JP7258696B2 - Injection method of suspension injection material - Google Patents

Injection method of suspension injection material Download PDF

Info

Publication number
JP7258696B2
JP7258696B2 JP2019159532A JP2019159532A JP7258696B2 JP 7258696 B2 JP7258696 B2 JP 7258696B2 JP 2019159532 A JP2019159532 A JP 2019159532A JP 2019159532 A JP2019159532 A JP 2019159532A JP 7258696 B2 JP7258696 B2 JP 7258696B2
Authority
JP
Japan
Prior art keywords
ground
suspension
injection
injection material
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019159532A
Other languages
Japanese (ja)
Other versions
JP2021038546A (en
Inventor
浩史 矢部
久 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Priority to JP2019159532A priority Critical patent/JP7258696B2/en
Publication of JP2021038546A publication Critical patent/JP2021038546A/en
Application granted granted Critical
Publication of JP7258696B2 publication Critical patent/JP7258696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

特許法第30条第2項適用 公益社団法人 土木学会が、令和1年8月7日に発行した令和元年度土木学会全国大会 第74回年次学術講演会 DVD-ROMArticle 30, Paragraph 2 of the Patent Act applies Public Interest Incorporated Association Japan Society of Civil Engineers 2019 74th Annual Academic Lecture DVD-ROM of the 2019 Japan Society of Civil Engineers National Convention published on August 7, 2019

本発明は、地盤中に懸濁型注入材を注入して地盤の改良を行う懸濁型注入材の注入工法に関する。 TECHNICAL FIELD The present invention relates to a method for pouring a suspension grout into the ground to improve the ground.

地盤の改良を行う薬液注入工法において、例えば、セメント粒子などの懸濁粒子を含んだ懸濁型注入材を使用する懸濁型注入材の注入工法が知られている。
懸濁型注入材の注入工法は、地盤中に注入管を所定の深さまで削孔しながら貫入し、貫入後、注入管から懸濁型注入材を地盤中に注入する。懸濁型注入材の注入が完了したとき、注入管を所定の長さ引き抜き、再び地盤中に懸濁型注入材を注入する。この懸濁型注入材の注入を注入管を引き抜きながら複数回行うことで、地盤中に固結改良体を造成して地盤の改良を行っている。なお、この懸濁型注入材の注入工法において、懸濁型注入材の地盤中への注入は、一般的に、二重管ダブルパッカー注入方法、二重管ロッド単相注入方法、二重管ロッド複相注入方法、単管ロッド注入方法などで行う。
Among chemical injection methods for ground improvement, for example, a suspension injection material injection method that uses a suspension injection material containing suspended particles such as cement particles is known.
In the injection method of the suspension type injection material, the injection pipe is drilled into the ground to a predetermined depth, and after the penetration, the suspension type injection material is injected into the ground through the injection pipe. When the injection of the suspension type injection material is completed, the injection tube is pulled out by a predetermined length, and the suspension type injection material is injected into the ground again. By injecting this suspension-type grouting material several times while pulling out the grouting pipe, a compaction improvement body is formed in the ground, and the ground is improved. In this injection method of suspension injection material, injection of suspension injection material into the ground is generally performed by double-pipe double packer injection method, double-pipe rod single-phase injection method, double-pipe It is performed by the rod multi-phase injection method, the single tube rod injection method, and the like.

懸濁型注入材の注入工法において使用する懸濁型注入材にあっては、地盤への浸透性を考慮する必要がある。そこで、懸濁型注入材の地盤への浸透の可否を判断するための指標として、グラウタビリティー比GR(Groutability Ratio)を用いている。グラウタビリティー比GRとは、懸濁型注入材の粒径加積曲線の85%粒径G85と改良を行う地盤の粒径加積曲線の15%粒径D15の比であり、GR=D15/G85の式で表される。
従来、懸濁型注入材においては、地盤への浸透性を考慮して、グラウタビリティー比GRが24より大きな値になるものを使用するようにしている。
It is necessary to consider the permeability to the ground for the suspension grout used in the grouting method of the suspension grout. Therefore, a groutability ratio GR (Groutability Ratio) is used as an index for determining whether or not the suspension-type grouting material penetrates into the ground. The groutability ratio GR is the ratio of the 85% grain size G 85 of the grain size accumulation curve of the suspension injection material and the 15% grain size D 15 of the grain size accumulation curve of the ground to be improved, GR = D15 / G85 .
Conventionally, suspension-type grouting materials having a groutability ratio GR of greater than 24 have been used in consideration of permeability into the ground.

ところが、懸濁型注入材の注入工法において、グラウタビリティー比GRが24より大きな値になる懸濁型注入材を使用したときでも、懸濁型注入材の地盤への浸透性が悪い、つまり、懸濁型注入材の地盤中への注入を確実に行うことができない場合があり、これにより、目標通りの大きさの固結改良体を地盤中に造成することができないという問題がある。 However, in the suspension grouting method, even when a suspension grouting material having a groutability ratio GR greater than 24 is used, the suspension grouting material has poor permeability to the ground. In some cases, it may not be possible to reliably inject the suspension-type injection material into the ground, and as a result, there is a problem that a compaction improvement body having a desired size cannot be created in the ground.

本発明は、このような問題に鑑みてなされたものであって、その目的は、懸濁型注入材の注入工法において、懸濁型注入材の地盤中への注入を確実に行えるようにして、目標通りの大きさの固結改良体を地盤中に造成できるようにすることである。 The present invention has been made in view of such problems, and an object of the present invention is to provide a method for pouring a suspension grout into the ground with certainty. , to make it possible to create a consolidated improvement body of a desired size in the ground.

