JP7260114B2 - Soil dissolution method and classification method - Google Patents

Soil dissolution method and classification method Download PDF

Info

Publication number
JP7260114B2
JP7260114B2 JP2019126755A JP2019126755A JP7260114B2 JP 7260114 B2 JP7260114 B2 JP 7260114B2 JP 2019126755 A JP2019126755 A JP 2019126755A JP 2019126755 A JP2019126755 A JP 2019126755A JP 7260114 B2 JP7260114 B2 JP 7260114B2
Authority
JP
Japan
Prior art keywords
soil
particle size
wet mill
dissolving
pulverization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019126755A
Other languages
Japanese (ja)
Other versions
JP2021012115A (en
Inventor
一彦 三浦
宏 辻本
麻衣子 大橋
英史 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Kyoto University
Original Assignee
Kajima Corp
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Kyoto University filed Critical Kajima Corp
Priority to JP2019126755A priority Critical patent/JP7260114B2/en
Publication of JP2021012115A publication Critical patent/JP2021012115A/en
Priority to JP2023051308A priority patent/JP7462251B2/en
Application granted granted Critical
Publication of JP7260114B2 publication Critical patent/JP7260114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crushing And Grinding (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、土壌の解泥方法及び分級方法に関する。 TECHNICAL FIELD The present invention relates to a soil dissolution method and a soil classification method.

従来、土壌をドラムウォッシャーやボールミルで粉砕することが行われている(例えば、特許文献1及び2参照)。粉砕及びその後の分級は、一般に所望の粒径を分級点として土壌を分離することを目的としている。 Conventionally, soil is pulverized with a drum washer or a ball mill (see Patent Documents 1 and 2, for example). Grinding and subsequent classification generally aims to separate the soil at the desired particle size as the classification point.

特開2016-138846号公報JP 2016-138846 A 特開2014-142311号公報JP 2014-142311 A

粉砕及び分級の対象とする土壌に有機物が含まれている場合は、土壌が団粒化している傾向があり、所望の解砕(解泥)・粉砕及び分級を達成することができない場合がある。また、上記特許文献1及び2の方法では、土壌を数μm程度にまで粉砕することは容易ではなく、数μm程度の粒径の土壌を得る要求に応えることが困難であった。 If the soil to be pulverized and classified contains organic matter, the soil tends to aggregate, and it may not be possible to achieve the desired pulverization (demulsification), pulverization, and classification. . In addition, with the methods of Patent Documents 1 and 2, it is not easy to pulverize the soil to a size of about several μm, and it is difficult to meet the demand for obtaining soil with a particle size of about several μm.

本発明は、土壌が有機物を含み団粒を形成している場合であってもこれを確実に解泥・粉砕でき、数μm程度の粒径の土粒子を含む土壌を得ることができる、土壌の解泥方法を提供することを目的とする。また、その解泥方法を使用した土壌の分級方法を提供することを目的とする。 INDUSTRIAL APPLICABILITY According to the present invention, even if the soil contains organic matter and forms aggregates, the soil can be reliably disintegrated and pulverized, and the soil containing soil particles having a particle size of about several μm can be obtained. The purpose is to provide a desludging method. Another object of the present invention is to provide a method for classifying soil using the demulsification method.

本発明は、有機物を含む土壌を湿式ミルで粉砕し、湿式ミル内で用いる粉砕媒体は、粒径が2~18mmである、土壌の解泥方法を提供する。 The present invention provides a soil thawing method in which soil containing organic matter is pulverized by a wet mill, and the pulverization media used in the wet mill have a particle size of 2 to 18 mm.

有機物を含む土壌は団粒化している傾向があり、湿式ミル内にて粒径が数十mmの粉砕媒体を用いた場合は、所定の粒径以下の団粒を粉砕することが困難である。ここで、粉砕媒体として粒径が2~18mmであるものを用いることにより、これと同程度の大きさの団粒を粉砕することが容易となる。これによれば、土壌を数μm程度の粒子にまで粉砕することができる。 Soil containing organic matter tends to be aggregated, and when grinding media with a particle size of several tens of millimeters is used in a wet mill, it is difficult to grind aggregates with a predetermined particle size or less. . Here, by using a grinding medium having a particle size of 2 to 18 mm, it becomes easy to grind aggregated grains having a similar size. According to this, the soil can be pulverized to particles of about several μm.

土壌は、放射性セシウムを含有しているものであってもよい。放射性セシウムは一般に、粒径が数μm~20μmの粘土に付着している。従って、上記の粉砕を達成することができれば、放射性セシウムの濃度が高い数μm~20μmの粘土粒子を粒径が大きな他の部分から分離することで、放射性被処理物の減容化に資する。 The soil may contain radioactive cesium. Radioactive cesium is generally attached to clay with particle sizes ranging from a few μm to 20 μm. Therefore, if the pulverization described above can be achieved, the clay particles of several μm to 20 μm, which have a high concentration of radioactive cesium, can be separated from other portions having a large particle size, thereby contributing to volume reduction of the radioactive material to be treated.

