JP7258000B2 - Manufacturing method of resin porous body - Google Patents

Manufacturing method of resin porous body Download PDF

Info

Publication number
JP7258000B2
JP7258000B2 JP2020173668A JP2020173668A JP7258000B2 JP 7258000 B2 JP7258000 B2 JP 7258000B2 JP 2020173668 A JP2020173668 A JP 2020173668A JP 2020173668 A JP2020173668 A JP 2020173668A JP 7258000 B2 JP7258000 B2 JP 7258000B2
Authority
JP
Japan
Prior art keywords
water
insoluble polymer
solvent
solution
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020173668A
Other languages
Japanese (ja)
Other versions
JP2022065253A (en
Inventor
広平 松延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Planet Energy and Solutions Inc
Original Assignee
Prime Planet Energy and Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Planet Energy and Solutions Inc filed Critical Prime Planet Energy and Solutions Inc
Priority to JP2020173668A priority Critical patent/JP7258000B2/en
Priority to CN202111200853.6A priority patent/CN114369283B/en
Priority to US17/502,002 priority patent/US11926723B2/en
Publication of JP2022065253A publication Critical patent/JP2022065253A/en
Application granted granted Critical
Publication of JP7258000B2 publication Critical patent/JP7258000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • C08L23/0861Saponified vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/20Homopolymers or copolymers of hexafluoropropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/10Esters of organic acids
    • C09D101/12Cellulose acetate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0504Elimination by evaporation or heat degradation of a liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/20Homopolymers or copolymers of hexafluoropropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、樹脂多孔質体の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing a resin porous body.

非水溶性高分子を用いた樹脂多孔質体は、軽量性、緩衝性、断熱性、吸音性、分離性、吸着性等の様々な特性を示し得る。そのため、非水溶性高分子を用いた樹脂多孔質体は、梱包材料、建築資材、吸音材料、掃除用品、化粧用品、分離膜、吸着材、精製用担体、触媒担体、培養担体等の多岐に渡る用途に使用されている。 Porous resin bodies using water-insoluble polymers can exhibit various properties such as lightness, cushioning properties, heat insulation properties, sound absorption properties, separation properties, and adsorption properties. Therefore, porous resin bodies using water-insoluble polymers are used in a wide variety of applications such as packing materials, building materials, sound absorbing materials, cleaning products, cosmetic products, separation membranes, adsorbents, purification carriers, catalyst carriers, and culture carriers. Used for crossing purposes.

製造コスト等の観点から、非水溶性高分子を用いた樹脂多孔質体の製造方法は簡便であることが望まれている。そこで、非水溶性高分子であるポリフッ化ビニリデンの多孔質体を簡便に製造できる方法として、特許文献1には、ポリフッ化ビニリデンを、その良溶媒とその貧溶媒との混合溶媒に加熱下で溶解させて溶液を調製すること、当該溶液を冷却して成形体を得ること、当該成形体を別の溶媒に浸漬させて上記混合溶媒を別の溶媒と置換すること、および当該別の溶媒を乾燥して除去することを含む、ポリフッ化ビニリデンの多孔質体の製造方法が開示されている。 From the standpoint of production cost and the like, it is desired that the method for producing a resin porous body using a water-insoluble polymer be simple. Therefore, as a method for easily producing a porous body of polyvinylidene fluoride, which is a water-insoluble polymer, Patent Document 1 discloses that polyvinylidene fluoride is heated in a mixed solvent of a good solvent and a poor solvent. dissolving to prepare a solution, cooling the solution to obtain a molded article, immersing the molded article in another solvent to replace the mixed solvent with another solvent, and removing the other solvent A method for producing a porous body of polyvinylidene fluoride is disclosed, which includes drying and removing.

特開2011-236292号公報JP 2011-236292 A

しかしながら、上記従来技術の製造方法では、非水溶性高分子の溶液の調製、成形体の析出、溶媒の置換、および乾燥という多くの工程を経る必要がある。また、本発明者らの検討により、樹脂多孔質体の製造においては、樹脂多孔質体の表面に、空孔を有しないスキン層(皮張り層)が形成され易いことが見出された。樹脂多孔質体がスキン層を有する場合には、流体を透過することができず、樹脂多孔質体の用途が限定されるという不利益がある。 However, the manufacturing method of the above-mentioned prior art requires many steps such as preparation of a water-insoluble polymer solution, deposition of a molded body, replacement of the solvent, and drying. Further, the present inventors have found that a skin layer (skin layer) having no pores is likely to be formed on the surface of the porous resin body in the production of the porous resin body. When the porous resin body has a skin layer, there is a disadvantage that fluid cannot permeate through the porous resin body, which limits the applications of the porous resin body.

そこで本発明の目的は、非水溶性高分子を用いて、少ない工程数で、スキン層の形成が抑制された樹脂多孔質体を製造可能な方法を提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method capable of producing a porous resin body in which the formation of a skin layer is suppressed in a small number of steps using a water-insoluble polymer.

ここに開示される樹脂多孔質体の製造方法は、非水溶性高分子の良溶媒および前記非水溶性高分子の貧溶媒を含有する混合溶媒に、前記非水溶性高分子が溶解した溶液を調製する工程と、前記溶液を乾燥して前記混合溶媒を除去する工程と、を包含する。前記貧溶媒の沸点は、前記良溶媒の沸点よりも高い。前記溶液の乾燥を、過熱水蒸気を用いて行う。このような構成によれば、非水溶性高分子を用いて、少ない工程数で、スキン層の形成が抑制された樹脂多孔質体を製造可能な方法が提供される。 The method for producing a porous resin material disclosed herein comprises adding a solution in which the water-insoluble polymer is dissolved in a mixed solvent containing a good solvent for the water-insoluble polymer and a poor solvent for the water-insoluble polymer. and drying the solution to remove the mixed solvent. The boiling point of the poor solvent is higher than the boiling point of the good solvent. Drying of the solution is carried out using superheated steam. According to such a configuration, it is possible to provide a method for producing a porous resin body in which the formation of a skin layer is suppressed, using a water-insoluble polymer, in a small number of steps.

ここに開示される製造方法の好ましい一態様では、前記溶液を調製する工程の後であって前記溶液を乾燥する工程の前に、基材の表面上に前記調製した非水溶性高分子の溶液を薄膜状に塗工する工程をさらに包含する。このような構成によれば、非水溶性高分子を用いて、少ない工程数で、スキン層の形成が抑制された樹脂多孔質膜を製造可能な方法が提供される。ここで、前記基材が、二次電池の電極である場合には、二次電池の電極一体型セパレータを製造することができる。 In a preferred embodiment of the production method disclosed herein, after the step of preparing the solution and before the step of drying the solution, the prepared solution of the water-insoluble polymer is placed on the surface of the base material. It further includes a step of coating the with a thin film. According to such a configuration, it is possible to provide a method for producing a porous resin membrane in which the formation of a skin layer is suppressed, using a water-insoluble polymer, in a small number of steps. Here, when the substrate is an electrode of a secondary battery, an electrode-integrated separator of the secondary battery can be produced.

得られる樹脂多孔質体の用途および樹脂多孔質体の製造方法の有用性の観点から、ここに開示される製造方法の好ましい一態様では、前記非水溶性高分子が、エチレン-ビニルアルコール共重合体、またはフッ化ビニリデン-ヘキサフルオロプロピレン共重合体である。 From the viewpoint of the use of the resulting porous resin material and the usefulness of the method for producing the porous resin material, in a preferred embodiment of the production method disclosed herein, the water-insoluble polymer is an ethylene-vinyl alcohol copolymer. or a vinylidene fluoride-hexafluoropropylene copolymer.

過熱水蒸気のエンタルピーと熱風のエンタルピーとを比較するためのグラフである。It is a graph for comparing the enthalpy of superheated steam and the enthalpy of hot air. 本発明に係る製造方法における乾燥工程の実施方法の一例の説明図である。It is explanatory drawing of an example of the implementation method of the drying process in the manufacturing method which concerns on this invention. 比較例1で得られた多孔質膜の表面のSEM写真である。4 is a SEM photograph of the surface of the porous membrane obtained in Comparative Example 1. FIG. 実施例1で得られた多孔質膜の表面のSEM写真である。2 is a SEM photograph of the surface of the porous membrane obtained in Example 1. FIG. 実施例3で得られた多孔質膜の表面のSEM写真である。4 is a SEM photograph of the surface of the porous membrane obtained in Example 3. FIG.

本発明の樹脂多孔質体の製造方法は、非水溶性高分子の良溶媒および当該非水溶性高分子の貧溶媒を含有する混合溶媒に、当該非水溶性高分子が溶解した溶液を調製する工程(以下、「溶液調製工程」ともいう)と、当該溶液を乾燥して当該混合溶媒を除去する工程(以下、「乾燥工程」ともいう)と、を包含する。ここで、当該貧溶媒の沸点は、当該良溶媒の沸点よりも高い。当該溶液の乾燥を、過熱水蒸気を用いて行う。 In the method for producing a porous resin material of the present invention, a solution is prepared by dissolving the water-insoluble polymer in a mixed solvent containing a good solvent for the water-insoluble polymer and a poor solvent for the water-insoluble polymer. It includes a step (hereinafter also referred to as “solution preparation step”) and a step of drying the solution to remove the mixed solvent (hereinafter also referred to as “drying step”). Here, the boiling point of the poor solvent is higher than that of the good solvent. Drying of the solution is performed using superheated steam.

まず、溶液調製工程について説明する。本発明において「非水溶性高分子の良溶媒」とは、非水溶性高分子に対し、25℃において1質量%以上の溶解性を示す溶媒のことをいう。良溶媒は、非水溶性高分子に対し、25℃において、2.5質量%以上の溶解性を示すことが好ましく、5質量%以上の溶解性を示すことがより好ましく、7.5質量%以上の溶解性を示すことがさらに好ましく、10質量%以上の溶解性を示すことが最も好ましい。なお、本発明に使用される良溶媒の種類は、非水溶性高分子の種類に応じて適宜選択される。良溶媒は、単独の溶媒であってもよく、2種以上の溶媒が混合された混合溶媒であってもよい。 First, the solution preparation process will be described. In the present invention, "a good solvent for water-insoluble polymers" means a solvent that exhibits a solubility of 1% by mass or more at 25°C for water-insoluble polymers. The good solvent preferably exhibits a solubility of 2.5% by mass or more, more preferably 5% by mass or more, and 7.5% by mass at 25° C. for the water-insoluble polymer. More preferably, it exhibits a solubility of 10% by mass or more, and most preferably exhibits a solubility of 10% by mass or more. The type of good solvent used in the present invention is appropriately selected according to the type of water-insoluble polymer. The good solvent may be a single solvent or a mixed solvent in which two or more solvents are mixed.

