JP7262579B2 - 磁気およびインピーダンスセンサに基づいた医療用デバイス局在化の方法 - Google Patents
磁気およびインピーダンスセンサに基づいた医療用デバイス局在化の方法 Download PDFInfo
- Publication number
- JP7262579B2 JP7262579B2 JP2021524148A JP2021524148A JP7262579B2 JP 7262579 B2 JP7262579 B2 JP 7262579B2 JP 2021524148 A JP2021524148 A JP 2021524148A JP 2021524148 A JP2021524148 A JP 2021524148A JP 7262579 B2 JP7262579 B2 JP 7262579B2
- Authority
- JP
- Japan
- Prior art keywords
- model
- catheter
- impedance
- magnetic
- placement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 107
- 230000004807 localization Effects 0.000 title description 9
- 238000009826 distribution Methods 0.000 claims description 143
- 230000004044 response Effects 0.000 claims description 131
- 230000006870 function Effects 0.000 claims description 120
- 230000009466 transformation Effects 0.000 claims description 103
- 230000005684 electric field Effects 0.000 claims description 50
- 230000008569 process Effects 0.000 claims description 38
- 238000000844 transformation Methods 0.000 claims description 33
- 239000002131 composite material Substances 0.000 claims description 12
- 238000012937 correction Methods 0.000 claims description 11
- 230000000670 limiting effect Effects 0.000 claims description 8
- 238000005259 measurement Methods 0.000 description 190
- 238000002847 impedance measurement Methods 0.000 description 80
- 239000013598 vector Substances 0.000 description 56
- 230000033001 locomotion Effects 0.000 description 48
- 230000029058 respiratory gaseous exchange Effects 0.000 description 35
- 230000000241 respiratory effect Effects 0.000 description 32
- 239000011159 matrix material Substances 0.000 description 28
- 230000000875 corresponding effect Effects 0.000 description 27
- 238000006073 displacement reaction Methods 0.000 description 25
- 238000012545 processing Methods 0.000 description 22
- 238000005309 stochastic process Methods 0.000 description 21
- 210000000038 chest Anatomy 0.000 description 20
- 238000010586 diagram Methods 0.000 description 20
- 238000013507 mapping Methods 0.000 description 16
- 230000001419 dependent effect Effects 0.000 description 14
- 238000007499 fusion processing Methods 0.000 description 14
- 230000007246 mechanism Effects 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 238000004422 calculation algorithm Methods 0.000 description 9
- 230000007704 transition Effects 0.000 description 9
- 238000001514 detection method Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 210000003484 anatomy Anatomy 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 210000001015 abdomen Anatomy 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 230000000747 cardiac effect Effects 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 230000014616 translation Effects 0.000 description 4
- 238000007675 cardiac surgery Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 238000002679 ablation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 210000005242 cardiac chamber Anatomy 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 210000001664 manubrium Anatomy 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 238000012614 Monte-Carlo sampling Methods 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000012884 algebraic function Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 210000003748 coronary sinus Anatomy 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000013138 pruning Methods 0.000 description 1