本発明者らは、懸濁型注入材の注入工法において、懸濁型注入材の地盤中への注入を確実に行えるようにするために、鋭意研究を重ねた結果、地盤への懸濁型注入材の浸透性については、従来から用いているグラウタビリティー比GRだけでなく、地盤の透水係数も影響を及ぼすことを見出した。そこで、本発明者らは、グラウタビリティー比GRとともに地盤の透水係数が懸濁型注入材の浸透性に及ぼす影響について、実験を行って、本発明の懸濁型注入材の注入工法を完成するに至った。 The present inventors have conducted intensive research in order to ensure that the suspension injection material can be injected into the ground in the injection method of the suspension injection material. Regarding the permeability of grouting materials, it was found that not only the groutability ratio GR, which has been used conventionally, but also the hydraulic conductivity of the ground has an effect. Therefore, the present inventors conducted experiments on the effects of the groutability ratio GR and the hydraulic conductivity of the ground on the permeability of the suspension grout, and completed the grouting method of the suspension grout of the present invention. came to.

即ち、本発明は、地盤中に懸濁型注入材を注入して地盤の改良を行う懸濁型注入材の注入工法であって、改良を行う地盤の透水係数が10-6m/s以上3.00×10-4m/s以下の場合、グラウタビリティー比が40より大きな値になる懸濁型注入材を使用して地盤中に注入、改良を行う地盤の透水係数が3.00×10-4m/sより大きく10-1m/s以下の場合、グラウタビリティー比が24より大きな値になる懸濁型注入材を使用して地盤中に注入するとともに、懸濁型注入材の地盤中への注入圧力は、50kPa以上280kPa以下で行う懸濁型注入材の注入工法である。 That is, the present invention is a suspension grouting material injection method for improving the ground by injecting the suspension grouting material into the ground, wherein the ground to be improved has a hydraulic conductivity of 10 −6 m / s or more. In the case of 3.00×10 −4 m/s or less, a suspension-type grouting material having a groutability ratio of more than 40 is used to inject into the ground to improve the ground, and the hydraulic conductivity of the ground is 3.0. 00 × 10 -4 m / s and 10 -1 m / s or less, the groutability ratio is injected into the ground using a suspension type grouting material with a value greater than 24 , and the suspension type The injection pressure of the injection material into the ground is 50 kPa or more and 280 kPa or less .

本発明によれば、改良を行う地盤の透水係数に応じてグラウタビリティー比の値が違う懸濁型注入材を使用することで、懸濁型注入材の地盤中への注入を確実に行うことができ、これにより、目標通りの大きさの固結改良体を地盤中に造成することができる。 According to the present invention, by using a suspension type grouting material having a different groutability ratio value according to the hydraulic conductivity of the ground to be improved, the suspension type grouting material is reliably injected into the ground. As a result, it is possible to create a consolidated improvement body of a desired size in the ground.

本発明の懸濁型注入材の注入工法で用いる地盤改良装置を示す図である。It is a figure which shows the ground improvement apparatus used with the grouting method of the suspension type grouting material of this invention. 図2Aは、注入管を貫入している状態を示す図、図2Bは、注入管を所定の深さまで貫入した状態を示す図、図2Cは、懸濁型注入材を地盤中に注入している状態を示す図である。FIG. 2A shows a state in which the injection pipe is penetrated, FIG. 2B shows a state in which the injection pipe has penetrated to a predetermined depth, and FIG. 2C shows a suspension injection material injected into the ground. It is a figure which shows the state which is. 図3Aは、注入管を少し引き抜いてから懸濁型注入材を地盤中に注入している状態を示す図、図3Bは、懸濁型注入材の注入を複数回行っている状態を示す図、図3Cは、地盤中に固結改良体を造成した状態を示す図である。FIG. 3A is a diagram showing a state in which the suspension injection material is injected into the ground after the injection tube is pulled out a little, and FIG. 3B is a diagram showing a state in which the suspension injection material is injected multiple times. and FIG. 3C is a diagram showing a state in which a consolidated improvement body is created in the ground.

本発明の懸濁型注入材の注入工法の一実施形態について、図面を参照して説明する。
本実施形態に係る懸濁型注入材の注入工法(以下、単に本懸濁型注入材の注入工法という)は、地盤中に注入管を貫入し、貫入した注入管から懸濁型注入材を地盤中に注入し、地盤中に固結改良体を造成して地盤の改良を行うもので、この地盤中に注入する懸濁型注入材において、所定の懸濁型注入材を使用する。
One embodiment of the injection method of the suspension type injection material of the present invention will be described with reference to the drawings.
The injection method of the suspension type injection material according to the present embodiment (hereinafter simply referred to as the injection method of the suspension type injection material) involves penetrating the injection pipe into the ground, and releasing the suspension type injection material from the injected injection pipe. The soil is improved by injecting it into the ground to form a consolidated improvement body in the ground, and in the suspension type injection material to be injected into the ground, a predetermined suspension type injection material is used.