粉砕媒体は、砂又は礫であってもよい。 The grinding media may be sand or gravel.

土壌は、農地由来の土壌であって腐植質を含有しているものであってもよい。農地由来の土壌は特に団粒化している傾向が強いので、本発明の適用対象として好適である。 The soil may be soil derived from agricultural land and containing humus. Agricultural land-derived soil is particularly suitable for application of the present invention because it tends to be aggregated.

本発明において、湿式ミルでの粉砕に際し、湿式ミル内の内容物のpHを9~13に調整することが好ましい。また、湿式ミルでの粉砕をする前に、土壌を水と混合し、これを所定の時間25~100℃に保つことが好ましい。これらによれば、解泥速度が高まる。 In the present invention, it is preferable to adjust the pH of the contents in the wet mill to 9 to 13 when pulverizing with the wet mill. It is also preferable to mix the soil with water and keep it at 25 to 100° C. for a predetermined period of time before wet milling. According to these, the desludging speed increases.

また、本発明は、上記解泥方法によって解泥した後の泥水を、固液分離手段により固液分離する分級方法を提供する。これによれば、対象土壌から粒径が数μm程度の粘土を分級することができる。 Further, the present invention provides a classification method for solid-liquid separation by solid-liquid separation means after dissolving mud water by the above-described desludging method. According to this, it is possible to classify clay having a particle size of about several μm from the target soil.

本発明によれば、土壌が有機物を含み団粒を形成している場合であってもこれを確実に解泥・粉砕でき、数μm程度の粒径の土粒子を含む土壌を得ることができる、土壌の解泥方法を提供することができる。また、その解泥方法を使用した土壌の分級方法を提供することができる。 According to the present invention, even if the soil contains organic matter and forms aggregates, the soil can be reliably disintegrated and pulverized, and the soil containing soil particles having a particle size of about several μm can be obtained. , can provide a soil thaw method. In addition, it is possible to provide a method for classifying soil using the desludging method.

実施例1~3の結果を示すグラフである。4 is a graph showing the results of Examples 1-3.

以下、本発明の好適な実施形態について詳細に説明する。本実施形態の土壌の解泥方法及び分級方法では、有機物を含む土壌を湿式ミルで粉砕する。以下では、放射性セシウムを含有している農地由来の土壌を対象として説明する。 Preferred embodiments of the present invention are described in detail below. In the soil dissolution method and the soil classification method of the present embodiment, soil containing organic matter is pulverized by a wet mill. In the following, soil derived from agricultural land containing radioactive cesium will be described.

農地由来の土壌は、有機物を多く含む。ここで有機物とは、例えば腐植質、菌類、微生物、根毛、難腐植性セルロースが挙げられる。腐植質とは、植物や動物由来の有機物が分解して生じた物質であり、大きさとしては、数nm~数cmのものまで様々である。 Soil derived from agricultural land contains a lot of organic matter. Here, organic matter includes, for example, humus, fungi, microorganisms, root hairs, and humus-resistant cellulose. Humus is a substance produced by the decomposition of organic matter derived from plants and animals, and its size varies from several nanometers to several centimeters.

有機物を含む土壌は、有機物が土粒子同士を結合させて団粒化している傾向がある。団粒は、土壌を粉砕しようとする力に抵抗するので、任意の粉砕装置を用いた場合において、所望の粉砕を達成できない場合がある。従って、土壌を粉砕、更には分級する際には、団粒状態を解消すること(これを「解泥」と呼ぶ。)が望ましい。 In the soil containing organic matter, the organic matter tends to bind soil particles together and form aggregates. Agglomerates resist forces tending to break up the soil, and therefore may not be able to achieve the desired pulverization with any pulverizing device. Therefore, it is desirable to eliminate the aggregated state (this is called "demulsification") when the soil is pulverized and further classified.

本実施形態の解泥方法では、初めに対象土壌を水と混合して泥水とする。次に、この泥水を篩にかけて、粒径の大きな(例えば2mm以上)砂や礫を取り除く。篩を通過した泥水を湿式ミルに投入し、湿式ミルを稼働して土壌を粉砕する。 In the desludging method of the present embodiment, first, the target soil is mixed with water to obtain muddy water. Next, this muddy water is sieved to remove sand and gravel with a large particle size (for example, 2 mm or more). The muddy water that has passed through the sieve is put into the wet mill, and the wet mill is operated to pulverize the soil.