- 238000007674 radiofrequency ablation Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; Determining position of diagnostic devices within or on the body of the patient
- A61B5/061—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
- A61B5/063—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using impedance measurements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; Determining position of diagnostic devices within or on the body of the patient
- A61B5/061—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
- A61B5/062—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/28—Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
- A61B5/283—Invasive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00234—Surgical instruments, devices or methods for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/00267—Expandable means emitting energy, e.g. by elements carried thereon having a basket shaped structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/101—Computer-aided simulation of surgical operations
- A61B2034/102—Modelling of surgical devices, implants or prosthesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/101—Computer-aided simulation of surgical operations
- A61B2034/102—Modelling of surgical devices, implants or prosthesis
- A61B2034/104—Modelling the effect of the tool, e.g. the effect of an implanted prosthesis or for predicting the effect of ablation or burring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2051—Electromagnetic tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2051—Electromagnetic tracking systems
- A61B2034/2053—Tracking an applied voltage gradient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/376—Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6852—Catheters
- A61B5/6856—Catheters with a distal loop
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Cardiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Human Computer Interaction (AREA)
- Plasma & Fusion (AREA)
- Otolaryngology (AREA)
- Robotics (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Description
本出願は、2018年11月7日の出願日を有する米国仮特許出願第62/756,941号、2018年11月7日の出願日を有する米国仮特許出願第62/756,915号、2018年11月7日の出願日を有する米国仮特許出願第62/756,926号、2018年11月7日の出願日を有する米国仮特許出願第62/756,931号、および2018年11月7日の出願日を有する米国仮特許出願第62/756,936号の出願日の利益を主張し、それらそれぞれの全内容を参照により本明細書に組み込む。
f(x)i=κi(k-1)+fi-curve(hi-κi(k-1))
f(x)i=τi(k-1)+fi-torsion(ti-τi(k-1))
式中、
iは曲線セグメント(例えば、本実施形態ではi=1または2)を表し、
hは各曲線セグメントの既定の湾曲を表し、
tは各曲線セグメントの既定の歪みを表し、
fは各曲線パラメータの強制因子を定義する行列を表す。
遷移行列が適用された場合、状態変数をそれぞれ変更して、複数の可能なカテーテル形状を生成する。一実施形態では、これによって可能なカテーテル形状の状態分布が作成される。図7Aを参照のこと。一般的に、状態分布の平均は、最も可能性が高いカテーテル形状および対応するカテーテルパラメータの組を表す。
Ciはカテーテル基準フレーム内における各電極の位置、
λ2は遠位側フープ曲線の長さ、
Δl’は電極内距離の仕様(例えば、中心間)、
Φhは、平滑化をもたらすための第1および第2のフレネフレームの曲線間の変換であり、第1および第2のフレームが90°の時計方向回転を有する一実施形態では、次式の通りである。
λ1は近位側軸曲線の長さである。
κp≒c・f(κb)
式中、関数因子f(κb)は正である。この関係は、多数のパドル変形を(例えば、ベンチトップ試験で)実験してベースの湾曲の形状または範囲が決定される実験を通して決定されてもよい。一実施形態では、ベースの湾曲κbおよびパドルの湾曲κpの相対値のプロットは、例えば、最適曲線がパラメータの関係を定義してもよいようにして準備されてもよい。一実施形態では、特定のカテーテルに対するこれらの湾曲間の関係は次式のように見出された。
κp≒c・f(κb)=c・c1arctan(c2 κb)
式中、c1およびc2は実験によって決定された定数である。
patk=PRSToPati,krefk
および、
magk=PatToMagkpatk