図1は、本懸濁型注入材の注入工法で用いる地盤改良装置を示す図である。
本懸濁型注入材の注入工法において用いる地盤改良装置1は、例えば、図示のように、地表面に設置する施工機械2を備え、施工機械2に地盤中に貫入する注入管3を装着する。これにより、施工機械2で注入管3を地盤中に貫入し又は地盤中から引き抜く。注入管3は、内部を懸濁型注入材が通る中空状の鋼管で、その下部に懸濁型注入材を地盤中に注入する吐出口4を複数設ける。また、地盤改良装置1は、施工機械2の近傍に注入材供給装置5を備え、注入材供給装置5は、材料貯蔵部6、注入材生成部7、圧送用ポンプ8、流量・圧力計9などを有する。注入材供給装置5では、注入材生成部7で懸濁型注入材を生成し、生成した懸濁型注入材を圧送用ポンプ8で流量・圧力計9を介して注入管3に圧送する。
FIG. 1 is a diagram showing a ground improvement device used in the injection method of this suspension-type grouting material.
The ground improvement device 1 used in the injection method of this suspension type injection material, for example, as shown in the figure, comprises a construction machine 2 installed on the ground surface, and the construction machine 2 is equipped with an injection pipe 3 that penetrates into the ground. . As a result, the construction machine 2 penetrates the injection pipe 3 into the ground or pulls it out from the ground. The injection pipe 3 is a hollow steel pipe through which the suspension injection material passes, and a plurality of discharge ports 4 for injecting the suspension injection material into the ground are provided at the lower part thereof. In addition, the soil improvement device 1 includes an injection material supply device 5 near the construction machine 2, and the injection material supply device 5 includes a material storage unit 6, an injection material generation unit 7, a pressure feed pump 8, and a flow rate/pressure gauge 9. and so on. In the injectable material supply device 5 , the injectable material producing unit 7 produces a suspended injectable material, and the produced suspended injectable material is pressure-fed to the injecting pipe 3 via the flow rate/pressure gauge 9 by the pressure-feeding pump 8 .

図2Aは、注入管を貫入している状態を示す図、図2Bは、注入管を所定の深さまで貫入した状態を示す図、図2Cは、懸濁型注入材を地盤中に注入している状態を示す図である。図3Aは、注入管を少し引き抜いてから懸濁型注入材を地盤中に注入している状態を示す図、図3Bは、懸濁型注入材の注入を複数回行っている状態を示す図、図3Cは、地盤中に固結改良体を造成した状態を示す図である。 FIG. 2A shows a state in which the injection pipe is penetrated, FIG. 2B shows a state in which the injection pipe has penetrated to a predetermined depth, and FIG. 2C shows a suspension injection material injected into the ground. It is a figure which shows the state which is. FIG. 3A is a diagram showing a state in which the suspension injection material is injected into the ground after the injection tube is pulled out a little, and FIG. 3B is a diagram showing a state in which the suspension injection material is injected multiple times. and FIG. 3C is a diagram showing a state in which a consolidated improvement body is created in the ground.

本懸濁型注入材の注入工法の工程は、図2Aに示すように、施工機械2で注入管3を地盤中に削孔しながら貫入し、図2Bに示すように、所定の深さまで注入管3を貫入する。貫入後、図2Cに示すように、注入管3の吐出口4から懸濁型注入材Sを圧力を加えて地盤中に注入する。懸濁型注入材Sの地盤中への注入が完了したとき、施工機械2で注入管3を所定の長さ引き抜く。引き抜いた後、図3Aに示すように、再び注入管3の吐出口4から懸濁型注入材Sを圧力を加えて地盤中に注入する。この懸濁型注入材Sの地盤中への注入を、図3Bに示すように、注入管3を引き抜きながら複数回行う。これにより、図3Cに示すように、地盤中に固結改良体Tを造成することができる。固結改良体Tは、改良を行う現場の地盤中に所定の間隔で複数造成される。 As shown in FIG. 2A, the injection pipe 3 is penetrated into the ground while drilling the injection pipe 3 into the ground with the construction machine 2, and as shown in FIG. Penetrate the tube 3 . After the penetration, as shown in FIG. 2C, the suspension injection material S is injected into the ground by applying pressure from the discharge port 4 of the injection pipe 3 . When the injection of the suspension-type grouting material S into the ground is completed, the construction machine 2 pulls out the grouting pipe 3 by a predetermined length. After pulling out, as shown in FIG. 3A, the suspension injection material S is again pressurized from the discharge port 4 of the injection pipe 3 and injected into the ground. As shown in FIG. 3B, the suspension-type injection material S is injected into the ground a plurality of times while pulling out the injection pipe 3 . As a result, as shown in FIG. 3C, a consolidated improvement body T can be formed in the ground. A plurality of consolidation improved bodies T are constructed at predetermined intervals in the ground of the site to be improved.

本懸濁型注入材の注入工法では、地盤中に注入する懸濁型注入材Sにおいて、所定の懸濁型注入材Sを使用する。
即ち、改良を行う地盤の透水係数Kが10-6m/s(メートル毎秒)以上3.00×10-4m/s(メートル毎秒)以下の場合、注入材供給装置5において、グラウタビリティー比GRが40より大きな値になる懸濁型注入材Sを生成し、この懸濁型注入材Sを使用する。つまり、グラウタビリティー比GRが40より大きな値になる懸濁型注入材Sを注入管3に供給し、注入管3から地盤中に注入する。
In this suspension injection material injection method, a predetermined suspension injection material S is used in the suspension injection material S to be injected into the ground.
That is, when the hydraulic conductivity K of the ground to be improved is 10 -6 m / s (meters per second) or more and 3.00 × 10 -4 m / s (meters per second) or less, the groutability in the injection material supply device 5 A suspension-type injection material S having a GR ratio greater than 40 is produced, and this suspension-type injection material S is used. That is, a suspended grouting material S having a groutability ratio GR greater than 40 is supplied to the grouting pipe 3 and injected into the ground through the grouting pipe 3 .

