属焼結体3が生成し、生成した金属焼結体3(HIP焼結体)により、第1接合面1aと第2接合面2aとを接合できる。これにより、第1金属部材1及び第2金属部材2を高圧容器に収容せずに、第1金属部材1と第2金属部材2とをHIP接合できる。このため、第1金属部材1及び第2金属部材2が従来の高圧容器に収容できないほどの大型であっても、これらをHIP接合できる。 According to the manufacturing method of the present embodiment, particularly the manufacturing method including the arranging step S1, the filling step S3, and the HIP step S5, the metal sintered body 3 is generated in the defining space 30 formed by arranging the defining member 40. Then, the first joint surface 1a and the second joint surface 2a can be joined by the produced metal sintered body 3 (HIP sintered body). Thereby, the first metal member 1 and the second metal member 2 can be HIP-joined without housing the first metal member 1 and the second metal member 2 in a high-pressure container. Therefore, even if the first metal member 1 and the second metal member 2 are too large to be accommodated in a conventional high-pressure vessel, they can be HIP-joined.

特に、HIP法により生成した金属焼結体3の気孔3bの大きさは小さく、金属焼結体3は密である。このため、第1金属部材1と第2金属部材2の接合強度が高く、信頼性に優れた原子力設備部材10を製造できる。 In particular, the size of the pores 3b of the metal sintered body 3 produced by the HIP method is small, and the metal sintered body 3 is dense. Therefore, the bonding strength between the first metal member 1 and the second metal member 2 is high, and the nuclear equipment member 10 having excellent reliability can be manufactured.

図11は、別の実施形態に係る図であり、金属鍛造部材120を画成空間30に配置した反応部60Aを示す図である。反応部60Aは、鍛造により形成した金属鍛造部材120を備える。金属鍛造部材120は、例えば断面矩形状であり、画成空間30の周方向全域に亘って画成空間30に収容可能な環状に構成される。上記図1を参照しながら説明した充填工程S3は、金属鍛造部材120を収容した画成空間30への金属原料80の収容によって行われる。 FIG. 11 is a diagram according to another embodiment, showing a reaction section 60A in which a metal forging member 120 is arranged in the defined space 30. As shown in FIG. 60 A of reaction parts are equipped with the metal forging member 120 formed by forging. The forged metal member 120 has, for example, a rectangular cross-section, and is configured in an annular shape that can be accommodated in the defined space 30 over the entire circumferential direction of the defined space 30 . The filling step S3 described above with reference to FIG. 1 is performed by accommodating the metal raw material 80 in the defined space 30 in which the metal forging member 120 is accommodated.

予め金属鍛造部材120を収容した画成空間30に金属原料80を充填することで、画成空間30の充填可能容積が減るため充填時間を短縮できる。これに加えて、コアとなる金属鍛造部材120によって、金属焼結体3の強度を高めることができる。 By filling the defined space 30 in which the metal forging member 120 is previously accommodated with the metal raw material 80, the fillable volume of the defined space 30 is reduced, so that the filling time can be shortened. In addition to this, the strength of the metal sintered body 3 can be increased by the metal forged member 120 serving as the core.

図12は、別の実施形態に係る図であり、冷却機構130を備える温度制御機構65Aを示す図である。温度制御機構65Aは、上記加熱機構100及び冷却機構130を備える。上記HIP工程S5は、温度制御機構65Aを用いて行われる。 FIG. 12 is a diagram according to another embodiment, showing a temperature control mechanism 65A including a cooling mechanism 130. FIG. The temperature control mechanism 65A includes the heating mechanism 100 and the cooling mechanism 130 described above. The HIP step S5 is performed using the temperature control mechanism 65A.

図示の例では、冷却機構130は金属製の放熱フィンである。冷却機構130は、加熱機構100の配置部位以外の、第1金属部材1及び第2金属部材2(いずれか一方でもよい)の外表面に配置される。具体的には、冷却機構130は、第1金属部材1及び第2金属部材2のそれぞれにおいて、円管状の第1金属部材1及び第2金属部材2の軸方向に向かって延在する。従って、図示の例では、軸方向への放熱が促進される。 In the illustrated example, the cooling mechanism 130 is a metal radiation fin. The cooling mechanism 130 is arranged on the outer surfaces of the first metal member 1 and the second metal member 2 (either one of them may be used), except where the heating mechanism 100 is arranged. Specifically, the cooling mechanism 130 extends in the axial direction of the tubular first metal member 1 and the second metal member 2 in each of the first metal member 1 and the second metal member 2 . Therefore, in the illustrated example, heat dissipation in the axial direction is facilitated.

上記のように、加熱機構100は画成空間30を覆うように配置される。これにより、加熱機構100による画成空間30内部の金属原料80の加熱が促進される。しかし、画成空間30以外の部分では、加熱を行う必要が無い。そこで、画成空間30から離れた部分、即ち、加熱機構100の配置部位以外の部位では、放熱を促すために、冷却機構130が設置される。これにより、画成空間30以外の部分での熱影響を抑制できる。 As described above, the heating mechanism 100 is arranged to cover the defined space 30 . This promotes heating of the metal raw material 80 inside the defined space 30 by the heating mechanism 100 . However, the portions other than the defined space 30 do not need to be heated. Therefore, a cooling mechanism 130 is installed in a portion away from the defined space 30, that is, in a portion other than the portion where the heating mechanism 100 is arranged, in order to promote heat dissipation. As a result, it is possible to suppress the thermal influence in portions other than the defined space 30 .

1 第1金属部材
10 原子力設備部材
100 加熱機構
101 断熱材
120 金属鍛造部材
130 冷却機構
1a 第1接合面
2 第2金属部材
2a 第2接合面
2b 張り出し部
3 金属焼結体
30 画成空間
31 ガス空間
3a 結晶粒
3b 気孔
40 画成部材
51 開口
52 連通路
53 開口
54 連通路
60,60A 反応部
60a 内壁
61 嵌合部
65,65A 温度制御機構
70 仮溶接部
71 仮溶接部
90 ホース
91 ホース
C 直線
S1 配置工程
S2 第1圧力調整工程
S3 充填工程
S4 第2圧力調整工程
S5 HIP工程
S6 冷却工程
S7 切除工程
1 First Metal Member 10 Nuclear Equipment Member 100 Heating Mechanism 101 Heat Insulating Material 120 Metal Forged Member 130 Cooling Mechanism 1a First Joining Surface 2 Second Metal Member 2a Second Joining Surface 2b Overhang 3 Metal Sintered Body 30 Defined Space 31 Gas space 3a Crystal grain 3b Pore 40 Demarcation member 51 Opening 52 Communication path 53 Opening 54 Communication path 60, 60A Reaction part 60a Inner wall 61 Fitting part 65, 65A Temperature control mechanism 70 Temporary welding part 71 Temporary welding part 90 Hose 91 Hose C Straight line S1 Placement step S2 First pressure adjustment step S3 Filling step S4 Second pressure adjustment step S5 HIP step S6 Cooling step S7 Cutting step

Claims (13)

第1金属部材と、金属焼結体を介して前記第1金属部材に接合される第2金属部材とを備える原子力設備部材の製造方法であって、
前記第1金属部材の第1接合面と前記第2金属部材の第2接合面との双方の接合面を臨む画成空間を画成する、可撓性を有する画成部材を配置する配置工程と、
前記画成空間に金属原料を充填する充填工程と、
前記画成部材の前記画成空間とは反対側に形成されるガス空間にガスを注入し、前記画成部材を介した前記金属原料へのガス圧の伝播によって前記画成空間内で前記金属原料の熱間等方圧加圧を行うことで前記画成空間内に前記金属焼結体を形成するHIP工程と、を含み、
前記HIP工程は、
前記画成空間の外部に配置された加熱機構の熱による加熱によって行われるとともに、
前記画成空間を覆うように配置された前記加熱機構と、前記加熱機構の配置部位以外の、前記第1金属部材及び前記第2金属部材の少なくともいずれか一方の外表面に配置された冷却機構とを備える温度制御機構を用いて行われる
原子力設備部材の製造方法。
A method for manufacturing a nuclear facility member comprising a first metal member and a second metal member joined to the first metal member via a metal sintered body,
an arrangement step of arranging a flexible defining member defining a defining space facing both the first joint surface of the first metal member and the second joint surface of the second metal member; and,
a filling step of filling the defined space with a metal raw material;
A gas is injected into a gas space formed on the opposite side of the defining member from the defining space, and the metal is placed in the defining space by propagation of gas pressure to the metal source via the defining member. a HIP step of forming the metal sintered body in the defined space by performing hot isostatic pressing of raw materials ;
The HIP step is
Heating is performed by the heat of a heating mechanism arranged outside the defined space, and
The heating mechanism arranged so as to cover the defined space, and the cooling mechanism arranged on the outer surface of at least one of the first metal member and the second metal member other than the portion where the heating mechanism is arranged. performed using a temperature control mechanism comprising
A manufacturing method for nuclear power equipment components.
前記HIP工程は、前記ガス空間でのガス圧を所定圧力に維持した状態で行われる
請求項1に記載の原子力設備部材の製造方法。
2. The method of manufacturing a member for nuclear power equipment according to claim 1, wherein the HIP step is performed in a state where the gas pressure in the gas space is maintained at a predetermined pressure.
前記HIP工程は、前記ガス空間での圧力として75MPa以上250MPa以下の圧力で行われる
請求項1又は2に記載の原子力設備部材の製造方法。
3. The method of manufacturing a member for nuclear power equipment according to claim 1, wherein the HIP step is performed at a pressure of 75 MPa or more and 250 MPa or less in the gas space.
前記ガスの注入は、前記ガス空間での昇圧速度が10Pa/分以上50Pa以下/分以下になるように行う
請求項3に記載の原子力設備部材の製造方法。
4. The method of manufacturing a member for nuclear power equipment according to claim 3, wherein the injection of the gas is performed so that the pressure increase rate in the gas space is 10 Pa/min or more and 50 Pa/min or less.
前記ガス空間に供給されるガスの温度は、5℃以上40℃以下である
請求項1又は2に記載の原子力設備部材の製造方法。
3. The method of manufacturing a member for nuclear power equipment according to claim 1, wherein the temperature of the gas supplied to the gas space is 5[deg.]C or higher and 40[deg.]C or lower.
前記HIP工程は、800℃以上1200℃以下での加熱により行われる
請求項1又は2に記載の原子力設備部材の製造方法。
3. The method of manufacturing a member for nuclear power equipment according to claim 1, wherein the HIP step is performed by heating at 800[deg.] C. or more and 1200[deg.] C. or less.
前記加熱は、前記画成空間の昇温速度を2℃/分以上10℃/分以下の速度で昇温することによって行われる
請求項に記載の原子力設備部材の製造方法。
7. The method of manufacturing a member for nuclear power equipment according to claim 6 , wherein the heating is performed by raising the temperature of the defined space at a rate of 2[deg.]C/min or more and 10[deg.]C/min or less.
前記配置工程後であって前記充填工程前に、前記画成空間の圧力を前記ガス空間の圧力よりも高くする第1圧力調整工程を含み、
前記充填工程は、前記画成空間の圧力が前記ガス空間の圧力よりも高い状態で行われる
請求項1又は2に記載の原子力設備部材の製造方法。
including a first pressure adjustment step of making the pressure of the defined space higher than the pressure of the gas space after the placement step and before the filling step;
3. The method of manufacturing a member for nuclear power equipment according to claim 1, wherein the filling step is performed in a state where the pressure in the defined space is higher than the pressure in the gas space.
前記充填工程後であって前記HIP工程前に、前記画成空間を減圧する第2圧力調整工程を含む
請求項1又は2に記載の原子力設備部材の製造方法。
3. The method of manufacturing a member for nuclear power equipment according to claim 1, further comprising a second pressure adjustment step of depressurizing the defined space after the filling step and before the HIP step.
前記画成部材は金属箔である
請求項1又は2に記載の原子力設備部材の製造方法。
3. The method of manufacturing a member for nuclear power equipment according to claim 1, wherein the defining member is a metal foil.
前記充填工程は、金属鍛造部材を収容した前記画成空間への前記金属原料の収容によって行われる
請求項1又は2に記載の原子力設備部材の製造方法。
3. The method of manufacturing a member for nuclear power equipment according to claim 1, wherein the filling step is performed by accommodating the metal raw material in the defined space in which the forged metal member is accommodated.
第1金属部材と、金属焼結体を介して前記第1金属部材に接合される第2金属部材とを備える原子力設備部材であって、
電子顕微鏡による前記金属焼結体の観察断面において、前記金属焼結体に含まれる気孔の大きさは50nm以上200nm以下である
原子力設備部材。
A nuclear facility member comprising a first metal member and a second metal member joined to the first metal member via a metal sintered body,
A nuclear power equipment member, wherein a size of pores included in the metal sintered body is 50 nm or more and 200 nm or less in a cross section of the metal sintered body observed with an electron microscope.
前記金属焼結体の気孔率は0.5%以下である
請求項12に記載の原子力設備部材
The nuclear equipment member according to claim 12 , wherein the metal sintered body has a porosity of 0.5% or less.
JP2019174714A 2019-09-25 2019-09-25 Method for manufacturing nuclear equipment components and nuclear equipment components Active JP7264784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019174714A JP7264784B2 (en) 2019-09-25 2019-09-25 Method for manufacturing nuclear equipment components and nuclear equipment components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019174714A JP7264784B2 (en) 2019-09-25 2019-09-25 Method for manufacturing nuclear equipment components and nuclear equipment components

Publications (2)

Publication Number Publication Date
JP2021050395A JP2021050395A (en) 2021-04-01
JP7264784B2 true JP7264784B2 (en) 2023-04-25

Family

ID=75156089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019174714A Active JP7264784B2 (en) 2019-09-25 2019-09-25 Method for manufacturing nuclear equipment components and nuclear equipment components

Country Status (1)

Country Link
JP (1) JP7264784B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014052A (en) 2003-06-26 2005-01-20 Japan Atom Energy Res Inst Nonfused joining method of different kind of material
JP2015175034A (en) 2014-03-17 2015-10-05 日立金属株式会社 Method for producing sputtering target material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243701A (en) * 1986-04-15 1987-10-24 Toshiba Corp Joining method for different materials
US5060374A (en) * 1989-06-05 1991-10-29 Electric Power Research Institute, Inc. Method for fabricating a valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014052A (en) 2003-06-26 2005-01-20 Japan Atom Energy Res Inst Nonfused joining method of different kind of material
JP2015175034A (en) 2014-03-17 2015-10-05 日立金属株式会社 Method for producing sputtering target material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fusion Engineering and Design,2002年11月16日,Volumes 61-62,Pages 103-110

Also Published As

Publication number Publication date
JP2021050395A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
JP7382234B2 (en) Capsules and manufacturing method for hot isostatic pressing
US20070216411A1 (en) Gradient Coil System And Method for The Production Thereof
EP0471642A2 (en) Container for encapsulation of workpieces for high pressure processing
KR102041650B1 (en) Endplate for hot isostatic pressing canister, hot isostatic pressing canister, and hot isostatic pressing method
JP7264784B2 (en) Method for manufacturing nuclear equipment components and nuclear equipment components
JP7315540B2 (en) Component and method of manufacturing same
JP2011041981A (en) Improved device and method for hot isostatic pressing container having adjustable capacity and corner
KR20190117748A (en) Method of manufacturing reinforced fuel cladding using an intermediate thermal deposition layer
US20130340635A1 (en) Residual stress reduction in welding
US11278961B2 (en) Containment for hot isostatic pressing and vacuum degassing apparatus
SG180124A1 (en) A mould assembly for a hot isostatic pressing process
US8851359B2 (en) Assembly method using brazing
US11565313B2 (en) Isostatic pressing canister
EP2679323A1 (en) A method of producing a metallic body provided with a metallic cladding
WO2012092976A1 (en) Welded sealing of pressure cylinder vessel
US10053244B2 (en) Pipe, apparatus and method
US11498125B2 (en) Method for fabricating components using hybrid additive manufacturing and consolidation process
JP2008014434A (en) Method of manufacturing hydrogen storage vessel
JPS62274006A (en) Hot hydrostatic pressing method
JPH04202062A (en) Production of hermetically sealed vessel made of high temperature superconducting material
JPH0551608A (en) Production of metallic capsule for producing composite tube
KR101925180B1 (en) A method for producing a nozzle for injectors of internal combustion engines
GB2226689A (en) Final storage arrangement for radioactive waste
JPS5950951A (en) Production of tube mold
JP2010240713A (en) High-pressure container for isotropic pressing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230413

R150 Certificate of patent or registration of utility model

Ref document number: 7264784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150