式中、refkは、時間k(例えば、患者の動きを計算に入れて患者基準フレームと整列させる前)における患者の体内(例えば、基準センサ空間)での座標100,patkは、時間kにおける患者基準フレーム内での座標の値(例えば、患者フレーム座標)、magkは、時間kにおける磁気基準フレーム内での座標の値(例えば、患者基準フレームから磁気基準フレームへと変換された後のpatk)である。これは、図11Aに示されている。一実施形態では、患者基準センサから患者への変換はPRSToPati,kとして示されてもよく、下付添字iは特定の患者基準センサを表す(例えば、i=1、i=2、i=nなど)。この下付添字は、単一の患者基準センサの場合は省略されてもよい。これらの関係は、患者基準フレーム内における任意の座標または配置に対する磁気測定値または値を予測する手段を提供する。
PRStoMagi,k=PatToMagkPRSToPati,k
つまり、患者基準センサから磁界発生器への変換は、2つの変換PatToMagkおよびPRStoPati,kの積である。患者基準センサは磁気センサなので、基準磁界におけるその位置も直接観察されてもよい。しかしながら、患者の動きにより、PatToMagkおよびPRStoPati,kの両方が時間に伴って変化または展開することがあるが、これら2つの変換は、それらの名目の関係である、PRStoPati,nomとしても定義されるNomPRSToPati、およびPatToMagnomとしても定義されるNomPatToMagに近いままのはずである。一実施形態では、名目の関係は初期の(例えば、k=0における)関係である。PatToMagkおよびPRStoPati,kは、それらの公称の関係からの逸脱を追跡し、それらの変化を捕捉するように定義されるので、それらの基準フレーム間の変換は患者の動き(例えば、患者基準センサの動き)に合わせて更新される。
PRStoPati,k=NomPRSToPatiPRSToNomPRSi,k
これは図11Bに図示されている。図示されるように、患者基準センサ26は、医療用位置決めシステムによって特定されてもよいように、名目(例えば、一実施形態における最初)からシフト位置26Aへと動いている。同様に、他の座標(例えば、100)が初期位置からシフト位置100Aへと動いている。図示される実施形態では、名目(例えば、初期)の患者基準センサ配置および向きと患者基準フレーム6との間の固定の変換は、名目の患者基準変換NomPRSToPatiとして指定される。それに加えて、時間変動する変換PRSToNomPRSi,kは、初期センサ配置26と後続/現在のセンサ配置26Aとの間の動きを定義する。図11Bを参照のこと。つまり、PRSToNomPRSi,kは患者基準センサ変位変換である。この変位は、少なくとも部分的に、磁界発生器を使用して患者基準センサの動きを監視することに基づいて決定されてもよい。この実施形態では、PRStoPati,kは、名目変換および患者基準センサ変位変換の積である。
PatToMagk=NomPatToMagPatToNomPatk
これは図11Cに図示されている。図示されるように、座標100は、患者の動きに応答して、名目または初期位置から変位された位置100に移動する。図示される実施形態では、患者基準フレームと磁気基準フレームとの間の変換は、初期または名目磁気変換NomPatToMagとして指定され、固定の変換である。それに加えて、初期座標配置100と後続/現在配置100Aとの間の時間変動する変換PatToNomPatkは、患者基準フレーム内における座標の変位を定義する。つまり、PatToNomPatkは座標変位変換である。この変位は、少なくとも部分的に、患者基準センサの、したがって患者基準フレームの動きを監視することに基づいて決定されてもよい。この実施形態では、PatToMagkは、名目変換および座標変位変換の積である。一実施形態では、PRSToNomPRSi,kおよびPatToNomPatkは、センサ融合プロセス中に決定されてもよい、状態変数によって支配される。一実施形態では、これらの変数は、磁気およびカテーテル状態変数を磁気測定値および他の測定値に適合させるように、再帰的ベイズ推定器(例えば、拡張カルマンフィルタまたは粒子フィルタ)などの推定システムで決定される。概して、これらの変換PRSToNomPRSi,kおよびPatToNomPatkは、直接観察不能であり、例えば、患者の呼吸および他の患者の動きによって継続的に変化し、時間に伴って展開させることが可能である。しかしながら、観察可能なパラメータ(例えば、PRSToMagi,k)と組み合わせて、変換が推定されてもよい。
PRSToNomPRSi,nom=I≒PRStoNomPRSi,0
PatToNomPatnom=I≒PatToNomPat0
つまり、名目の構成は、時間0における名目の構成に実質的に等しい、初期構成Iに近いことが予期される。したがって、初期患者基準センサ配置は、PRSToMag0,0に近いことが予期されるので、PRSToMag0,nomに対して適切な値である。
Anomは、患者フレームと、固定であると仮定される磁気フレームとの間の固定の名目回転、
anomは、後述するように推定されてもよい、磁界発生器に対する患者の位置(例えば、磁界ベースの位置決めシステムのベッド上の位置)、
Bnomは、後述するように推定されてもよい、患者上の患者基準センサの向き、
bnomは、既知の患者上の患者基準センサの位置である。
PRStoMagk=PatToMagkPRSToPatk
を所与として、
pnom=Anombnom+anom
したがって、
Bnom=AT nomPnom
anom=pnom-Anombnom
である。したがって、Anom、anom、Bnom、およびbnomがそれぞれ測定および/または導き出されて、PatToMagnomおよびPRSToPat0,nomの変換の推定が可能になる。換言すれば、変数変換を推定できるようにするのに十分な観察可能なパラメータが存在する。
yij=φij+εij
および、
zk=Vec(Myj)+vk
式中、φijは、一連の調和基底Ylから計算された電極jに対する独立したインピーダンス電場iの電位、eijは、この距離の関数として一対の電極間で共分散するモデリング誤差項、vkは測定ノイズ項である。
zi+(j-l)*numElec(xk,Θk,γk)=fij(xk)+γkgj(Θk)
式中、時間kにおける電極の電極インピーダンス測定値zi+(j-l)*numElecは、上述のインピーダンスモデルによって提供されてもよい、非周期関数f(x)によって与えられる電極の配置に対するインピーダンス、ならびに時間kにおける呼吸サイクルの振幅γおよび時間kにおける呼吸サイクル中の配置Θによって修正された準周期関数gjによって決定される、その配置に対するアーチファクトの関数である。一実施形態では、非周期関数f(x)は一定である。各準周期関数は同じ位相角によって支配されるが、各関数は他の関数に対して進むかまたは遅れてもよい。各準周期関数は同様に、他の関数に対して大きいかまたは小さいか、正か負かいずれかの振幅を有することが予期される。
z6*numElec+j’(xk,Θk,γk)=fj’(xk)+γkg6+j’(Θk)
したがって、一実施形態では、各準周期関数は次式のように公式化される。
gj(Θk)=αj(l-cos(Θk))+βjsin(Θk)
式中、αおよびβは各準周期関数の位相を調節する重みを表す。一実施形態では、αおよびβは定数である。一実施形態では、各準周期関数ならびに支配する位相角および振幅は、サンプルごとの何らかの一般に分布する誤差を有して、確率過程にしたがって変動する。つまり、位相および振幅は、以前の値および観察可能なパラメータ(例えば、インピーダンス測定値)から予測されてもよい、隠れた状態変数である。
xk=Fk(xk-1)+Bk(uk)+wk
式中、
xkはシステムに対する関心パラメータ(例えば、モデルのパラメータ)を含む状態ベクトルである。この式は、後に続く状態を誤差を含んで予測するのに使用される。