本発明において「非水溶性高分子の貧溶媒」とは、非水溶性高分子に対し、25℃において1質量%未満の溶解性を示す溶媒のことをいう。貧溶媒は、非水溶性高分子に対し、25℃において、0.5質量%以下の溶解性を示すことが好ましく、0.2質量%以下の溶解性を示すことがより好ましく、0.1質量%以下の溶解性を示すことがさらに好ましく、0.05質量%以下の溶解性を示すことが最も好ましい。本発明に使用される貧溶媒の種類は、非水溶性高分子の種類に応じて適宜選択される。貧溶媒は、単独の溶媒であってもよく、2種以上の溶媒が混合された混合溶媒であってもよい。 In the present invention, the term “poor solvent for water-insoluble polymer” refers to a solvent that exhibits a solubility of less than 1% by mass at 25° C. for the water-insoluble polymer. The poor solvent preferably exhibits a solubility of 0.5% by mass or less, more preferably 0.2% by mass or less, at 25 ° C. with respect to the water-insoluble polymer. More preferably, it exhibits a solubility of 0.05% by mass or less, and most preferably exhibits a solubility of 0.05% by mass or less. The type of poor solvent used in the present invention is appropriately selected according to the type of water-insoluble polymer. The poor solvent may be a single solvent or a mixed solvent in which two or more solvents are mixed.

特定の高分子化合物に対し、特定の溶媒が良溶媒であるか貧溶媒であるかの判断には、ハンセン溶解度パラメータ(HSP)を利用することができる。例えば、当該高分子化合物のHSPの分散項、分極項、および水素結合項をそれぞれδD1、δP1、δH1とし、当該溶媒のHSPの分散項、分極項、および水素結合項をそれぞれδD2、δP2、δH2とした場合に、下記式で表される高分子化合物と溶媒とのHSPの距離Ra(MPa1/2)の値が小さいほど、高分子化合物の溶解度が高くなる傾向にある。
Ra=4(δD1-δD2+(δP1-δP2+(δH1-δH2
The Hansen Solubility Parameter (HSP) can be used to determine whether a particular solvent is a good solvent or a poor solvent for a particular polymer compound. For example, the HSP dispersion term, polarization term, and hydrogen bond term of the polymer compound are δ D1 , δ P1 , and δ H1 , and the HSP dispersion term, polarization term, and hydrogen bond term of the solvent are δ D2 , respectively. , δ P2 , δ H2 , the smaller the value of the HSP distance Ra (MPa 1/2 ) between the polymer compound and the solvent represented by the following formula, the higher the solubility of the polymer compound tends to be. be.
Ra 2 = 4(δ D1 - δ D2 ) 2 + (δ P1 - δ P2 ) 2 + (δ H1 - δ H2 ) 2

また、上記特定の高分子化合物の相互作用半径をRとした場合に、Ra/Rの比が1未満だと可溶、Ra/Rの比が1だと部分的に可溶、およびRa/Rの比が1を超えると不溶であると予測される。 Further, when the interaction radius of the above-mentioned specific polymer compound is R 0 , it is soluble when the ratio of Ra/R 0 is less than 1, partially soluble when the ratio of Ra/R 0 is 1, and Ra/R 0 ratios greater than 1 are predicted to be insoluble.

あるいは、サンプル瓶等の中で特定の高分子化合物と特定の溶媒とを混合する試験を行うことにより、当該溶媒が、当該高分子化合物に対して良溶媒であるか貧溶媒であるかを容易に判別することができる。 Alternatively, by conducting a test in which a specific polymer compound and a specific solvent are mixed in a sample bottle, etc., it is easy to determine whether the solvent is a good solvent or a poor solvent for the polymer compound. can be discriminated.

上記良溶媒と上記貧溶媒とは、混合され、均一な溶媒として使用される。したがって、上記良溶媒および上記貧溶媒は互いに相溶性を有する。本発明においては、使用される貧溶媒の沸点は、使用される良溶媒の沸点よりも高い。空孔率が比較的高く、均質な多孔質体が得られ易いことから、貧溶媒の沸点は、良溶媒の沸点よりも10℃以上高いことが好ましく、90℃以上高いことがより好ましい。貧溶媒の沸点は、乾燥速度の観点から、300℃未満であることが好ましい。 The good solvent and the poor solvent are mixed and used as a uniform solvent. Therefore, the good solvent and the poor solvent are compatible with each other. In the present invention, the boiling point of the poor solvent used is higher than the boiling point of the good solvent used. The boiling point of the poor solvent is preferably 10° C. or higher, more preferably 90° C. or higher, than the boiling point of the good solvent, since the porosity is relatively high and a homogeneous porous body can be easily obtained. The boiling point of the poor solvent is preferably less than 300°C from the viewpoint of drying speed.

本発明において「非水溶性高分子」とは、25℃における水に対する溶解度が1質量%未満である高分子のことをいう。非水溶性高分子の25℃における水に対する溶解度は、0.5質量%以下が好ましく、0.2質量%以下がより好ましく、0.1質量%以下がさらに好ましい。 In the present invention, the term "water-insoluble polymer" refers to a polymer having a solubility in water at 25°C of less than 1% by mass. The solubility of the water-insoluble polymer in water at 25° C. is preferably 0.5% by mass or less, more preferably 0.2% by mass or less, and even more preferably 0.1% by mass or less.

溶液調製工程で用いられる「非水溶性高分子」は、多孔質の成形体を構成する非水溶性高分子と同じ高分子である。非水溶性高分子としては、良溶媒と貧溶媒とが存在するものが使用される。使用される非水溶性高分子の種類は、良溶媒と貧溶媒とが存在するものである限り特に制限はない。非水溶性高分子の例としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂;ポリフッ化ビニル、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体等のフッ素系樹脂;ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート等の(メタ)アクリル系樹脂;ポリスチレン、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体等のスチレン系樹脂;エチルセルロース、酢酸セルロース、セルロースプロピオネート等の非水溶性セルロース誘導体;ポリ塩化ビニル、エチレン-塩化ビニル共重合体等の塩化ビニル系樹脂;エチレン-ビニルアルコール共重合体等が挙げられる。水溶性高分子を修飾して非水溶化したポリマー等も使用可能である。なかでも、非水溶性高分子の多孔質体の有用性およびその製造方法の有用性の観点から、非水溶性高分子は、脂肪族高分子化合物(すなわち、芳香環を有しない高分子化合物)であることが好ましい。空孔率が比較的高く、均質な多孔質体が得られ易いことから、非水溶性高分子は、付加重合型の高分子化合物(すなわち、エチレン性不飽和二重結合を有するモノマーの当該エチレン性不飽和二重結合の重合によって生成する高分子化合物;例、ビニル系重合体、ビニリデン系重合体)であることが好ましい。三次元ネットワーク状の多孔質構造を有する多孔質体の有用性、およびその製造方法の有用性の観点から、非水溶性高分子は、エチレン-ビニルアルコール共重合体、またはフッ化ビニリデン-ヘキサフルオロプロピレン共重合体であることが好ましい。 The "water-insoluble polymer" used in the solution preparation step is the same polymer as the water-insoluble polymer that constitutes the porous compact. As the water-insoluble polymer, one in which a good solvent and a poor solvent exist is used. The type of water-insoluble polymer to be used is not particularly limited as long as a good solvent and a poor solvent are present. Examples of water-insoluble polymers include olefin resins such as polyethylene and polypropylene; fluorine resins such as polyvinyl fluoride, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene copolymer; polymethyl (meth)acrylate and polyethyl (Meth) acrylic resins such as (meth) acrylate; styrene resins such as polystyrene, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer; water-insoluble such as ethyl cellulose, cellulose acetate, cellulose propionate cellulose derivatives; vinyl chloride resins such as polyvinyl chloride and ethylene-vinyl chloride copolymers; ethylene-vinyl alcohol copolymers; A water-insoluble polymer obtained by modifying a water-soluble polymer can also be used. Among them, from the viewpoint of the usefulness of the water-insoluble polymer porous body and the usefulness of the method for producing the same, the water-insoluble polymer is an aliphatic polymer compound (that is, a polymer compound having no aromatic ring). is preferably Since the porosity is relatively high and it is easy to obtain a homogeneous porous body, the water-insoluble polymer is an addition polymerization type polymer compound (that is, a monomer having an ethylenically unsaturated double bond, the ethylene It is preferably a polymer compound produced by polymerization of a polyunsaturated double bond; eg, a vinyl-based polymer, a vinylidene-based polymer). From the viewpoint of the usefulness of the porous material having a three-dimensional network-like porous structure and the usefulness of the method for producing the same, the water-insoluble polymer is an ethylene-vinyl alcohol copolymer or vinylidene fluoride-hexafluoro A propylene copolymer is preferred.

非水溶性高分子の平均重合度は、特に限定はないが、好ましくは70以上500,000以下であり、より好ましくは100以上200,000以下である。なお、非水溶性高分子の平均重合度は、公知方法(例、NMR測定等)により求めることができる。 The average degree of polymerization of the water-insoluble polymer is not particularly limited, but is preferably 70 or more and 500,000 or less, more preferably 100 or more and 200,000 or less. Incidentally, the average degree of polymerization of the water-insoluble polymer can be determined by a known method (eg, NMR measurement, etc.).

以下、特定の非水溶性高分子を例に挙げて、好適な良溶媒および好適な貧溶媒について具体的に説明する。以下の非水溶性高分子に対して、以下説明する良溶媒と貧溶媒を使用することにより、本発明の製造方法を有利に実施することができる。なお、以下に挙げる良溶媒は、1種単独でまたは2種以上を組み合わせて用いることができる。以下に挙げる貧溶媒は、1種単独でまたは2種以上を組み合わせて用いることができる。 Preferred good solvents and suitable poor solvents will be specifically described below using specific water-insoluble polymers as examples. The production method of the present invention can be advantageously carried out by using the good solvent and poor solvent described below for the following water-insoluble polymers. The good solvents listed below can be used singly or in combination of two or more. The poor solvents listed below can be used singly or in combination of two or more.

1.非水溶性高分子がエチレン-ビニルアルコール共重合体である場合
エチレン-ビニルアルコール共重合体(EVOH)は、モノマー単位として、エチレン単位およびビニルアルコール単位を含有する共重合体である。EVOH中のエチレン単位の含有量は、特に制限はないが、好ましくは10モル%以上であり、より好ましくは15モル%以上であり、さらに好ましくは20モル%以上であり、特に好ましくは25モル%以上である。また、EVOH中のエチレン単位の含有量は、好ましくは60モル%以下であり、より好ましくは50モル%以下であり、さらに好ましくは45モル%以下である。EVOHのけん化度は、特に制限はないが、好ましくは80モル%以上であり、より好ましくは90モル%以上であり、さらに好ましくは95モル%以上である。けん化度の上限は、けん化に関する技術的限界により定まり、例えば、99.99モル%である。なお、EVOHのエチレン単位の含有量およびけん化度は、公知方法(例、H-NMR測定等)により求めることができる。
1. Water-Insoluble Polymer is Ethylene-Vinyl Alcohol Copolymer Ethylene-vinyl alcohol copolymer (EVOH) is a copolymer containing ethylene units and vinyl alcohol units as monomer units. The content of ethylene units in EVOH is not particularly limited, but is preferably 10 mol% or more, more preferably 15 mol% or more, still more preferably 20 mol% or more, and particularly preferably 25 mol%. % or more. The content of ethylene units in EVOH is preferably 60 mol % or less, more preferably 50 mol % or less, still more preferably 45 mol % or less. The degree of saponification of EVOH is not particularly limited, but is preferably 80 mol% or more, more preferably 90 mol% or more, and still more preferably 95 mol% or more. The upper limit of the degree of saponification is determined by technical limits regarding saponification, and is, for example, 99.99 mol %. The ethylene unit content and saponification degree of EVOH can be determined by known methods (eg, 1 H-NMR measurement, etc.).

また、EVOHは、通常、エチレンとビニルエステルとの共重合体を、アルカリ触媒等を用いてけん化して製造される。そのため、EVOHは、ビニルエステル単位を含有し得る。当該単位のビニルエステルは、典型的には酢酸ビニルであり、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル等であってよい。EVOHは、本発明の効果を顕著に損なわない範囲で、エチレン単位、ビニルアルコール単位、およびビニルエステル単位以外の他のモノマー単位を含有していてもよい。 EVOH is usually produced by saponifying a copolymer of ethylene and vinyl ester using an alkali catalyst or the like. As such, EVOH may contain vinyl ester units. The vinyl ester of the unit is typically vinyl acetate and may be vinyl formate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, and the like. EVOH may contain monomer units other than ethylene units, vinyl alcohol units, and vinyl ester units within a range that does not significantly impair the effects of the present invention.

EVOHの好適な良溶媒としては、水とアルコールとの混合溶媒、ジメチルスルホキシド(DMSO)等が挙げられる。混合溶媒に用いられるアルコールとしては、プロピルアルコールが好ましい。プロピルアルコールは、n-プロピルアルコールおよびイソプロピルアルコールのいずれであってもよい。したがって、特に好適な良溶媒は、水とプロピルアルコールとの混合溶媒、またはDMSOである。 Suitable good solvents for EVOH include a mixed solvent of water and alcohol, dimethylsulfoxide (DMSO), and the like. Propyl alcohol is preferable as the alcohol used in the mixed solvent. Propyl alcohol can be either n-propyl alcohol or isopropyl alcohol. Therefore, a particularly suitable good solvent is a mixed solvent of water and propyl alcohol, or DMSO.

EVOHの好適な貧溶媒としては、水;アルコール;γ-ブチロラクトン等の環状エステル類;炭酸プロピレン等の環状カーボネート類;スルホラン等の環状スルホン類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、2-エトキシエタノール等のエーテル基含有モノオール類、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール等のジオール類などが挙げられる。なかでも、環状エステル類、環状カーボネート類、環状スルホン類、またはエーテル基含有モノオール類が好ましく、γ-ブチロラクトン、炭酸プロピレン、スルホラン、またはエーテル基含有モノオール類がより好ましく、γ-ブチロラクトン、またはスルホランがさらに好ましい。貧溶媒の溶解パラメータ(ヒルデブラント(Hildebrand)のSP値)δが、EVOHの溶解パラメータδよりも1.6MPa1/2以上大きいことが好ましい。 Suitable poor solvents for EVOH include water; alcohol; cyclic esters such as γ-butyrolactone; cyclic carbonates such as propylene carbonate; cyclic sulfones such as sulfolane; Ether group-containing monools such as ether, diethylene glycol monoethyl ether and 2-ethoxyethanol, diols such as 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol and the like. Among them, cyclic esters, cyclic carbonates, cyclic sulfones, or ether group-containing monools are preferable, and γ-butyrolactone, propylene carbonate, sulfolane, or ether group-containing monools are more preferable, γ-butyrolactone, or Sulfolane is more preferred. The solubility parameter (Hildebrand SP value) δ of the poor solvent is preferably greater than the solubility parameter δ of EVOH by 1.6 MPa 1/2 or more.

なお、EVOHでは、水およびアルコールは、EVOHの貧溶媒であるが、水とアルコール(特にプロピルアルコール)との混合溶媒は良溶媒である。ここで、水とアルコールとの混合溶媒は、水が減量された良溶媒の、水とアルコールとの混合溶媒と、これよりも沸点が高い貧溶媒の水との混合溶媒みなすことができるため、EVOHの溶液の調製に、水とアルコールとの混合溶媒を単独で用いることができる。よって、本発明において、特定の非水溶性高分子に対し、2種類以上の貧溶媒を混合した溶媒が良溶媒になる場合には、溶液調製のための非水溶性高分子の良溶媒および非水溶性高分子の貧溶媒を含有する混合溶媒として、この2種以上の貧溶媒の混合溶媒を単独で用いることができる。 In EVOH, water and alcohol are poor solvents for EVOH, but a mixed solvent of water and alcohol (especially propyl alcohol) is a good solvent. Here, the mixed solvent of water and alcohol can be regarded as a mixed solvent of water and alcohol, which is a good solvent in which water is reduced, and water, which is a poor solvent with a higher boiling point. A mixed solvent of water and alcohol can be used alone to prepare a solution of EVOH. Therefore, in the present invention, when a solvent obtained by mixing two or more poor solvents is a good solvent for a specific water-insoluble polymer, the good solvent for the water-insoluble polymer and the non-water-insoluble polymer for solution preparation As the mixed solvent containing the poor solvent for the water-soluble polymer, a mixed solvent of two or more of these poor solvents can be used alone.

2.非水溶性高分子が酢酸セルロースである場合
酢酸セルロースの好適な良溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等の含窒素極性溶媒(特に含窒素非プロトン性極性溶媒);蟻酸メチル、酢酸メチル等のエステル類;アセトン、シクロヘキサノン等のケトン類;テトラヒドロフラン、ジオキサン、ジオキソラン等の環状エーテル類;メチルグリコール、メチルグリコールアセテート等のグリコール誘導体;塩化メチレン、クロロホルム、テトラクロロエタン等のハロゲン化炭化水素;炭酸プロピレン等の環状カーボネート類;DMSO等の含硫黄極性溶媒(特に含硫黄非プロトン性極性溶媒)などが挙げられる。なかでも、含硫黄非プロトン性極性溶媒が好ましく、DMSOがより好ましい。
2. When the Water-Insoluble Polymer is Cellulose Acetate Suitable good solvents for cellulose acetate include nitrogen-containing polar solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone (especially nitrogen-containing non-polar solvents). protic polar solvents); esters such as methyl formate and methyl acetate; ketones such as acetone and cyclohexanone; cyclic ethers such as tetrahydrofuran, dioxane and dioxolane; glycol derivatives such as methyl glycol and methyl glycol acetate; , tetrachloroethane and other halogenated hydrocarbons; cyclic carbonates such as propylene carbonate; sulfur-containing polar solvents such as DMSO (especially sulfur-containing aprotic polar solvents); Among them, sulfur-containing aprotic polar solvents are preferred, and DMSO is more preferred.

酢酸セルロースの好適な貧溶媒としては、水;1-ヘキサノール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール等のアルコール類が挙げられる。アルコール類としては、炭素数4~6の1価または2価のアルコール類が好ましい。 Suitable poor solvents for cellulose acetate include water; alcohols such as 1-hexanol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol. . As alcohols, monohydric or dihydric alcohols having 4 to 6 carbon atoms are preferred.

3.非水溶性高分子がポリフッ化ビニリデンである場合
ポリフッ化ビニリデンの好適な良溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等の含窒素極性溶媒(特に含窒素非プロトン性極性溶媒);DMSO等の含硫黄極性溶媒(特に含硫黄非プロトン性極性溶媒)などが挙げられる。なかでも、含窒素非プロトン性極性溶媒が好ましく、N,N-ジメチルホルムアミドがより好ましい。
3. When the water-insoluble polymer is polyvinylidene fluoride Suitable good solvents for polyvinylidene fluoride include nitrogen-containing polar solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone (especially nitrogen aprotic polar solvents); sulfur-containing polar solvents such as DMSO (particularly sulfur-containing aprotic polar solvents); Among them, nitrogen-containing aprotic polar solvents are preferred, and N,N-dimethylformamide is more preferred.

ポリフッ化ビニリデンの好適な貧溶媒としては、水;1-ヘキサノール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、グリセリン等のアルコール類;テトラヒドロフラン、ジオキサン、ジオキソラン等の環状エーテル類等が挙げられる。なかでも、アルコール類が好ましく、炭素数3~6の2価または3価のアルコール類がより好ましい。 Suitable poor solvents for polyvinylidene fluoride include water; alcohols such as 1-hexanol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and glycerin ; Cyclic ethers such as tetrahydrofuran, dioxane, dioxolane, and the like. Among them, alcohols are preferred, and dihydric or trihydric alcohols having 3 to 6 carbon atoms are more preferred.

4.非水溶性高分子がフッ化ビニリデン-ヘキサフルオロプロピレン共重合体である場合
フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(P(VDF-HFP))は、モノマー単位として、フッ化ビニリデン単位およびヘキサフルオロプロピレン単位を含有する共重合体である。これらの単位の共重合割合は特に制限はなく、セパレータの特性に応じて適宜決定すればよい。フッ化ビニリデン-ヘキサフルオロプロピレン共重合体は、公知方法に従い合成して入手することができ、市販品(例、アルケマ社製Kynar FLEX 2850-00、2800-00、2800-20、2750-01、2500-20、3120-50、2851-00、2801-00、2821-00、2751-00、2501-00等)としても入手可能である。
4. When the Water-Insoluble Polymer is a Vinylidene Fluoride-Hexafluoropropylene Copolymer The vinylidene fluoride-hexafluoropropylene copolymer (P(VDF-HFP)) contains vinylidene fluoride units and hexafluoropropylene units as monomer units. It is a copolymer containing propylene units. The copolymerization ratio of these units is not particularly limited, and may be appropriately determined according to the properties of the separator. The vinylidene fluoride-hexafluoropropylene copolymer can be obtained by synthesizing according to a known method, and is commercially available (eg, Kynar FLEX 2850-00, 2800-00, 2800-20, 2750-01, manufactured by Arkema). 2500-20, 3120-50, 2851-00, 2801-00, 2821-00, 2751-00, 2501-00, etc.).

P(VDF-HFP)の好適な良溶媒としては、アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン等の環状エーテル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等の含窒素極性溶媒(特に含窒素非プロトン性極性溶媒);DMSO等の含硫黄極性溶媒(特に含硫黄非プロトン性極性溶媒)などが挙げられる。気化による除去が容易であることから、良溶媒としては、アセトン、メチルエチルケトン、またはテトラヒドロフランが好ましく、アセトン、またはメチルエチルケトンがより好ましい。 Preferred good solvents for P(VDF-HFP) include ketones such as acetone and methyl ethyl ketone; cyclic ethers such as tetrahydrofuran; nitrogen-containing polar solvents (especially nitrogen-containing aprotic polar solvents); sulfur-containing polar solvents such as DMSO (especially sulfur-containing aprotic polar solvents); As a good solvent, acetone, methyl ethyl ketone, or tetrahydrofuran is preferable, and acetone or methyl ethyl ketone is more preferable, since it can be easily removed by vaporization.

P(VDF-HFP)の好適な貧溶媒としては、水;1-ヘキサノール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、グリセリン等のアルコール類などが挙げられる。環境に対する負荷の低さ、入手の容易さ、取り扱いの容易さ等の観点から、貧溶媒としては、水、または炭素数3~6の2価または3価のアルコール類が好ましい。 Suitable poor solvents for P(VDF-HFP) include water; 1-hexanol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, alcohols such as 6-hexanediol and glycerin; As the poor solvent, water or dihydric or trihydric alcohols having 3 to 6 carbon atoms are preferable from the viewpoints of low environmental load, availability, and ease of handling.

非水溶性高分子、良溶媒、および貧溶媒の使用量は、使用するこれらの種類に応じて適宜選択するとよい。非水溶性高分子の混合量は、良溶媒100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上、さらに好ましくは10質量部以上である。また、非水溶性高分子の混合量は、良溶媒100質量部に対して、好ましくは40質量部以下、より好ましくは上35質量部以下、さらに好ましくは30質量部以下である。貧溶媒の混合量は、良溶媒100質量部に対して、好ましくは10質量部以上、より好ましくは20質量部以上、さらに好ましくは30質量部以上である。また、貧溶媒の混合量は、良溶媒100質量部に対して、好ましくは400質量部以下、より好ましく200質量部以下、さらに好ましくは100質量部以下である。これらの量を変化させることで、得られる多孔質体の孔の状態(例、空孔率、空孔径など)を制御することができる。 The amounts of the water-insoluble polymer, good solvent, and poor solvent to be used may be appropriately selected according to the types of these used. The amount of the water-insoluble polymer mixed is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and still more preferably 10 parts by mass or more with respect to 100 parts by mass of the good solvent. The amount of the water-insoluble polymer mixed is preferably 40 parts by mass or less, more preferably 35 parts by mass or less, and even more preferably 30 parts by mass or less with respect to 100 parts by mass of the good solvent. The amount of the poor solvent mixed is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and still more preferably 30 parts by mass or more with respect to 100 parts by mass of the good solvent. The amount of the poor solvent mixed is preferably 400 parts by mass or less, more preferably 200 parts by mass or less, and even more preferably 100 parts by mass or less with respect to 100 parts by mass of the good solvent. By changing these amounts, it is possible to control the pore state (eg, porosity, pore diameter, etc.) of the resulting porous body.

非水溶性高分子の溶液は、本発明の効果を著しく損なわない範囲内で、非水溶性高分子および混合溶媒以外の成分をさらに含有していてもよい。 The water-insoluble polymer solution may further contain components other than the water-insoluble polymer and the mixed solvent within a range that does not significantly impair the effects of the present invention.

非水溶性高分子の溶液の調製方法には特に制限はない。非水溶性高分子を良溶媒に溶解させて、そこに貧溶媒を添加して均一に混合してもよい、非水溶性高分子を、良溶媒と貧溶媒との混合溶媒に添加して、非水溶性高分子を溶解させてもよい。溶液の調製には、公知の撹拌装置、混合装置等を用いることができる。非水溶性高分子の溶液の調製の際には、超音波照射、加熱等を行ってもよい。加熱温度としては、例えば40℃以上100℃以下である。加熱により非水溶性高分子の溶液を調製した後、良溶媒と貧溶媒とが分離しない範囲で冷却してよい。また、この冷却は、非水溶性高分子が析出しない範囲で行うことが好ましい。析出した非水溶性高分子が不純物となり得るためである。 There is no particular limitation on the method for preparing the solution of the water-insoluble polymer. The water-insoluble polymer may be dissolved in a good solvent, and the poor solvent may be added and mixed uniformly. A water-insoluble polymer may be dissolved. A known stirring device, mixing device, or the like can be used to prepare the solution. When preparing the solution of the water-insoluble polymer, ultrasonic irradiation, heating, etc. may be performed. The heating temperature is, for example, 40° C. or higher and 100° C. or lower. After preparing the solution of the water-insoluble polymer by heating, it may be cooled to the extent that the good solvent and the poor solvent are not separated. Moreover, this cooling is preferably carried out within a range in which the water-insoluble polymer does not precipitate. This is because the precipitated water-insoluble polymer can become an impurity.

次に、乾燥工程について説明する。当該乾燥工程においては、上記で調製した非水溶性高分子の溶液を乾燥して、混合溶媒を除去する。そして、この溶液の乾燥を、過熱水蒸気を用いて行う。当該乾燥工程において、非水溶性高分子の多孔質状の骨格が形成される。当該乾燥工程では、混合溶媒を除去する操作によって、具体的には貧溶媒の気化によって、空孔を形成して、樹脂多孔質体を得る。 Next, the drying process will be explained. In the drying step, the water-insoluble polymer solution prepared above is dried to remove the mixed solvent. The solution is then dried using superheated steam. In the drying process, a porous skeleton of water-insoluble polymer is formed. In the drying step, pores are formed by the operation of removing the mixed solvent, specifically by vaporization of the poor solvent, to obtain a porous resin body.

典型的には、例えば、非水溶性高分子と、貧溶媒が高濃度化した混合溶媒とを相分離させることによって、空孔を形成する。具体的には、貧溶媒は、良溶媒よりも沸点が高いため、当該工程では、貧溶媒よりも良溶媒が優先的に気化する。良溶媒が減少していくと、混合溶媒中の貧溶媒の濃度が増加する。非水溶性高分子の貧溶媒に対する溶解度が、良溶媒に対する溶解度よりも小さいため、非水溶性高分子と、貧溶媒が高濃度化した混合溶媒とが相分離して、非水溶性高分子の多孔質状の骨格が形成される。この相分離は、スピノーダル分解であってよい。最終的には、良溶媒が除去されて非水溶性高分子が析出し、高沸点の貧溶媒が気化により除去されて空孔が生成する。このようにして、非水溶性高分子の多孔質体が生成する。なお、非水溶性高分子と、貧溶媒が高濃度化した混合溶媒とを相分離させるには、良溶媒の種類と使用量および貧溶媒の種類と使用量を適切に選択するとよい。 Typically, for example, pores are formed by phase separation of a water-insoluble polymer and a mixed solvent in which the poor solvent is concentrated. Specifically, since the poor solvent has a higher boiling point than the good solvent, the good solvent preferentially evaporates over the poor solvent in this step. As the good solvent decreases, the concentration of the poor solvent in the mixed solvent increases. Since the solubility of the water-insoluble polymer in the poor solvent is lower than the solubility in the good solvent, phase separation occurs between the water-insoluble polymer and the mixed solvent with a high concentration of the poor solvent, resulting in the formation of the water-insoluble polymer. A porous skeleton is formed. This phase separation may be a spinodal decomposition. Ultimately, the good solvent is removed to precipitate a water-insoluble polymer, and the high boiling point poor solvent is removed by vaporization to form voids. Thus, a water-insoluble polymer porous body is produced. In order to cause phase separation between the water-insoluble polymer and the mixed solvent with a high concentration of the poor solvent, the type and amount of the good solvent and the type and amount of the poor solvent should be appropriately selected.

ここで、加熱または減圧によって非水溶性高分子の溶液の乾燥を行う場合、雰囲気に露出した非水溶性高分子の溶液の表面が乾燥界面となる。溶液の表面およびその近傍(すなわち、表層部)では、溶液内部と比べて混合溶媒の気化速度が大きくなり、これにより、溶液の表層部と内部とで組成にズレが生じる。その結果、溶液の表層部では多孔質化が起こらず、得られる樹脂多孔質体の表層部にスキン層が形成される。 Here, when the solution of the water-insoluble polymer is dried by heating or under reduced pressure, the surface of the solution of the water-insoluble polymer exposed to the atmosphere becomes the dry interface. At the surface of the solution and its vicinity (that is, the surface layer), the vaporization rate of the mixed solvent is higher than that inside the solution, which causes a compositional deviation between the surface layer and the inside of the solution. As a result, the surface layer of the solution does not become porous, and a skin layer is formed on the surface layer of the resulting porous resin body.

これに対し、本発明では、過熱水蒸気によって乾燥を行う。よって、乾燥は、過熱水蒸気と非水溶性高分子の溶液との接触を伴う。したがって、過熱水蒸気の存在下、特に過熱水蒸気雰囲気下で乾燥が行われる。過熱水蒸気によって乾燥を行うことにより、樹脂多孔質体の表層部でのスキン層の形成を抑制することができる。その理由は次のように考えられる。 In contrast, in the present invention, drying is performed with superheated steam. Drying thus involves contacting superheated steam with a solution of a water-insoluble polymer. Therefore, drying is carried out in the presence of superheated steam, especially in a superheated steam atmosphere. Drying with superheated steam can suppress the formation of a skin layer on the surface layer of the porous resin body. The reason is considered as follows.

過熱水蒸気は、飽和水蒸気が100℃以上に加熱された水蒸気である。過熱水蒸気は、図1に示すように、熱風と比べてはるかに大きなエンタルピーを有し、伝熱方法は、対流、輻射、凝縮の複合伝熱である。よって、過熱水蒸気によれば、熱風等の加熱方法に比べて急速な加熱が可能である。 Superheated steam is steam obtained by heating saturated steam to 100° C. or higher. As shown in FIG. 1, superheated steam has much higher enthalpy than hot air, and the heat transfer method is a combined heat transfer of convection, radiation and condensation. Therefore, superheated steam enables rapid heating compared to heating methods such as hot air.

過熱水蒸気の存在下に非水溶性高分子の溶液が置かれると、非水溶性高分子の溶液の表面において過熱水蒸気の凝縮が起こり、非水溶性高分子の溶液の表面の上に水層が形成される。この水層から熱伝達されることで、非水溶性高分子の溶液に含まれる溶媒と、水層中の水とが気化し、非水溶性高分子の溶液の乾燥が行われる。ここで、水は非水溶性高分子の貧溶媒であるため、非水溶性高分子の溶液の表層部では水によって相分離が引き起こされ、この相分離に起因して表層部に多孔質骨格および孔が形成される。よって、過熱水蒸気によって乾燥を行うことにより、非水溶性高分子の溶液の表層部において、積極的に多孔質化を引き起こすことができ、得られる樹脂多孔質体の表層部でのスキン層の形成を抑制することができる。 When the water-insoluble polymer solution is placed in the presence of superheated steam, condensation of the superheated steam occurs on the surface of the water-insoluble polymer solution, and a water layer is formed on the surface of the water-insoluble polymer solution. It is formed. By heat transfer from this water layer, the solvent contained in the water-insoluble polymer solution and the water in the water layer are vaporized, and the water-insoluble polymer solution is dried. Here, since water is a poor solvent for the water-insoluble polymer, water causes phase separation in the surface layer of the solution of the water-insoluble polymer. A hole is formed. Therefore, by drying with superheated steam, the surface layer of the water-insoluble polymer solution can be positively made porous, and the resulting porous resin body forms a skin layer on the surface layer. can be suppressed.

過熱水蒸気による非水溶性高分子の溶液の乾燥は、例えば、乾燥炉、乾燥チャンバ等に公知方法によって生成した過熱水蒸気を導入し、乾燥炉、乾燥チャンバ等に非水溶性高分子の溶液を置くことによって行うことができる。過熱水蒸気が100℃以上の水蒸気であることから、乾燥温度は、100℃以上であり、好ましくは140℃以上、より好ましくは150℃以上200℃以下である。乾燥工程の実施方法の具体的な例について以下説明する。 Drying of the water-insoluble polymer solution with superheated steam is accomplished, for example, by introducing superheated steam generated by a known method into a drying oven, drying chamber, or the like, and placing the water-insoluble polymer solution in the drying oven, drying chamber, or the like. It can be done by Since the superheated steam is steam of 100° C. or higher, the drying temperature is 100° C. or higher, preferably 140° C. or higher, more preferably 150° C. or higher and 200° C. or lower. A specific example of a method for carrying out the drying step will be described below.

過熱水蒸気を導入可能な乾燥炉を用意する。その乾燥炉の構成例を図2に示す。図2に示す例では、乾燥炉10には、過熱水蒸気導入管20を介して、加熱手段としての熱交換器40が接続されている。乾燥炉10は、バッチ式であっても、ベルトコンベア等を備える連続式のものであってもよい。過熱水蒸気導入管20は、第1バルブ30を有している。熱交換器40は、制御盤50に電気的に接続されている。熱交換器40は、熱媒体の流路となるチューブ(図示せず)を内部に備えている。熱交換器40は、水蒸気導入管60を介して水蒸気発生手段としてのボイラー80と接続されている。水蒸気導入管60は、第2バルブ70を有している。 A drying furnace capable of introducing superheated steam is prepared. FIG. 2 shows a configuration example of the drying oven. In the example shown in FIG. 2 , a heat exchanger 40 as heating means is connected to the drying furnace 10 via a superheated steam introduction pipe 20 . The drying oven 10 may be of a batch type or a continuous type equipped with a belt conveyor or the like. The superheated steam introduction pipe 20 has a first valve 30 . The heat exchanger 40 is electrically connected to the control board 50 . The heat exchanger 40 internally includes a tube (not shown) serving as a heat medium flow path. The heat exchanger 40 is connected via a steam introduction pipe 60 to a boiler 80 as steam generating means. The steam introduction pipe 60 has a second valve 70 .

第1バルブ30および第2バルブ70を閉じた状態で、ボイラー80内で水蒸気を発生させる。第2バルブ70を開き、水蒸気導入管60を介して水蒸気を熱交換器40に導入する。熱交換器40内のチューブに熱媒体を通し、チューブを介して水蒸気を加熱する。このとき、熱媒体の温度および流速を制御盤50によって制御する。熱媒体の温度は、乾燥炉10内の温度に応じて、100℃を超えるの温度のなかから適宜選択する。この加熱によって、水蒸気を過熱水蒸気に変化させる。なお、過熱水蒸気は、公知の過熱水蒸気発生装置を用いて生成することもできる。 Steam is generated in the boiler 80 with the first valve 30 and the second valve 70 closed. The second valve 70 is opened to introduce steam into the heat exchanger 40 through the steam inlet pipe 60 . A heat medium is passed through the tubes in the heat exchanger 40 to heat steam through the tubes. At this time, the temperature and flow velocity of the heat medium are controlled by the control panel 50 . The temperature of the heat medium is appropriately selected from temperatures exceeding 100° C. according to the temperature inside the drying furnace 10 . This heating changes the steam into superheated steam. In addition, superheated steam can also be produced|generated using a well-known superheated steam generator.

第1バルブ30を開き、過熱水蒸気導入管20を介して、乾燥炉10内に過熱水蒸気を導入する。このとき、乾燥炉10内で過熱水蒸気が凝縮しないように、乾燥炉10内を100℃以上に加熱しておく。乾燥炉内の温度は、好ましくは140℃以上であり、より好ましくは150℃以上200℃以下である。なお、乾燥過程においては、混合溶媒が気化する際に非水溶性高分子の溶液から熱を奪って当該溶液が冷却されるため、非水溶性高分子の溶液の温度は、通常、乾燥炉内の温度よりも低くなる。このため、乾燥炉内の温度は、非水溶性高分子の融点以上であってもよい。 The first valve 30 is opened to introduce superheated steam into the drying furnace 10 through the superheated steam introduction pipe 20 . At this time, the inside of the drying oven 10 is heated to 100° C. or higher so that the superheated steam does not condense inside the drying oven 10 . The temperature in the drying furnace is preferably 140°C or higher, more preferably 150°C or higher and 200°C or lower. In the drying process, when the mixed solvent evaporates, heat is removed from the solution of the water-insoluble polymer and the solution is cooled. lower than the temperature of Therefore, the temperature in the drying oven may be higher than the melting point of the water-insoluble polymer.

過熱水蒸気が導入された乾燥炉10内に、非水溶性高分子の溶液を置く。過熱水蒸気と非水溶性高分子の溶液とが接触し、過熱水蒸気が有する熱によって溶液中の混合溶媒が気化し、乾燥が行われる。乾燥中は、過熱水蒸気を乾燥炉10内に導入し続けることが好ましい。 A water-insoluble polymer solution is placed in a drying oven 10 into which superheated steam is introduced. The superheated steam and the solution of the water-insoluble polymer are brought into contact with each other, and the mixed solvent in the solution is vaporized by the heat of the superheated steam, and drying is performed. It is preferable to continue to introduce superheated steam into the drying oven 10 during drying.

所望の形状の多孔質体を得る場合、当該所望の形状に対応した形状の型に非水溶性高分子の溶液を入れ、これを過熱水蒸気を用いて乾燥する方法を好適に用いることができる。膜状の多孔質体を得る場合、基材の表面上に非水溶性高分子の溶液を薄膜状に塗工し、これを過熱水蒸気を用いて乾燥する方法を好適に用いることができる。 When obtaining a porous body with a desired shape, a method of putting a solution of a water-insoluble polymer into a mold having a shape corresponding to the desired shape and drying it with superheated steam can be preferably used. When obtaining a film-like porous body, a method of coating a solution of a water-insoluble polymer in the form of a thin film on the surface of a substrate and drying it with superheated steam can be preferably used.

有益な用途が多いことから、本発明においては、膜状の多孔質体を得ることが好ましい。よって、本発明に係る製造方法は、溶液調製工程の後であって乾燥工程の前に、基材の表面上に調製した非水溶性高分子の溶液を薄膜状に塗工する工程(以下、「塗工工程」ともいう)を含むことが好ましい。 In the present invention, it is preferable to obtain a film-like porous body because of its many useful uses. Therefore, the production method according to the present invention includes a step of applying a solution of a water-insoluble polymer prepared on the surface of a substrate in a thin film form (hereinafter referred to as Also referred to as a "coating step").

膜状の樹脂多孔質体を得る場合の塗工工程ついて詳細に説明する。用いられる基材は、基材として機能し得る限り特に限定されない。基材は、最終的に多孔質体から剥離して用いられるものであってもよいし、剥離せずに用いられるものであってもよい。基材の形状は、特に限定されず、平面を有するものが好ましい。形状の例としては、シート状、フィルム状、箔状、板状等が挙げられる。基材の構成材料としては、樹脂、ガラス、金属等が挙げられる。 The coating step for obtaining a film-like resin porous body will be described in detail. The substrate used is not particularly limited as long as it can function as a substrate. The substrate may be used after being finally peeled off from the porous body, or may be used without being peeled off. The shape of the substrate is not particularly limited, and one having a flat surface is preferable. Examples of shapes include sheet-like, film-like, foil-like, and plate-like. Examples of the constituent material of the base material include resin, glass, and metal.

上記樹脂の例としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、ポリ塩化ビニル、ポリ(メタ)アクリレート、ポリカーボネート、ポリイミド、ポリアミド、ポリアミドイミド等が挙げられる。 Examples of the above resins include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene (PE), polypropylene (PP), polystyrene, polyvinyl chloride, poly(meth)acrylate, polycarbonate, polyimide, polyamide, and polyamideimide. etc.

上記金属の例としては、アルミニウム、銅、ニッケル、ステンレス鋼等が挙げられる。また、ガラス繊維強化エポキシ樹脂等の繊維強化樹脂などの複数の材料を用いたものを基材として用いることができる。 Examples of the metals include aluminum, copper, nickel, stainless steel, and the like. In addition, a base material using a plurality of materials such as fiber-reinforced resin such as glass-fiber-reinforced epoxy resin can be used.

また、基材は、複層構造を有していてもよい。例えば、基材は、フッ素樹脂を含む剥離層を有していてもよい。例えば、基材は、樹脂層を有する紙等であってよい。 Moreover, the base material may have a multilayer structure. For example, the substrate may have a release layer containing fluororesin. For example, the substrate may be paper or the like having a resin layer.

基材が剥離せずに用いられる場合、得られる樹脂多孔質体の機能層としての役割を有するものであってもよい。例えば、基材は、補強材、支持材等の機能を有していてもよい。また、基材は、二次電池の電極(特に二次電池の電極の活物質層)であってもよい。このとき、樹脂多孔質体の製造方法を、二次電池の電極一体型セパレータの製造方法とすることができる。 When the substrate is used without peeling, it may have a role as a functional layer of the resulting porous resin body. For example, the base material may have functions such as a reinforcing material and a supporting material. The substrate may also be an electrode of a secondary battery (especially an active material layer of an electrode of a secondary battery). At this time, the method for manufacturing the resin porous body can be used as the method for manufacturing the electrode-integrated separator of the secondary battery.

非水溶性高分子の溶液の塗工方法は特に制限されず、基材の種類に応じて適宜選択すればよい。塗工方法の例としては、ダイコーティング法、グラビアコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、ブレードコーティング法、スプレーコーティング法、キャスティング法等が挙げられる。塗工厚みは特に制限されず、多孔質体の用途に応じて適宜設定すればよく、例えば、1μm以上500μm以下であり、好ましくは10μm以上300μm以下である。 The method of applying the water-insoluble polymer solution is not particularly limited, and may be appropriately selected according to the type of substrate. Examples of coating methods include die coating, gravure coating, roll coating, spin coating, dip coating, bar coating, blade coating, spray coating and casting. The thickness of the coating is not particularly limited, and may be appropriately set according to the application of the porous body.

以上のようにして得られた基材上に塗工された非水溶性高分子の溶液を、乾燥工程に供することにより、膜状の樹脂多孔質体(すなわち、樹脂多孔質膜)を得ることができる。 A membrane-like porous resin material (that is, a porous resin membrane) is obtained by subjecting the solution of the water-insoluble polymer coated on the substrate obtained as described above to a drying process. can be done.

以上のようにして、膜状を含め種々の形状の樹脂多孔質体を得ることができる。樹脂多孔質体は、スキン層の形成が抑制されているため、一つの主面から、それと対向する主面まで孔が連通した三次元ネットワーク状の多孔構造を有する。本発明の製造方法によれば、平均孔径が、例えば0.5μm以上(特に0.9μm以上、さらには1.4μm以上)5μm以下(特に4.2μm以下、さらには3.8μm以下)の多孔質体を得ることができる。なお、平均孔径は、多孔質体の断面電子顕微鏡写真を撮影し、100個以上の孔の径の平均値として求めることができる。孔の断面が非球状である場合には、孔の最大径と最小径との平均を孔径としてよい。また、本発明の製造方法によれば、空孔率が、例えば15%以上(特に42%以上、さらには51.5%以上、さらにまた61.5%以上)80%未満(特に75%未満)の多孔質体を得ることができる。なお、空孔率は、公知方法に従い、真密度と見かけ密度を用いて算出することができる。 As described above, porous resin bodies having various shapes including film shapes can be obtained. Since the formation of a skin layer is suppressed, the porous resin body has a three-dimensional network-like porous structure in which pores are communicated from one principal surface to the opposite principal surface. According to the production method of the present invention, the average pore size is, for example, 0.5 μm or more (especially 0.9 μm or more, further 1.4 μm or more) and 5 μm or less (especially 4.2 μm or less, further 3.8 μm or less). You can get quality. The average pore size can be obtained by taking cross-sectional electron micrographs of the porous body and calculating the average value of 100 or more pore sizes. When the cross section of the pore is non-spherical, the pore diameter may be the average of the maximum diameter and the minimum diameter of the pore. Further, according to the production method of the present invention, the porosity is, for example, 15% or more (especially 42% or more, further 51.5% or more, further 61.5% or more) and less than 80% (especially less than 75%) ) can be obtained. In addition, the porosity can be calculated using a true density and an apparent density according to a known method.

本発明によれば、冷却して成形体を析出させる操作および溶媒を置換する操作を行う必要がなく、非水溶性高分子の溶液の調製と、乾燥による良溶媒および貧溶媒の除去という工程により、樹脂多孔質体を製造することができる。すなわち、本発明によれば、少ない工程数で樹脂多孔質体を製造することができる。また、本発明においては、樹脂多孔質体の表層部におけるスキン層の形成が抑制されている。したがって、樹脂多孔質体は、幅広い用途に使用可能である。 According to the present invention, there is no need to perform the operation of cooling to precipitate a molded article and the operation of replacing the solvent, and the process of preparing a solution of a water-insoluble polymer and removing the good solvent and the poor solvent by drying. , a resin porous body can be produced. That is, according to the present invention, a porous resin body can be produced with a small number of steps. Further, in the present invention, the formation of a skin layer on the surface layer of the porous resin body is suppressed. Therefore, the resin porous body can be used in a wide range of applications.

樹脂多孔質体の用途の例としては、梱包材料、建築資材、吸音材料、掃除用品、化粧用品、分離膜、吸着材、精製用担体、触媒担体、培養担体等が挙げられる。また、スキン層がないために電解液を透過可能であることを利用して、樹脂多孔質体を、二次電池用のセパレータとして使用することができる。樹脂多孔質体を、セパレータ用途に適用する場合には、活物質層の上に直接セパレータを形成できるため、セパレータの製造面において有利である。 Examples of applications of the porous resin material include packaging materials, building materials, sound absorbing materials, cleaning products, cosmetic products, separation membranes, adsorbents, purification carriers, catalyst carriers, culture carriers, and the like. In addition, the resin porous body can be used as a separator for a secondary battery, utilizing the fact that the electrolyte can permeate through the porous resin because it does not have a skin layer. When the porous resin body is applied to the separator, the separator can be formed directly on the active material layer, which is advantageous in terms of separator production.

したがって、上記の製造方法は、非水溶性高分子の良溶媒および当該非水溶性高分子の貧溶媒を含有する混合溶媒に、当該非水溶性高分子が溶解した溶液を調製する工程と、当該調製した溶液を、電極の活物質層上に塗工する工程と、当該塗工された溶液を、乾燥して当該混合溶媒を除去する工程とを包含し、当該貧溶媒の沸点が、当該良溶媒の沸点よりも高く、当該塗工された溶液の乾燥を、過熱水蒸気を用いて行う、二次電池の電極一体型セパレータの製造方法として応用することができる。 Therefore, the above-described production method includes a step of preparing a solution in which the water-insoluble polymer is dissolved in a mixed solvent containing a good solvent for the water-insoluble polymer and a poor solvent for the water-insoluble polymer; The step of coating the prepared solution on the active material layer of the electrode, and the step of drying the coated solution to remove the mixed solvent, wherein the boiling point of the poor solvent is It has a higher boiling point than the solvent, and can be applied as a method for manufacturing an electrode-integrated separator for a secondary battery in which the applied solution is dried using superheated steam.

電極が正極である場合には、活物質層(すなわち、正極活物質層)は、正極活物質を含み得る。正極活物質としては、例えばリチウム遷移金属酸化物(例、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5等)、リチウム遷移金属リン酸化合物(例、LiFePO等)等が挙げられる。正極活物質層は、活物質以外の成分、例えば導電材、バインダ、リン酸リチウム等を含み得る。導電材としては、例えばアセチレンブラック(AB)等のカーボンブラックやその他(例、グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、例えばポリフッ化ビニリデン(PVDF)等を使用し得る。 When the electrode is a positive electrode, the active material layer (ie, positive electrode active material layer) may contain a positive electrode active material. Examples of positive electrode active materials include lithium transition metal oxides (eg, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1 .5O4 , etc.), lithium transition metal phosphate compounds (eg, LiFePO4, etc.), and the like. The positive electrode active material layer may contain components other than the active material, such as a conductive material, a binder, and lithium phosphate. Carbon black such as acetylene black (AB) and other carbon materials (eg, graphite) can be suitably used as the conductive material. As the binder, for example, polyvinylidene fluoride (PVDF) or the like can be used.

電極が負極である場合には、活物質層(すなわち、負極活物質層)は、負極活物質を含み得る。負極活物質としては、例えば黒鉛、ハードカーボン、ソフトカーボン等の炭素材料などが挙げられる。負極活物質層は、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、例えばスチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。 When the electrode is the negative electrode, the active material layer (that is, the negative electrode active material layer) may contain the negative electrode active material. Examples of negative electrode active materials include carbon materials such as graphite, hard carbon, and soft carbon. The negative electrode active material layer may contain components other than the active material, such as binders and thickeners. As the binder, for example, styrene-butadiene rubber (SBR) or the like can be used. As a thickening agent, for example, carboxymethyl cellulose (CMC) or the like can be used.

活物質層は、典型的には集電体上に形成される。集電体の例としては、アルミニウム箔、銅箔等が挙げられる。 An active material layer is typically formed on the current collector. Examples of current collectors include aluminum foil and copper foil.

各工程の操作については、上述の通りである。この二次電池用の電極一体型セパレータの製造方法は、二次電池の電極一体型セパレータを、少ない工程数で製造することができるという点で非常に優れている。 The operation of each step is as described above. This method for producing an electrode-integrated separator for a secondary battery is extremely excellent in that the electrode-integrated separator for a secondary battery can be manufactured in a small number of steps.

以上のようにして製造されたセパレータ一体型電極は、公知方法に従い、各種の二次電池に用いることができる。二次電池として好適には、リチウム二次電池であり、当該リチウム二次電池は、パソコン、携帯端末等のポータブル電源や、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両駆動用電源などに好適に用いることができる。 The separator-integrated electrode manufactured as described above can be used in various secondary batteries according to known methods. The secondary battery is preferably a lithium secondary battery, and the lithium secondary battery can be used as a portable power source for personal computers, mobile terminals, etc., electric vehicles (EV), hybrid vehicles (HV), plug-in hybrid vehicles (PHV). ), etc., can be suitably used as a power source for driving a vehicle.

以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。 EXAMPLES Examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples.

実施例1
サンプル瓶に酢酸セルロース(Aldrich社製、平均分子量50,000)2.1質量部を秤量した。このサンプル瓶に、良溶媒としてのアセトン10質量部を添加した。サンプル瓶を40℃~50℃に加熱して、酢酸セルロースをアセトンに完全に溶解させた。その後、サンプル瓶に、貧溶媒としての水1.5質量部を添加し、撹拌した。このようにして、溶媒をアセトン/水の混合溶媒とする酢酸セルロース溶液を得た。
Example 1
2.1 parts by mass of cellulose acetate (manufactured by Aldrich, average molecular weight: 50,000) was weighed into a sample bottle. 10 parts by mass of acetone as a good solvent was added to this sample bottle. The sample bottle was heated to 40° C.-50° C. to completely dissolve the cellulose acetate in the acetone. After that, 1.5 parts by mass of water as a poor solvent was added to the sample bottle and stirred. Thus, a cellulose acetate solution was obtained in which the solvent was a mixed solvent of acetone/water.

酢酸セルロース溶液を基材としてのアルミニウム箔上にキャスティングにより塗布した。このとき、塗布厚みは200μmであった。 A cellulose acetate solution was applied by casting onto an aluminum foil as a substrate. At this time, the coating thickness was 200 μm.

上流に熱交換器が接続され、さらにその上流にボイラーが接続されたベルトコンベア式の乾燥炉を用意した。ボイラーで水蒸気を発生させ、水蒸気を熱交換器に送り込み、加熱して過熱水蒸気に変化させた。乾燥炉内の温度を150℃に設定し、この過熱水蒸気を、100kg/hrの流量で乾燥炉内に送り込み、乾燥炉内の温度が150℃で安定するまで待機した。その後、酢酸セルロース溶液が塗布されたアルミニウム箔を乾燥炉内に入れて、60秒間乾燥を行い、アセトン/水の混合溶媒を除去した。このようにして、アルミニウム箔上に酢酸セルロースの多孔質膜を得た。 A belt-conveyor type drying furnace was prepared in which a heat exchanger was connected upstream and a boiler was further connected upstream. Steam was generated in a boiler, sent to a heat exchanger, heated, and changed to superheated steam. The temperature inside the drying furnace was set to 150°C, this superheated steam was fed into the drying furnace at a flow rate of 100 kg/hr, and the temperature inside the drying furnace was kept on standby until the temperature stabilized at 150°C. After that, the aluminum foil coated with the cellulose acetate solution was placed in a drying oven and dried for 60 seconds to remove the mixed solvent of acetone/water. Thus, a porous film of cellulose acetate was obtained on the aluminum foil.

実施例2
乾燥炉内の温度を200℃に変更した以外は、実施例1と同様にして、酢酸セルロースの多孔質膜を作製した。
Example 2
A porous membrane of cellulose acetate was produced in the same manner as in Example 1, except that the temperature in the drying oven was changed to 200°C.

比較例1
実施例1で作製した酢酸セルロース溶液を、基材としてのアルミニウム箔上にキャスティングにより塗布した。このとき、塗布厚みは200μmであった。酢酸セルロース溶液が塗布されたアルミニウム箔を、30℃に設定した熱風乾燥機内に入れて、60秒間乾燥を行って、アセトン/水の混合溶媒を除去した。このようにして、アルミニウム箔上に酢酸セルロースの多孔質膜を得た。
Comparative example 1
The cellulose acetate solution prepared in Example 1 was applied by casting onto an aluminum foil as a substrate. At this time, the coating thickness was 200 μm. The aluminum foil coated with the cellulose acetate solution was placed in a hot air dryer set at 30° C. and dried for 60 seconds to remove the mixed solvent of acetone/water. Thus, a porous film of cellulose acetate was obtained on the aluminum foil.

比較例2
実施例1で作製した酢酸セルロース溶液を、基材としてのアルミニウム箔上にキャスティングにより塗布した。このとき、塗布厚みは200μmであった。酢酸セルロース溶液が塗布されたアルミニウム箔を、60℃に設定した熱風乾燥機内に入れて、60秒間乾燥を行って、アセトン/水の混合溶媒を除去した。このようにして、アルミニウム箔上に酢酸セルロースの多孔質膜を得た。
Comparative example 2
The cellulose acetate solution prepared in Example 1 was applied by casting onto an aluminum foil as a substrate. At this time, the coating thickness was 200 μm. The aluminum foil coated with the cellulose acetate solution was placed in a hot air dryer set at 60° C. and dried for 60 seconds to remove the mixed solvent of acetone/water. Thus, a porous film of cellulose acetate was obtained on the aluminum foil.

比較例3
実施例1で作製した酢酸セルロース溶液を、基材としてのアルミニウム箔上にキャスティングにより塗布した。このとき、塗布厚みは200μmであった。酢酸セルロース溶液が塗布されたアルミニウム箔を、表面温度50℃に設定したホットプレート上に置いて、60秒間乾燥を行って、アセトン/水の混合溶媒を除去した。このようにして、アルミニウム箔上に酢酸セルロースの多孔質膜を得た。
Comparative example 3
The cellulose acetate solution prepared in Example 1 was applied by casting onto an aluminum foil as a substrate. At this time, the coating thickness was 200 μm. The aluminum foil coated with the cellulose acetate solution was placed on a hot plate whose surface temperature was set to 50° C. and dried for 60 seconds to remove the mixed solvent of acetone/water. Thus, a porous film of cellulose acetate was obtained on the aluminum foil.

実施例3
サンプル瓶にフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(アルケマ社製「Kynar-FLEX 2821-00」、グレード:パウダータイプ、以下「P(VDF-HFP)」と記す)1.0質量部を秤量した。このサンプル瓶に、良溶媒としてのメチルエチルケトン(MEK)3.2質量部を添加した。サンプル瓶を40℃~50℃に加熱して、P(VDF-HFP)をMEKに完全に溶解させた。その後、サンプル瓶に、貧溶媒としての1,2-プロパンジオール0.4質量部を添加し、撹拌した。このようにして、溶媒をMEK/プロパンジオールの混合溶媒とするP(VDF-HFP)溶液を得た。
Example 3
Vinylidene fluoride-hexafluoropropylene copolymer (“Kynar-FLEX 2821-00” manufactured by Arkema, grade: powder type, hereinafter referred to as “P (VDF-HFP)”) 1.0 part by mass was weighed into a sample bottle. bottom. 3.2 parts by mass of methyl ethyl ketone (MEK) as a good solvent was added to this sample bottle. The sample bottle was heated to 40-50°C to completely dissolve P(VDF-HFP) in MEK. After that, 0.4 parts by mass of 1,2-propanediol as a poor solvent was added to the sample bottle and stirred. In this way, a P(VDF-HFP) solution was obtained in which the solvent was a mixed solvent of MEK/propanediol.

P(VDF-HFP)溶液を基材としてのアルミニウム箔上にキャスティングにより塗布した。このとき、塗布厚みは200μmであった。 A P(VDF-HFP) solution was applied by casting onto an aluminum foil as a substrate. At this time, the coating thickness was 200 μm.

上流に熱交換器が接続され、さらにその上流にボイラーが接続されたベルトコンベア式の乾燥炉を用意した。ボイラーで水蒸気を発生させ、水蒸気を熱交換器に送り込み、加熱して過熱水蒸気に変化させた。乾燥炉内の温度を170℃に設定し、この過熱水蒸気を、100kg/hrの流量で乾燥炉内に送り込み、乾燥炉内の温度が170℃で安定するまで待機した。その後、P(VDF-HFP)溶液が塗布されたアルミニウム箔を乾燥炉内に導入して、60秒間乾燥を行い、MEK/プロパンジオールの混合溶媒を除去した。このようにして、アルミニウム箔上にP(VDF-HFP)の多孔質膜を得た。 A belt-conveyor type drying furnace was prepared in which a heat exchanger was connected upstream and a boiler was further connected upstream. Steam was generated in a boiler, sent to a heat exchanger, heated, and changed to superheated steam. The temperature inside the drying furnace was set to 170°C, this superheated steam was fed into the drying furnace at a flow rate of 100 kg/hr, and the temperature inside the drying furnace was kept on standby until the temperature stabilized at 170°C. Thereafter, the aluminum foil coated with the P(VDF-HFP) solution was introduced into a drying oven and dried for 60 seconds to remove the mixed solvent of MEK/propanediol. Thus, a porous film of P(VDF-HFP) was obtained on the aluminum foil.

実施例4
乾燥炉内の温度を200℃に設定した以外は、実施例3と同様にして、アルミニウム箔上にP(VDF-HFP)の多孔質膜を得た。
Example 4
A porous film of P(VDF-HFP) was obtained on an aluminum foil in the same manner as in Example 3, except that the temperature in the drying oven was set to 200°C.

比較例4
実施例3で作製したP(VDF-HFP)溶液を、基材としてのアルミニウム箔上にキャスティングにより塗布した。このとき、塗布厚みは200μmであった。P(VDF-HFP)溶液が塗布されたアルミニウム箔を、100℃に設定した熱風乾燥機内に導入して、60秒間乾燥を行って、MEK/プロパンジオールの混合溶媒を除去した。このようにして、アルミニウム箔上にP(VDF-HFP)の多孔質膜を得た。
Comparative example 4
The P(VDF-HFP) solution prepared in Example 3 was applied by casting onto an aluminum foil as a substrate. At this time, the coating thickness was 200 μm. The aluminum foil coated with the P(VDF-HFP) solution was introduced into a hot air dryer set at 100° C. and dried for 60 seconds to remove the MEK/propanediol mixed solvent. Thus, a porous film of P(VDF-HFP) was obtained on the aluminum foil.

比較例5
実施例3で作製したP(VDF-HFP)溶液を、基材としてのアルミニウム箔上にキャスティングにより塗布した。このとき、塗布厚みは200μmであった。P(VDF-HFP)溶液が塗布されたアルミニウム箔を、表面温度80℃に設定したホットプレート上に置いて、60秒間乾燥を行って、MEK/プロパンジオールの混合溶媒を除去した。このようにして、アルミニウム箔上にP(VDF-HFP)の多孔質膜を得た。
Comparative example 5
The P(VDF-HFP) solution prepared in Example 3 was applied by casting onto an aluminum foil as a substrate. At this time, the coating thickness was 200 μm. The aluminum foil coated with the P(VDF-HFP) solution was placed on a hot plate whose surface temperature was set to 80° C. and dried for 60 seconds to remove the mixed solvent of MEK/propanediol. Thus, a porous film of P(VDF-HFP) was obtained on the aluminum foil.

〔液浸透評価〕
各実施例および各比較例で得られた多孔質膜の表面にエタノールを滴下して、エタノールが多孔質膜の裏面まで浸透したか否かを目視で評価した。結果を表1に示す。エタノールが多孔質膜の裏面まで浸透する場合には、スキン層がなく全体が多孔質化されていると判断できる。一方、エタノールが浸透しない場合は、多孔質膜の表層部にスキン層が形成されていると判断できる。
[Evaluation of liquid penetration]
Ethanol was dropped on the surface of the porous membrane obtained in each example and each comparative example, and whether or not the ethanol permeated to the back surface of the porous membrane was visually evaluated. Table 1 shows the results. When ethanol permeates to the back surface of the porous membrane, it can be determined that there is no skin layer and the entire membrane is made porous. On the other hand, when ethanol does not permeate, it can be determined that a skin layer is formed on the surface layer of the porous membrane.

〔SEM観察による評価〕
比較例1および実施例1,3で得られた多孔質膜の表面を、走査型電子顕微鏡(SEM)にて観察した。比較例1および実施例1,3で得られた多孔質膜の表面のSEM写真を、それぞれ図3~5に示す。
[Evaluation by SEM observation]
The surfaces of the porous membranes obtained in Comparative Example 1 and Examples 1 and 3 were observed with a scanning electron microscope (SEM). SEM photographs of the surfaces of the porous membranes obtained in Comparative Example 1 and Examples 1 and 3 are shown in FIGS. 3 to 5, respectively.

Figure 0007258000000001
Figure 0007258000000001

表1の結果が示すように、熱風で乾燥を行った比較例1では、エタノールが多孔質膜の裏面まで浸透しなかった。さらに、SEM画像(図3)に示すように、比較例1で得られた多孔質膜の表面には孔が確認できなかった。このことから、比較例1では、多孔質膜の表面にスキン層が形成されたことがわかる。加えて、熱風の温度を高くした比較例2、および加熱方法をホットプレートに変更した比較例3でも、エタノールが多孔質膜の裏面まで浸透せず、スキン層が形成されたことがわかる。 As the results in Table 1 show, in Comparative Example 1 in which hot air drying was performed, ethanol did not permeate the back surface of the porous membrane. Furthermore, as shown in the SEM image (FIG. 3), no pores were observed on the surface of the porous membrane obtained in Comparative Example 1. From this, it can be seen that in Comparative Example 1, a skin layer was formed on the surface of the porous membrane. In addition, in Comparative Example 2 in which the temperature of the hot air was increased, and in Comparative Example 3 in which the heating method was changed to a hot plate, ethanol did not permeate to the back surface of the porous membrane and a skin layer was formed.

一方、過熱水蒸気を用いて乾燥を行った実施例1および2では、エタノールが多孔質膜の裏面まで浸透した。さらにSEM画像(図4)に示すように、実施例1および2で得られた多孔質膜の表面に多くの孔が形成されていることが確認できた。このことから、実施例1および2で得られた多孔質膜は、スキン層が形成されることなく多孔質化されたことがわかる。なお、実施例1と実施例2とでは、得られた多孔質膜の多孔質構造に差異は見られなかった。 On the other hand, in Examples 1 and 2 in which drying was performed using superheated steam, ethanol penetrated to the back surface of the porous membrane. Furthermore, as shown in the SEM image (Fig. 4), it was confirmed that many pores were formed on the surfaces of the porous membranes obtained in Examples 1 and 2. From this, it can be seen that the porous membranes obtained in Examples 1 and 2 were made porous without forming a skin layer. In addition, between Example 1 and Example 2, there was no difference in the porous structure of the obtained porous films.

また、実施例3および4ならびに比較例4および5の結果、加えて図5より、樹脂の種類を変えた場合でも、過熱水蒸気を用いて乾燥を行うことにより、スキン層が形成されることなく多孔質化されたことがわかる。このことから、過熱水蒸気を用いて乾燥を行うことによるスキン層の形成抑制効果は、水が貧溶媒となる樹脂(すなわち、非水溶性高分子)に対して発揮されることがわかる。 In addition, from the results of Examples 3 and 4 and Comparative Examples 4 and 5, as well as from FIG. 5, even when the type of resin is changed, the skin layer is not formed by drying with superheated steam. It turns out that it was made porous. From this, it can be seen that the effect of suppressing the formation of a skin layer by drying with superheated steam is exerted on resins (that is, water-insoluble polymers) for which water is a poor solvent.

上記実施例において、樹脂多孔質体の製造に必要な工程は、非水溶性高分子の溶液の調製と、乾燥による混合溶媒の除去である。よって以上のことから、本発明によれば、非水溶性高分子を用いて、少ない工程数で、スキン層の形成が抑制された樹脂多孔質体を製造できることがわかる。 In the above examples, the steps required for producing the porous resin material are the preparation of the water-insoluble polymer solution and the removal of the mixed solvent by drying. Therefore, according to the present invention, it is possible to produce a porous resin body in which the formation of a skin layer is suppressed using a water-insoluble polymer with a small number of steps.

10 乾燥炉
20 過熱水蒸気導入管
30 第1バルブ
40 熱交換器
50 制御盤
60 水蒸気導入管
70 第2バルブ
80 ボイラー
10 drying furnace 20 superheated steam introduction pipe 30 first valve 40 heat exchanger 50 control panel 60 steam introduction pipe 70 second valve 80 boiler

Claims (5)

非水溶性高分子の良溶媒および前記非水溶性高分子の貧溶媒を含有する混合溶媒に、前記非水溶性高分子が溶解した溶液を調製する工程と、
前記溶液を乾燥して前記混合溶媒を除去する工程と、
を包含し、
前記貧溶媒の沸点が、前記良溶媒の沸点よりも高く、
前記溶液の乾燥を、過熱水蒸気を用いて行う、
樹脂多孔質体の製造方法。
preparing a solution in which the water-insoluble polymer is dissolved in a mixed solvent containing a good solvent for the water-insoluble polymer and a poor solvent for the water-insoluble polymer;
drying the solution to remove the mixed solvent;
encompasses
The boiling point of the poor solvent is higher than the boiling point of the good solvent,
drying the solution with superheated steam;
A method for producing a resin porous body.
前記溶液を調製する工程の後であって前記溶液を乾燥する工程の前に、基材の表面上に前記調製した非水溶性高分子の溶液を薄膜状に塗工する工程をさらに包含する、請求項1に記載の製造方法。 After the step of preparing the solution and before the step of drying the solution, the step of coating the prepared solution of the water-insoluble polymer on the surface of the substrate in a thin film form, further comprising: The manufacturing method according to claim 1. 前記基材が、二次電池の電極である、請求項2に記載の製造方法。 3. The manufacturing method according to claim 2, wherein the substrate is an electrode of a secondary battery. 前記非水溶性高分子が、エチレン-ビニルアルコール共重合体、またはフッ化ビニリデン-ヘキサフルオロプロピレン共重合体である、請求項1~3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the water-insoluble polymer is an ethylene-vinyl alcohol copolymer or a vinylidene fluoride-hexafluoropropylene copolymer. 前記溶液の乾燥を、140℃以上の温度で過熱水蒸気を用いて行う、請求項1~4のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the drying of the solution is performed using superheated steam at a temperature of 140°C or higher.
JP2020173668A 2020-10-15 2020-10-15 Manufacturing method of resin porous body Active JP7258000B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020173668A JP7258000B2 (en) 2020-10-15 2020-10-15 Manufacturing method of resin porous body
CN202111200853.6A CN114369283B (en) 2020-10-15 2021-10-14 Method for producing porous resin body
US17/502,002 US11926723B2 (en) 2020-10-15 2021-10-14 Production method of resin porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020173668A JP7258000B2 (en) 2020-10-15 2020-10-15 Manufacturing method of resin porous body

Publications (2)

Publication Number Publication Date
JP2022065253A JP2022065253A (en) 2022-04-27
JP7258000B2 true JP7258000B2 (en) 2023-04-14

Family

ID=81137819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020173668A Active JP7258000B2 (en) 2020-10-15 2020-10-15 Manufacturing method of resin porous body

Country Status (3)

Country Link
US (1) US11926723B2 (en)
JP (1) JP7258000B2 (en)
CN (1) CN114369283B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143848A (en) 1998-11-13 2000-05-26 Daicel Chem Ind Ltd Ink image-receiving sheet and preparation thereof
JP2000296668A (en) 1999-04-14 2000-10-24 Daicel Chem Ind Ltd Ink receiving sheet and manufacture thereof
JP2004111157A (en) 2002-09-17 2004-04-08 Matsushita Electric Ind Co Ltd Secondary battery and its manufacturing method
WO2013137237A1 (en) 2012-03-12 2013-09-19 三菱レイヨン株式会社 Porous membrane production method, and porous membrane drying device
JP2017031299A (en) 2015-07-31 2017-02-09 株式会社日本触媒 Foam forming hydrophilic crosslinked polymer and manufacturing method therefor
JP2017164726A (en) 2016-03-18 2017-09-21 宇部興産株式会社 Method for producing polyimide porous membrane and polyimide porous membrane
JP2021030666A (en) 2019-08-29 2021-03-01 トヨタ自動車株式会社 Method for manufacturing porous body of water-insoluble polymer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3671345A (en) * 1969-12-11 1972-06-20 Gen Tire & Rubber Co Poromeric material having a patent leather-type finish and process for making
US5238636A (en) 1988-03-07 1993-08-24 Rikagaku Kenkyusho Processes for producing porous polymer films and composite films
WO1989008679A1 (en) * 1988-03-07 1989-09-21 Rikagaku Kenkyusho Process for producing porous polymer membrane and composite polymer membrane
US6177181B1 (en) 1996-12-10 2001-01-23 Daicel Chemical Industries, Ltd. Porous films, process for producing the same, and laminate films and recording sheets made with the use of the porous films
JP4502412B2 (en) * 1996-12-10 2010-07-14 ダイセル化学工業株式会社 Porous membrane and method for producing the same
US8147732B2 (en) * 2004-01-20 2012-04-03 Porous Power Technologies, Llc Highly microporous polymers and methods for producing and using the same
JP5567262B2 (en) * 2008-09-08 2014-08-06 帝人株式会社 Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP2011236292A (en) 2010-05-07 2011-11-24 Kri Inc Polyvinylidene fluoride porous body
EP2725041A4 (en) * 2011-06-22 2014-12-24 Daikin Ind Ltd Fluoropolymer, production method for fluoropolymer, and porous polymer film
WO2014002937A1 (en) 2012-06-28 2014-01-03 株式会社クレハ Method for producing resin film for non-aqueous electrolyte secondary battery and resin film for non-aqueous electrolyte secondary battery
JP7148422B2 (en) * 2019-01-22 2022-10-05 トヨタ自動車株式会社 Manufacturing method of electrode-integrated separator
JP7303987B2 (en) * 2020-03-06 2023-07-06 トヨタ自動車株式会社 Separator-integrated electrode manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143848A (en) 1998-11-13 2000-05-26 Daicel Chem Ind Ltd Ink image-receiving sheet and preparation thereof
JP2000296668A (en) 1999-04-14 2000-10-24 Daicel Chem Ind Ltd Ink receiving sheet and manufacture thereof
JP2004111157A (en) 2002-09-17 2004-04-08 Matsushita Electric Ind Co Ltd Secondary battery and its manufacturing method
WO2013137237A1 (en) 2012-03-12 2013-09-19 三菱レイヨン株式会社 Porous membrane production method, and porous membrane drying device
JP2017031299A (en) 2015-07-31 2017-02-09 株式会社日本触媒 Foam forming hydrophilic crosslinked polymer and manufacturing method therefor
JP2017164726A (en) 2016-03-18 2017-09-21 宇部興産株式会社 Method for producing polyimide porous membrane and polyimide porous membrane
JP2021030666A (en) 2019-08-29 2021-03-01 トヨタ自動車株式会社 Method for manufacturing porous body of water-insoluble polymer

Also Published As

Publication number Publication date
US11926723B2 (en) 2024-03-12
CN114369283A (en) 2022-04-19
US20220119613A1 (en) 2022-04-21
CN114369283B (en) 2023-08-18
JP2022065253A (en) 2022-04-27

Similar Documents

Publication Publication Date Title
KR102335587B1 (en) Separator for secondary battery and secondary battery
JP7281086B2 (en) Method for manufacturing porous body
JP7240608B2 (en) Method for producing porous body of water-insoluble polymer
KR102544659B1 (en) Method of manufacturing resin porous body
JP7237049B2 (en) Manufacturing method of resin porous body
JP7258000B2 (en) Manufacturing method of resin porous body
JP7465428B2 (en) Method for producing porous resin body
JP7303987B2 (en) Separator-integrated electrode manufacturing method
JP7276691B2 (en) Separator-integrated electrode manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230404

R150 Certificate of patent or registration of utility model

Ref document number: 7258000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150