ここで、湿式ミル内で用いる粉砕媒体は、金属球、合金球、金属酸化物球又は金属複合酸化物球等であってもよく、砂又は礫であってもよい。金属としては鉄、アルミニウム等、合金としてはステンレス等、金属酸化物及び金属複合酸化物としては鉄の酸化物やアルミニウム、ジルコン等の酸化物及び複合酸化物が挙げられる。砂又は礫としては、対象土壌とは別に用意した砂又は礫を用いてもよく、上記の篩で分離した砂又は礫を洗浄して用いてもよい。後者の場合は、同一の土壌に含まれていた粒子を再利用することとなるので経済的である。粉砕媒体の密度は、2.0~8.0g/cmであることが好ましく、2.2~6.0g/cmであることがより好ましく、2.4~3.6g/cmであることが更に好ましい。 Here, the grinding media used in the wet mill may be metal spheres, alloy spheres, metal oxide spheres, metal composite oxide spheres, or the like, and may be sand or gravel. Examples of metals include iron and aluminum, examples of alloys include stainless steel, and examples of metal oxides and metal composite oxides include oxides of iron, oxides of aluminum and zircon, and composite oxides. As the sand or gravel, sand or gravel prepared separately from the target soil may be used, or the sand or gravel separated by the sieve may be washed and used. The latter case is economical because the particles contained in the same soil are reused. The density of the grinding media is preferably 2.0-8.0 g/cm 3 , more preferably 2.2-6.0 g/cm 3 , and more preferably 2.4-3.6 g/cm 3 . It is even more preferable to have

湿式ミル内で用いる粉砕媒体は、粒径が2~18mmである。当該粒径は、3~14mmであることが好ましく、4~12mmであることがより好ましい。土壌の団粒は大きさがこれらの範囲内である場合が多いので、粉砕媒体の粒径がこれらの範囲内であると、団粒を粉砕する効率が高い。なお、粉砕媒体として粒径が砂又は礫である場合の粒径の測定方法は、湿式振動篩い分け法、又は、水簸傾斜法による。 The grinding media used in the wet mill have a particle size of 2-18 mm. The particle size is preferably 3 to 14 mm, more preferably 4 to 12 mm. Since the size of soil aggregates is often within these ranges, the efficiency of pulverizing the aggregates is high when the particle size of the grinding media is within these ranges. In addition, when the grain size is sand or gravel as the grinding medium, the grain size is measured by the wet vibration sieving method or the elutriation tilt method.

湿式ミルの外周移動距離(すなわち外周速度に解泥時間又は滞留時間を乗じた数値)は、解泥を十分なものとする観点から80m以上であることが好ましく、240m以上であることがより好ましく、390m以上であることが更に好ましい。 The peripheral movement distance of the wet mill (that is, the value obtained by multiplying the peripheral speed by the dissolution time or retention time) is preferably 80 m or more, more preferably 240 m or more, from the viewpoint of sufficient desludging. , 390 m or more.

以上の方法で土壌を解泥すると、土壌の粒度分布が、粒径の小さなほうへ偏っていく。その後、湿式ミルから泥水を取り出し、これを篩にかけて所定の粒径以上(例えば75μm以上)の土壌を取り除く。更に、例えばサイクロン等の分級機を用いて、粒径が30μm以上又は20μm以上又は10μm以上の土壌を取り除く。 When the soil is thawed by the above method, the particle size distribution of the soil is biased toward smaller particle sizes. After that, muddy water is taken out from the wet mill and sieved to remove soil having a predetermined particle size or more (for example, 75 μm or more). Further, for example, using a classifier such as a cyclone, soil having a particle size of 30 μm or more, 20 μm or more, or 10 μm or more is removed.

そして、その分級後に残った泥水を固液分離手段によって固液分離する。固液分離手段としては、マイクロバブル浮選や凝集沈殿法を用いることができる。マイクロバブル浮選とは、μm程度の大きさの泡(マイクロバブル)を利用して懸濁液中の所定の微粒子を分離する方法である。マイクロバブルが所定の微粒子に付着して水面に浮上するので、これを回収することで粒径がμmレベルの粘土粒子の分離が達成される。 Then, the muddy water remaining after the classification is solid-liquid separated by solid-liquid separation means. Microbubble flotation or coagulation sedimentation can be used as solid-liquid separation means. Microbubble flotation is a method of separating predetermined fine particles in a suspension using bubbles (microbubbles) having a size of about μm. Since the microbubbles adhere to the predetermined fine particles and float on the water surface, the separation of the clay particles having a particle size of μm level is achieved by recovering the microbubbles.

他方、凝集沈殿法は、凝集剤を添加して凝集物を生成して沈降速度を高める方法であり、粒子の表面電荷の中和、又は、表面の疎水性化がその原理となっている。凝集剤としては、表面電荷の中和を目的とする場合は特に多価金属イオンの塩が好ましく、ポリ塩化アルミニウム(PAC)、硫酸アンモニウム、塩化鉄、硫酸鉄等が好ましい。表面の疎水性化を目的とする場合は、界面活性剤を用いることができる。 On the other hand, the coagulation-sedimentation method is a method in which a coagulant is added to form aggregates to increase the sedimentation rate, and the principle is to neutralize the surface charge of particles or to render the surface hydrophobic. As the aggregating agent, salts of polyvalent metal ions are particularly preferred for the purpose of neutralizing surface charges, and polyaluminum chloride (PAC), ammonium sulfate, iron chloride, iron sulfate and the like are preferred. A surfactant can be used for the purpose of making the surface hydrophobic.