Fkは、時間k-1における各システム状態パラメータの効果を時間kにおけるシステム状態に適用する、状態遷移行列である。換言すれば、遷移行列は、以前の状態ベクトルと現在の状態ベクトルとの間の関係を定義する。
ukは任意の制御入力(例えば、医療用デバイスに対するロボット入力)を含むベクトルである。
Bkは、ベクトルukにおける各制御入力パラメータの効果を状態ベクトルに適用する制御入力行列である。なお、本実施形態は、いずれの制御入力および入力行列も利用せず、Bkおよびukは空である。しかしながら、制御入力がシステムに組み込まれた場合、制御ベクトルおよび制御入力行列が含まれてもよいことが認識されるであろう。
wkは状態ベクトルにおける各パラメータ(例えば、モデル)のプロセスノイズ項を含むベクトルである。一実施形態では、プロセスノイズは、共分散行列Qkによって定義された共分散を有する多変量分布から引き出されるものと仮定される。
zk=hk(xk)+vk
式中、
zkは測定ベクトルであり、センサによって測定された変数の組(例えば、インピーダンス測定値、磁気センサ測定値など)である。
hkは状態ベクトルパラメータを測定ドメインにマッピングする観察モデル(即ち、変換行列)である。換言すれば、観察モデルは、状態ベクトルとノイズがある測定値との間の関係を定義する。
vkは、測定ベクトルの測定された変数それぞれに対する測定ノイズ項を含むベクトルである。一実施形態では、プロセスノイズは、共分散行列Rkによって定義される共分散を有する多変量分布から引き出されるものと仮定される。
x k|k-1=Fk x k|k-1+BkUk
P k|k-1=Fk P k|k-1+Fk T+Qk
z k=hk x k|k-1
予測測定値z kは、観察可能なパラメータ(例えば、システムの電極測定値およびセンサ測定値)の実際の測定値zkと比較されてもよい。
yk=zk-z k
これによって、システムの利得Kを決定することが可能になる。Kは、x k|k-x kの間の予期される残差平方和を最小限に抑える。これは、第1の予測平均μ0および第1の予測共分散σ0を有する予測測定値を作成する観察モデルと組み合わされた状態分布の一次元表現である図17にグラフで示されている。実際の観察測定値は、第2の平均μ1および第2の共分散σ1を有する第2の分布によって表される。これらの分布の重なりは、推定状態および推定共分散を補正するのに使用されるシステム利得(例えば、カルマン利得)を定義する。換言すれば、2つの分布を融合して、融合平均μ’および融合共分散σ’を有する更新された分布が生成される(例えば、2つのガウス分布の倍数を併せて、これら2つの分布の重なり合う部分のガウス分布を生成する)。利得Kを、推定状態分布および推定共分散と組み合わせて、更新された状態分布(例えば、更新された状態平均および更新された共分散)が生成されてもよい。
x k|k=x k|k-1+Kkyk
P k|k=(I-KkHk)P k|k-1(I-KkHk)T+KkRkKT
更新された平均状態を利用して、電極および/または磁気センサの更新されたまたは真の配置(例えば、計算された配置)が決定されてもよい。更に、この状態を利用して、様々なモデルの様々な状態変数が更新されてもよい。
ZB-L+ZL-C+ZC-R+ZR-B=0
である。それに対応して、そのサイクルからの任意の電極における駆動された電位の合計はゼロでなければならない。したがって、この制約は、インピーダンス測定値(例えば、インピーダンスモデル)に関連する状態ベクトルの部分に適用されてもよい。別の制約は、磁気モデルが換算なしの剛体変換に対応する変化に制約されてもよいことであってもよい。つまり、変換前および変換後の全ての特定されたオブジェクトは同じ相対的な向きを有さなければならない。他の制約が複合モデルまたは独立モデルに適用されてもよい。適用の際、1つまたは複数のかかる制約を適用して、状態分布が制限されるかまたは別の形で改良されてもよい。
N(0,JSJT)
以下に本明細書に開示の技術を列挙する。
(項目1)
物理的なカテーテルのカテーテルモデルに基づいて、三次元空間内に配設された前記物理的なカテーテルの物理的な電極の配置を予測するステップであって、前記物理的な電極の予測配置がモデル電極配置を定義する、ステップと、
前記モデル電極配置に対して予測インピーダンス応答を生成するステップと、
印加された電場に応じて、前記物理的なカテーテルの前記物理的な電極に対するインピーダンス応答を測定するステップと、
少なくとも前記予測インピーダンス応答および前記インピーダンス応答に基づいて、前記物理的な電極の計算された配置を生成するステップと、
前記物理的な電極の前記計算された配置をディスプレイに出力するステップと、を含む、電極の配置を特定するのに使用する方法。
(項目2)
前記物理的なカテーテルの物理的な磁気センサの配置を予測して、モデル磁気センサ配置を定義するステップと、
前記モデル磁気センサ配置に対する予測磁気応答を生成するステップと、
印加された磁界に応じて、前記物理的な磁気センサの磁気応答を測定するステップと、を更に含み、
前記計算された配置が更に、前記予測磁気応答および前記磁気応答に基づく、項目1に記載の方法。
(項目3)
前記カテーテルモデルにおける前記物理的な電極の相対位置を定義するステップであって、前記相対位置が前記物理的なカテーテルの前記物理的な電極の間隔に対応する、ステップを更に含む、項目1に記載の方法。
(項目4)
カテーテル変換を前記カテーテルモデルに適用して、カテーテル基準フレームと前記三次元空間との間で前記カテーテルモデルの位置および向きを変換するステップであって、最初は、前記カテーテルモデルが、カテーテル基準フレーム内における前記モデル電極配置を定義する、ステップを更に含む、項目3に記載の方法。
(項目5)
前記カテーテル変換を前記カテーテルモデルに適用するステップが、剛体の6自由度における変換を前記カテーテルモデルに適用するステップを含む、項目4に記載の方法。
(項目6)
前記カテーテル基準フレーム内における前記カテーテルモデルの配置および向きがモデル磁気センサによって定義される、項目4に記載の方法。
(項目7)
前記カテーテル変換を前記カテーテルモデルに適用するステップが、
前記モデル磁気センサの位置及び向きと、前記物理的なカテーテルの物理的な磁気センサと、の間で変換を適用するステップを更に含む、項目6に記載の方法。
(項目8)
前記予測インピーダンス応答を生成するステップが、
前記印加された電場のインピーダンスモデルを前記モデル電極配置に適用するステップであって、前記インピーダンスモデルが各モデル電極配置を予測インピーダンス応答に変換する、ステップを更に含む、項目3に記載の方法。
(項目9)
前記物理的な電極の前記インピーダンス応答と、前記予測インピーダンス応答と、に基づいて、前記インピーダンスモデルを更新するステップを更に含む、項目8に記載の方法。
(項目10)
前記カテーテルモデルおよび前記インピーダンスモデルが、前記三次元空間内における前記物理的なカテーテルをモデリングする複合モデルの状態変数である、項目8に記載の方法。
(項目11)
前記状態変数を推測するために拡張カルマンフィルタが使用される、項目10に記載の方法。
(項目12)
前記複合モデルを使用して潜在的な電極配置の推定された状態分布を生成するステップであって、前記計算された配置が前記状態分布を使用して生成される、ステップを更に含む、項目10に記載の方法。
(項目13)
少なくとも第1の制約を前記推定された状態分布に適用するステップであって、前記第1の制約が前記状態変数の少なくとも1つを制約し、前記第1の制約が前記推定された状態分布を制限する、ステップを更に含む、項目12に記載の方法。
