JP7263619B2 - Joining method and joined body - Google Patents

Joining method and joined body Download PDF

Info

Publication number
JP7263619B2
JP7263619B2 JP2022512956A JP2022512956A JP7263619B2 JP 7263619 B2 JP7263619 B2 JP 7263619B2 JP 2022512956 A JP2022512956 A JP 2022512956A JP 2022512956 A JP2022512956 A JP 2022512956A JP 7263619 B2 JP7263619 B2 JP 7263619B2
Authority
JP
Japan
Prior art keywords
joined
resin layer
resin
thermoplastic
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022512956A
Other languages
Japanese (ja)
Other versions
JPWO2021199231A1 (en
JPWO2021199231A5 (en
Inventor
浩庸 秋山
輝一 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JPWO2021199231A1 publication Critical patent/JPWO2021199231A1/ja
Publication of JPWO2021199231A5 publication Critical patent/JPWO2021199231A5/ja
Application granted granted Critical
Publication of JP7263619B2 publication Critical patent/JP7263619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Description

本開示は、繊維強化熱可塑性プラスチック(FRTP)の接合方法および接合体に関するものである。 The present disclosure relates to methods and articles for joining fiber reinforced thermoplastics (FRTP).

FRTPで構成された被接合部材同士を接合する方法として、ボルト結合、融着および接着(特許文献1参照)が知られている。 As a method for joining members to be joined made of FRTP, bolting, fusion and adhesion (see Patent Document 1) are known.

ボルト結合では、被接合部材同士をボルトおよびナットで固定する。融着では、FRTPの母材(熱可塑性樹脂)を溶融させて被接合部材同士を接合させる。接着では、接着剤を用いて被接合部材同士を接合させる。 In bolt connection, members to be joined are fixed with bolts and nuts. In fusion bonding, members to be joined are joined together by melting the base material (thermoplastic resin) of FRTP. In adhesion, members to be joined are joined together using an adhesive.

特開2016-175331号公報JP 2016-175331 A

しかしながら、上記接合方法は、それぞれ課題を有している。 However, the above joining methods each have their own problems.

ボルト結合は、ボルト継手強度が低く、被接合部材の板厚を厚くする必要がある。また、穴あけ、ボルト取り付け、シーリング作業を多数の箇所で行う場合には、組み立て工数が増大し、製品の重量が増加する。さらに、ボルトおよびナットの使用では、強化繊維として炭素繊維を用いた場合に電食の懸念がある。 Bolted joints have a low bolted joint strength, and it is necessary to increase the plate thickness of the members to be joined. Moreover, when drilling, bolting, and sealing operations are performed at many locations, the number of assembling man-hours increases and the weight of the product increases. Furthermore, in the use of bolts and nuts, there is concern about electrolytic corrosion when using carbon fibers as reinforcing fibers.

融着では、被接合部材の母材を溶融させるため、板厚および形状の制御が難しい。また、母材を溶融させることで、被接合部材に含まれる強化繊維がうねる恐れがある。 In fusion bonding, since the base material of the member to be joined is melted, it is difficult to control the plate thickness and shape. In addition, the melting of the base material may cause the reinforcing fibers contained in the members to be joined to undulate.

接着では、接着剤として被着材と異なる材料を使用するため、接着界面の劣化、追加のコストが必要になるなどの問題がある。構造用接着剤としては、主に熱硬化性樹脂が用いられる。構造用接着剤として用いられる熱硬化性樹脂としては、エポキシ樹脂がある。エポキシ樹脂では吸湿による強度低下があり、耐熱性およびじん性などが被着材(母材)と大きく異なる場合がある。 In adhesion, since a material different from the adherend is used as an adhesive, there are problems such as deterioration of the adhesion interface and additional costs. Thermosetting resins are mainly used as structural adhesives. Thermosetting resins used as structural adhesives include epoxy resins. Epoxy resin loses strength due to moisture absorption, and its heat resistance and toughness may differ greatly from those of the adherend (base material).

上記以外の接合方法としてプラズマ処理を用いる接合が検討されている。FRTPで構成された被接合部材にプラズマを照射すると、部材表面が活性化され、ヒドロキシ基などの官能基が導入される。官能基が導入された面同士を合わせ、加熱および加圧すると、官能基同士が化学反応し結合される。プラズマ処理を用いた方法では、FRTPの母材の融点以下の温度で加熱するため、母材は溶融されない。そのため、溶融によって板厚および形状が変化せず、強化繊維のうねりも発生しない。 As a bonding method other than the above, bonding using plasma processing is being considered. When a member to be joined made of FRTP is irradiated with plasma, the surface of the member is activated and a functional group such as a hydroxyl group is introduced. When the surfaces to which the functional groups have been introduced are brought together and heated and pressurized, the functional groups are chemically reacted and bonded. In the method using plasma treatment, the base material of FRTP is heated at a temperature below the melting point of the base material, so the base material is not melted. Therefore, the plate thickness and shape do not change due to melting, and the reinforcing fibers do not undulate.

しかしながら、プラズマ処理を用いた方法にも改善の余地がある。例えば、図7に示すように、被接合部材21,22となるFRTPの表面は平坦ではない。平坦でない面を合わせると、被接合面S21と被接合面S22との間に隙間Gが生じる。隙間G部分では、面同士が接合できないため、接合力が弱くなる。However, the method using plasma treatment also has room for improvement. For example, as shown in FIG. 7, the surfaces of the FRTP that become the members to be joined 21 and 22 are not flat. When the non-flat surfaces are brought together, a gap G is generated between the surface to be bonded S21 and the surface to be bonded S22 . In the gap G portion, since the surfaces cannot be joined together, the joining force becomes weak.

本開示は、このような事情に鑑みてなされたものであって、被接合面を活性化させることによるFRTP同士の接合において、接合の強度を向上させられる接合方法およびそれにより接合される接合体を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and a bonding method capable of improving the strength of bonding in bonding between FRTPs by activating the surfaces to be bonded, and a bonded body bonded by the method intended to provide

上記課題を解決するために、本開示の接合方法および接合体は以下の手段を採用する。
本開示は、母材が熱可塑性樹脂である繊維強化熱可塑性プラスチックを被接合部材とし、前記被接合部材同士を接合する接合方法であって、前記被接合部材の一表面に樹脂層を形成し、前記樹脂層の外表面を活性化処理して、化学結合を引き起こしうる活性官能基を導入し、前記樹脂層の活性化処理された前記外表面同士を対向させて前記被接合部材同士を重ね合わせ、前記母材の温度が融点未満を維持されるよう、重ね合わせた状態の前記被接合部材を加熱および加圧する接合方法を提供する。
In order to solve the above problems, the joining method and joined body of the present disclosure employ the following means.
The present disclosure relates to a joining method for joining members to be joined that are made of a fiber-reinforced thermoplastic whose base material is a thermoplastic resin, and wherein a resin layer is formed on one surface of the member to be joined. activating the outer surface of the resin layer to introduce an active functional group capable of causing a chemical bond ; and placing the members to be joined together with the activated outer surfaces of the resin layer facing each other. The present invention provides a joining method for heating and pressurizing the members to be joined in a superimposed state so that the temperature of the base material is maintained below the melting point.

本開示は、母材が熱可塑性樹脂である繊維強化熱可塑性プラスチックを被接合部材とし、前記被接合部材同士が接合された接合体であって、前記被接合部材の一表面に樹脂層を備え、前記樹脂層の外表面は活性化処理により化学結合を引き起こしうる活性官能基が導入され、2つの前記被接合部材は、前記樹脂層の活性化処理された前記外表面同士を対向させて重ね合わせて配置され、前記母材の温度が融点未満を維持されるよう、重ね合わせた状態の前記被接合部材が加熱および加圧されてなる接合体を提供する。 The present disclosure relates to a joined body in which members to be joined are made of a fiber-reinforced thermoplastic whose base material is a thermoplastic resin, and the members to be joined are joined to each other, and a resin layer is provided on one surface of the members to be joined. The outer surface of the resin layer is activated to introduce an active functional group capable of causing a chemical bond, and the two members to be joined are stacked with the activated outer surfaces of the resin layers facing each other. Provided is a joined body formed by heating and pressurizing the members to be joined in a superimposed state so that the temperature of the base materials is maintained below the melting point.

上記開示によれば、樹脂層を設け、該樹脂層を活性化させることで、被接合面にある官能基量が増えると共に、樹脂が動きやすくなる。官能基量が多くなることで接合できる部分が増える。樹脂が動きやすい状態にすることで、官能基同士の化学反応の機会を増やせる。これらにより、接合面の接合強度が向上する。 According to the above disclosure, by providing a resin layer and activating the resin layer, the amount of functional groups on the surfaces to be bonded increases and the resin becomes more mobile. As the amount of functional groups increases, the portion that can be joined increases. By making the resin easy to move, the opportunities for chemical reactions between functional groups can be increased. As a result, the bonding strength of the bonding surfaces is improved.

樹脂層が形成されることで被接合部材の被接合面は、平滑化される。平滑化した面を合わせることで、面と面との間に生じる隙間をなくす、または、小さくできる。これにより、被接合面同士の間で接合できない部分を減らすことができる。隙間がなくなる、または、小さくなることで、対向する面にある官能基同士が反応相手に巡り合う機会が増える。これにより、接合強度を向上させた接合体を安定的に得ることができる。 The surfaces to be joined of the members to be joined are smoothed by forming the resin layer. By aligning the smoothed surfaces, the gap between the surfaces can be eliminated or reduced. As a result, it is possible to reduce portions that cannot be joined between the surfaces to be joined. Elimination or reduction of the gap increases the chances that the functional groups on the facing surfaces meet with a reaction partner. As a result, it is possible to stably obtain a bonded body with improved bonding strength.

被接合部材の重ね合わせについて説明する図である。It is a figure explaining superposition|superposition of a to-be-joined member. 図1のA-A断面視した分解図である。FIG. 2 is an exploded view taken along the line AA of FIG. 1; 第1実施形態に係る接合方法で接合された接合体の断面図である。FIG. 2 is a cross-sectional view of a joined body joined by the joining method according to the first embodiment; 第2実施形態に係る樹脂層が形成された被接合部材の断面図である。FIG. 10 is a cross-sectional view of members to be joined on which a resin layer is formed according to a second embodiment; 一例としての第2熱可塑性プリプレグの断面図である。1 is a cross-sectional view of an example second thermoplastic prepreg; FIG. 第2実施形態に係る接合方法について接合する図である。It is a figure which joins about the joining method which concerns on 2nd Embodiment. 従来法によって重ね合わせた被接合部材について説明する図である。It is a figure explaining the to-be-joined member which overlapped by the conventional method.

〔第1実施形態〕
本実施形態では、被接合部材同士を接合する接合方法について説明する。
[First embodiment]
In this embodiment, a method for joining members to be joined will be described.

(被接合部材)
被接合部材は、繊維強化熱可塑性プラスチック(FRTP)製である。被接合部材は、単層のFRTPで構成されてもよいし、複数層のFRTPで構成されてもよい。本実施形態において、被接合部材は、FRTPを成形した後のものである。
(Member to be joined)
The members to be joined are made of fiber reinforced thermoplastic (FRTP). The member to be joined may be composed of a single layer of FRTP, or may be composed of a plurality of layers of FRTP. In this embodiment, the members to be joined are those after molding the FRTP.