以上に示した解泥方法及び分級方法によって、有機物を含む土壌から、粒径が数μm程度の粘土を分離することができる。 Clay having a particle size of about several micrometers can be separated from the soil containing organic matter by the dissolution method and the classification method described above.

本実施形態の解泥方法では、粉砕媒体の粒径が2~18mmであるので、同程度の粒径に団粒化した土壌を粉砕するのに適している。粉砕媒体と団粒との粒径がこのような関係にあると、土壌粒子の表面を削り取るように粉砕すること(表面粉砕)、及び、土壌粒子を同程度の大きさの複数の小粒子に分割するように粉砕すること(体積粉砕)がバランスよく生じて、土壌中の有機団粒粒子が効率的に小さくなっていく。 In the desludging method of this embodiment, since the particle size of the grinding media is 2 to 18 mm, it is suitable for pulverizing soil aggregated to approximately the same particle size. When the particle diameters of the grinding media and the aggregated particles are in such a relationship, grinding so as to scrape off the surface of the soil particles (surface grinding) and dividing the soil particles into a plurality of small particles of the same size Pulverization to divide (volumetric pulverization) occurs in a well-balanced manner, and the organic aggregate particles in the soil are efficiently reduced.

放射性セシウムは一般に、粒径が20μm以下の粘土粒子、特に粒径が数百nm~20μmの粘土粒子に多く付着している。従って、上記の解泥方法及び分級方法によれば、放射性セシウムの濃度が高い当該粘土粒子を粒径が大きな他の部分から分離することができる。これにより、当該他の部分(例えば粒径が20μm以上の土壌)を資材として再利用することができるとともに、放射性セシウムを含有する部分を濃縮することができ、放射性被処理物の減容化に資することになる。 A large amount of radioactive cesium generally adheres to clay particles with a particle size of 20 μm or less, particularly clay particles with a particle size of several hundred nm to 20 μm. Therefore, according to the desludging method and the classification method described above, the clay particles with a high concentration of radioactive cesium can be separated from other portions with a large particle size. As a result, the other part (for example, soil with a particle size of 20 μm or more) can be reused as a material, and the part containing radioactive cesium can be concentrated, and the volume of the radioactive material to be treated can be reduced. will be invested.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。例えば、上記実施形態では、粒径が比較的大きな(例えば2mm以上)砂や礫を取り除いた直後に当該泥水を湿式ミルに投入したが、当該分級をする前に泥水を湿式ミルに投入してもよく、反対に、更に目の小さな篩を用いて分級(例えば75μm以上)した後に湿式ミルに投入してもよい。土壌が団粒化しているということは、本来であれば粒径が小さくて篩を通過する粒子であっても団粒化によって粒径が大きくなっており篩を通過しない場合がある。この場合、放射性セシウムを含有している粘土粒子が篩の上に残り得ることとなるため、これを避けるべく、湿式ミルによる解泥を分級工程全体における早い段階で行うことが好ましい。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments. For example, in the above embodiment, the muddy water is put into the wet mill immediately after sand or gravel with a relatively large particle size (for example, 2 mm or more) is removed, but the muddy water is put into the wet mill before the classification. Conversely, it may be further classified (for example, 75 μm or more) using a sieve with a small mesh, and then charged into a wet mill. The fact that the soil is agglomerated means that even particles that normally pass through the sieve due to their small particle size may not pass through the sieve due to the increased particle size due to the agglomeration. In this case, since clay particles containing radioactive cesium may remain on the sieve, it is preferable to perform desludging by a wet mill at an early stage in the entire classification process in order to avoid this.

また、湿式ミルでの解泥に際し、解泥補助剤を添加してもよい。解泥補助剤としては、例えばpH調整剤や分散剤が挙げられる。pH調整材としては、水酸化カルシウム(消石灰)、や水酸化ナトリウムのように、液性をアルカリ性にするものが挙げられる。対象土壌が酸性又は中性を示すものである場合、湿式ミルで解泥する泥水に対して、カルシウムイオンを添加して、泥水のpHを9~13、又は、10~12、又は、10.5~11.5程度に調整してもよい。これにより、解泥速度が高まる。カルシウムイオンの供給源としては水酸化カルシウム(消石灰)が好ましく、カルシウムイオンの供給源の添加量は、土壌(原土)1gに対して、カルシウムイオン(Ca2+)の量として、2.3×10-6~5.0×10-3molとすることが好ましく、2.3×10-5~2.3×10-3molとすることがより好ましく、5.0×10-5~1.0×10-3molとすることが更に好ましく、1.0×10-4~8.0×10-4molとすることが更により好ましく、2.3×10-4~3.0×10-4molとすることが特に好ましい。 Further, a desludging aid may be added during desludging in the wet mill. Examples of desludging aids include pH adjusters and dispersants. Examples of the pH adjusting material include those that make the liquid alkaline, such as calcium hydroxide (slaked lime) and sodium hydroxide. When the target soil exhibits acidity or neutrality, calcium ions are added to the mud to be demulsified by the wet mill to adjust the pH of the mud to 9 to 13, or 10 to 12, or 10. It may be adjusted to about 5 to 11.5. This increases the desludging speed. Calcium hydroxide (slaked lime) is preferable as a calcium ion supply source, and the amount of the calcium ion supply source added is 2.3× as the amount of calcium ions (Ca 2+ ) per 1 g of soil (original soil). It is preferably 10 −6 to 5.0×10 −3 mol, more preferably 2.3×10 −5 to 2.3×10 −3 mol, and more preferably 5.0×10 −5 to 1 .0×10 −3 mol is more preferable, 1.0×10 −4 to 8.0×10 −4 mol is even more preferable, and 2.3×10 −4 to 3.0× 10 −4 mol is particularly preferred.