(項目14)
関数を前記推定された状態分布に適用して、可能性が低い状態を前記推定された状態分布から除去するステップを更に含む、項目12に記載の方法。
(項目15)
前記予測インピーダンス応答を前記インピーダンス応答と比較するステップと、前記比較に基づいて補正を生成するステップとを更に含む、項目12に記載の方法。
(項目16)
前記補正を前記推定された状態分布に適用して、更新された状態分布を生成するステップであって、前記更新された状態分布を使用して前記計算された配置が生成される、ステップを更に含む、項目16に記載の方法。
(項目17)
前記更新された状態分布の外にある状態を特定するステップであって、前記外にある状態が前記更新された状態分布から除去される、ステップを更に含む、項目16に記載の方法。
(項目18)
電極の配置を特定する命令を格納する非一時的コンピュータ可読媒体であって、
前記命令は、
カテーテル基準フレーム内におけるモデル電極の相対位置を定義するカテーテルモデルにアクセスする処理であって、前記相対位置が、三次元空間内に配設された物理的なカテーテルの物理的な電極の間隔に対応する、処理と、
前記カテーテルモデルを前記三次元空間内における前記物理的な電極の予測配置に適用する処理であって、前記物理的な電極の予測配置がモデル電極配置を定義する、処理と、
前記モデル電極配置に対して予測インピーダンス応答を生成する処理と、
印加された電場に応じて、前記物理的な電極からインピーダンス応答を取得する処理と、
前記予測インピーダンス応答および前記インピーダンス応答に基づいて、前記物理的な電極の計算された配置を生成し、
前記物理的な電極の前記計算された配置を、ディスプレイデバイスによって受信するように出力する処理と、
を実行可能である、非一時的コンピュータ可読媒体。
(項目19)
前記命令は、さらに、
前記カテーテルモデルを適用して前記三次元空間内における前記物理的なカテーテルの物理的な磁気センサの配置を予測する処理であって、予測配置がモデル磁気センサ配置を定義する、処理と、
前記モデル磁気センサ配置に対する予測磁気応答を生成する処理と、
印加された磁界に応じて、前記物理的な磁気センサの磁気応答を取得すう処理と、
前記予測磁気応答および前記磁気応答を利用して、前記計算された配置を生成する処理と、を実行可能な命令を更に含む、項目20に記載の非一時的コンピュータ可読媒体。
(項目20)
カテーテル変換を適用して、前記カテーテルモデルを前記カテーテルモデルのカテーテル基準フレームと前記三次元空間との間で変換する命令を更に含む、項目18に記載の非一時的コンピュータ可読媒体。
(項目21)
前記印加された電場のインピーダンスモデルにアクセスし、前記インピーダンスモデルを適用する処理であって、前記インピーダンスモデルが前記モデル電極配置を前記予測インピーダンス応答に変換する、処理を実行可能な命令を更に含む、項目20に記載の非一時的コンピュータ可読媒体。
(項目22)
推定器システムを実現して、前記インピーダンスモデル、前記カテーテル変換、または前記カテーテルモデルの状態変数を推測する命令を更に含む、項目21に記載の非一時的コンピュータ可読媒体。
(項目23)
カルマンフィルタを実現して前記状態変数を推測する命令を更に含む、項目22に記載の非一時的コンピュータ可読媒体。
(項目24)
前記推定器システムの出力に基づいて、前記インピーダンスモデル、前記カテーテル変換、または前記カテーテルモデルの少なくとも1つを更新する命令を更に含む、項目22に記載の非一時的コンピュータ可読媒体。
(項目25)
電極の配置を特定するシステムであって、
三次元空間内に配設された物理的な電極を有する物理的なカテーテルと、
印加された電場に応じて、前記物理的な電極のインピーダンス応答を測定する医療用位置決めシステムと、
非一時的コンピュータ可読命令を格納するプロセッサおよびメモリであって、
前記物理的なカテーテルのカテーテルモデルに基づいて、前記三次元空間内における前記物理的な電極の配置を予測する処理であって、前記物理的な電極の予測配置がモデル電極配置を定義する、処理と、
前記モデル電極配置に対して予測モデルインピーダンス応答を生成する処理と、
前記医療用位置決めシステムから前記物理的な電極に対するインピーダンス応答を取得する処理と、
前記予測インピーダンス応答および前記インピーダンス応答に基づいて、前記三次元空間内における前記物理的な電極の計算された配置を生成する処理と、を実行可能な命令を格納するプロセッサおよびメモリと、
前記物理的な電極の前記計算された配置を表示するために、前記プロセッサおよびメモリと動作可能に接続されたディスプレイと、
を備える、システム。
(項目26)
前記メモリが、
前記三次元空間内における前記物理的なカテーテルの物理的な磁気センサの配置を予測する処理であって、予測配置がモデル磁気センサ配置を定義する処理と、
前記モデル磁気センサ配置に対する予測磁気応答を生成する処理と、
印加された磁界に応じて、前記物理的な磁気センサの磁気応答を取得する処理と、
前記予測磁気応答および前記磁気応答を利用して、前記計算された配置を生成する処理と、を実行可能な命令を更に含む、項目25に記載のシステム。
(項目27)
前記メモリが、
カテーテル変換を適用して、前記カテーテルモデルを前記カテーテルモデルのカテーテル基準フレームと前記三次元空間との間で変換する命令を更に含む、項目25に記載のシステム。
(項目28)
前記メモリが、
前記印加された電場のインピーダンスモデルにアクセスし、前記インピーダンスモデルを適用する処理であって、前記インピーダンスモデルが前記モデル電極配置を前記予測インピーダンス応答に変換する、処理を実行可能な命令を更に含む、項目25に記載のシステム。
(項目29)
前記メモリが、
推定器システムを実現して、前記インピーダンスモデル、前記カテーテル変換、または前記カテーテルモデルの状態変数を推測する命令を更に含む、項目26に記載のシステム。
(項目30)
前記メモリが、
前記推定器システムの出力に基づいて、前記インピーダンスモデル、前記カテーテル変換、または前記カテーテルモデルの少なくとも1つを更新する命令を更に含む、項目29に記載のシステム。
Claims (21)
- 物理的なカテーテルのカテーテルモデルに基づいて、三次元空間を示す基準フレームにおける物理的な電極の予測配置であるモデル電極配置を生成するステップであって、前記物理的なカテーテルは、前記三次元空間内に配設される、ステップと、
印加された電場のモデルであるインピーダンスモデルを生成済みの前記モデル電極配置に適用して、前記モデル電極配置に対して予測インピーダンス応答を生成するステップと、
前記印加された電場に応じて、前記物理的なカテーテルの前記物理的な電極に対するインピーダンス応答を測定するステップと、
少なくとも、生成済みの前記予測インピーダンス応答および測定済みの前記インピーダンス応答に基づいて、前記物理的な電極の計算された配置を生成するステップと、
前記物理的な電極の前記計算された配置をディスプレイに出力するステップと、を含む、電極の配置を特定するのに使用するシステムの作動方法。 - 前記物理的なカテーテルの物理的な磁気センサの配置を予測して、モデル磁気センサ配置を定義するステップと、
前記モデル磁気センサ配置に対する予測磁気応答を生成するステップと、
印加された磁界に応じて、前記物理的な磁気センサの磁気応答を測定するステップと、を更に含み、
前記計算された配置が更に、前記予測磁気応答および前記磁気応答に基づく、請求項1に記載の方法。 - 前記カテーテルモデルにおける前記物理的な電極の相対位置を定義するステップであって、前記相対位置が前記物理的なカテーテルの前記物理的な電極の間隔に対応する、ステップを更に含む、請求項1又は2に記載の方法。