FRTPは、熱可塑性樹脂および強化繊維を含む。熱可塑性樹脂は、FRTPの母材(マトリックス)である。 FRTP includes a thermoplastic resin and reinforcing fibers. Thermoplastic resin is the base material (matrix) of FRTP.

熱可塑性樹脂は、特に限定されるものではないが、ポリアリールエーテルケトン(PAEK)、ポリフェニレンスルフィド(PPS)、ポリエーテルイミド(PEI)、液晶ポリマー(LCP)等のスーパーエンジニアプラスチックであってよい。PAEKは、例えば、ポリエーテルエーテルケトン(PEK),ポリエーテルケトンケトン(PEKK)および低融点PAEK(LM PAEK)である。
Thermoplastic resins are not particularly limited, but may be super-engineered plastics such as polyaryletherketone (PAEK), polyphenylene sulfide (PPS), polyetherimide (PEI), and liquid crystal polymer (LCP). PAEKs are, for example, polyetheretherketone (PE EK ), polyetherketoneketone (PEKK) and low melting point PAEK (LM PAEK).

強化繊維は、無機系繊維または有機系繊維であってよい。無機系繊維は、炭素繊維,ガラス繊維,炭化ケイ素繊維などである。有機系繊維は、アラミド繊維,ポリパラフェニレン・ベンゾビス・オキサゾール(PBO)繊維,ポリアリレート繊維,PEEK繊維などである。強化繊維は、一方向に配向された繊維束,織物および不織布の形態であってよい。 The reinforcing fibers may be inorganic fibers or organic fibers. Inorganic fibers include carbon fibers, glass fibers, silicon carbide fibers, and the like. Organic fibers include aramid fibers, polyparaphenylene-benzobis-oxazole (PBO) fibers, polyarylate fibers, and PEEK fibers. The reinforcing fibers may be in the form of unidirectionally oriented fiber bundles, wovens and nonwovens.

接合される2つの被接合部材に含まれる熱可塑性樹脂は、同種または異種であってよい。接合される2つの被接合部材に含まれる強化繊維は、同種または異種であってよい。接合される2つの被接合部材に含まれる強化繊維の形態は、同じまたは異なっていてよい。 The thermoplastic resins contained in the two members to be joined may be the same or different. The reinforcing fibers contained in the two joined members to be joined may be of the same type or of different types. The forms of reinforcing fibers contained in the two members to be joined may be the same or different.

本実施形態に係る接合方法は、以下の工程を含む。
(S1)樹脂層形成
(S2)活性化処理
(S3)被接合部材同士の接合
The joining method according to this embodiment includes the following steps.
(S1) Formation of resin layer (S2) Activation treatment (S3) Joining members to be joined

(S1)樹脂層形成
被接合部材の一表面に樹脂層を形成する。
樹脂層は、被接合部材の一表面に、樹脂層の素材を重ね合わせ、加熱および加圧することで形成する。被接合部材の一表面および樹脂層の素材の表面は、事前に活性化処理しておく。被接合部材と樹脂層とは、活性化処理された面同士を対向させて重ね合わせる。
(S1) Resin layer formation A resin layer is formed on one surface of the member to be joined.
The resin layer is formed by superimposing the material of the resin layer on one surface of the member to be joined and applying heat and pressure. One surface of the member to be joined and the surface of the material of the resin layer are activated in advance. The member to be joined and the resin layer are superimposed on each other with the activated surfaces facing each other.

樹脂層で覆われた被接合部材の一表面は、樹脂層で覆う前よりも平滑になる。 One surface of the member to be joined covered with the resin layer becomes smoother than before being covered with the resin layer.

樹脂層の素材には、樹脂フィルムを用いる。樹脂フィルムの厚さは、250μm未満であることが望ましい。樹脂フィルムの厚さは、被接合部材に含まれる強化繊維の半径以上であるとよい。それにより、被接合部材の一表面に強化繊維が露出していた場合であっても、繊維束の隙間を埋めることができる。 A resin film is used as the material of the resin layer. The thickness of the resin film is desirably less than 250 μm. The thickness of the resin film is preferably equal to or larger than the radius of the reinforcing fibers included in the members to be joined. As a result, even if the reinforcing fibers are exposed on one surface of the member to be joined, the gaps between the fiber bundles can be filled.

樹脂フィルムは、熱可塑性樹脂製である。樹脂フィルムは、母材と同等の耐熱性を有する。同等の耐熱性とは、被接合部材同士を接合した製品の運用環境温度で母材の強度および機能に実質的に影響を及ぼさないことを意味する。例えば、母材がPEEKである場合、樹脂フィルムの熱可塑性樹脂として、PEEKおよびPEKKなどのPAEKを用いることができる。 The resin film is made of thermoplastic resin. The resin film has heat resistance equivalent to that of the base material. Equivalent heat resistance means that the strength and function of the base material are not substantially affected at the operating environmental temperature of the product in which the members to be joined are joined. For example, when the base material is PEEK, PEEK and PAEK such as PEKK can be used as the thermoplastic resin of the resin film.

樹脂フィルムに用いる熱可塑性樹脂は、被接合部材の母材と同じ材料であってよい。 The thermoplastic resin used for the resin film may be the same material as the base material of the member to be joined.

樹脂フィルムに用いる熱可塑性樹脂は、被接合部材の母材よりも融点が高い材料であってよい。母材よりも高融点である樹脂フィルムは、接合時の加熱および加圧で溶融しないため、樹脂層の厚さを確保しやすい。 The thermoplastic resin used for the resin film may be a material having a higher melting point than the base material of the member to be joined. Since the resin film, which has a higher melting point than the base material, does not melt when heated and pressed during bonding, it is easy to ensure the thickness of the resin layer.

樹脂フィルムに用いる熱可塑性樹脂は、被接合部材の母材よりも融点が低い材料であってよい。母材よりも低融点である樹脂フィルムを用いる場合、樹脂フィルムと共に、不織布または織物を樹脂層の素材として用いるとよい。不織布または織物は、樹脂フィルムと母材との間に、スペーサーとして挿入する。スペーサーを介在させることで、樹脂フィルムの樹脂が母材に吸収されるのを防ぐことができる。これにより、より確実に樹脂層を形成できる。 The thermoplastic resin used for the resin film may be a material having a lower melting point than the base material of the member to be joined. When using a resin film having a lower melting point than the base material, it is preferable to use a nonwoven fabric or a woven fabric as the material of the resin layer together with the resin film. A nonwoven or woven fabric is inserted as a spacer between the resin film and the base material. By interposing the spacer, it is possible to prevent the resin of the resin film from being absorbed by the base material. Thereby, a resin layer can be formed more reliably.

不織布および織物は、無機系繊維または有機系繊維製である。 Nonwovens and woven fabrics are made from inorganic or organic fibers.

無機系繊維は、炭素繊維およびガラス繊維などである。無機系繊維製の不織布または織物は、接合時に接合力の寄与が少ないため、これらはできる限り低目付とすることが望ましい。「低目付」とは、少なくとも母材の強化繊維の目付以下であり、好ましくは10g/m以下である。Inorganic fibers include carbon fibers and glass fibers. Non-woven fabrics or woven fabrics made of inorganic fibers do not contribute much to the joining force during joining, so it is desirable to make them as low as possible. The “low basis weight” is at least equal to or less than the basis weight of the reinforcing fibers of the base material, preferably 10 g/m 2 or less.

有機系繊維は、アラミド繊維およびPEEK繊維などである。有機系繊維は、母材よりも高融点であることが望ましい。 Organic fibers include aramid fibers and PEEK fibers. It is desirable that the organic fibers have a higher melting point than the base material.

スペーサーを介在させる場合は、被接合部材と樹脂フィルムとの間に挿入する前に、該スペーサーの両面または片面を活性化処理するとよい。活性化処理することで、スペーサー(不織布)内部に樹脂が含浸しやすくなる。 When a spacer is interposed, both sides or one side of the spacer should be activated before being inserted between the member to be joined and the resin film. The activation treatment facilitates impregnation of the spacer (nonwoven fabric) with the resin.

「活性化」とは、化学結合を引き起こす活性官能基が導入されることを意味する。活性化は、プラズマ処理、紫外線(UV)処理、真空紫外線(VUV)処理、火炎処理、薬液処理などの方法で実施されうる。 By "activated" is meant the introduction of active functional groups that cause chemical bonding. Activation can be performed by methods such as plasma treatment, ultraviolet (UV) treatment, vacuum ultraviolet (VUV) treatment, flame treatment, and chemical solution treatment.

プラズマ処理で活性化を行う場合、まず、被接合部材の一表面および樹脂フィルムの一表面のそれぞれに、プラズマを照射する。例えば、酸素を含むプラズマが照射された表面には、酸素を含む活性官能基(以降、官能基)が導入される。スペーサーとして不織布を用いる場合、不織布の両面または片面にプラズマを照射する。低目付の不織布の場合、プラズマが裏面にも通り抜けるため、片面だけの照射で両面を活性化処理できる。 When activation is performed by plasma treatment, plasma is first applied to each of one surface of the member to be joined and one surface of the resin film. For example, an oxygen-containing active functional group (hereinafter referred to as a functional group) is introduced to a surface irradiated with oxygen-containing plasma. When a nonwoven fabric is used as the spacer, plasma is applied to both sides or one side of the nonwoven fabric. In the case of a nonwoven fabric with a low basis weight, plasma passes through the back side as well, so both sides can be activated by irradiating only one side.

プラズマ照射には、公知のプラズマ発生技術を利用したプラズマ照射装置が用いられうる。大物の部品(部材)へのプラズマ照射は、大気圧プラズマ照射装置で実施することが望ましい。小物の部材へのプラズマ照射は、減圧プラズマ照射装置で実施してもよい。 A plasma irradiation apparatus using a known plasma generation technique can be used for plasma irradiation. Plasma irradiation to large parts (members) is desirably carried out by an atmospheric pressure plasma irradiation apparatus. Plasma irradiation to the small member may be carried out by a low-pressure plasma irradiation apparatus.

プラズマは、任意のガスにより形成されうる。プラズマは、例えば、空気、酸素、窒素、二酸化炭素、水蒸気、ヘリウム、ネオン、アルゴンなど、常温で気体となる物質の少なくとも1つから形成されうる。 A plasma can be formed by any gas. The plasma can be formed from at least one substance that is gaseous at room temperature, such as air, oxygen, nitrogen, carbon dioxide, water vapor, helium, neon, argon, and the like.

プラズマを照射する際の条件は、プラズマ照射装置の種類、樹脂フィルムおよび被接合部材などの被照射部材の材料、要求される接合強度、および被接合部材の一表面の状態などに応じて適宜選択されるとよい。 The conditions for plasma irradiation are appropriately selected according to the type of plasma irradiation device, the material of the member to be irradiated such as the resin film and the member to be joined, the required bonding strength, and the state of one surface of the member to be joined. should be.

酸素を含むプラズマを照射することで導入されうる官能基は、ヒドロキシ基、カルボキシ基、カルボニル基などである。接合される被接合部材同士において、それぞれの被接合面には同種の官能基が生成されてもよいし、異種の官能基が生成されてもよい。照射するプラズマの種類を選択することで、導入される官能基の種類を管理できる。 Functional groups that can be introduced by irradiation with oxygen-containing plasma include a hydroxyl group, a carboxyl group, and a carbonyl group. The same type of functional groups or different types of functional groups may be generated on the surfaces to be bonded between the members to be bonded. By selecting the type of plasma to be irradiated, the types of functional groups to be introduced can be controlled.

加熱および加圧は、特に限定されるものではないが、例えば加熱加圧プレス機、ローラー等で実施されうる。なお、加熱と加圧は機構の組合せとしてもよい。例えば、透明なブロックで加圧してレーザで加熱すること、ブロックで挟み通電することなどが挙げられる。 Heating and pressing are not particularly limited, but can be carried out, for example, with a hot press machine, rollers, or the like. It should be noted that the heating and pressurization may be a combination of mechanisms. For example, it can be pressurized with a transparent block and heated with a laser, sandwiched between blocks and energized, and the like.

母材よりも高融点の樹脂フィルムを用いる場合、加熱および加圧は、母材が軟化する条件で実施するとよい。「軟化する」とは、ガラス転移温度を超えて弾性率が低下することを目安とする。より具体的には、加熱および加圧は、母材がガラス転移温度を超える条件で実施することが望ましい。 When a resin film having a higher melting point than the base material is used, the heating and pressurization should be carried out under conditions that soften the base material. “Softening” means that the elastic modulus decreases beyond the glass transition temperature. More specifically, the heating and pressing are desirably performed under the condition that the base material exceeds the glass transition temperature.

母材よりも高融点の樹脂フィルムを用いる場合、加熱および加圧は、母材が溶融する条件で実施してもよい。このとき、しっかりと母材の成形圧力と同程度で加圧することで、母材の強化繊維のうねりを抑えることができる。あるいは、うねる領域を最終的に製品となる部分から外れるようにして加熱および加圧を実施し、樹脂層形成後にうねった部分を切除してもよい。 When using a resin film having a higher melting point than the base material, the heating and pressurization may be performed under the condition that the base material melts. At this time, it is possible to suppress the waviness of the reinforcing fibers of the base material by firmly applying pressure to the same level as the molding pressure of the base material. Alternatively, heating and pressurization may be performed so that the undulating region is removed from the final product, and the undulating portion may be cut off after the resin layer is formed.

母材よりも高融点の樹脂フィルムを用いる場合、接合力確保のために被接合部材の加熱温度を高くし、かつ、圧力を高くしてもよい。このとき、被接合部材に変形が生じる可能性がある。そのような条件で加熱および加圧をする場合、製品サイズよりも大きく母材を作製し、被接合部材が変形部分を樹脂層形成後に除去加工等を施す。 When a resin film having a melting point higher than that of the base material is used, the heating temperature of the members to be joined may be increased and the pressure may be increased to ensure the bonding strength. At this time, deformation may occur in the members to be joined. When heating and pressing under such conditions, a base material larger than the product size is prepared, and the deformed portion of the member to be joined is removed after forming the resin layer.

母材よりも低融点である樹脂フィルムを用いる場合は、母材よりも低い温度で軟化するため、接合時の加熱および加圧による被接合部材の母材の変形を避けることができる。これにより、樹脂層形成後に追加加工が不要となる。 When a resin film having a melting point lower than that of the base material is used, it softens at a temperature lower than that of the base material, so deformation of the base material of the member to be joined due to heating and pressure during joining can be avoided. This eliminates the need for additional processing after forming the resin layer.

(S2)活性化処理
被接合部材の被接合面を活性化させる。活性化は、プラズマ処理、紫外線(UV)処理、真空紫外線(VUV)処理、火炎処理、薬液処理などの方法で実施されうる。本実施形態では、プラズマ処理により被接合面を活性化させるものとして、以降を説明する。
(S2) Activation Processing The surfaces to be joined of the members to be joined are activated. Activation can be performed by methods such as plasma treatment, ultraviolet (UV) treatment, vacuum ultraviolet (VUV) treatment, flame treatment, and chemical solution treatment. In the present embodiment, the following description is based on the assumption that the surfaces to be bonded are activated by plasma processing.

プラズマ処理では、まず、被接合面にプラズマを照射する。樹脂層が形成された被接合部材では、樹脂層の外表面(被接合部材に接していない面)が被接合面となる。 In the plasma treatment, first, the surfaces to be bonded are irradiated with plasma. In the member to be joined on which the resin layer is formed, the outer surface of the resin layer (the surface not in contact with the member to be joined) is the surface to be joined.

プラズマ照射には、公知のプラズマ発生技術を利用したプラズマ照射装置が用いられうる。大物の部品(部材)へのプラズマ照射は、大気圧プラズマ照射装置で実施することが望ましい。小物の部材へのプラズマ照射は、減圧プラズマ照射装置で実施してもよい。 A plasma irradiation apparatus using a known plasma generation technique can be used for plasma irradiation. Plasma irradiation to large parts (members) is desirably carried out by an atmospheric pressure plasma irradiation apparatus. Plasma irradiation to the small member may be carried out by a low-pressure plasma irradiation apparatus.

プラズマは、任意のガスにより形成されうる。プラズマは、例えば、空気、酸素、窒素、二酸化炭素、水蒸気、ヘリウム、ネオン、アルゴンなど、常温で気体となる物質の少なくとも1つから形成されうる。 A plasma can be formed by any gas. The plasma can be formed from at least one substance that is gaseous at room temperature, such as air, oxygen, nitrogen, carbon dioxide, water vapor, helium, neon, argon, and the like.

プラズマを照射する際の条件は、プラズマ照射装置の種類、樹脂層および被接合部材の材料、要求される接合強度、および被接合面の状態などに応じて適宜選択されるとよい。 Conditions for plasma irradiation may be appropriately selected according to the type of plasma irradiation device, materials of the resin layer and members to be joined, required joining strength, condition of the surfaces to be joined, and the like.

被接合面にプラズマを照射することで、該被接合面に官能基が導入される。例えば、酸素を含むプラズマを照射することで導入されうる官能基は、ヒドロキシ基、カルボキシ基、カルボニル基などである。接合される被接合部材同士において、それぞれの被接合面には同種の官能基が生成されてもよいし、異種の官能基が生成されてもよい。照射するプラズマの種類を選択することで、導入される官能基の種類を管理できる。 By irradiating the surfaces to be bonded with plasma, functional groups are introduced into the surfaces to be bonded. For example, functional groups that can be introduced by irradiation with oxygen-containing plasma include a hydroxy group, a carboxy group, and a carbonyl group. The same type of functional groups or different types of functional groups may be generated on the surfaces to be bonded between the members to be bonded. By selecting the type of plasma to be irradiated, the types of functional groups to be introduced can be controlled.

(S3)被接合部材同士の接合
活性化処理後、図1に示すように、被接合部材1,2を重ね合わせる。
(S3) Joining members to be joined After the activation process, the members to be joined 1 and 2 are overlapped as shown in FIG.

図2に、図1のA-A断面視した分解図を示す。被接合部材1の一表面には樹脂層3が形成されている。被接合部材2の一表面には樹脂層4が形成されている。図2において、被接合部材1,2は、樹脂層3,4が形成された面(被接合面S,S)が向かい合うように配置される。FIG. 2 shows an exploded view taken along the line AA of FIG. A resin layer 3 is formed on one surface of the member 1 to be joined. A resin layer 4 is formed on one surface of the joined member 2 . In FIG. 2, the members to be joined 1 and 2 are arranged so that the surfaces on which the resin layers 3 and 4 are formed (surfaces to be joined S 1 and S 2 ) face each other.

重ね合わせた状態で、被接合部材1および被接合部材2を、加熱しながら加圧する。これにより、被接合面Sにある官能基と被接合面Sにある官能基とが化学結合し、被接合部材1と被接合部材2とが接合される。The member to be joined 1 and the member to be joined 2 are pressed while being heated while being superimposed. As a result, the functional group on the surface to be joined S1 and the functional group on the surface to be joined S2 are chemically bonded, and the member to be joined 1 and the member to be joined 2 are joined.

加熱および加圧は、特に限定されるものではないが、例えば加熱加圧プレス機、ローラー等で実施されうる。なお、加熱と加圧は機構の組合せとしてもよい。例えば、透明なブロックで加圧してレーザで加熱すること、ブロックで挟み通電することなどが挙げられる。 Heating and pressing are not particularly limited, but can be carried out, for example, with a hot press machine, rollers, or the like. It should be noted that the heating and pressurization may be a combination of mechanisms. For example, it can be pressurized with a transparent block and heated with a laser, sandwiched between blocks and energized, and the like.

加熱および加圧は、被接合部材1,2の母材が融点以上の温度にならない(融点未満の温度を維持できる)条件で実施される。加熱および加圧は、被接合面S,Sにある官能基同士が化学反応可能な条件で実施される。ここで「母材が融点以上の温度にならない」とは、「母材が溶融されない」と同義である。FRTPの母材として非晶質の熱可塑性樹脂を用いる場合、「母材が溶融されない」は、「母材のガラス転移温度を超え、弾性率が大幅に低下し、形状保持が不可能になる温度にならない」と同義である。Heating and pressing are performed under the condition that the temperature of the base material of the members to be joined 1 and 2 does not exceed the melting point (the temperature can be maintained below the melting point). Heating and pressurization are performed under conditions that allow chemical reaction between the functional groups on the surfaces S 1 and S 2 to be joined. Here, "the temperature of the base material does not reach the melting point or higher" is synonymous with "the base material is not melted." When an amorphous thermoplastic resin is used as the base material of FRTP, "the base material is not melted" means "the glass transition temperature of the base material is exceeded, the elastic modulus is significantly reduced, and shape retention becomes impossible. It is synonymous with "not reaching the temperature".

上記条件は、予備試験等により予め取得しておくとよい。 The above conditions are preferably acquired in advance by preliminary tests or the like.

図3に、上記実施形態に従って接合されて得られた接合体の断面図を示す。接合体5は、被接合部材1(第1被接合部材)、被接合部材2(第2被接合部材)、樹脂層3,4(第1樹脂層,第2樹脂層)を備えている。 FIG. 3 shows a cross-sectional view of a joined body obtained by joining according to the above embodiment. The joined body 5 includes a joined member 1 (first joined member), a joined member 2 (second joined member), and resin layers 3 and 4 (first resin layer and second resin layer).

樹脂層3は、被接合部材1の一表面を覆うよう配置されている。樹脂層3は、被接合部材1と化学結合により接合されている。 The resin layer 3 is arranged so as to cover one surface of the member 1 to be joined. The resin layer 3 is joined to the joined member 1 by chemical bonding.

樹脂層4は、被接合部材2の一表面を覆うよう配置されている。樹脂層4は、被接合部材2と化学結合により接合されている。 The resin layer 4 is arranged so as to cover one surface of the joined member 2 . The resin layer 4 is joined to the joined member 2 by chemical bonding.