また、湿式ミルで粉砕をする前に、対象土壌を水と混合し、これを所定の時間25~100℃に保ったあとで、湿式ミルで粉砕してもよい。この温度の下限は30℃であってもよく、35℃であってもよい。この温度の上限としては、80℃であってもよく、60℃であってもよい。排水の温度基準の観点から上限は45℃であることが好ましい。温度を保つ時間は、5~60分であってもよく、10分~50分であってもよい。この時間が経過する間に、温度は上記範囲内で変動してもよい。これらの条件を満たした処理を行ったうえで解泥をすると、解泥速度が一層高まり、解泥後の最終的な粒径として、より小さな粒径を有する土壌粒子の割合が一層高くなる。なお、この処理を行った場合、解泥時の温度は問わず、常温で解泥してもよい。 Alternatively, the target soil may be mixed with water before being pulverized by the wet mill, and after this is maintained at 25 to 100° C. for a predetermined time, the wet mill may be pulverized. The lower limit of this temperature may be 30°C or 35°C. The upper limit of this temperature may be 80°C or 60°C. The upper limit is preferably 45° C. from the viewpoint of the temperature standard for waste water. The time for keeping the temperature may be 5 to 60 minutes, or 10 to 50 minutes. During this time the temperature may fluctuate within the above range. If the desludging is performed after performing the treatment that satisfies these conditions, the desludging rate will be further increased, and the final particle size after desludging will further increase the proportion of soil particles having a smaller particle size. In addition, when this treatment is performed, the temperature at the time of desludging does not matter, and desludging may be performed at room temperature.

また、上記実施形態では放射性セシウムを含有している農地由来の土壌を対象としたが、有機物を含む土壌であれば、農地由来のものに限らず他の土壌を対象としてもよい。 In the above embodiment, soil derived from agricultural land containing radioactive cesium was targeted, but soil derived from agricultural land may be targeted as long as it contains organic matter.

以下、実施例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。実施例の記載において「粉砕」という場合、湿式ミルで行う行為を指しており、内部で実際に生じる「粉砕」と「解泥」の両方を指しているものとする。 EXAMPLES The content of the present invention will be described in more detail below with reference to examples. In addition, the present invention is not limited to the following examples. In the description of the examples, the term "grinding" refers to the action performed in the wet mill, and refers to both "grinding" and "demulsification" that actually occur inside.

<実施例1~4>
粉砕容器として市販の900mL容器の磁性ポッドミル(外径130mm)、粉砕媒体として直径が6mm又は10mmのアルミナボール(比重3.6)、更にはマルチングストーン(比重2.5~2.7;主成分は石灰石=炭酸カルシウム)を用意した。腐植質を含む土壌として、鹿沼産黒ボク土(平均水分率31%)107g、水500mL、及び、粉砕媒体300mLを磁性ポッドに投入し、これを下記条件にてそれぞれ市販の卓上ボールミル架台で粉砕を行った(表1も参照)。
・共通条件…回転速度:24rpm;ミル外周速度:16.3cm/秒;室温(約20℃)
・(原土)…粉砕時間:0分(つまり粉砕なし)
・実施例1…粉砕時間:10分;粉砕媒体:10mm径アルミナボール
・実施例2…粉砕時間:40分;粉砕媒体:10mm径アルミナボール
・実施例3…粉砕時間:40分;粉砕媒体:6mm径アルミナボール
・実施例4…粉砕時間:40分;粉砕媒体:5mm径マルチングストーン
<Examples 1 to 4>
A commercially available 900 mL container magnetic pod mill (outer diameter 130 mm) as a grinding vessel, alumina balls with a diameter of 6 mm or 10 mm (specific gravity 3.6) as grinding media, and mulching stone (specific gravity 2.5 to 2.7; main component prepared limestone (calcium carbonate). As soil containing humus, 107 g of Kanuma Kuroboku soil (average moisture content of 31%), 500 mL of water, and 300 mL of grinding media are put into a magnetic pod, and this is ground under the following conditions with a commercially available tabletop ball mill stand. was performed (see also Table 1).
· Common conditions ... Rotation speed: 24 rpm; mill peripheral speed: 16.3 cm / sec; room temperature (about 20 ° C.)
・(Original soil)…Pulverization time: 0 minutes (that is, no pulverization)
Example 1 Grinding time: 10 minutes Grinding media: 10 mm diameter alumina balls Example 2 Grinding time: 40 minutes Grinding media: 10 mm diameter alumina balls Example 3 Grinding time: 40 minutes Grinding media: 6 mm diameter alumina balls Example 4 ... Grinding time: 40 minutes; Grinding media: 5 mm diameter mulching stone

磁性ポッドミルから粉砕産物を取り出し、湿式振動篩分けにより分級した。このとき、38μm以上の篩はJIS規格のステンレス篩を用い、20μm以下の篩は伊藤製作所製プラスチック篩を用いた。原土及び実施例1~3の粒度分布(頻度分布)の結果を図1に示す。 The ground product was removed from the magnetic pod mill and classified by wet vibration sieving. At this time, a JIS standard stainless sieve was used as the sieve of 38 μm or more, and a plastic sieve manufactured by Ito Seisakusho was used as the sieve of 20 μm or less. The results of the particle size distribution (frequency distribution) of the original soil and Examples 1 to 3 are shown in FIG.

図1に示したグラフから、実施例1~3では黒ボク土の解泥が進み、粒径が小さくなったことが分かる。粉砕時間(解泥時間)を長くするほど、又は、アルミナボールの径を10mmから6mmへ小さくしたことにより、粗粒側の頻度のピークが細かい粒度のほうへシフトする傾向が認められた。 From the graph shown in FIG. 1, it can be seen that in Examples 1 to 3, the dissolution of the black soil progressed and the particle size became smaller. As the pulverization time (dissolution time) was lengthened, or the diameter of the alumina balls was reduced from 10 mm to 6 mm, the frequency peak on the coarse grain side tended to shift toward finer grain sizes.

また、原土、及び実施例1~4の粉砕産物における0~20μm、20~75μm、75μm~の粒子の割合(wt%;回収乾土ベース)を表1に示す。これによれば、各実施例において粒径20μm以下にまで選択的に解泥されていることが分かる。 In addition, Table 1 shows the proportions of particles of 0 to 20 μm, 20 to 75 μm, and 75 μm or more in the original soil and the pulverized products of Examples 1 to 4 (wt %; based on recovered dry soil). According to this, it can be seen that selective disaggregation to a particle size of 20 μm or less is performed in each example.

Figure 0007260114000001
Figure 0007260114000001

<実施例5~7>
粉砕容器として市販の4800mL容器の磁性ポッドミル(外径215mm)、粉砕媒体として径が5mmの朝明砂(比重2.6)を用意した。腐植質を含む土壌として、茨城大子の田の土(平均水分率36%)を用意し、表2に示した量で対象土、水、及び、朝明砂を磁性ポッドに投入し、これを下記条件にてそれぞれ市販の卓上ボールミル架台で粉砕を行った。
<Examples 5 to 7>
A commercially available 4800 mL magnetic pod mill (outer diameter: 215 mm) was prepared as a pulverization vessel, and Asake sand (specific gravity: 2.6) with a diameter of 5 mm was prepared as a pulverization medium. As soil containing humus, Ibaraki Daigo rice field soil (average moisture content 36%) was prepared, and the amount of target soil, water, and Asake sand in the amount shown in Table 2 was put into the magnetic pod, and this was placed. Pulverization was performed with a commercially available tabletop ball mill stand under the following conditions.

実施例6及び7では消石灰を添加し、pHを11.5とした。さらに実施例7では、対象土、水、朝明石、消石灰を混合した後、これを45℃の恒温槽内で10分間静置した後に、ミルで粉砕した。実施例5~7における粉砕前と粉砕産物の粒子のアンダーサイズを表2に示す。このアンダーサイズは、粒度分布測定装置により測定した。 In Examples 6 and 7, slaked lime was added to bring the pH to 11.5. Furthermore, in Example 7, after mixing the target soil, water, morning ash, and slaked lime, the mixture was allowed to stand in a constant temperature bath at 45° C. for 10 minutes, and then pulverized with a mill. Table 2 shows the particle undersize of the pre-milled and milled products in Examples 5-7. This undersize was measured by a particle size distribution analyzer.

Figure 0007260114000002
Figure 0007260114000002

表2に示した結果から、茨城大子の田の土を対象とした場合でも粒径10μm以下にまで有効に解泥することができたことが分かる(実施例5)。また、粉砕時(解泥時)に消石灰を添加してpHを11.5に調整したことで、消石灰を添加しなかった場合と比べて粉砕後の粒子のサイズがより小さくなったことが分かる(実施例6)。また、粉砕前にpH11.5にして対象土を加温したことで、粉砕後の粒子のサイズが一層小さくなったことが分かる(実施例7)。 From the results shown in Table 2, it can be seen that even when the soil from the fields of Ibaraki Daigo was targeted, it was possible to effectively disaggregate to a particle size of 10 μm or less (Example 5). In addition, it can be seen that by adjusting the pH to 11.5 by adding slaked lime during pulverization (during dissolution), the size of the particles after pulverization became smaller than when slaked lime was not added. (Example 6). In addition, it can be seen that the size of the particles after pulverization was further reduced by heating the target soil at pH 11.5 before pulverization (Example 7).