- カテーテル変換を前記カテーテルモデルに適用して、カテーテル基準フレームと前記三次元空間との間で前記カテーテルモデルの位置および向きを変換するステップであって、最初は、前記カテーテルモデルが、カテーテル基準フレーム内における前記モデル電極配置を定義する、ステップを更に含む、請求項3に記載の方法。
- 前記カテーテル変換を前記カテーテルモデルに適用するステップが、剛体の6自由度における変換を前記カテーテルモデルに適用するステップを含む、請求項4に記載の方法。
- 前記カテーテル基準フレーム内における前記カテーテルモデルの配置および向きがモデル磁気センサによって定義される、請求項4又は5に記載の方法。
- 前記カテーテル変換を前記カテーテルモデルに適用するステップが、
前記モデル磁気センサの位置及び向きと、前記物理的なカテーテルの物理的な磁気センサと、の間で変換を適用するステップを更に含む、請求項6に記載の方法。 - 前記物理的な電極の前記インピーダンス応答と、前記予測インピーダンス応答と、に基づいて、前記インピーダンスモデルを更新するステップを更に含む、請求項1に記載の方法。
- 前記カテーテルモデルおよび前記インピーダンスモデルが、前記三次元空間内における前記物理的なカテーテルをモデリングする複合モデルの状態変数である、請求項1から8のいずれか一項に記載の方法。
- 前記状態変数を推測するために拡張カルマンフィルタが使用される、請求項9に記載の方法。
- 前記複合モデルを使用して潜在的な電極配置の推定された状態分布を生成するステップであって、前記計算された配置が前記状態分布を使用して生成される、ステップを更に含む、請求項9又は10に記載の方法。
- 少なくとも第1の制約を前記推定された状態分布に適用するステップであって、前記第1の制約が前記状態変数の少なくとも1つを制約し、前記第1の制約が前記推定された状態分布を制限する、ステップを更に含む、請求項11に記載の方法。
- 関数を前記推定された状態分布に適用して、可能性が低い状態を前記推定された状態分布から除去するステップを更に含む、請求項11又は12に記載の方法。
- 前記予測インピーダンス応答を前記インピーダンス応答と比較するステップと、前記比較に基づいて補正を生成するステップとを更に含む、請求項11から13のいずれか一項に記載の方法。
- 前記補正を前記推定された状態分布に適用して、更新された状態分布を生成するステップであって、前記更新された状態分布を使用して前記計算された配置が生成される、ステップを更に含む、請求項14に記載の方法。
- 前記更新された状態分布の外にある状態を特定するステップであって、前記外にある状態が前記更新された状態分布から除去される、ステップを更に含む、請求項15に記載の方法。
- 電極の配置を特定するシステムであって、
三次元空間内に配設された物理的な電極を有する物理的なカテーテルと、
印加された電場に応じて、前記物理的な電極のインピーダンス応答を測定する医療用位置決めシステムと、
非一時的コンピュータ可読命令を格納するプロセッサおよびメモリであって、
前記物理的なカテーテルのカテーテルモデルに基づいて、前記三次元空間を示す基準フレーム内における前記物理的な電極の予測配置であるモデル電極配置を生成する処理と、
前記印加された電場のモデルであるインピーダンスモデルを生成済みの前記モデル電極配置に適用して、前記モデル電極配置に対して予測インピーダンス応答を生成する処理と、
前記医療用位置決めシステムから前記物理的な電極に対するインピーダンス応答を取得する処理と、
生成済みの前記予測インピーダンス応答および取得済みの前記インピーダンス応答に基づいて、前記三次元空間内における前記物理的な電極の計算された配置を生成する処理と、を実行可能な命令を格納するプロセッサおよびメモリと、
前記物理的な電極の前記計算された配置を表示するために、前記プロセッサおよびメモリと動作可能に接続されたディスプレイと、
を備える、システム。 - 前記メモリが、
前記三次元空間を示す基準フレーム内における前記物理的なカテーテルの物理的な磁気センサの予測配置であるモデル磁気センサ配置を生成する処理と、
前記モデル磁気センサ配置に対する予測磁気応答を生成する処理と、
印加された磁界に応じて、前記物理的な磁気センサの磁気応答を取得する処理と、
前記予測磁気応答および前記磁気応答を利用して、前記計算された配置を生成する処理と、を実行可能な命令を更に含む、請求項17に記載のシステム。 - 前記メモリが、
カテーテル変換を適用して、前記カテーテルモデルを前記カテーテルモデルのカテーテル基準フレームと前記三次元空間との間で変換する命令を更に含む、請求項17又は18に記載のシステム。 - 前記メモリが、
推定器システムを実現して、前記インピーダンスモデル、前記カテーテル変換、または前記カテーテルモデルの状態変数を推測する命令を更に含む、請求項19に記載のシステム。 - 前記メモリが、
前記推定器システムの出力に基づいて、前記インピーダンスモデル、前記カテーテル変換、または前記カテーテルモデルの少なくとも1つを更新する命令を更に含む、請求項20に記載のシステム。
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862756915P | 2018-11-07 | 2018-11-07 | |
US201862756926P | 2018-11-07 | 2018-11-07 | |
US201862756931P | 2018-11-07 | 2018-11-07 | |
US201862756936P | 2018-11-07 | 2018-11-07 | |
US201862756941P | 2018-11-07 | 2018-11-07 | |
US62/756,931 | 2018-11-07 | ||
US62/756,936 | 2018-11-07 | ||
US62/756,915 | 2018-11-07 | ||
US62/756,941 | 2018-11-07 | ||
US62/756,926 | 2018-11-07 | ||
PCT/US2019/058512 WO2020096810A1 (en) | 2018-11-07 | 2019-10-29 | Method for medical device localization based on magnetic and impedance sensors |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022510112A JP2022510112A (ja) | 2022-01-26 |
JP7262579B2 true JP7262579B2 (ja) | 2023-04-21 |
Family
ID=68654868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021524148A Active JP7262579B2 (ja) | 2018-11-07 | 2019-10-29 | 磁気およびインピーダンスセンサに基づいた医療用デバイス局在化の方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3852623B1 (ja) |
JP (1) | JP7262579B2 (ja) |
CN (1) | CN113260306B (ja) |