樹脂層3と樹脂層4とは、隣接している。樹脂層3と樹脂層4との接触面では、互いの面にある官能基同士が化学結合されている。樹脂層3と樹脂層4とが接合されることで、被接合部材1と被接合部材2とが接合された接合体5となる。 The resin layer 3 and the resin layer 4 are adjacent to each other. At the contact surface between the resin layer 3 and the resin layer 4, the functional groups on each surface are chemically bonded. By bonding the resin layer 3 and the resin layer 4 together, a bonded body 5 in which the member to be bonded 1 and the member to be bonded 2 are bonded is formed.

〔第2実施形態〕
本実施形態は、樹脂層の素材として、樹脂フィルムに替えて、樹脂材を用いる点が、第1実施形態と相違する。それ以外の構成については、第1実施形態と同様である。
[Second embodiment]
This embodiment differs from the first embodiment in that a resin material is used instead of the resin film as the material of the resin layer. Other configurations are the same as those of the first embodiment.

樹脂材は、熱可塑性樹脂製である。樹脂材は、被接合部材の母材と同等の耐熱性を有する。樹脂材には、強化繊維が含まれていてもよい。 The resin material is made of thermoplastic resin. The resin material has heat resistance equivalent to that of the base material of the member to be joined. The resin material may contain reinforcing fibers.

樹脂材に用いられる熱可塑性樹脂は、被接合部材の母材と同じ材料であることが好ましい。樹脂材は、被接合部材の被接合面に存在する凹部の最大深さより厚い。 The thermoplastic resin used for the resin material is preferably the same material as the base material of the member to be joined. The resin material is thicker than the maximum depth of the recesses present in the surfaces to be joined of the members to be joined.

樹脂材は、該樹脂材が介在される予定の被接合部材の被接合面の形状を模した表面(模倣表面)を有する。例えば、被接合部材Aに接触させる樹脂材Aは、模倣表面と、平滑な他の表面とを有する。模倣表面は、樹脂材などによる型取りまたは3次元スキャナなどで被接合部材の被接合面を計測し、計測結果に基づき模倣することで形成されうる。 The resin material has a surface (imitation surface) that imitates the shape of the surface to be joined of the member to be joined in which the resin material is to be interposed. For example, the resin material A to be brought into contact with the member A to be joined has a simulated surface and another smooth surface. The imitation surface can be formed by measuring the surface to be joined of the member to be joined by taking a mold using a resin material or the like or by using a three-dimensional scanner or the like, and by simulating the surface based on the measurement result.

図4に、本実施形態において、樹脂層13,14が形成された被接合部材11,12の断面図を示す。被接合部材11の一表面には樹脂層13が形成されている。被接合部材12の一表面には樹脂層14が形成されている。図4において、被接合部材11,12は、樹脂層13,14が形成された面(被接合面S11,S12)が向かい合うように配置される。FIG. 4 shows a cross-sectional view of members to be joined 11 and 12 on which resin layers 13 and 14 are formed in this embodiment. A resin layer 13 is formed on one surface of the joined member 11 . A resin layer 14 is formed on one surface of the member 12 to be joined. In FIG. 4, the members to be joined 11 and 12 are arranged so that the surfaces on which the resin layers 13 and 14 are formed (surfaces to be joined S 11 and S 12 ) face each other.

スキン-ストリンガのような大物部材は、単品の部品精度を出すのが難しい。部品精度がよくない場合、樹脂フィルムを介在させて加熱および加圧しても、埋めきれない隙間が残ることが懸念される。そのような部品精度を出すのが難しい製品では、被接合部材の表面形状に倣った表面を有する樹脂材を用い、該表面が被接合面の形状に整合するよう樹脂材を配置するとよい。これによって、より確実に被接合面同士の間に生じる隙間を埋めることができるため、接合強度が向上される。 For large members such as skin-stringers, it is difficult to obtain the precision of individual parts. If the precision of the part is not good, there is a concern that even if the resin film is interposed and the heat and pressure are applied, a gap that cannot be completely filled will remain. For a product in which it is difficult to achieve such component precision, it is preferable to use a resin material having a surface that follows the surface shape of the member to be joined, and arrange the resin material so that the surface matches the shape of the surface to be joined. As a result, the gap generated between the surfaces to be joined can be more reliably filled, thereby improving the joining strength.

〔第3実施形態〕
本実施形態に係る接合方法は、樹脂層の形成手順が第1実施形態と異なる。活性化処理および被接合部材同士の接合は、第1実施形態の(S2)および(S3)と同様に実施する。
[Third Embodiment]
The joining method according to this embodiment differs from the first embodiment in the procedure for forming the resin layer. The activation process and the joining of members to be joined are performed in the same manner as (S2) and (S3) in the first embodiment.

本実施形態では、被接合部材を成形する際に、樹脂層を形成する。 In this embodiment, a resin layer is formed when molding the member to be joined.

被接合部材の素材として、第1熱可塑性プリプレグを用いる。第1熱可塑性プリプレグは、被接合部材の母材となる熱可塑性樹脂と、強化繊維とを含むシート状の中間材料である。熱可塑性樹脂および強化繊維には、第1実施形態で例示した材料を使用できる。 A first thermoplastic prepreg is used as the material of the member to be joined. The first thermoplastic prepreg is a sheet-like intermediate material containing a thermoplastic resin that serves as a base material of the members to be joined and reinforcing fibers. The materials exemplified in the first embodiment can be used for the thermoplastic resin and reinforcing fibers.

樹脂層の素材として、樹脂フィルム、第2熱可塑性プリプレグ、不織布および織物の少なくとも1つを用いる。 At least one of a resin film, a second thermoplastic prepreg, a nonwoven fabric, and a woven fabric is used as a material for the resin layer.

樹脂フィルムは、熱可塑性樹脂製である。樹脂フィルムは、母材と同等の耐熱性を有する。例えば、母材がPEEKである場合、樹脂フィルムの熱可塑性樹脂として、PEEKおよびPEKKなどのPAEKを用いることができる。 The resin film is made of thermoplastic resin. The resin film has heat resistance equivalent to that of the base material. For example, when the base material is PEEK, PEEK and PAEK such as PEKK can be used as the thermoplastic resin of the resin film.

樹脂フィルムに用いる熱可塑性樹脂は、被接合部材の母材と同じ材料であってよい。樹脂フィルムに用いる熱可塑性樹脂は、被接合部材の母材よりも融点が高い材料であってもよい。 The thermoplastic resin used for the resin film may be the same material as the base material of the member to be joined. The thermoplastic resin used for the resin film may be a material having a higher melting point than the base material of the member to be joined.

第2熱可塑性プリプレグは、熱可塑性樹脂と、強化繊維とを含むシート状の中間材料である。第2熱可塑性プリプレグは、第1熱可塑性樹脂と同等の耐熱性を有する。熱可塑性樹脂の種類、強化繊維の種類および形態は、第1熱可塑性プリプレグと同じであることが望ましいが、異なっていてもよい。 The second thermoplastic prepreg is a sheet-like intermediate material containing a thermoplastic resin and reinforcing fibers. The second thermoplastic prepreg has heat resistance equivalent to that of the first thermoplastic resin. The type of thermoplastic resin and the type and form of reinforcing fibers are desirably the same as those of the first thermoplastic prepreg, but may be different.

第2熱可塑性プリプレグは、第1熱可塑性プリプレグよりも樹脂含有率が高い。樹脂含有率は、強化繊維の径および種類等により適宜設定されるとよい。第2熱可塑性プリプレグの樹脂含有率は、冷却時に発生する樹脂と樹脂との熱収縮差を埋めるのに必要な量を考慮して設定されるのが望ましい。 The second thermoplastic prepreg has a higher resin content than the first thermoplastic prepreg. The resin content may be appropriately set according to the diameter and type of the reinforcing fiber. The resin content of the second thermoplastic prepreg is desirably set in consideration of the amount necessary to make up for the difference in heat shrinkage between the resins that occurs during cooling.

図5に、一例としての第2熱可塑性プリプレグ6の断面を示す。第2熱可塑性プリプレグ6は、熱可塑性樹脂7が強化繊維8の隙間を埋めている領域Xと、領域Xを覆い、強化繊維8を含まない領域Yとで構成されているとよい。「含まない」とは、強化繊維8が全く含まれていないということに限定されず、被接合面が平滑になる程度に強化繊維8を含むことを許容する。 FIG. 5 shows a cross section of the second thermoplastic prepreg 6 as an example. The second thermoplastic prepreg 6 is preferably composed of a region X in which the thermoplastic resin 7 fills the gaps between the reinforcing fibers 8 and a region Y that covers the region X and does not contain the reinforcing fibers 8 . The term "does not contain" is not limited to the fact that the reinforcing fibers 8 are not contained at all.

不織布および織物は、無機系繊維または有機系繊維製である。 Nonwovens and woven fabrics are made from inorganic or organic fibers.

無機系繊維は、炭素繊維およびガラス繊維などである。無機系繊維製の不織布または織物は、接合時に接合力の寄与が少ないため、これらはできる限り低目付とすることが望ましい。「低目付」とは、少なくとも母材の強化繊維の目付以下であり、好ましくは10g/m以下である。Inorganic fibers include carbon fibers and glass fibers. Non-woven fabrics or woven fabrics made of inorganic fibers do not contribute much to the joining force during joining, so it is desirable to make them as low as possible. The “low basis weight” is at least equal to or less than the basis weight of the reinforcing fibers of the base material, preferably 10 g/m 2 or less.

有機系繊維は、アラミド繊維およびPEEK繊維などである。有機系繊維は、第1熱可塑性プリプレグの母材よりも高融点であることが望ましい。 Organic fibers include aramid fibers and PEEK fibers. The organic fiber preferably has a higher melting point than the base material of the first thermoplastic prepreg.

本実施形態において、樹脂層は次のように形成する。
まず、図6に示すように、積層した第1熱可塑性プリプレグ9の(最表面)上に、樹脂層の素材10を積層する。
In this embodiment, the resin layer is formed as follows.
First, as shown in FIG. 6, the material 10 of the resin layer is laminated on the laminated first thermoplastic prepreg 9 (outermost surface).

第1熱可塑性プリプレグ9および樹脂層の素材10を加熱および加圧して、一体成形する。これにより、樹脂層が形成される。「最表面」は、成形後に被接合部材の被接合面となる予定の側にある。 The first thermoplastic prepreg 9 and the material 10 of the resin layer are heated and pressed to be integrally molded. Thereby, a resin layer is formed. The "outermost surface" is on the side that is to become the surface to be joined of the member to be joined after molding.

素材として樹脂フィルムまたは樹脂含有率の高い第2熱可塑性プリプレグを用いることで、第1熱可塑性プリプレグ9を最表面とした場合と比べて被接合部材の一表面を平滑化できる。 By using a resin film or a second thermoplastic prepreg having a high resin content as the material, one surface of the member to be joined can be made smoother than when the first thermoplastic prepreg 9 is used as the outermost surface.

素材として不織布または織物を用いた場合、成形時の加熱および加圧により第1熱可塑性プリプレグの熱可塑性樹脂が、素材に染み込む。これにより素材を含む樹脂層が形成される。 When a nonwoven fabric or a woven fabric is used as the material, the thermoplastic resin of the first thermoplastic prepreg permeates into the material due to heating and pressurization during molding. Thereby, a resin layer containing the material is formed.

素材への熱可塑性樹脂の含浸量が不足する場合は、不織布または織物の上に樹脂フィルムを配置して、母材と一体成形するとよい。あるいは、本実施形態に沿って樹脂層を形成した後、該樹脂層の上に、第1実施形態に記載の樹脂フィルムを用いた方法により別の樹脂層をさらに形成してもよい。 If the impregnated amount of the thermoplastic resin into the material is insufficient, it is preferable to arrange the resin film on the nonwoven fabric or the woven fabric and integrally mold it with the base material. Alternatively, after forming a resin layer according to this embodiment, another resin layer may be further formed on the resin layer by the method using the resin film described in the first embodiment.

密着力を高めたい場合は、樹脂層の素材の一表面を活性化してから、該活性化した面を第1熱可塑性プリプレグに向けて積層した後、一体成形するとよい。樹脂層の素材として、2種類以上を組み合わせる場合、各素材について、他の素材または第1プリプレグとの被接触面を活性化してから、積層して一体成形するとよい。また、第1熱可塑プリプレグの一表面を活性化してもよい。 If it is desired to increase the adhesion, one surface of the material of the resin layer is activated, and then laminated with the activated surface facing the first thermoplastic prepreg, followed by integral molding. When combining two or more kinds of materials for the resin layer, each material should be laminated and integrally formed after activating the contact surface with the other material or the first prepreg. Also, one surface of the first thermoplastic prepreg may be activated.

〔第4実施形態〕
本実施形態に係る接合方法は、樹脂層の形成手順が第1実施形態と異なる。活性化処理および被接合部材同士の接合は、第1実施形態の(S2)および(S3)と同様に実施する。
[Fourth embodiment]
The joining method according to this embodiment differs from the first embodiment in the procedure for forming the resin layer. The activation process and the joining of members to be joined are performed in the same manner as (S2) and (S3) in the first embodiment.

樹脂層の素材には、不織布または織物を使用する。不織布および織物は、無機系繊維製または有機系繊維製である。 A non-woven fabric or a woven fabric is used as the material of the resin layer. Non-woven fabrics and woven fabrics are made of inorganic or organic fibers.

無機系繊維は、炭素繊維およびガラス繊維などである。無機系繊維製の不織布または織物は、接合時に接合力の寄与が少ないため、これらはできる限り低目付とすることが望ましい。「低目付」とは、少なくとも母材の強化繊維の目付以下であり、好ましくは10g/m以下である。Inorganic fibers include carbon fibers and glass fibers. Non-woven fabrics or woven fabrics made of inorganic fibers do not contribute much to the joining force during joining, so it is desirable to make them as low as possible. The “low basis weight” is at least equal to or less than the basis weight of the reinforcing fibers of the base material, preferably 10 g/m 2 or less.

有機系繊維は、アラミド繊維およびPEEK繊維などである。有機系繊維は、被接合部材の母材よりも高融点であることが望ましい。 Organic fibers include aramid fibers and PEEK fibers. It is desirable that the organic fiber has a higher melting point than the base material of the member to be joined.

樹脂層は、被接合部材の一表面に、樹脂層の素材を重ね合わせ、加熱および加圧することで形成する。 The resin layer is formed by superimposing the material of the resin layer on one surface of the member to be joined and applying heat and pressure.

本実施形態では、樹脂層を形成する際の加熱および加圧を、被接合部材の母材が融点以上の温度となる条件で実施する。 In this embodiment, the heating and pressurization for forming the resin layer is performed under the condition that the temperature of the base material of the members to be joined reaches the melting point or higher.

融点以上になると母材は溶融する。溶融した母材(熱可塑性樹脂)が樹脂層の素材に染み込むことで、樹脂層が形成される。 The base material melts when the temperature exceeds the melting point. The resin layer is formed by the melted base material (thermoplastic resin) soaking into the material of the resin layer.

樹脂層の素材への熱可塑性樹脂の含浸量が不足する場合は、第1実施形態を組み合わせて、樹脂フィルムを用いた樹脂層をさらに形成するとよい。 If the amount of the thermoplastic resin impregnated into the material of the resin layer is insufficient, the first embodiment may be combined to further form a resin layer using a resin film.

樹脂層の素材への熱可塑性樹脂の含浸量の不足が予め予測される場合、または、より確実に熱可塑性樹脂を含浸させたい場合は、本実施形態の樹脂層の素材(不織布または織物)の上に、第1実施形態で記載されているような樹脂フィルムを重ね合わせた上で、加熱および加圧を実施するとよい。樹脂フィルムの融点は、被接合部材の母材と同じまたは母材よりも低いことが好ましい。 If the amount of impregnation of the thermoplastic resin into the material of the resin layer is predicted to be insufficient, or if it is desired to more reliably impregnate the thermoplastic resin, the material (nonwoven fabric or woven fabric) of the resin layer of the present embodiment is It is preferable to apply heat and pressure after superimposing a resin film as described in the first embodiment thereon. The melting point of the resin film is preferably the same as or lower than the base material of the member to be joined.

密着力を高めたい場合は、被接合部材の一表面および樹脂層の素材の一表面のそれぞれを活性化してから、活性化した面を対向させて積層さて一体成形するとよい。樹脂層として、2種類以上の素材を組み合わせる場合、各素材について、他の素材または被接合部材との被接触面を活性化してから、積層して一体成形するとよい。 If it is desired to increase the adhesion, one surface of the member to be joined and one surface of the material of the resin layer are respectively activated, and then the activated surfaces are opposed to each other and laminated to be integrally molded. When two or more types of materials are combined for the resin layer, it is preferable to laminate and integrally mold each material after activating the surface to be contacted with the other material or the member to be joined.

上記第1実施形態から第4実施形態に係る接合方法は、航空機の構成部材の接合に適用できる。例えば、上記第1実施形態から第4実施形態に係る接合方法は、航空機の胴体または翼の外板と、それを補強するストリンガとの接合に好適である。 The joining methods according to the first to fourth embodiments can be applied to join components of an aircraft. For example, the joining methods according to the first to fourth embodiments are suitable for joining the outer skin of the fuselage or wing of an aircraft and the stringers that reinforce it.

なお、上記第1実施形態から第4実施形態に係る接合方法では、活性化処理する前に、樹脂層を研磨する工程(研磨処理)を備えていてもよい。 Note that the bonding methods according to the first to fourth embodiments may include a step of polishing the resin layer (polishing process) before performing the activation process.

研磨は、サンディングおよびブラストなどの公知の機械的な手段により実施できる。「研磨」は、樹脂層の表面を磨く他、樹脂層を切削することを含んでもよい。 Polishing can be performed by known mechanical means such as sanding and blasting. "Polishing" may include cutting the resin layer as well as polishing the surface of the resin layer.

研磨は、樹脂層の厚さの範囲内で実施する。これにより、樹脂層の形成により生じる板厚の増加を制御できる。 Polishing is performed within the thickness of the resin layer. This makes it possible to control the increase in plate thickness caused by the formation of the resin layer.

樹脂層の一部または全部の外表面を研磨することで、被接合面の平滑度を向上させられる。研磨処理では、被接合面を、実施可能な範囲で鏡面に近づけることが望ましい。 By polishing the outer surface of part or all of the resin layer, the smoothness of the surfaces to be joined can be improved. In the polishing process, it is desirable to bring the surfaces to be joined closer to a mirror surface as far as possible.

研磨処理の条件は、被接合部材の材料に合わせて適宜設定する。
例えば、被接合部材にSiC繊維などの硬くて脆い強化繊維が含まれる場合、研磨材としてダイヤモンドを用いて被接合部材の表面を研磨するとよい。SiC繊維を含む被接合部材であっても、最表面が樹脂層(SiC繊維を含まない層)である、または最表層に含まれるSiC繊維量が少ない場合には、他の方法で研磨してもよい。
The conditions for the polishing treatment are appropriately set according to the materials of the members to be joined.
For example, when the members to be joined contain hard and brittle reinforcing fibers such as SiC fibers, the surface of the members to be joined may be polished using diamond as an abrasive. Even if the member to be joined contains SiC fibers, if the outermost surface is a resin layer (a layer that does not contain SiC fibers) or if the amount of SiC fibers contained in the outermost layer is small, it should be polished by other methods. good too.

また、上記第1実施形態から第4実施形態に係る接合方法では、樹脂層を形成する工程が、2段階で実施されてもよい。 Moreover, in the bonding methods according to the first to fourth embodiments, the step of forming the resin layer may be performed in two steps.

まず、上記第1実施形態から第4実施形態のいずれかに基づき、被接合部材の直上に第1樹脂層を形成する。 First, a first resin layer is formed directly above a member to be joined based on any one of the first to fourth embodiments.

次に、第1樹脂層の直上に、樹脂材を用いて第2樹脂層を形成する。 Next, a second resin layer is formed using a resin material directly above the first resin layer.

第2樹脂層の形成では、まず、第1樹脂層の外表面と、樹脂材の一表面とを活性化処理する。 In forming the second resin layer, first, the outer surface of the first resin layer and one surface of the resin material are activated.

次に、第1樹脂層の外表面の形状と樹脂材の一表面(後述の模倣表面)の形状が整合するよう位置合わせして、樹脂材を第1樹脂層に重ね合わせる。 Next, the shape of the outer surface of the first resin layer and the shape of one surface of the resin material (imitation surface, which will be described later) are aligned, and the resin material is overlaid on the first resin layer.

最後に、樹脂材が重ねられた第1樹脂層を備えた被接合部材を加熱および加圧する。これにより第2樹脂層が形成される。 Finally, the member to be joined provided with the first resin layer on which the resin material is superimposed is heated and pressurized. A second resin layer is thus formed.

樹脂材は、熱可塑性樹脂製である。樹脂材は、第1樹脂層の母材と同等の耐熱性を有する。樹脂材には、強化繊維が含まれていてもよい。 The resin material is made of thermoplastic resin. The resin material has heat resistance equivalent to that of the base material of the first resin layer. The resin material may contain reinforcing fibers.

樹脂材に用いられる熱可塑性樹脂は、第1樹脂層と同じ材料で構成されることが好ましい。 The thermoplastic resin used for the resin material is preferably made of the same material as the first resin layer.

樹脂材として、2種類以上の材料を組み合わせてもよい。例えば、母材よりも融点の低い材料と、母材と同じ材料を組み合わせる。この場合、樹脂材は3層構成(母材よりも融点の低い材料からなる2つの樹脂材で、母材と同じ材料からなる樹脂材を挟むような構成)にするとよい。 As the resin material, two or more kinds of materials may be combined. For example, a material with a melting point lower than that of the base material is combined with the same material as the base material. In this case, the resin material should preferably have a three-layer structure (a structure in which two resin materials made of a material having a lower melting point than the base material sandwich a resin material made of the same material as the base material).

樹脂材は、第1樹脂層の外表面の形状を模した表面(模倣表面)を有する。模倣表面は、樹脂材などによる型取りまたは3次元スキャナなどで第1樹脂層の外表面を計測し、計測結果に基づき模倣することで形成されうる。 The resin material has a surface (imitation surface) that imitates the shape of the outer surface of the first resin layer. The simulated surface can be formed by measuring the outer surface of the first resin layer with a resin material or the like or by measuring the outer surface of the first resin layer with a three-dimensional scanner or the like, and by simulating based on the measurement results.

第2樹脂層の形成は、第1樹脂層を形成した被接合部材を他の被接合部材に重ね合わせた際、重ね合わせた面間に隙間が生じた場合などに有効である。 The formation of the second resin layer is effective when, for example, a gap occurs between the superposed surfaces when the member to be joined on which the first resin layer is formed is superimposed on another member to be joined.

<付記>
以上説明した各実施形態に記載の接合方法および接合体は例えば以下のように把握される。
<Appendix>
The joining method and the joined body described in each of the embodiments described above are grasped, for example, as follows.

本開示は、母材が熱可塑性樹脂である繊維強化熱可塑性プラスチックを被接合部材(1,2,11,12)とし、前記被接合部材同士を接合する接合方法である。本開示に係る接合方法では、前記被接合部材の一表面に樹脂層(3,4,13,14)を形成し、前記樹脂層の外表面を活性化処理し、前記樹脂層の活性化された前記外表面同士を対向させて2つの前記被接合部材を重ね合わせ、前記母材の温度が融点未満を維持されるよう、重ね合わせた状態の前記被接合部材を加熱および加圧する。 The present disclosure is a joining method for joining members to be joined (1, 2, 11, 12) made of a fiber-reinforced thermoplastic whose base material is a thermoplastic resin. In the bonding method according to the present disclosure, a resin layer (3, 4, 13, 14) is formed on one surface of the member to be bonded, the outer surface of the resin layer is activated, and the activated resin layer is activated. The two members to be joined are superimposed with the outer surfaces facing each other, and the superposed members to be joined are heated and pressurized so that the temperature of the base material is maintained below the melting point.

活性化処理された面には、酸素を含む官能基が導入される。活性化処理した面同士を合わせ、加熱および加圧することで、対向する面にある官能基同士が化学結合する。これにより、2つの被接合部材が接合される。化学結合は、エステル結合、エーテル結合、水素結合およびファンデルワールス結合などであってよい。 A functional group containing oxygen is introduced into the activated surface. The activated surfaces are brought together and heated and pressed to chemically bond the functional groups on the opposing surfaces. Thereby, the two members to be joined are joined. Chemical bonds may be ester bonds, ether bonds, hydrogen bonds, van der Waals bonds, and the like.

加熱および加圧は、母材の温度が融点未満に維持されるよう実施するため、母材が溶融することはない。よって、溶融によって板厚および形状が変化することがないため、接合時前後における板厚および形状の管理が容易となる。母材が溶融しないため、強化繊維がうねる心配もない。 Heating and pressing are carried out so that the temperature of the base material is maintained below the melting point, so that the base material does not melt. Therefore, since the plate thickness and shape do not change due to melting, it becomes easy to control the plate thickness and shape before and after joining. Since the base material does not melt, there is no concern that the reinforcing fibers will undulate.

樹脂層を形成することで、被接合部材の表面が平滑化される。平滑化された面を被接合面として被接合部材同士を重ね合わせると、接合面に隙間ができない、または接合面にできる隙間を小さくできる。これにより、接合できない部分を減らし、かつ、被接合面同士の距離を近づけることができる。 By forming the resin layer, the surfaces of the members to be joined are smoothed. When the members to be joined are superimposed on each other with the smoothed surfaces as the surfaces to be joined, no gaps are formed in the joint surfaces, or the gaps formed in the joint surfaces can be reduced. As a result, the parts that cannot be joined can be reduced, and the distance between the surfaces to be joined can be shortened.

結合ポテンシャル曲線によれば、酸素を含む官能基同士の核間距離が0.5nmより離れていると官能基同士の反応は起こらない。よって、接合時の加熱温度において、被接合面同士の距離は、0.5nm以下であるとよい。 According to the bond potential curve, if the internuclear distance between oxygen-containing functional groups is more than 0.5 nm, the functional groups do not react with each other. Therefore, at the heating temperature during bonding, the distance between the surfaces to be bonded is preferably 0.5 nm or less.

隙間がなくなる、または被接合面同士の距離が近くなれば、対向する面にある官能基同士が反応相手に巡り合う機会が増える。よって、化学結合される箇所が増え、接合強度が高まる。 If there is no gap or if the distance between the surfaces to be bonded is reduced, the chances of the functional groups on the facing surfaces meeting with the reaction partners increase. Therefore, the number of locations to be chemically bonded increases, and the bonding strength increases.

被接合部材の表面を平滑化することで、接合部分の品質を安定化させることができる。 By smoothing the surface of the member to be joined, the quality of the joint can be stabilized.

上記開示の一態様では、前記樹脂層の素材(10)として、熱可塑性樹脂製の樹脂フィルムを用い、前記被接合部材の前記一表面と、前記樹脂フィルムの一表面とを活性化処理し、活性化処理された前記樹脂フィルムの一表面を、前記被接合部材の一表面に向けて、前記樹脂フィルムを前記被接合部材に重ね合わせ、前記樹脂フィルムが重ねられた前記被接合部材を加熱および加圧して前記樹脂層を形成できる。 In one aspect of the above disclosure, a resin film made of a thermoplastic resin is used as the material (10) of the resin layer, and the one surface of the member to be joined and the one surface of the resin film are activated, With one surface of the resin film that has undergone activation treatment facing one surface of the member to be joined, the resin film is superimposed on the member to be joined, and the member to be joined on which the resin film is superimposed is heated and heated. The resin layer can be formed by pressing.

樹脂フィルムは、被接合部材の表面形状に追従しやすい。樹脂フィルムを重ね合わせた被接合部材を加熱および加圧すると、樹脂フィルムは、被接合部材の表面形状に馴染む。これにより、被接合部材の一表面を平滑化させられる。 The resin film easily conforms to the surface shape of the member to be joined. When the member to be joined on which the resin film is superimposed is heated and pressurized, the resin film conforms to the surface shape of the member to be joined. Thereby, one surface of the member to be joined can be smoothed.

活性化処理することで、樹脂フィルムと被接合部材との接合力が向上する。 The activation treatment improves the bonding strength between the resin film and the member to be bonded.

上記開示の一態様では、前記母材よりも融点が低い前記樹脂フィルムを用い、前記母材の温度が融点未満を維持されるよう、前記樹脂フィルムが重ねられた前記被接合部材を加熱および加圧して前記樹脂層を形成してもよい。 In one aspect of the above disclosure, the resin film having a melting point lower than that of the base material is used, and the member to be joined on which the resin film is stacked is heated so that the temperature of the base material is maintained below the melting point. The resin layer may be formed by pressing.

母材よりも融点の低い樹脂フィルムは、加熱および加圧した際に、母材よりも柔らかくなる。これにより、被接合部材の表面形状により馴染みやすくなる。 A resin film having a lower melting point than the base material becomes softer than the base material when heated and pressurized. As a result, it becomes easier to adapt to the surface shape of the member to be joined.

加熱および加圧は、母材の温度が融点未満に維持されるよう実施するため、樹脂層の形成時に被接合部材の母材が溶融することはない。よって、樹脂層形成の際に、溶融によって母材の板厚および形状が変化することがないため、板厚および形状の管理が容易となる。母材が溶融しないため、強化繊維がうねる心配もない。 Since the heating and pressing are carried out so that the temperature of the base material is maintained below the melting point, the base material of the member to be joined does not melt during the formation of the resin layer. Therefore, since the plate thickness and shape of the base material do not change due to melting when the resin layer is formed, the plate thickness and shape can be easily managed. Since the base material does not melt, there is no concern that the reinforcing fibers will undulate.

上記開示の一態様では、前記樹脂層を形成する工程において、前記樹脂フィルムと前記被接合部材との間に、不織布を挿入し、前記加熱および前記加圧してもよい。なお、樹脂との密着性を上げるため不織布を活性化処理してもよい。 In one aspect of the above disclosure, in the step of forming the resin layer, a nonwoven fabric may be inserted between the resin film and the member to be joined, and the heating and the pressing may be performed. In addition, the nonwoven fabric may be activated in order to increase the adhesion to the resin.

不織布を挿入することで、加熱および加圧により柔らかくなった樹脂フィルムが母材に吸収されにくくなる。これにより、より確実に樹脂層を形成できる。 By inserting the non-woven fabric, the resin film softened by heating and pressurization is less likely to be absorbed by the base material. Thereby, a resin layer can be formed more reliably.

上記開示の一態様では、前記母材よりも融点が高い前記樹脂フィルムを用い、前記母材がガラス転移温度を超える条件で、前記樹脂フィルムが重ねられた前記被接合部材を加熱および加圧して前記樹脂層を形成してもよい。 In one aspect of the above disclosure, the resin film having a higher melting point than the base material is used, and the member to be joined on which the resin film is superimposed is heated and pressed under the condition that the base material exceeds the glass transition temperature. The resin layer may be formed.

母材よりも融点の高い樹脂フィルムは、加圧および加熱した際に、溶融しないため、樹脂層の厚さを確保しやすい。 A resin film having a melting point higher than that of the base material does not melt when pressurized and heated, so it is easy to ensure the thickness of the resin layer.

上記開示の一態様では、前記樹脂層の素材として、前記被接合部材の一表面の形状に倣った模倣表面と平滑な他の表面とを有する、熱可塑性樹脂製の樹脂材を用い、前記被接合部材の前記一表面と、前記樹脂材の模倣表面とを活性化処理し、活性化処理された前記樹脂材の模倣表面を、前記被接合部材の一表面に向けて、前記樹脂材を前記被接合部材に重ね合わせ、前記樹脂材が重ねられた前記被接合部材を加熱および加圧して前記樹脂層を形成してもよい。 In one aspect of the above disclosure, a resin material made of a thermoplastic resin having an imitation surface following the shape of one surface of the member to be joined and another smooth surface is used as a material of the resin layer, and the member to be joined is made of a resin material. The one surface of the joining member and the imitation surface of the resin material are activated, and the imitation surface of the resin material that has been activated is directed to one surface of the member to be joined, and the resin material is applied to the surface of the member to be joined. The resin layer may be formed by overlapping the member to be joined and heating and pressurizing the member to be joined on which the resin material is superimposed.

被接合部材の一表面の形状に倣った面を有する樹脂材を用いることで、樹脂材が被接合部材に密着されうる。これにより、樹脂材と被接合部材との接合強度を高めることができる。 By using a resin material having a surface that follows the shape of one surface of the member to be joined, the resin material can be brought into close contact with the member to be joined. Thereby, the bonding strength between the resin material and the member to be bonded can be increased.

上記開示の一態様では、前記被接合部材の素材として、第1熱可塑性プリプレグ(9)を用い、前記被接合部材の成形時に、最表面に位置する前記第1熱可塑性プリプレグの上に、前記樹脂層の素材(10)を積層し、一体成形することで前記樹脂層を形成してもよい。 In one aspect of the above disclosure, the first thermoplastic prepreg (9) is used as the material of the member to be joined, and the first thermoplastic prepreg located on the outermost surface is coated with the The resin layer may be formed by laminating materials (10) for the resin layer and integrally molding them.

樹脂層の素材と第1熱可塑性プリプレグとを一体成形することで、被接合部材にしっかりと接合された樹脂層となる。 By integrally molding the material of the resin layer and the first thermoplastic prepreg, the resin layer is firmly bonded to the member to be bonded.

上記開示の一態様では、前記樹脂層の素材として、熱可塑性樹脂製の樹脂フィルム、前記第1熱可塑性プリプレグよりも樹脂含有率の高い第2熱可塑性プリプレグ(6)、不織布、および織物の少なくとも1つを用い、前記不織布は、無機系繊維製または有機系繊維製であり、前記織物は、無機系繊維製または有機系繊維製であってよい。 In one aspect of the above disclosure, the material for the resin layer is at least a thermoplastic resin film, a second thermoplastic prepreg (6) having a higher resin content than the first thermoplastic prepreg, a nonwoven fabric, and a woven fabric. Using one, the non-woven fabric may be made of inorganic fibers or organic fibers, and the woven fabric may be made of inorganic fibers or organic fibers.

上記素材を用いることで、被接合部材同士の接合力を高めることができる。樹脂層の素材として樹脂フィルムまたは第2熱可塑性プリプレグを用いた場合、被接合面を平滑化できる。 By using the above materials, it is possible to increase the bonding strength between the members to be bonded. When the resin film or the second thermoplastic prepreg is used as the material of the resin layer, the surface to be joined can be smoothed.

樹脂層の素材として第2熱可塑性プリプレグを用いる場合、第2熱可塑性プリプレグの樹脂含有率を第1熱可塑性プリプレグよりも高くすることで、樹脂層の外表面を、被接合部材の一表面よりも平滑にできる。 When the second thermoplastic prepreg is used as the material for the resin layer, by making the resin content of the second thermoplastic prepreg higher than that of the first thermoplastic prepreg, the outer surface of the resin layer is made to be less than the one surface of the member to be joined. can also be smoothed.

上記開示の一態様では、前記樹脂層の素材の一表面を活性化処理し、活性化処理された前記樹脂層の素材の一表面を、前記第1熱可塑性プリプレグの一表面に向け、前記樹脂層の素材を前記第1熱可塑性プリプレグに積層してもよい。 In one aspect of the above disclosure, one surface of the material for the resin layer is activated, and the activated one surface of the material for the resin layer is directed toward one surface of the first thermoplastic prepreg, and the resin A layer of material may be laminated to the first thermoplastic prepreg.

上記開示の一態様では、前記樹脂層の素材を積層する前に、前記第1熱可塑性プリプレグの一表面を活性化処理してもよい。 In one aspect of the above disclosure, one surface of the first thermoplastic prepreg may be activated before laminating the material of the resin layer.

活性化処理することで、樹脂層と被接合部材との密着力が向上する。 The activation treatment improves the adhesion between the resin layer and the member to be joined.

上記開示の一態様では、前記樹脂層の素材として、無機系繊維または有機系繊維製の不織布、あるいは、無機系繊維または有機系繊維製の織物を用い、前記樹脂層の素材を前記被接合部材の一表面に重ね合わせ、前記母材の温度が融点以上となるように、前記樹脂層の素材が重ねられた前記被接合部材を加熱および加圧して前記樹脂層を形成してもよい。 In one aspect of the above disclosure, as the material of the resin layer, a nonwoven fabric made of inorganic fibers or organic fibers, or a woven fabric made of inorganic fibers or organic fibers is used, and the material of the resin layer is the member to be joined. The resin layer may be formed by heating and pressurizing the member to be joined on which the material of the resin layer is superimposed so that the temperature of the base material is equal to or higher than the melting point of the base material.

母材を溶融させることで、溶融した母材が樹脂層の素材に染み込み、樹脂層が形成される。被接合面に樹脂層を形成することで、被接合部材同士の接合力を高めることができる。 By melting the base material, the melted base material soaks into the material of the resin layer to form the resin layer. By forming a resin layer on the surfaces to be joined, the bonding strength between the members to be joined can be increased.

上記開示の一態様では、前記被接合部材の一表面と、前記樹脂層の素材の一表面とを活性化処理し、活性化処理された前記樹脂層の素材の一表面を前記被接合部材の一表面に向け、前記樹脂層の素材を前記被接合部材に重ね合わせてもよい。 In one aspect of the above disclosure, one surface of the member to be joined and one surface of the material of the resin layer are subjected to an activation treatment, and the one surface of the material of the resin layer that has been subjected to the activation treatment is applied to the member to be joined. The material of the resin layer may be overlaid on the member to be joined so as to face one surface.

活性化処理することで、樹脂層と被接合部材との密着力が向上する。 The activation treatment improves the adhesion between the resin layer and the member to be joined.

上記開示の一態様では、前記樹脂層を形成する工程が、前記被接合部材の一表面に第1樹脂層を形成する工程と、前記第1樹脂層の外表面に第2樹脂層を形成する工程とを備え、前記第2樹脂層の素材として、前記第1樹脂層の外表面の形状に倣った一表面を有する、熱可塑性樹脂製の樹脂材を用い、前記第1樹脂層の外表面と、前記樹脂材の一表面とを活性化処理し、前記第1樹脂層の外表面の形状と前記樹脂材の一表面の形状が整合するよう位置合わせして、前記樹脂材を前記第1樹脂層に重ね合わせ、前記樹脂材が重ねられた前記第1樹脂層および前記被接合部材を加熱および加圧して前記第2樹脂層を形成してもよい。 In one aspect of the above disclosure, the step of forming the resin layer includes forming a first resin layer on one surface of the member to be joined, and forming a second resin layer on the outer surface of the first resin layer. and using a thermoplastic resin material having one surface that follows the shape of the outer surface of the first resin layer as the material of the second resin layer, and the outer surface of the first resin layer. and one surface of the resin material is activated, and the shape of the outer surface of the first resin layer and the shape of the one surface of the resin material are aligned so that the shape of the outer surface of the resin material matches the shape of the one surface of the resin material. The second resin layer may be formed by heating and pressurizing the first resin layer and the member to be joined on which the resin material is superimposed.

第1樹脂層の外表面の形状に倣った面を有する樹脂材を用いることで、樹脂材が第1樹脂層に密着されうる。第2樹脂層を形成することで、より確実に被接合面間に生じる隙間を少なくできる。 By using a resin material having a surface that follows the shape of the outer surface of the first resin layer, the resin material can adhere to the first resin layer. By forming the second resin layer, it is possible to more reliably reduce the gap between the surfaces to be joined.

上記開示の一態様では、前記樹脂層を形成した後、前記活性化処理をする前に、前記樹脂層の前記外表面を研磨してもよい。 In one aspect of the above disclosure, the outer surface of the resin layer may be polished after forming the resin layer and before performing the activation treatment.

研磨することで、樹脂層の形成により生じる板厚の増加を制御できる。また、研磨された樹脂層の表面は、より平滑になる。平滑にした表面を被接合面とすることで、被接合部材同士の接合強度が向上される。 By polishing, it is possible to control the increase in plate thickness caused by the formation of the resin layer. In addition, the polished surface of the resin layer becomes smoother. By using the smoothed surface as the surface to be bonded, the bonding strength between the members to be bonded is improved.

本開示に係る接合体(5)は、繊維強化熱可塑性プラスチック製の第1被接合部材(1)と、繊維強化熱可塑性プラスチック製の第2被接合部材(2)と、前記第1被接合部材の一表面を覆い、前記第1被接合部材と化学結合された、熱可塑性樹脂製の第1樹脂層(3)と、前記第2被接合部材の一表面を覆い、前記第2被接合部材と化学結合された、熱可塑性樹脂製の第2樹脂層(4)と、を備え、前記第1樹脂層と前記第2樹脂層とが隣接し、かつ、化学結合されている。 A joined body (5) according to the present disclosure comprises a first joined member (1) made of fiber-reinforced thermoplastic, a second joined member (2) made of fiber-reinforced thermoplastic, and the first joined member (1) made of fiber-reinforced thermoplastic. A first thermoplastic resin layer (3) covering one surface of a member and chemically bonded to the first member to be joined, and a first resin layer (3) covering one surface of the second member to be joined and covering the second member to be joined A second resin layer (4) made of a thermoplastic resin chemically bonded to the member, wherein the first resin layer and the second resin layer are adjacent and chemically bonded.

1,2,11,12,21,22 被接合部材
3,4,13,14 樹脂層
5 接合体
6 第2熱可塑性プリプレグ
7 熱可塑性樹脂
8 強化繊維
9 第1熱可塑性プリプレグ
10 樹脂層の素材
1, 2, 11, 12, 21, 22 members to be joined 3, 4, 13, 14 resin layer 5 joined body 6 second thermoplastic prepreg 7 thermoplastic resin 8 reinforcing fiber 9 first thermoplastic prepreg 10 resin layer material

Claims (15)

母材が熱可塑性樹脂である繊維強化熱可塑性プラスチックを被接合部材とし、前記被接合部材同士を接合する接合方法であって、
前記被接合部材の一表面に樹脂層を形成し、
前記樹脂層の外表面を活性化処理して、化学結合を引き起こしうる活性官能基を導入し
前記樹脂層の活性化処理された前記外表面同士を対向させて2つの前記被接合部材を重ね合わせ、
前記母材の温度が融点未満を維持されるよう、重ね合わせた状態の前記被接合部材を加熱および加圧する接合方法。
A joining method for joining members to be joined, wherein the members to be joined are made of a fiber-reinforced thermoplastic whose base material is a thermoplastic resin,
forming a resin layer on one surface of the member to be joined;
activating the outer surface of the resin layer to introduce active functional groups capable of causing chemical bonding ;
The two members to be joined are superimposed with the outer surfaces of the resin layer that have been subjected to the activation treatment facing each other,
A joining method in which the members to be joined are heated and pressurized so that the temperature of the base material is maintained below the melting point.
前記樹脂層の素材として、熱可塑性樹脂製の樹脂フィルムを用い、
前記被接合部材の前記一表面と、前記樹脂フィルムの一表面とを活性化処理し、
活性化処理された前記樹脂フィルムの一表面を、前記被接合部材の一表面に向けて、前記樹脂フィルムを前記被接合部材に重ね合わせ、
前記樹脂フィルムが重ねられた前記被接合部材を加熱および加圧して前記樹脂層を形成する請求項1に記載の接合方法。
Using a resin film made of thermoplastic resin as a material for the resin layer,
activating the one surface of the member to be joined and the one surface of the resin film;
one surface of the resin film that has undergone activation treatment faces one surface of the member to be joined, and the resin film is superimposed on the member to be joined;
2. The joining method according to claim 1, wherein the member to be joined on which the resin film is laminated is heated and pressurized to form the resin layer.
前記母材よりも融点が低い前記樹脂フィルムを用い、
前記母材の温度が融点未満を維持されるよう、前記樹脂フィルムが重ねられた前記被接合部材を加熱および加圧して前記樹脂層を形成する請求項2に記載の接合方法。
Using the resin film having a lower melting point than the base material,
3. The joining method according to claim 2, wherein the member to be joined on which the resin film is laminated is heated and pressed to form the resin layer so that the temperature of the base material is maintained below the melting point.
前記樹脂層を形成する工程において、前記樹脂フィルムと前記被接合部材との間に、不織布を挿入し、前記加熱および前記加圧する請求項3に記載の接合方法。 4. The bonding method according to claim 3, wherein in the step of forming the resin layer, a non-woven fabric is inserted between the resin film and the member to be bonded, and the heating and pressing are performed. 前記母材よりも融点が高い前記樹脂フィルムを用い、
前記母材がガラス転移温度を超える条件で、前記樹脂フィルムが重ねられた前記被接合部材を加熱および加圧して前記樹脂層を形成する請求項2に記載の接合方法。
Using the resin film having a higher melting point than the base material,
3. The joining method according to claim 2, wherein the member to be joined on which the resin film is laminated is heated and pressed under the condition that the base material exceeds the glass transition temperature to form the resin layer.
前記樹脂層の素材として、前記被接合部材の一表面の形状に倣った模倣表面と平滑な他の表面とを有する、熱可塑性樹脂製の樹脂材を用い、
前記被接合部材の前記一表面と、前記樹脂材の模倣表面とを活性化処理し、
活性化処理された前記樹脂材の模倣表面を、前記被接合部材の一表面に向けて、前記樹脂材を前記被接合部材に重ね合わせ、
前記樹脂材が重ねられた前記被接合部材を加熱および加圧して前記樹脂層を形成する請求項1に記載の接合方法。
using a resin material made of a thermoplastic resin as a material for the resin layer, the resin material having an imitation surface following the shape of one surface of the member to be joined and another smooth surface;
activating the one surface of the member to be joined and the simulated surface of the resin material;
laminating the resin material on the member to be joined, with the simulated surface of the resin material that has undergone activation treatment facing one surface of the member to be joined;
2. The joining method according to claim 1, wherein the members to be joined on which the resin material is superimposed are heated and pressed to form the resin layer.
前記被接合部材の素材として、第1熱可塑性プリプレグを用い、
前記被接合部材の成形時に、最表面に位置する前記第1熱可塑性プリプレグの上に、前記樹脂層の素材を積層し、一体成形することで前記樹脂層を形成する請求項1に記載の接合方法。
Using a first thermoplastic prepreg as a material for the member to be joined,
2. The bonding according to claim 1, wherein the resin layer is formed by laminating the material of the resin layer on the first thermoplastic prepreg positioned on the outermost surface and integrally molding the material when molding the member to be bonded. Method.
前記樹脂層の素材として、熱可塑性樹脂製の樹脂フィルム、前記第1熱可塑性プリプレグよりも樹脂含有率の高い第2熱可塑性プリプレグ、不織布、および織物の少なくとも1つを用い、
前記不織布は、無機系繊維製または有機系繊維製であり、
前記織物は、無機系繊維製または有機系繊維製である請求項7に記載の接合方法。
As a material for the resin layer, at least one of a thermoplastic resin film, a second thermoplastic prepreg having a higher resin content than the first thermoplastic prepreg, a nonwoven fabric, and a woven fabric is used,
The nonwoven fabric is made of inorganic fibers or organic fibers,
The joining method according to claim 7, wherein the fabric is made of inorganic fibers or organic fibers.
前記樹脂層の素材の一表面を活性化処理し、
活性化処理された前記樹脂層の素材の一表面を、前記第1熱可塑性プリプレグの一表面に向け、前記樹脂層の素材を前記第1熱可塑性プリプレグに積層する請求項7または請求項8に記載の接合方法。
activating one surface of the material of the resin layer,
One surface of the material for the resin layer that has been activated is directed to one surface of the first thermoplastic prepreg, and the material for the resin layer is laminated on the first thermoplastic prepreg. Joining method as described.
前記樹脂層の素材を積層する前に、前記第1熱可塑性プリプレグの一表面を活性化処理する請求項9に記載の接合方法。 10. The joining method according to claim 9, wherein one surface of the first thermoplastic prepreg is subjected to an activation treatment before laminating the material of the resin layer. 前記樹脂層の素材として、無機系繊維または有機系繊維製の不織布、あるいは、無機系繊維または有機系繊維製の織物を用い、
前記樹脂層の素材を前記被接合部材の一表面に重ね合わせ、
前記母材の温度が融点以上となるように、前記樹脂層の素材が重ねられた前記被接合部材を加熱および加圧して前記樹脂層を形成する請求項1に記載の接合方法。
As the material for the resin layer, nonwoven fabric made of inorganic or organic fibers, or woven fabric made of inorganic or organic fibers is used,
superimposing the material of the resin layer on one surface of the member to be joined;
2. The joining method according to claim 1, wherein the member to be joined on which the material of the resin layer is laminated is heated and pressed to form the resin layer so that the temperature of the base material is equal to or higher than the melting point.
前記被接合部材の一表面と、前記樹脂層の素材の一表面とを活性化処理し、
活性化処理された前記樹脂層の素材の一表面を前記被接合部材の一表面に向け、前記樹脂層の素材を前記被接合部材に重ね合わせる請求項11に記載の接合方法。
activating one surface of the member to be joined and one surface of the material of the resin layer;
12. The joining method according to claim 11, wherein one surface of the material of the resin layer that has been activated is directed toward one surface of the member to be joined, and the material of the resin layer is superimposed on the member to be joined.
前記樹脂層を形成する工程が、前記被接合部材の一表面に第1樹脂層を形成する工程と、前記第1樹脂層の外表面に第2樹脂層を形成する工程とを備え、
前記第2樹脂層の素材として、前記第1樹脂層の外表面の形状に倣った一表面を有する、熱可塑性樹脂製の樹脂材を用い、
前記第1樹脂層の外表面と、前記樹脂材の一表面とを活性化処理し、
前記第1樹脂層の外表面の形状と前記樹脂材の一表面の形状が整合するよう位置合わせして、前記樹脂材を前記第1樹脂層に重ね合わせ、
前記樹脂材が重ねられた前記第1樹脂層および前記被接合部材を加熱および加圧して前記第2樹脂層を形成する請求項2から12のいずれかに記載の接合方法。
The step of forming the resin layer includes the step of forming a first resin layer on one surface of the member to be joined, and the step of forming a second resin layer on the outer surface of the first resin layer,
As a material for the second resin layer, using a thermoplastic resin material having one surface that follows the shape of the outer surface of the first resin layer,
activating the outer surface of the first resin layer and one surface of the resin material;
aligning the shape of the outer surface of the first resin layer and the shape of one surface of the resin material so as to match, and superimposing the resin material on the first resin layer;
The joining method according to any one of claims 2 to 12, wherein the second resin layer is formed by heating and pressurizing the first resin layer and the member to be joined, on which the resin material is superimposed.
前記樹脂層を形成した後、前記活性化処理をする前に、前記樹脂層の前記外表面を研磨する請求項1から13のいずれかに記載の接合方法。 14. The joining method according to any one of claims 1 to 13, wherein the outer surface of the resin layer is polished after forming the resin layer and before performing the activation treatment. 母材が熱可塑性樹脂である繊維強化熱可塑性プラスチックを被接合部材とし、前記被接合部材同士が接合された接合体であって、
前記被接合部材の一表面に樹脂層を備え、
前記樹脂層の外表面は活性化処理により化学結合を引き起こしうる活性官能基が導入され、
2つの前記被接合部材は、前記樹脂層の活性化処理された前記外表面同士を対向させて重ね合わせて配置され、
前記母材の温度が融点未満を維持されるよう、重ね合わせた状態の前記被接合部材が加熱および加圧されてなる接合体
A joined body in which the members to be joined are made of a fiber-reinforced thermoplastic whose base material is a thermoplastic resin, and the members to be joined are joined to each other,
A resin layer is provided on one surface of the member to be joined,
An active functional group capable of causing a chemical bond is introduced to the outer surface of the resin layer by an activation treatment,
The two members to be joined are arranged so that the outer surfaces of the resin layers subjected to the activation treatment face each other and overlap each other,
A joined body obtained by heating and pressurizing the members to be joined in a superimposed state so that the temperature of the base material is maintained below the melting point.
JP2022512956A 2020-03-31 2020-03-31 Joining method and joined body Active JP7263619B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014734 WO2021199231A1 (en) 2020-03-31 2020-03-31 Joining method and joint body

Publications (3)

Publication Number Publication Date
JPWO2021199231A1 JPWO2021199231A1 (en) 2021-10-07
JPWO2021199231A5 JPWO2021199231A5 (en) 2022-06-15
JP7263619B2 true JP7263619B2 (en) 2023-04-24

Family

ID=77927792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022512956A Active JP7263619B2 (en) 2020-03-31 2020-03-31 Joining method and joined body

Country Status (2)

Country Link
JP (1) JP7263619B2 (en)
WO (1) WO2021199231A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014076565A (en) 2012-10-10 2014-05-01 Toray Ind Inc Fiber reinforced thermoplastics joined body, and joining method therefor
JP2019188789A (en) 2017-05-08 2019-10-31 学校法人金沢工業大学 Manufacturing method of bonded article, bonded article, and bonding object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014076565A (en) 2012-10-10 2014-05-01 Toray Ind Inc Fiber reinforced thermoplastics joined body, and joining method therefor
JP2019188789A (en) 2017-05-08 2019-10-31 学校法人金沢工業大学 Manufacturing method of bonded article, bonded article, and bonding object

Also Published As

Publication number Publication date
JPWO2021199231A1 (en) 2021-10-07
WO2021199231A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US5643390A (en) Bonding techniques for high performance thermoplastic compositions
JP3046839B2 (en) Method for forming a structural panel having a thermoplastic surface and a panel formed by this method
US5066536A (en) Fibre reinforced thermoplastic composite structures
JP4434731B2 (en) Polymer or polymer composite element welding technology
JP4407964B2 (en) Composite honeycomb sandwich structure
AU2002249955B2 (en) Forming structural assemblies with 3-D woven joint pre-forms
EP1322460B1 (en) Sheet moulding compound (smc) with ventilating structure for entrapped gases
WO2013108328A1 (en) Repair method and repair structure for honeycomb sandwich structural body
JP6411359B2 (en) Joining composite parts using low temperature thermoplastic film fusion.
US11964456B2 (en) Fire-resistant, gas permeable decorative laminate
US6698484B1 (en) Method for reducing core crush
US8926786B1 (en) Composite panel and method of manufacturing the same
AU2001293967A1 (en) Sheet moulding compound (SMC) with ventilating structure for entrapped gases
WO2014070323A1 (en) Exposing fibers in composite laminates
US20070131347A1 (en) Method of forming a fabric covered article
US10611328B2 (en) Composite material structural member and method of manufacturing the composite material structural member
JP7263619B2 (en) Joining method and joined body
US3528866A (en) Method of making laminated padded article
CA2813893C (en) Contour caul with expansion region
Cavalcanti et al. Performance enhancement of adhesive joints of additive manufactured parts by using different types of fibre reinforcements
JP7263621B2 (en) Joining method
JP5610881B2 (en) Composite material mold and manufacturing method thereof
EP0261850A2 (en) Joining fibre reinforced thermoplastic materials
JP7331260B2 (en) Joining method
CN108929637B (en) Bondline controlled adhesive spacer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230412

R150 Certificate of patent or registration of utility model

Ref document number: 7263619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150