<実施例8~16>
実施例1の黒ボク土に代えて、茨城の畑土(平均水分率21%)を対象とした。粉砕時間、回転速度、ミル外周速度、アルミナボール(又は、朝明砂(花崗岩質。比重2.6)、マルチングストーン)径を表3に示したとおり変更して粉砕を行った。粉砕に際し、表3に示したとおりの量で、磁性ポッド内に消石灰を添加した。原土、及び、粉砕産物における粒径割合を表3に示す。
<Examples 8 to 16>
Instead of the Kuroboku soil of Example 1, field soil from Ibaraki (average moisture content: 21%) was used. As shown in Table 3, pulverization was performed by changing the pulverization time, rotation speed, mill peripheral speed, alumina ball (or Asake sand (granitic, specific gravity 2.6), mulching stone) diameter. Slaked lime was added into the magnetic pods in the amounts shown in Table 3 during the grinding. Table 3 shows the particle size ratios in the original soil and the pulverized product.

Figure 0007260114000003
Figure 0007260114000003

表3に示した結果から、茨城の畑土を対象とした場合でも粒径20μm以下にまで有効に解泥することができたことが分かる。 From the results shown in Table 3, it can be seen that even in the case of field soil from Ibaraki, it was possible to effectively disintegrate to a grain size of 20 μm or less.

<実施例17~19>
粉砕容器として市販の4800mL容器の磁性ポッドミル(外径215mm)、粉砕媒体として径が5mmの朝明砂(比重2.6)を用意した。腐植質を含む土壌として、実施例8~16と同一の茨城の畑土(平均水分率21%)、又は、茨城大子の田の土(平均水分率36%)を用意し、表4に示した量で対象土、水、及び、朝明砂を磁性ポッドに投入し、これを下記条件にてそれぞれ市販の卓上ボールミル架台で粉砕を行った。粉砕産物における粒径割合を表4に示す。
<Examples 17 to 19>
A commercially available 4800 mL magnetic pod mill (outer diameter: 215 mm) was prepared as a pulverization vessel, and Asake sand (specific gravity: 2.6) with a diameter of 5 mm was prepared as a pulverization medium. As soil containing humus, the same Ibaraki field soil (average moisture content 21%) as in Examples 8 to 16, or Ibaraki Daigo field soil (average moisture content 36%) was prepared. The indicated amounts of target soil, water, and dawn sand were put into a magnetic pod and pulverized with a commercially available tabletop ball mill stand under the following conditions. Table 4 shows the particle size ratio in the pulverized product.

Figure 0007260114000004
Figure 0007260114000004

表4に示した結果から、茨城大子の田の土を対象とした場合でも有効に解泥することができたことが分かる。 From the results shown in Table 4, it can be seen that even when the soil of the Ibaraki Daigo rice field was targeted, the sludge could be effectively disintegrated.

本発明は、団粒化している土壌を解泥及び分級することに利用することができる。

INDUSTRIAL APPLICABILITY The present invention can be used to demulsify and classify aggregated soil.

Claims (6)

有機物を含む土壌を湿式ミルで粉砕し、
前記湿式ミル内で用いる粉砕媒体は、粒径が2~18mmであり、
前記土壌は、農地由来の土壌であって腐植質を含有しているものである、土壌の解泥方法。
The soil containing organic matter is pulverized with a wet mill,
The grinding media used in the wet mill have a particle size of 2 to 18 mm,
The method for dissolving soil, wherein the soil is soil derived from agricultural land and contains humus .
前記土壌は、放射性セシウムを含有しているものである、請求項1記載の土壌の解泥方法。 2. The method of dissolving soil according to claim 1, wherein said soil contains radioactive cesium. 前記粉砕媒体は、砂又は礫である、請求項1又は2記載の土壌の解泥方法。 3. The method of dissolving soil according to claim 1, wherein said grinding media are sand or gravel. 前記湿式ミルでの粉砕に際し、前記湿式ミル内の内容物のpHを9~13に調整する、請求項1~のいずれか一項記載の土壌の解泥方法。 4. The method of dissolving soil according to claim 1, wherein the pH of the content in the wet mill is adjusted to 9 to 13 when pulverizing in the wet mill. 前記粉砕をする前に、前記土壌を水と混合し、これを所定の時間25~100℃に保つ、請求項1~のいずれか一項記載の土壌の解泥方法。 The method of dissolving soil according to any one of claims 1 to 4 , wherein the soil is mixed with water and kept at 25 to 100°C for a predetermined time before the pulverization. 請求項1~のいずれか一項記載の土壌の解泥方法によって解泥した後の泥水を、固液分離手段により固液分離する、土壌の分級方法。 A method for classifying soil, comprising solid-liquid separation by means of solid-liquid separation means after dissolving mud water by the method for dissolving soil according to any one of claims 1 to 5 .
JP2019126755A 2019-07-08 2019-07-08 Soil dissolution method and classification method Active JP7260114B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019126755A JP7260114B2 (en) 2019-07-08 2019-07-08 Soil dissolution method and classification method
JP2023051308A JP7462251B2 (en) 2019-07-08 2023-03-28 Methods for deflocculating and classifying soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019126755A JP7260114B2 (en) 2019-07-08 2019-07-08 Soil dissolution method and classification method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023051308A Division JP7462251B2 (en) 2019-07-08 2023-03-28 Methods for deflocculating and classifying soil