WO (1) | WO2020096810A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11547380B2 (en) * | 2020-05-13 | 2023-01-10 | CareRay Digital Medical Technology Co., Ltd. | Real-time spatial precise magnetic positioning device, radiographic imaging system and magnetic positioning method |
FR3114957B1 (fr) * | 2020-10-08 | 2022-09-30 | Quantum Surgical | Système de navigation en réalité augmentée pour un robot médical |
US20240350100A1 (en) * | 2021-08-26 | 2024-10-24 | St. Jude Medical, Cardiology Division, Inc. | Method and system for generating respiration signals for use in electrophysiology procedures |
CN115721291B (zh) * | 2021-08-31 | 2024-12-17 | 上海微创电生理医疗科技股份有限公司 | 定位系统、方法、介入手术系统、电子设备和存储介质 |
CN116098703B (zh) * | 2023-03-22 | 2025-04-18 | 剑虎医疗科技(苏州)有限公司 | 一种三维模型重建中导管位置检测呼吸干扰消除方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010131385A (ja) | 2008-11-12 | 2010-06-17 | Biosense Webster Inc | 機械的特性に基づくプローブの可視化 |
JP2016105803A (ja) | 2011-09-13 | 2016-06-16 | セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド | インピーダンスおよび磁界の測定を使用するカテーテルのナビゲーション |
JP2018519046A (ja) | 2015-06-19 | 2018-07-19 | セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド | デバイスナビゲーションのための電磁動的位置合わせ |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7263397B2 (en) | 1998-06-30 | 2007-08-28 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for catheter navigation and location and mapping in the heart |
US6233476B1 (en) | 1999-05-18 | 2001-05-15 | Mediguide Ltd. | Medical positioning system |
US7386339B2 (en) | 1999-05-18 | 2008-06-10 | Mediguide Ltd. | Medical imaging and navigation system |
US7197354B2 (en) | 2004-06-21 | 2007-03-27 | Mediguide Ltd. | System for determining the position and orientation of a catheter |
US7885707B2 (en) | 2005-09-15 | 2011-02-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method of scaling navigation signals to account for impedance drift in tissue |
US20090177111A1 (en) * | 2006-12-06 | 2009-07-09 | Miller Stephan P | System and method for displaying contact between a catheter and tissue |
US8265745B2 (en) * | 2006-12-29 | 2012-09-11 | St. Jude Medical, Atrial Fibillation Division, Inc. | Contact sensor and sheath exit sensor |
US9549689B2 (en) * | 2007-03-09 | 2017-01-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for correction of inhomogeneous fields |
US8744599B2 (en) | 2007-03-09 | 2014-06-03 | St. Jude Medical, Atrial Fibrillation Division, Inc. | High density mapping catheter |
US10433929B2 (en) * | 2007-03-09 | 2019-10-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for local deformable registration of a catheter navigation system to image data or a model |
WO2010129095A2 (en) * | 2009-05-08 | 2010-11-11 | Rhythmia Medical, Inc. | Impedance based anatomy generation |
WO2011072221A1 (en) * | 2009-12-11 | 2011-06-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Systems and methods for determining the likelihood of endocardial barotrauma in tissue during ablation |
US8478383B2 (en) * | 2010-12-14 | 2013-07-02 | Biosense Webster (Israel), Ltd. | Probe tracking using multiple tracking methods |
US9186081B2 (en) * | 2010-12-30 | 2015-11-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for diagnosing arrhythmias and directing catheter therapies |
US8849393B2 (en) * | 2012-11-30 | 2014-09-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Correction of shift and drift in impedance-based medical device navigation using measured impedances at external patch electrodes |