また、改良を行う地盤の透水係数Kが3.00×10-4m/s(メートル毎秒)より大きく10-1m/s(メートル毎秒)以下の場合、注入材供給装置5において、グラウタビリティー比GRが24より大きな値になる懸濁型注入材Sを生成し、この懸濁型注入材Sを使用する。つまり、グラウタビリティー比GRが24より大きな値になる懸濁型注入材Sを注入管3に供給し、注入管3から地盤中に注入する。 In addition, when the hydraulic conductivity K of the ground to be improved is greater than 3.00 × 10 -4 m / s (meters per second) and 10 -1 m / s (meters per second) or less, the grauterbi in the grouting material supply device 5 A suspension-type injection material S having a value greater than 24 is produced, and this suspension-type injection material S is used. That is, the suspension type grouting material S having a groutability ratio GR greater than 24 is supplied to the grouting pipe 3 and injected into the ground through the grouting pipe 3 .

以上のように、地盤中に注入する懸濁型注入材Sは、改良を行う地盤の透水係数Kに応じてグラウタビリティー比GRの値が違うものを使用する。
グラウタビリティー比GRは、前述の通り、懸濁型注入材Sの粒径加積曲線の85%粒径G85と改良を行う地盤の粒径加積曲線の15%粒径D15の比であり、GR=D15/G85の式で表される。
As described above, the suspension-type grouting material S to be injected into the ground has different groutability ratios GR depending on the hydraulic conductivity K of the ground to be improved.
As described above, the groutability ratio GR is the ratio of the 85% grain size G 85 of the grain size accumulation curve of the suspension grout S and the 15% grain size D 15 of the grain size accumulation curve of the ground to be improved. and represented by the formula GR=D 15 /G 85 .

地盤の透水係数Kは、地盤内の透水性、つまり地盤内を水が移動する速度を表したもので、その値が大きいほど水が流れやすい。地盤の透水係数Kは、現場において地盤内の透水係数Kを直接求める現場透水試験(原位置透水試験)や現場で採取してきた土を室内において再現(現場と同じ密度に締固める)して求める室内透水試験などで簡単に求めることができる。 The hydraulic conductivity K of the ground expresses the water permeability in the ground, that is, the speed at which water moves in the ground. The coefficient of permeability K of the ground is obtained by performing an on-site permeability test (in-situ permeability test) to directly determine the coefficient of permeability K in the ground at the site, or by reproducing the soil collected at the site indoors (compacting it to the same density as the site). It can be easily determined by an indoor permeability test or the like.

ここでの地盤の透水係数Kについては、その下限値を10-6m/sに、上限値を10-1m/sにしている。
即ち、地盤の透水係数Kが下限値の10-6m/sよりも小さいと、水の移動する速度が極めて遅い、つまり地盤内を水がほとんど移動しない実質上不透水の地盤である。そのため、このような地盤において懸濁型注入材の注入工法による地盤の改良を行うことはない。また、地盤の透水係数Kが上限値の10-1m/sよりも大きいと、水の移動する速度が極めて速く、通常の地盤ではあり得ない、つまり特殊な地盤である。そのため、このような地盤において懸濁型注入材の注入工法による地盤の改良を行うことはない。よって、前記のような下限値と上限値にする。
Regarding the hydraulic conductivity K of the ground here, the lower limit is set to 10 −6 m/s and the upper limit is set to 10 −1 m/s.
That is, if the hydraulic conductivity K of the ground is smaller than the lower limit of 10 −6 m/s, the water moves very slowly, that is, the ground is practically impermeable, in which water hardly moves. Therefore, in such ground, the ground is not improved by the injection method of the suspension-type grouting material. Also, if the hydraulic conductivity K of the ground is larger than the upper limit of 10 −1 m/s, the speed of water movement is extremely high, which is impossible in normal ground, that is, it is a special ground. Therefore, in such ground, the ground is not improved by the injection method of the suspension-type grouting material. Therefore, the lower limit value and the upper limit value are set as described above.

また、懸濁型注入材Sは、セメント粒子などの懸濁粒子を含み、セメント粒子としては、例えば、微粒子セメント又は超微粒子セメント又は極超微粒子セメントである。微粒子セメントは、その平均粒子径が約8μmであり、超微粒子セメントは、その平均粒子径が約4μmであり、極超微粒子セメントは、その平均粒子径が約1.5μmである。これにより、懸濁型注入材Sでは、微粒子セメント又は超微粒子セメント又は極超微粒子セメントをセメント粒子(懸濁粒子)として含むことで、懸濁型注入材Sの地盤への浸透性が高くなる。
なお、懸濁型注入材Sは、微粒子セメント又は超微粒子セメント又は極超微粒子セメントのセメント粒子を含んだものであるが、これに限らず、他のセメント粒子、あるいはスラグやベントナイトなどの他の懸濁粒子を含んだものでもよい。
The suspension-type injection material S contains suspended particles such as cement particles, and the cement particles are, for example, fine particle cement, ultrafine particle cement, or ultrafine particle cement. The fine particle cement has an average particle size of about 8 μm, the ultrafine particle cement has an average particle size of about 4 μm, and the ultrafine particle cement has an average particle size of about 1.5 μm. As a result, the suspension-type injection material S contains fine particle cement, ultra-fine particle cement, or ultra-ultra-fine particle cement as cement particles (suspension particles), thereby increasing the permeability of the suspension-type injection material S into the ground. .
The suspension type injection material S contains cement particles such as fine particle cement, ultrafine particle cement, or ultrafine particle cement, but is not limited to this, and other cement particles, or other cement particles such as slag and bentonite. It may contain suspended particles.

また、懸濁型注入材Sの地盤中への注入においては、地盤の透水性によって注入圧力が変わる。そのため、地盤の透水性がよい地盤では、例えば50kPaから100kPaという低い注入圧力で懸濁型注入材を地盤中に注入する場合があり、また、地盤の透水性が悪い地盤では、例えば300kPaから500kPaという高い注入圧力で懸濁型注入材を地盤中に注入する場合がある。 Further, when the suspension-type injection material S is injected into the ground, the injection pressure varies depending on the water permeability of the ground. Therefore, in the ground with good water permeability, the suspension-type grouting material may be injected into the ground at a low injection pressure of, for example, 50 kPa to 100 kPa, and in the ground with poor water permeability, for example, 300 kPa to 500 kPa. In some cases, the suspension-type grouting material is injected into the ground at a high injection pressure of .

(実験例)
次に、本懸濁型注入材の注入工法での効果を確認するため、グラウタビリティー比GRと地盤の透水係数Kが懸濁型注入材Sの浸透性に及ぼす影響について、実験を行ったので、これについて説明する。
実験は、地盤の透水係数Kが違う複数の実験用地盤を用意し、それぞれの実験用地盤において、グラウタビリティー比GRが違う複数の懸濁型注入材Sをそれぞれ注入して、それぞれの状況での地盤内への懸濁型注入材Sの浸透性を調べた。
(Experimental example)
Next, in order to confirm the effect of this suspension grouting method in the grouting method, an experiment was conducted on the effects of the groutability ratio GR and ground hydraulic conductivity K on the permeability of the suspension grouting material S. So let's talk about this.
In the experiment, a plurality of experimental grounds with different soil hydraulic conductivity K were prepared, and a plurality of suspension grout materials S with different groutability ratios GR were injected into each experimental ground. The permeability of the suspension-type injection material S into the ground was investigated.

即ち、宇部珪砂あるいは行方産山砂を単体あるいは混ぜたものを、円筒容器内にそれぞれ入れ、所定の密度になるように締固めて、複数の実験用地盤を作成する。なお、円筒容器の全長は60cmである。また、グラウタビリティー比GRが違う複数の懸濁型注入材Sを用意する。懸濁型注入材は、平均粒子径が約4μmの超微粒子セメント又は平均粒子径が約1.5μmの極超微粒子セメント又は平均粒子径が約2.4μmのスラグ系注入材を懸濁粒子として含んだものである。 That is, Ube silica sand or Namegata mountain sand alone or mixed is placed in each cylindrical container and compacted to a predetermined density to prepare a plurality of experimental grounds. The total length of the cylindrical container is 60 cm. Also, a plurality of suspension injection materials S having different groutability ratios GR are prepared. Suspension-type injection material is suspended particles of ultrafine particle cement with an average particle size of about 4 μm, ultra-ultrafine particle cement with an average particle size of about 1.5 μm, or slag-based injection material with an average particle size of about 2.4 μm. It contains.

作成した複数の実験用地盤において、グラウタビリティー比GRが違う複数の懸濁型注入材Sをそれぞれ注入し、注入した懸濁型注入材Sの浸透距離(到達距離)を測った。 A plurality of suspension grouting materials S having different groutability ratios GR were injected into a plurality of test grounds prepared, and the permeation distance (reaching distance) of the injected suspension grouting materials S was measured.

その結果を、以下の表1に示す。
表1は、懸濁型注入材Sの浸透距離を縦軸に、グラウタビリティー比GRを横軸にしている。
The results are shown in Table 1 below.
In Table 1, the vertical axis represents the permeation distance of the suspension injection material S, and the horizontal axis represents the groutability ratio GR.

Figure 0007258696000001
Figure 0007258696000001

表1に示すように、グラウタビリティー比GRが大きな値のものは、浸透距離が60cmに、つまり懸濁型注入材Sが円筒容器(全長60cm)の端部まで到達した。ここで、浸透距離が60cmの懸濁型注入材Sは、浸透性が100%であるとする。表中では、浸透性が100%のものを〇で示している。また、浸透距離が60cmに到達しないものの、50cmになるものもあった。浸透距離が50cmの懸濁型注入材Sは、浸透性が83.333%、つまり80%以上である。表中では、浸透性が80%以上のものを△で示している。懸濁型注入材Sにおいて、浸透性が80%以上であれば、地盤への浸透性がよく、地盤中への注入を確実に行うことができる。 As shown in Table 1, when the groutability ratio GR was large, the permeation distance was 60 cm, that is, the suspension injection material S reached the end of the cylindrical container (total length 60 cm). Here, it is assumed that the suspension type injection material S having a penetration distance of 60 cm has a permeability of 100%. In the table, ◯ indicates that the permeability is 100%. In addition, although the permeation distance did not reach 60 cm, there were some that reached 50 cm. The suspension injection material S with a penetration distance of 50 cm has a permeability of 83.333%, that is, 80% or more. In the table, Δ indicates that the permeability is 80% or more. If the permeability of the suspension-type grouting material S is 80% or more, it has good permeability into the ground, and can be reliably injected into the ground.

また、地盤への浸透性がよいと従来考えられていたグラウタビリティー比GRが24よりも大きな値になる懸濁型注入材Sでも、浸透距離が30cm以下に、つまり円筒容器(全長60cm)の半分にも到達しないものがあった。浸透距離が30cm以下の懸濁型注入材Sは、浸透性が50%以下である。表中では、浸透性が50%以下のものを×で示している。懸濁型注入材Sにおいて、浸透性が50%以下であると、地盤への浸透性が悪く、地盤中への注入を確実に行うことができない。 In addition, even with the suspension-type grouting material S, which has a groutability ratio GR greater than 24, which was conventionally thought to have good permeability to the ground, the permeation distance is 30 cm or less, that is, the cylindrical container (total length 60 cm) There were some that did not reach even half of the The suspension injection material S with a permeation distance of 30 cm or less has a permeability of 50% or less. In the table, those with a permeability of 50% or less are indicated by x. If the permeability of the suspension-type grouting material S is 50% or less, the permeability to the ground is poor, and it cannot be reliably injected into the ground.

次に、グラウタビリティー比GRとともに地盤の透水係数Kが懸濁型注入材Sの地盤への浸透性に及ぼす影響を調べた。
即ち、表1において懸濁型注入材Sの浸透距離を測った際のそれぞれの地盤の透水係数Kを求めて、グラウタビリティー比GRと地盤の透水係数Kとの関係を調べた。
Next, the effects of the ground hydraulic conductivity K and the groutability ratio GR on the permeability of the suspension grout S into the ground were examined.
That is, the hydraulic conductivity K of each ground was obtained when the permeation distance of the suspension-type injection material S in Table 1 was measured, and the relationship between the groutability ratio GR and the hydraulic conductivity K of the ground was investigated.

その結果を、以下の表2に示す。
表2は、グラウタビリティー比GRを縦軸に、地盤の透水係数Kを対数目盛で横軸にしている。なお、表中には、表1と同様に、懸濁型注入材Sの浸透距離を測った際の浸透性が100%のものを〇、浸透性が80%以上のものを△、浸透性が50%以下のものを×で示している。
The results are shown in Table 2 below.
In Table 2, the vertical axis represents the groutability ratio GR, and the horizontal axis represents the hydraulic conductivity K of the ground in a logarithmic scale. In the table, as in Table 1, when the penetration distance of the suspension injection material S was measured, ◯ indicates 100% permeability, △ indicates 80% or more permeability, and △ indicates permeability. is 50% or less is indicated by x.

Figure 0007258696000002
Figure 0007258696000002

表2に示すように、グラウタビリティー比GRが24よりも大きな値になる懸濁型注入材Sでも、浸透性が50%以下のもの(表2中に示す×)があったが、浸透性が50%以下のものは、すべて地盤の透水係数Kが、3.00×10-4m/s以下であり、また、グラウタビリティー比GRも40以下である。
以上のことから、地盤の透水係数Kの3.00×10-4m/sを境に、地盤中への懸濁型注入材Sの注入を確実に行うことのできるグラウタビリティー比GRが違っていることがわかった。
As shown in Table 2, even in the suspension-type grouting material S with a groutability ratio GR greater than 24, there were those with a permeability of 50% or less (x shown in Table 2), but permeation All of the soils with a hardness of 50% or less have a hydraulic conductivity K of 3.00×10 −4 m/s or less and a groutability ratio GR of 40 or less.
From the above, the groutability ratio GR at which the suspension-type grouting material S can be reliably injected into the ground, with the hydraulic conductivity K of the ground being 3.00×10 −4 m/s as a boundary, is It turned out to be wrong.

即ち、地盤中への懸濁型注入材Sの注入を確実に行えるようにするには、地盤の透水係数Kが3.00×10-4m/s以下の場合、グラウタビリティー比GRが40より大きな値になる懸濁型注入材Sを使用すればよく、また、地盤の透水係数Kが3.00×10-4m/sより大きい場合、グラウタビリティー比GRが24より大きな値になる懸濁型注入材Sを使用すればよい。
以上のように、グラウタビリティー比GRと地盤の透水係数Kとが互いに関連して懸濁型注入材Sの浸透性に影響を及ぼすことが確認できた。
That is, in order to ensure the injection of the suspension-type grouting material S into the ground, when the permeability coefficient K of the ground is 3.00×10 −4 m/s or less, the groutability ratio GR is Suspended injection material S having a value greater than 40 may be used, and when the hydraulic conductivity K of the ground is greater than 3.00 × 10 -4 m / s, the groutability ratio GR is a value greater than 24 A suspension-type injection material S that becomes
As described above, it was confirmed that the groutability ratio GR and the hydraulic conductivity K of the ground are related to each other and affect the permeability of the suspension grout S.

また、この実験において、懸濁型注入材Sを実験用地盤に注入するときの圧力(注入圧力)は、50から300kPaの間で行った。
その結果、注入圧力を50から250kPaにしたときは、懸濁型注入材Sの注入を所定通りに行うことができた。また、注入圧力を300kPaにしたときは、懸濁型注入材Sを注入した地盤に割裂破壊が発生して懸濁型注入材Sを良好に注入することができなかったが、注入圧力を280kPaにしたときは、地盤に割裂破壊の発生がなく、懸濁型注入材Sの注入を所定通りに行うことができた。
これにより、懸濁型注入材の地盤中への注入圧力は、50kPa以上280kPa以下で行うのがよいことがわかった。
Moreover, in this experiment, the pressure (injection pressure) when injecting the suspension-type grouting material S into the experimental ground was between 50 and 300 kPa.
As a result, when the injection pressure was 50 to 250 kPa, the suspension type injection material S could be injected as prescribed. Further, when the injection pressure was set to 300 kPa, splitting fracture occurred in the ground into which the suspension type injection material S was injected, and the suspension type injection material S could not be injected well. In this case, there was no cracking failure in the ground, and the suspension type grouting material S could be injected as prescribed.
From this, it was found that the injection pressure of the suspension-type injection material into the ground should be 50 kPa or more and 280 kPa or less.

以上説明したように、本懸濁型注入材の注入工法によれば、改良を行う地盤の透水係数が10-6m/s以上3.00×10-4m/s以下の場合、グラウタビリティー比が40より大きな値になる懸濁型注入材Sを使用するとともに、改良を行う地盤の透水係数が3.00×10-4m/sより大きく10-1m/s以下の場合、グラウタビリティー比が24より大きな値になる懸濁型注入材Sを使用することで、懸濁型注入材Sの地盤中への注入を確実に行うことができ、これにより、目標通りの大きさの固結改良体Tを地盤中に造成することができる。 As described above, according to the injection method of the suspension type injection material, when the hydraulic conductivity of the ground to be improved is 10 -6 m / s or more and 3.00 × 10 -4 m / s or less, glautabi When using a suspension type grouting material S with a value greater than 40 and the hydraulic conductivity of the ground to be improved is greater than 3.00 × 10 -4 m / s and 10 -1 m / s or less, By using the suspension type grouting material S with a groutability ratio greater than 24, it is possible to reliably inject the suspension type grouting material S into the ground. A narrow consolidation improvement T can be created in the ground.

また、本懸濁型注入材の注入工法において、懸濁型注入材Sの地盤中への注入は、さまざまな方法で行うことができる。例えば、注入管3に単管を使用して、注入管3の吐出口4から懸濁型注入材Sを地盤中に注入する単管ロッド注入方法、また、注入管3に二重管を使用して、注入管3内部において注入材を別々に流し、吐出口4直前で合流して、吐出口4から地盤中に注入する二重管ロッド単相注入方法、また、注入管3に二重管を使用して、2種類の注入材を注入管3内部において別々に流し、吐出口4から一次注入と二次注入のように別々に地盤中に注入する二重管ロッド複相注入方法などで行うことができる。
また、外管と外管内に挿入する上下のパッカーを取り付けた内管とからなる注入管3を使用して、上下のパッカーにより逸液防止を図りながら懸濁型注入材Sの地盤中への注入を行う二重管ダブルパッカー注入方法でも行うことができる。なお、懸濁型注入材Sの地盤中への注入は、これらに限定されるものではない。
In addition, in the injection construction method of the suspension type injection material, the injection of the suspension type injection material S into the ground can be performed by various methods. For example, a single pipe rod injection method in which a single pipe is used as the injection pipe 3 and the suspension type injection material S is injected into the ground from the discharge port 4 of the injection pipe 3, and a double pipe is used as the injection pipe 3. Then, the injection material flows separately inside the injection pipe 3, joins just before the discharge port 4, and is injected into the ground from the discharge port 4. A double pipe rod multi-phase injection method in which two types of injection materials are separately flowed inside the injection pipe 3 using pipes and separately injected into the ground from the discharge port 4 like primary injection and secondary injection. can be done with
In addition, using an injection pipe 3 consisting of an outer pipe and an inner pipe fitted with upper and lower packers inserted into the outer pipe, the suspension type injection material S is injected into the ground while preventing liquid leakage by the upper and lower packers. A double tube double packer injection method for injection can also be performed. Injection of the suspension-type grouting material S into the ground is not limited to this.

1…地盤改良装置、2…施工機械、3…注入管、4…吐出口、5…注入材供給装置、6…材料貯蔵部、7…注入材生成部、8…圧送用ポンプ、9…流量・圧力計。 DESCRIPTION OF SYMBOLS 1... Soil improvement apparatus, 2... Construction machine, 3... Injection pipe, 4... Discharge port, 5... Injection material supply apparatus, 6... Material storage part, 7... Injection material production|generation part, 8... Pumping pump, 9... Flow rate - Pressure gauge.

Claims (2)

地盤中に懸濁型注入材を注入して地盤の改良を行う懸濁型注入材の注入工法であって、
改良を行う地盤の透水係数が10-6m/s以上3.00×10-4m/s以下の場合、グラウタビリティー比が40より大きな値になる懸濁型注入材を使用して地盤中に注入、改良を行う地盤の透水係数が3.00×10-4m/sより大きく10-1m/s以下の場合、グラウタビリティー比が24より大きな値になる懸濁型注入材を使用して地盤中に注入するとともに、懸濁型注入材の地盤中への注入圧力は、50kPa以上280kPa以下で行うことを特徴とする懸濁型注入材の注入工法。
A suspension injection material injection method for improving the ground by injecting a suspension injection material into the ground,
If the hydraulic conductivity of the ground to be improved is 10 -6 m/s or more and 3.00 × 10 -4 m/s or less, the ground is ground using a suspension type injection material that has a groutability ratio greater than 40. If the hydraulic conductivity of the ground to be injected into and improved is greater than 3.00 × 10 -4 m / s and 10 -1 m / s or less, the groutability ratio will be a value greater than 24 Suspension injection A method of injecting a suspension type injection material, characterized in that the injection pressure of the suspension type injection material into the ground is 50 kPa or more and 280 kPa or less .
請求項1に記載された懸濁型注入材の注入工法において、
懸濁型注入材に含まれる懸濁粒子は、微粒子セメント又は超微粒子セメント又は極超微粒子セメントであることを特徴とする懸濁型注入材の注入工法。
In the injection method of the suspension type injection material according to claim 1,
A method of injecting a suspension injection material, wherein the suspended particles contained in the suspension injection material are fine particle cement, ultrafine particle cement, or ultrafine particle cement.
JP2019159532A 2019-09-02 2019-09-02 Injection method of suspension injection material Active JP7258696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019159532A JP7258696B2 (en) 2019-09-02 2019-09-02 Injection method of suspension injection material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019159532A JP7258696B2 (en) 2019-09-02 2019-09-02 Injection method of suspension injection material

Publications (2)

Publication Number Publication Date
JP2021038546A JP2021038546A (en) 2021-03-11
JP7258696B2 true JP7258696B2 (en) 2023-04-17

Family

ID=74848372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019159532A Active JP7258696B2 (en) 2019-09-02 2019-09-02 Injection method of suspension injection material

Country Status (1)

Country Link
JP (1) JP7258696B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040165959A1 (en) 2003-02-21 2004-08-26 Shunsuke Shimada Multipoint grouting method and apparatus therefor
JP2008308612A (en) 2007-06-15 2008-12-25 Ube Ind Ltd Slag-based grouting material and grouting method using the same
JP2011208484A (en) 2010-03-31 2011-10-20 Fudo Tetra Corp Method of injecting grout in soil improvement
JP2012172468A (en) 2011-02-23 2012-09-10 Kajima Corp Injection method for cement-based injection material
JP2016113793A (en) 2014-12-12 2016-06-23 パンパシフィック・カッパー株式会社 Sediment stabilization method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841455A (en) * 1994-07-29 1996-02-13 Japan Found Eng Co Ltd Production of ultrafine slurry having highly dispersed and low viscous state and method for solidifying ground by pouring the ultrafine slurry
JPH10151619A (en) * 1996-11-21 1998-06-09 Toko Giken Kk Manufacture and pouring method of ultrafine suspension type cement liquid, and system and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040165959A1 (en) 2003-02-21 2004-08-26 Shunsuke Shimada Multipoint grouting method and apparatus therefor
JP2008308612A (en) 2007-06-15 2008-12-25 Ube Ind Ltd Slag-based grouting material and grouting method using the same
JP2011208484A (en) 2010-03-31 2011-10-20 Fudo Tetra Corp Method of injecting grout in soil improvement
JP2012172468A (en) 2011-02-23 2012-09-10 Kajima Corp Injection method for cement-based injection material
JP2016113793A (en) 2014-12-12 2016-06-23 パンパシフィック・カッパー株式会社 Sediment stabilization method

Also Published As

Publication number Publication date
JP2021038546A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
CN105970911B (en) A kind of processing method of big thickness collapsible loess
CN100591866C (en) Drifting sand layer and gravel stratum water-moving double-liquid high pressure slip-casting water-blocking construction method
CN204112308U (en) A kind of simple and easy sleeve valve grouting device based on bowlder stone, Thief zone coefficient stratum
JPS6248009B2 (en)
JP5728747B1 (en) Liquefaction countermeasures for existing buried pipes
Ibragimov Characteristics of Soil Grouting by Hydro-Jet Technology.
CN110185453A (en) A kind of construction method of shield section end horizontal reinforcing
TWI588325B (en) Unsaturated soil improvement device and unsaturated ground improvement method
JP7258696B2 (en) Injection method of suspension injection material
CN112160313B (en) Undisturbed Q4Loess or remolded Q4Loess reinforcing method
CN106192987B (en) It is a kind of to be crushed the construction method that geology is reinforced to stake periphery
CN113266417A (en) Construction method of karst cave pile foundation
CN111502672B (en) Construction method for stratum reinforcement before opening of shield cutter head
CN102373718B (en) Method for determining diameter of high-pressure rotary jet grouting pile based on circular free turbulent jet theory
Shen et al. Improvement efficacy of RJP method in Shanghai soft deposit
JP5728694B1 (en) Liquefaction countermeasures for existing buried pipes
JP5499271B1 (en) Unsaturated ground improvement device
KR100463104B1 (en) Pillar-shaped hardening structure formation equipment and the formation method of leading cement milk pressure injection
CN102087196A (en) Testing device and method for self-healing of embankment dam core wall crack
CN103774645A (en) Cemented soil and concrete composite pile and construction method thereof
US11884860B2 (en) Fluidized sand and method of density control
CN110627435B (en) Seepage-proofing material for filling horizontal directional drilling and seepage-proofing construction method
CN112854224B (en) Grouting pipe and grouting method
CN109371985B (en) Foundation pit supporting method for recent filling
Lees et al. Recent Applications of Jet grouting in the Prairies

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230405

R150 Certificate of patent or registration of utility model

Ref document number: 7258696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150