Publications (2)

Publication Number Publication Date
JP2021012115A JP2021012115A (en) 2021-02-04
JP7260114B2 true JP7260114B2 (en) 2023-04-18

Family

ID=74226636

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019126755A Active JP7260114B2 (en) 2019-07-08 2019-07-08 Soil dissolution method and classification method
JP2023051308A Active JP7462251B2 (en) 2019-07-08 2023-03-28 Methods for deflocculating and classifying soil

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023051308A Active JP7462251B2 (en) 2019-07-08 2023-03-28 Methods for deflocculating and classifying soil

Country Status (1)

Country Link
JP (2) JP7260114B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7311863B2 (en) * 2020-05-20 2023-07-20 鹿島建設株式会社 Soil thaw method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216210A (en) 2005-10-12 2007-08-30 Mitsubishi Materials Corp Treating method of waste
JP2011092151A (en) 2009-11-02 2011-05-12 Forestry & Forest Products Research Institute Method of processing vegetable raw material
JP2014142311A (en) 2013-01-25 2014-08-07 Ibaraki Univ Method for decontaminating contaminated soil or incineration ash

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5834272B2 (en) 2011-09-20 2015-12-16 株式会社湘南数理研究会 Decontamination method for contaminated soil
JP2014134404A (en) 2013-01-08 2014-07-24 Shigeru Tomiyama Method for decontaminating cesium contamination
JP6384692B1 (en) 2017-12-19 2018-09-05 公信 山▲崎▼ Soil purification system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216210A (en) 2005-10-12 2007-08-30 Mitsubishi Materials Corp Treating method of waste
JP2011092151A (en) 2009-11-02 2011-05-12 Forestry & Forest Products Research Institute Method of processing vegetable raw material
JP2014142311A (en) 2013-01-25 2014-08-07 Ibaraki Univ Method for decontaminating contaminated soil or incineration ash

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日下 英史,他3名,「湿式ミルの除去土壌減容化/再生利用への適用可能性」,福島原子力事故関連情報アーカイブ,2019年,https://f-archive.jaea.go.jp/handle/faa/182121/faa_182121_2.pdf,第8回環境放射能除染研究発表会要旨集35ページにも掲載。

Also Published As

Publication number Publication date
JP7462251B2 (en) 2024-04-05
JP2023073351A (en) 2023-05-25
JP2021012115A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
Moghaddasi et al. Preparation of nano-particles from waste tire rubber and evaluation of their effectiveness as zinc source for cucumber in nutrient solution culture
JP7462251B2 (en) Methods for deflocculating and classifying soil
JP5530564B2 (en) Recycling method of ceria-based abrasive
KR101652993B1 (en) Recovery method of high-grade Tin concentrate by froth flotation
KR101710593B1 (en) Method for collecting high grade scheelite concentrate and collecting facilities of scheelite concentrate
TWI685469B (en) Water purifying agent and water purifying method
CN101722110A (en) Collector for scheelite concentration and use thereof
KR102437576B1 (en) Dispersion for water purification, method for producing the dispersion for water purification, and method for treating wastewater
JP2006035176A (en) Dehydration auxiliary material, and dehydration method and recycling method of high water ratio sludge
JP2001190928A (en) Method and system for desulfurizing exhaust gas
CN107098549A (en) Sludge solidifying agent and utilize its solidfied material preparation method
JP6036295B2 (en) Pretreatment method of sintering raw materials
JP7311863B2 (en) Soil thaw method
JP6039170B2 (en) Method for treating soil containing radioactive material
JP6818286B1 (en) Method of insolubilizing fluorine and / or arsenic contained in mud and earth and sand
CN107381601B (en) A kind of method of high boron carnallite production KCl
TWI746638B (en) Method for producing water-purifying agent and method for treating wastewater
JP2010155745A (en) Method and system for producing crushed sand for concrete
WO2018051849A1 (en) Water purification dispersion, production method for water purification dispersion, and waste water treatment method
JP7457303B2 (en) Method for recovering calcium-containing solids
JP7128495B1 (en) soil conditioner
JP6238519B2 (en) Paddy field repair method
JP4290707B2 (en) Manufacturing method of recycled aggregate
JPH02265685A (en) Quality improvement treatment of water and treating substance
Huh et al. Control of Algal Blooms in Eutrophic Water Using Porous Dolomite Granules

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230328

R150 Certificate of patent or registration of utility model

Ref document number: 7260114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150