US10105107B2 (en) * | 2015-01-08 | 2018-10-23 | St. Jude Medical International Holding S.À R.L. | Medical system having combined and synergized data output from multiple independent inputs |
EP3294127A1 (en) * | 2015-05-12 | 2018-03-21 | Navix International Limited | Systems and methods for tracking an intrabody catheter |
US10492869B2 (en) * | 2015-06-19 | 2019-12-03 | St. Jude Medical, Cardiology Division, Inc. | Impedance shift and drift detection and correction |
EP3376952B1 (en) * | 2016-01-26 | 2020-01-22 | St. Jude Medical International Holding S.à r.l. | Magnetic field distortion detection and correction in a magnetic localization system |
WO2017142850A1 (en) * | 2016-02-16 | 2017-08-24 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for electrophysiology mapping using medical images |
-
2019
- 2019-10-29 JP JP2021524148A patent/JP7262579B2/ja active Active
- 2019-10-29 WO PCT/US2019/058512 patent/WO2020096810A1/en unknown
- 2019-10-29 EP EP19808933.6A patent/EP3852623B1/en active Active
- 2019-10-29 CN CN201980085906.9A patent/CN113260306B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010131385A (ja) | 2008-11-12 | 2010-06-17 | Biosense Webster Inc | 機械的特性に基づくプローブの可視化 |
JP2016105803A (ja) | 2011-09-13 | 2016-06-16 | セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド | インピーダンスおよび磁界の測定を使用するカテーテルのナビゲーション |
JP2018519046A (ja) | 2015-06-19 | 2018-07-19 | セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド | デバイスナビゲーションのための電磁動的位置合わせ |
Also Published As
Publication number | Publication date |
---|---|
CN113260306A (zh) | 2021-08-13 |
EP3852623A1 (en) | 2021-07-28 |
CN113260306B (zh) | 2025-01-07 |
JP2022510112A (ja) | 2022-01-26 |
WO2020096810A1 (en) | 2020-05-14 |
EP3852623B1 (en) | 2024-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200138334A1 (en) | Method for medical device localization based on magnetic and impedance sensors | |
US11547492B2 (en) | Mechanical modules of catheters for sensor fusion processes | |
JP7262579B2 (ja) | 磁気およびインピーダンスセンサに基づいた医療用デバイス局在化の方法 | |
EP3282995B1 (en) | Electromagnetic dynamic registration for device navigation | |
US10945633B2 (en) | Automated catalog and system for correction of inhomogeneous fields | |
JP5675841B2 (ja) | 位置参照センサを使用した、動く器官における動きの補償 | |
CN113543697B (zh) | 用于校正细长医疗装置的电极位置的方法和系统 | |
JP6316572B2 (ja) | 体内プローブ追跡システムにおける患者の動きの補正 | |
US10967147B2 (en) | Reliability determination of electrode location data | |
JP5661974B2 (ja) | 複数のナビゲーションシステムの共通座標系への位置合せシステムおよび方法 | |
CN107750148B (zh) | 阻抗位移及漂移检测和校正 | |
AU2007202444B2 (en) | Model-based correction of position measurements | |
US11918334B2 (en) | Impedance transformation model for estimating catheter locations | |
US20210330213A1 (en) | Determination of catheter shape | |
Timinger et al. | Motion compensated coronary interventional navigation by means of diaphragm tracking and elastic motion models | |
CN109475318B (zh) | 阻抗偏移检测的方法和系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211001 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211001 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220920 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230314 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230411 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7262579 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |