JP7257558B1 - Insulated wires, coils, rotating electrical machines, and electric/electronic equipment - Google Patents

Insulated wires, coils, rotating electrical machines, and electric/electronic equipment Download PDF

Info

Publication number
JP7257558B1
JP7257558B1 JP2022002597A JP2022002597A JP7257558B1 JP 7257558 B1 JP7257558 B1 JP 7257558B1 JP 2022002597 A JP2022002597 A JP 2022002597A JP 2022002597 A JP2022002597 A JP 2022002597A JP 7257558 B1 JP7257558 B1 JP 7257558B1
Authority
JP
Japan
Prior art keywords
insulated wire
less
layer
conductor
insulating coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022002597A
Other languages
Japanese (ja)
Other versions
JP2023102177A (en
Inventor
大介 武藤
秀雄 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Essex Furukawa Magnet Wire Japan Co Ltd
Original Assignee
Essex Furukawa Magnet Wire Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Essex Furukawa Magnet Wire Japan Co Ltd filed Critical Essex Furukawa Magnet Wire Japan Co Ltd
Priority to JP2022002597A priority Critical patent/JP7257558B1/en
Priority to PCT/JP2022/032384 priority patent/WO2023135852A1/en
Application granted granted Critical
Publication of JP7257558B1 publication Critical patent/JP7257558B1/en
Publication of JP2023102177A publication Critical patent/JP2023102177A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Insulated Conductors (AREA)

Abstract

【課題】乾燥条件下における部分放電開始電圧を効果的に高めることができる絶縁電線、及び、この絶縁電線を用いたコイル、回転電機及び電気・電子機器を提供する。【解決手段】平角導体と、当該平角導体の外周を被覆する絶縁皮膜とを有する絶縁電線であって、前記絶縁電線の少なくとも1面において、前記絶縁皮膜が次の(a)~(c)を満たし:(a)厚さの最小値が75μm以上350μm以下、(b)厚さの最大値と最小値の差が10μm以下、(c)厚さの最小値を最大値で除した値が0.900越え1.000以下、前記(a)~(c)を満たす面同士を重ね合わせたときに生じる空隙の大きさが20μm以下である、絶縁電線。【選択図】なしAn insulated wire capable of effectively increasing a partial discharge inception voltage under dry conditions, and a coil, rotating electric machine, and electric/electronic device using the insulated wire are provided. An insulated wire having a rectangular conductor and an insulating film covering the outer circumference of the rectangular conductor, wherein the insulating film has the following (a) to (c) on at least one surface of the insulated wire. Fulfillment: (a) the minimum thickness is 75 μm or more and 350 μm or less, (b) the difference between the maximum and minimum thickness is 10 μm or less, (c) the value obtained by dividing the minimum thickness by the maximum value is 0 .900 or more and 1.000 or less, and an insulated wire having a size of a gap of 20 μm or less generated when the surfaces satisfying the above (a) to (c) are overlapped with each other. [Selection figure] None

Description

本発明は、絶縁電線、コイル、回転電機および電気・電子機器に関する。 The present invention relates to insulated wires, coils, rotating electric machines, and electrical/electronic equipment.

高速スイッチング素子、インバータモーター、変圧器等の電気・電子機器用コイルには、マグネットワイヤとして、線状金属導体の外周面に樹脂製の絶縁皮膜を備えた絶縁電線が用いられている。絶縁電線の絶縁皮膜は、熱硬化性樹脂を塗布・焼付けしたり、熱可塑性樹脂を押出被覆したり、あるいはこれらを組み合わせたりして形成されている。
特に近年、エネルギー資源の枯渇や環境問題を背景にハイブリッド自動車や電気自動車など、電気モータを動力とした車両や輸送機が急速に普及している。これらの動力性能や燃費向上などの観点から、搭載される電気モータには高出力化と小型化が要求されている。
2. Description of the Related Art An insulated wire having a resin insulating film on the outer peripheral surface of a linear metal conductor is used as a magnet wire in coils for electric and electronic equipment such as high-speed switching elements, inverter motors, and transformers. The insulation film of the insulated wire is formed by applying and baking a thermosetting resin, extruding and coating a thermoplastic resin, or combining these.
In particular, in recent years, due to the depletion of energy resources and environmental problems, vehicles and transport machines powered by electric motors, such as hybrid cars and electric cars, are rapidly spreading. From the viewpoint of power performance and fuel efficiency improvement, there is a demand for high output and miniaturization of electric motors to be mounted.

導体を被覆する絶縁皮膜の視点から、絶縁電線の性能や使い勝手を改良する技術は、古くから多数報告されている。例えば特許文献1には、断面矩形導体上に、被覆層として、少なくとも1層の熱硬化性樹脂層および少なくとも1層の熱可塑性樹脂層をこの順に有する絶縁電線であって、該被覆層の厚さが、該断面矩形導体上の4つの辺部上に形成される各々の辺において、最大値と最小値の差がいずれも20μm以下であって、かつ全ての辺の被覆層の厚さの最も大きな値を最も小さな値で除した値が1.3以上であることを特徴とする絶縁電線が開示されている。特許文献1記載の技術によれば、ステータのスロット断面積に対する導体の断面積の比率(占積率)を高めることができ、また、高い圧力でコイル成型した場合にも皮膜形状の変化が生じにくい絶縁電線を提供できるとされる。 Many reports have been made on techniques for improving the performance and usability of insulated wires from the viewpoint of insulating films covering conductors. For example, Patent Document 1 discloses an insulated wire having, as coating layers, at least one thermosetting resin layer and at least one thermoplastic resin layer in this order on a conductor with a rectangular cross section, wherein the thickness of the coating layer is However, the difference between the maximum value and the minimum value on each side formed on the four sides of the rectangular cross-section conductor is 20 μm or less, and the thickness of the coating layer on all sides An insulated wire is disclosed in which the value obtained by dividing the largest value by the smallest value is 1.3 or more. According to the technique described in Patent Document 1, the ratio (space factor) of the cross-sectional area of the conductor to the cross-sectional area of the slot of the stator can be increased, and the film shape changes even when the coil is molded under high pressure. It is said that it can provide insulated wires that are resistant to corrosion.

また特許文献2には、扁平な断面形状を有する平角導線と、前記平角導線の外周面を被覆するポリアミドイミド樹脂で形成された厚さが1.5μm以上5μm以下の樹脂絶縁層と、を備えた絶縁電線であって、前記絶縁電線をJISC3216-3:2011に基づいて急激伸張試験した後の側面視での破断点から長さ4mmの所定幅の部分における前記平角導線の露出率が7%以下であり、且つ微小硬度計により求められる前記樹脂絶縁層のヤング率が9.0×10N/mm以上であり、前記樹脂絶縁層の厚さにおいて、長辺中央対応部分、長辺端対応部分、角対応部分、及び短辺対応部分の部分間の厚さの差が3μm以下である絶縁電線が開示されている。特許文献2記載の技術によれば、平角導線への樹脂絶縁層の密着性に優れ、樹脂絶縁層の厚さの均一性が高く、且つ耐外傷性に優れる絶縁電線が提供できるとされる。 Further, Patent Document 2 discloses a flat conductor wire having a flat cross-sectional shape, and a resin insulation layer having a thickness of 1.5 μm or more and 5 μm or less made of a polyamide-imide resin covering the outer peripheral surface of the flat conductor wire. In the insulated wire, the exposure rate of the flat conductor in a portion with a predetermined width of 4 mm from the breaking point in side view after the rapid elongation test of the insulated wire based on JISC3216-3:2011 is 7%. and the Young's modulus of the resin insulation layer determined by a micro hardness tester is 9.0×10 3 N/mm 2 or more, and the thickness of the resin insulation layer is: An insulated wire is disclosed in which the thickness difference between the end corresponding portion, the corner corresponding portion and the short side corresponding portion is 3 μm or less. According to the technique described in Patent Document 2, it is possible to provide an insulated wire that has excellent adhesion of the resin insulation layer to the rectangular conductor, high uniformity of the thickness of the resin insulation layer, and excellent resistance to external damage.

国際公開第2017/142036号WO2017/142036 特開2020-155421号公報JP 2020-155421 A

自動車などに搭載される電気モータは、通常はエンジンルームに搭載され、厳しい高温環境に晒される。また、電気モータの高出力化と小型化も、電気モータを高温にする一因となる。本発明者は、このような高温環境では空気が乾燥状態となり、絶縁皮膜も乾燥状態となることに着目し、絶縁電線の乾燥環境下における部分放電開始電圧をより効果的に高めることができれば、電気モータのさらなる性能の向上に貢献できるとの着想に至った。 Electric motors mounted in automobiles and the like are usually mounted in the engine room and exposed to a severe high-temperature environment. In addition, increasing the output and miniaturization of electric motors also contributes to the increase in temperature of electric motors. The inventors of the present invention focused on the fact that the air becomes dry in such a high-temperature environment, and the insulation film also becomes dry. We came up with the idea that we could contribute to the further improvement of the performance of electric motors.

本発明は、乾燥条件下における部分放電開始電圧を効果的に高めることができる絶縁電線、及び、この絶縁電線を用いたコイル、回転電機及び電気・電子機器を提供することを課題とする。 An object of the present invention is to provide an insulated wire capable of effectively increasing the partial discharge inception voltage under dry conditions, and a coil, rotating electric machine, and electric/electronic device using the insulated wire.

本発明者らは、上記課題を解決すべく検討を重ねた。その結果、平角導体を用いた絶縁電線において、絶縁皮膜の厚さを所定範囲内で厚膜に制御した上で、絶縁電線を重ね合わせたときに生じる絶縁皮膜間の空隙の大きさについては、従来よりも格段に抑えることにより、乾燥条件下における部分放電開始電圧を効果的に高めることができることを見出した。
本発明は、これらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
The present inventors have made extensive studies to solve the above problems. As a result, in an insulated wire using a rectangular conductor, after controlling the thickness of the insulating film to a thick film within a predetermined range, the size of the gap between the insulating films generated when the insulated wires are overlapped is The present inventors have found that the partial discharge inception voltage under dry conditions can be effectively increased by significantly suppressing the voltage as compared with the prior art.
The present invention has been completed through further studies based on these findings.

すなわち、本発明の上記課題は、以下の手段によって解決された。
〔1〕
平角導体と、当該平角導体の外周を被覆する絶縁皮膜とを有する絶縁電線であって、
前記絶縁電線の少なくとも1面において、前記絶縁皮膜が次の(a)~(c)を満たし:
(a)厚さの最小値が75μm以上350μm以下、
(b)厚さの最大値と最小値の差が10μm以下、
(c)厚さの最小値を最大値で除した値が0.900越え1.000以下、
前記(a)~(c)を満たす面同士を重ね合わせたときに生じる空隙の大きさが20μm以下である、絶縁電線。
〔2〕
前記絶縁皮膜がエナメル層を含む、〔1〕に記載の絶縁電線。
〔3〕
前記エナメル層がポリアミドイミド及び/又はポリイミドを含む熱硬化性樹脂層である、〔2〕に記載の絶縁電線。
〔4〕
前記絶縁皮膜が押出層を含む、〔1〕~〔3〕のいずれか1項に記載の絶縁電線。
〔5〕
前記押出層がポリフェニレンスルフィド及び/又はポリエーテルエーテルケトンを含む熱可塑性樹脂層である、〔4〕に記載の絶縁電線。
〔6〕
前記絶縁皮膜が、前記導体を被覆するエナメル層と、当該エナメル層を被覆する押出層とを有する、〔1〕に記載の絶縁電線。
〔7〕
前記エナメル層がポリアミドイミド及び/又はポリイミドを含む熱硬化性樹脂層であり、前記押出層がポリフェニレンスルフィド及び/又はポリエーテルエーテルケトンを含む熱可塑性樹脂層である、〔6〕に記載の絶縁電線。
〔8〕
〔1〕~〔7〕のいずれか1項に記載の絶縁電線を用いたコイル。
〔9〕
前記絶縁電線が、前記(a)~(c)を満たす面同士を重ね合わせて配される、〔8〕に記載のコイル。
〔10〕
〔8〕又は〔9〕に記載のコイルを有する回転電機、電気・電子機器。
That is, the above problems of the present invention have been solved by the following means.
[1]
An insulated wire having a rectangular conductor and an insulating coating covering the outer periphery of the rectangular conductor,
On at least one surface of the insulated wire, the insulating coating satisfies the following (a) to (c):
(a) the minimum thickness is 75 μm or more and 350 μm or less;
(b) the difference between the maximum and minimum thickness is 10 μm or less;
(c) the value obtained by dividing the minimum thickness by the maximum thickness is greater than 0.900 and less than or equal to 1.000;
An insulated wire, wherein a gap of 20 μm or less is generated when the surfaces satisfying the above (a) to (c) are overlapped with each other.
[2]
The insulated wire according to [1], wherein the insulating coating includes an enamel layer.
[3]
The insulated wire according to [2], wherein the enamel layer is a thermosetting resin layer containing polyamideimide and/or polyimide.
[4]
The insulated wire according to any one of [1] to [3], wherein the insulating coating includes an extruded layer.
[5]
The insulated wire according to [4], wherein the extruded layer is a thermoplastic resin layer containing polyphenylene sulfide and/or polyetheretherketone.
[6]
The insulated wire according to [1], wherein the insulating coating has an enamel layer covering the conductor and an extruded layer covering the enamel layer.
[7]
The insulated wire according to [6], wherein the enamel layer is a thermosetting resin layer containing polyamideimide and/or polyimide, and the extruded layer is a thermoplastic resin layer containing polyphenylene sulfide and/or polyetheretherketone. .
[8]
A coil using the insulated wire according to any one of [1] to [7].
[9]
The coil according to [8], wherein the insulated wires are arranged so that the surfaces satisfying the above (a) to (c) are overlapped.
[10]
[8] or [9] rotating electrical machine, electrical and electronic equipment having the coil.

本発明ないし明細書において、「~」を用いて表される数値範囲は、その前後に記載される数値を下限値及び上限値として含む範囲を意味する。 In the present invention or the specification, a numerical range represented by "-" means a range including the numerical values described before and after it as lower and upper limits.

本発明の絶縁電線、コイル、回転電機および電気・電子機器は、絶縁電線が上記の構造的特徴を有し、乾燥条件下における部分放電開始電圧が効果的に高められる。 In the insulated wire, coil, rotating electric machine, and electric/electronic device of the present invention, the insulated wire has the above structural characteristics, and the partial discharge inception voltage under dry conditions is effectively increased.

図1は、本発明の絶縁電線の一実施形態を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of the insulated wire of the present invention. 図2は、本発明の絶縁電線の別の実施形態を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing another embodiment of the insulated wire of the present invention. 図3は、実施例で評価した部分放電開始電圧(PDIV)、及び空隙の測定における2つの絶縁電線の模式的な配置図である。FIG. 3 is a schematic layout diagram of two insulated wires in measuring the partial discharge inception voltage (PDIV) and air gap evaluated in the examples. 図4は、本発明の電気・電子機器に用いられるステータの好ましい形態を示す概略斜視図である。FIG. 4 is a schematic perspective view showing a preferred form of the stator used in the electric/electronic device of the present invention. 図5は、本発明の電気・電子機器に用いられるステータの好ましい形態を示す概略分解斜視図である。FIG. 5 is a schematic exploded perspective view showing a preferred form of the stator used in the electrical/electronic equipment of the present invention.

[絶縁電線]
本発明の絶縁電線は、平角導体と、該導体の外周を覆う絶縁皮膜とを有する。
[Insulated wire]
The insulated wire of the present invention has a rectangular conductor and an insulating coating covering the outer periphery of the conductor.

図1に、本発明の絶縁電線の一実施形態における断面図を示す。絶縁電線1は、平角導体11と、平角導体11の外周面に形成された熱硬化性樹脂層(エナメル層)12とを有する。
また図2に、本発明の絶縁電線の別の実施形態における断面図を示す。この絶縁電線2は、平角導体21と、平角導体21の外周面に形成された熱硬化性樹脂層(エナメル層)22と、当該熱硬化性樹脂層の外周面に形成された熱可塑性樹脂層(押出層)23とを有する。図1、2に示されるように、本発明の絶縁電線の断面形状は、平角導体の断面形状と実質的に相似形である。
FIG. 1 shows a cross-sectional view of an embodiment of the insulated wire of the present invention. The insulated wire 1 has a rectangular conductor 11 and a thermosetting resin layer (enamel layer) 12 formed on the outer peripheral surface of the rectangular conductor 11 .
Moreover, FIG. 2 shows a cross-sectional view of another embodiment of the insulated wire of the present invention. This insulated wire 2 includes a rectangular conductor 21, a thermosetting resin layer (enamel layer) 22 formed on the outer peripheral surface of the rectangular conductor 21, and a thermoplastic resin layer formed on the outer peripheral surface of the thermosetting resin layer. (extruded layer) 23; As shown in FIGS. 1 and 2, the cross-sectional shape of the insulated wire of the present invention is substantially similar to the cross-sectional shape of the rectangular conductor.

なお、本発明ないし本明細書では、絶縁電線の長手方向と直交する断面形状で、導体及び絶縁皮膜を含めた絶縁電線の形状を、単に断面形状と称する場合がある。本発明における断面形状の説明は、単に切断面のみが特定の形状をしていることを意味するのでなく、絶縁電線全体の長手方向に、この断面形状が連続してつながっており、特段の断りがない限り、絶縁電線の長手方向のいずれの部分に対しても、この方向と直交する断面形状は実質的に同じであることを意味する。 In the present invention and this specification, the cross-sectional shape of the insulated wire including the conductor and the insulating film, which is perpendicular to the longitudinal direction of the insulated wire, may be simply referred to as the cross-sectional shape. The description of the cross-sectional shape in the present invention does not simply mean that only the cut surface has a specific shape, but that the cross-sectional shape is continuously connected in the longitudinal direction of the entire insulated wire. Unless otherwise specified, it means that the cross-sectional shape perpendicular to this direction is substantially the same for any portion of the insulated wire in its longitudinal direction.

(空隙の大きさ)
本発明の絶縁電線は、当該絶縁電線を、後述する(a)~(c)を満たす面同士を重ね合わせたときに生じる空隙の大きさが20μm以下である。当該空隙の大きさを20μm以下にすることにより、乾燥環境下において、空隙に由来する部分放電を十分に抑制することができ、部分放電開始電圧を向上させることができる。上記と同様の観点から、前記空隙の大きさは15μm以下が好ましく、10μm以下がより好ましく、7μm以下がさらに好ましく、6μm以下がさらに好ましい。また、前記空隙は無くてもよいが、通常は0.1μm以上であり、0.2μm以上とするのが実際的である。空隙の大きさは、上記の面同士を重ね合わせた絶縁電線の断面観察において、当該面に対して垂直方向における空隙の長さが最大になる当該長さを意味する。この空隙の大きさは、上記の面同士を重ね合わせた絶縁電線の長手方向に沿って、実質的に同じである。前記空隙の大きさは、後述する[実施例]の項に記載の方法により決定される。
本発明ないし本明細書において「絶縁電線の面」とは、絶縁電線の断面形状における長辺又は短辺が絶縁電線の長手方向に連続してつながって形成される面を意味する。したがって、本発明の絶縁電線は4つの面を持つ。また、「面同士を重ね合わせる」とは、面同士を水平ないし略水平に重ね合わせて接触させることを意味する。「面同士を重ね合わせる」形態としては、絶縁電線の断面形状における長辺に対応する面同士を重ね合わせてもよく、短辺に対応する面同士を重ね合わせてもよく、長辺に対応する面と短辺に対応する面とを重ね合わせもよい。後述する(a)~(c)を満たすのが、少なくとも、2つの長辺に対応する2面であり、これら2面同士を重ね合わせたときに、生じる空隙の大きさが20μm以下であることが好ましい。
(Gap size)
The insulated wire of the present invention has a gap of 20 μm or less in size when the surfaces of the insulated wire that satisfy (a) to (c) described later are overlapped with each other. By setting the size of the voids to 20 μm or less, partial discharge caused by the voids can be sufficiently suppressed in a dry environment, and the partial discharge inception voltage can be improved. From the same viewpoint as above, the size of the voids is preferably 15 μm or less, more preferably 10 μm or less, still more preferably 7 μm or less, and even more preferably 6 μm or less. Also, although the voids may be omitted, they are usually 0.1 μm or more, and more practically 0.2 μm or more. The size of the void means the maximum length of the void in the direction perpendicular to the plane when observing the cross section of the insulated wire with the planes superimposed. The size of this gap is substantially the same along the longitudinal direction of the insulated wire in which the surfaces are overlapped. The size of the voids is determined by the method described in the section [Examples] below.
In the present invention or in this specification, the term "surface of an insulated wire" means a surface formed by connecting the long sides or short sides of the cross-sectional shape of the insulated wire continuously in the longitudinal direction of the insulated wire. Therefore, the insulated wire of the present invention has four faces. In addition, "overlapping the surfaces" means that the surfaces are horizontally or substantially horizontally overlapped and brought into contact with each other. As a form of "overlapping faces", the faces corresponding to the long sides in the cross-sectional shape of the insulated wire may be overlapped, the faces corresponding to the short sides may be overlapped, and the faces corresponding to the long sides may be overlapped. The face and the face corresponding to the short side may be superimposed. At least two surfaces corresponding to two long sides satisfy (a) to (c) described later, and the size of the gap generated when these two surfaces are overlapped is 20 μm or less. is preferred.

<導体>
本発明に用いる平角導体としては、従来、絶縁電線で用いられているものを使用することができ、銅線、アルミニウム線等の金属導体が挙げられる。本発明では、銅の平角導体が好ましい。この銅は、溶接時のボイドの発生を防ぐ観点から、酸素含有量が30ppm以下の低酸素銅が好ましく、20ppm以下の低酸素銅または無酸素銅がより好ましい。
なお、導体がアルミニウムの場合、必要な機械強度を考慮したうえで、用途に応じて様々なアルミニウム合金を用いることができる。例えば回転電機のような用途に対しては、高い電流値を得られる純度99.00%以上の純アルミニウムが好ましい。
<Conductor>
As the rectangular conductor used in the present invention, those conventionally used for insulated wires can be used, and examples thereof include metal conductors such as copper wires and aluminum wires. In the present invention, copper rectangular conductors are preferred. This copper is preferably low-oxygen copper with an oxygen content of 30 ppm or less, more preferably low-oxygen copper or oxygen-free copper with an oxygen content of 20 ppm or less, from the viewpoint of preventing the generation of voids during welding.
When the conductor is aluminum, various aluminum alloys can be used depending on the application, taking into account the required mechanical strength. For applications such as rotating electric machines, for example, pure aluminum with a purity of 99.00% or more is preferable because it provides a high current value.

本発明で使用する平角導体は、長手方向と直交する断面形状が矩形(正方形を含む)である。平角導体を使用することで、巻線時にステータコアのスロットに対する占積率を高めることができる。
平角導体のサイズは用途に応じて設定すればよく特に制限はない。例えば、幅(断面形状における長辺)は1.0~5.0mmとすることができ、1.4~4.0mmとしてもよく、厚み(断面形状における短辺)は0.4~3.0mmとすることができ、0.5~2.5mmとしてもよい。また、平角導体は、断面正方形よりも、断面長方形が一般的である。用途が回転電機の場合には、断面の4隅の面取り(曲率半径r)は、ステータのスロット内での導体占積率を高める観点から、小さい方が好ましい。他方、4隅への電界集中による部分放電現象を抑制する観点からは、曲率半径rは大きい方が好ましい。例えば、曲率半径rは0.6mm以下とすることができ、0.2~0.4mmがより好ましい。
また、複数の導体を撚り合わせ、あるいは、組合せて平角導体を形成してもよい。
The rectangular conductor used in the present invention has a rectangular (including square) cross-sectional shape perpendicular to the longitudinal direction. By using rectangular conductors, it is possible to increase the space factor with respect to the slots of the stator core during winding.
The size of the rectangular conductor may be set according to the application and is not particularly limited. For example, the width (long side in cross-sectional shape) can be 1.0 to 5.0 mm, and may be 1.4 to 4.0 mm, and the thickness (short side in cross-sectional shape) is 0.4 to 3.0 mm. It can be 0 mm, and may be 0.5 to 2.5 mm. Further, the rectangular conductor generally has a rectangular cross section rather than a square cross section. When the application is a rotating electric machine, the chamfering (curvature radius r) of the four corners of the cross section is preferably as small as possible from the viewpoint of increasing the conductor space factor in the slots of the stator. On the other hand, from the viewpoint of suppressing the partial discharge phenomenon due to the electric field concentration at the four corners, the radius of curvature r is preferably large. For example, the curvature radius r can be 0.6 mm or less, more preferably 0.2 to 0.4 mm.
Also, a rectangular conductor may be formed by twisting or combining a plurality of conductors.

<絶縁皮膜>
導体の周囲には絶縁皮膜が形成される。この絶縁皮膜は単層でもよく、2層以上の複層構造であってもよい。本発明の絶縁電線における絶縁皮膜は、ワニスを焼付けてなるエナメル層を含むことが好ましい。また、熱可塑性樹脂を押出被覆した押出層を含むことも好ましい。
前記絶縁皮膜が複層構造である場合、導体と接する内側の層(最内層)をエナメル層(好ましくは熱硬化性樹脂層)とし、当該エナメル層の外周上に熱可塑性樹脂の押出層を設けることが好ましい。特に最内層がイミド結合を有する熱硬化性樹脂を含むことで、導体との密着性および層間密着性をより向上させることができる。
<Insulating film>
An insulating film is formed around the conductor. This insulating coating may be a single layer or may have a multi-layer structure of two or more layers. The insulating coating in the insulated wire of the present invention preferably contains an enamel layer formed by baking varnish. It is also preferred to include an extruded layer that is extrusion coated with a thermoplastic resin.
When the insulating film has a multilayer structure, the inner layer (innermost layer) in contact with the conductor is an enamel layer (preferably a thermosetting resin layer), and an extruded layer of thermoplastic resin is provided on the outer periphery of the enamel layer. is preferred. In particular, when the innermost layer contains a thermosetting resin having an imide bond, the adhesion to the conductor and the interlayer adhesion can be further improved.

本発明の絶縁電線は、4面のうち少なくとも1面において(好ましくは2面のそれぞれにおいて、より好ましくは長辺に対応する2面又は短辺に対応する2面において、さらに好ましくは3面のそれぞれにおいて、さらに好ましく4面のそれぞれにおいて)、絶縁皮膜が次の(a)~(c)を満たす。
(a)厚さの最小値が75μm以上350μm以下。
(b)厚さの最大値と最小値の差が10μm以下。
(c)厚さの最小値を最大値で除した値が0.900越え1.000以下。
In the insulated wire of the present invention, at least one of the four faces (preferably on each of the two faces, more preferably on the two faces corresponding to the long sides or the two faces corresponding to the short sides, more preferably three faces) The insulating coating satisfies the following (a) to (c) on each side (more preferably on each of the four sides).
(a) The minimum thickness is 75 μm or more and 350 μm or less.
(b) The difference between the maximum thickness and the minimum thickness is 10 μm or less.
(c) The value obtained by dividing the minimum thickness by the maximum thickness is more than 0.900 and less than or equal to 1.000.

絶縁皮膜の厚さは、絶縁電線の長手方向に直行する面について、マイクロスコープを用いて断面画像を解析することにより決定することができる。絶縁皮膜の厚さの測定では、平角導体の断面形状において、4隅の面取り部分(カーブする部分)は考慮せずに、4つの真っ直ぐな辺に沿った直線を基準として、当該辺に対して垂直方向の、絶縁皮膜の厚さを測定する。 The thickness of the insulating coating can be determined by analyzing a cross-sectional image of the surface perpendicular to the longitudinal direction of the insulated wire using a microscope. In the measurement of the thickness of the insulating film, the straight lines along the four straight sides are used as the reference, without considering the chamfered parts (curved parts) at the four corners of the rectangular conductor cross section. Measure the thickness of the insulating film in the vertical direction.

上記(a)の絶縁皮膜の厚さの最小値は、乾燥条件下の部分放電開始電圧をより高め、占積率も向上させる観点から、80~330μmが好ましく、100~320μmがより好ましく、120~310μmがさらに好ましく、140~300μmがさらに好ましい。
上記(b)の、絶縁皮膜の厚さの最大値と最小値の差は、乾燥条件下の部分放電開始電圧をより高める観点から、9μm以下であることが好ましく、8μm以下がより好ましく、7μm以下がさらに好ましく、6μm以下がさらに好ましく、5μm以下がさらに好ましく、4μm以下がさらに好ましく、3μm以下がさらに好ましい。
上記(c)の、絶縁皮膜の厚さの最小値を最大値で除した値は、乾燥条件下の部分放電開始電圧をより高める観点から、0.920以上1.000以下が好ましく、0.930以上1.000以下がより好ましく、0.940以上1.000以下がさらに好ましく、0.950以上1.000以下がさらに好ましく、0.960以上1.000以下がさらに好ましく、0.970以上1.000以下がさらに好ましく、0.980以上1.000以下がさらに好ましく、0.985以上0.999以下がさらに好ましく、0.985以上0.998以下がさらに好ましい。
The minimum value of the thickness of the insulating coating in (a) above is preferably 80 to 330 μm, more preferably 100 to 320 μm, more preferably 120 μm, from the viewpoint of further increasing the partial discharge inception voltage under dry conditions and improving the space factor. ~310 µm is more preferred, and 140 to 300 µm is even more preferred.
The difference between the maximum value and the minimum value of the thickness of the insulating film in (b) above is preferably 9 μm or less, more preferably 8 μm or less, more preferably 7 μm, from the viewpoint of further increasing the partial discharge inception voltage under dry conditions. The following is more preferable, 6 μm or less is more preferable, 5 μm or less is still more preferable, 4 μm or less is still more preferable, and 3 μm or less is even more preferable.
In the above (c), the value obtained by dividing the minimum value of the thickness of the insulating film by the maximum value is preferably 0.920 or more and 1.000 or less, from the viewpoint of further increasing the partial discharge inception voltage under dry conditions. 930 or more and 1.000 or less are more preferable, 0.940 or more and 1.000 or less are more preferable, 0.950 or more and 1.000 or less are still more preferable, 0.960 or more and 1.000 or less are more preferable, 0.970 or more 1.000 or less is more preferable, 0.980 or more and 1.000 or less is still more preferable, 0.985 or more and 0.999 or less is still more preferable, and 0.985 or more and 0.998 or less is still more preferable.

本発明の絶縁電線は、長手方向と直交する断面形状がドッグボーン形状(エナメル層の形成において発生する形状であり、4隅のコーナー部分の絶縁皮膜が厚膜化した形状、図3参照)であることも好ましい。
また、絶縁皮膜全体において、厚さの最大値を最小値で除した値は、1.3未満であることが好ましく、1.2以下であることがより好ましい。なお、上記絶縁皮膜全体における厚さの最大値と最小値は、同一面における厚さの最大値と最小値であることに限定されず、それぞれ異なる面における厚さの最大値及び最小値であってもよい。また、上記絶縁皮膜全体における厚さの最大値と最小値は、コーナー部を除いた平坦部(例えばドッグボーン形状であれば、コーナー部の盛り上がり部分を除いた平坦部)の絶縁皮膜の厚さの最大値を、同じくコーナー部を除いた平坦部の絶縁皮膜の厚さの最小値で除した値である。
In the insulated wire of the present invention, the cross-sectional shape perpendicular to the longitudinal direction is a dogbone shape (a shape generated in the formation of an enamel layer, and a shape in which the insulating film at the four corners is thickened, see FIG. 3). It is also preferable to have
In addition, the value obtained by dividing the maximum thickness by the minimum thickness of the entire insulating coating is preferably less than 1.3, more preferably 1.2 or less. The maximum and minimum thicknesses of the entire insulating coating are not limited to the maximum and minimum thicknesses on the same surface, but may be the maximum and minimum thicknesses on different surfaces. may In addition, the maximum and minimum values of the thickness of the entire insulation film are the thickness of the insulation film on the flat portion excluding the corner portion (for example, in the case of a dog bone shape, the flat portion excluding the raised portion of the corner portion). is the value obtained by dividing the maximum value of by the minimum value of the thickness of the insulating film on the flat portions excluding the corner portions.

絶縁電線の表面上に金属粉の付着、繊維、樹脂、ボイド(風船状に膨らんで皮膜表面上に凸形状の状態で存在するもの)等の異物が存在する場合、前記(a)~(c)を満たす面同士を重ね合わせると、異物によって絶縁皮膜間に空隙が生じ、乾燥条件下の部分放電開始電圧が低下する要因となり得る。そのため、本発明の絶縁電線の表面上には、高さ20μm以上の異物を全範囲にわたって実質的に含まないことが好ましく、高さ10μm以上の異物を全範囲にわたって実質的に含まないことがより好ましい。 If foreign matter such as metal powder adhered to the surface of the insulated wire, fibers, resin, voids (those that swell like balloons and exist in a convex shape on the surface of the coating), the above (a) to (c) If the surfaces satisfying ) are superimposed on each other, foreign matter may cause gaps between the insulating films, which may be a factor in lowering the partial discharge inception voltage under dry conditions. Therefore, it is preferable that the surface of the insulated wire of the present invention does not substantially contain foreign substances having a height of 20 μm or more over the entire range, and more preferably substantially does not contain foreign substances having a height of 10 μm or more over the entire range. preferable.

(エナメル層)
前記絶縁皮膜がエナメル層を有する場合、このエナメル層は熱可塑性樹脂層でもよく、熱硬化性樹脂層でもよく、熱硬化性樹脂層であることが好ましい。エナメル層の形成に用いる樹脂は特に限定されない。例えば、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、及びポリエステルイミド(PEsI)などのイミド結合を有する熱硬化性樹脂、ポリウレタン(PU)、熱硬化性ポリエステル(PEst)、H種ポリエステル(HPE)、ポリイミドヒダントイン変性ポリエステル、ポリヒダントイン、ポリベンゾイミダゾール、メラミン樹脂、エポキシ樹脂等が挙げられ、これらの1種又は2種以上を用いることができる。エナメル層は、ポリイミド、ポリアミドイミド、及びポリエーテルイミドの少なくとも1種を含むことがより好ましく、ポリアミドイミド及び/又はポリイミドを含む熱硬化性樹脂層であることがより好ましい。
(Enamel layer)
When the insulating coating has an enamel layer, the enamel layer may be a thermoplastic resin layer or a thermosetting resin layer, preferably a thermosetting resin layer. The resin used for forming the enamel layer is not particularly limited. For example, thermosetting resins having imide bonds such as polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), and polyesterimide (PEsI), polyurethane (PU), thermosetting polyester (PEst), Type H polyester (HPE), polyimide hydantoin-modified polyester, polyhydantoin, polybenzimidazole, melamine resin, epoxy resin and the like can be mentioned, and one or more of these can be used. The enamel layer more preferably contains at least one of polyimide, polyamideimide, and polyetherimide, and is more preferably a thermosetting resin layer containing polyamideimide and/or polyimide.

前記ポリイミド(PI)の種類は特に限定されず、全芳香族ポリイミドまたは熱硬化性芳香族ポリイミドなど、通常のポリイミドを用いることができる。また、常法により、芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物を極性溶媒中で反応させて得られるポリアミド酸溶液を用い、焼付け時の加熱処理によってイミド化させることによって得られるものを用いることができる。
商業的に入手可能なポリイミド(PI)としては、例えば、Uイミド(商品名、ユニチカ社製)、U-ワニス(商品名、宇部興産社製)等が挙げられる。
The type of polyimide (PI) is not particularly limited, and ordinary polyimide such as wholly aromatic polyimide or thermosetting aromatic polyimide can be used. In addition, by a conventional method, a polyamic acid solution obtained by reacting an aromatic tetracarboxylic dianhydride and an aromatic diamine compound in a polar solvent is used, and the polyamic acid solution is imidized by heat treatment during baking. can be used.
Examples of commercially available polyimides (PI) include U-imide (trade name, manufactured by Unitika Ltd.), U-varnish (trade name, manufactured by Ube Industries, Ltd.), and the like.

前記ポリアミドイミド(PAI)は、他の樹脂に比べ熱伝導率が低く、絶縁破壊電圧が高く、焼付け硬化が可能である。本発明に用い得るポリアミドイミドの種類は特に限定されず、例えば極性溶媒中でトリカルボン酸無水物とジイソシアネート化合物を直接反応させて得たもの、または、極性溶媒中でトリカルボン酸無水物にジアミン化合物を先に反応させて、最初にイミド結合を導入し、次いでジイソシアネート化合物でアミド化して得られるものが挙げられる。
商業的に入手可能なポリアミドイミド(PAI)としては、例えば、HI-406又はHCIシリーズ(いずれも、商品名、日立化成社製)等が挙げられる。
The polyamideimide (PAI) has a lower thermal conductivity and a higher dielectric breakdown voltage than other resins, and can be cured by baking. The type of polyamideimide that can be used in the present invention is not particularly limited, for example, those obtained by directly reacting a tricarboxylic anhydride and a diisocyanate compound in a polar solvent, or a diamine compound to a tricarboxylic anhydride in a polar solvent. Examples include those obtained by first reacting to introduce an imide bond and then amidating with a diisocyanate compound.
Commercially available polyamideimides (PAI) include, for example, HI-406 and HCI series (both are trade names, manufactured by Hitachi Chemical Co., Ltd.).

前記ポリエーテルイミド(PEI)の種類は特に限定されず、分子内にエーテル結合とイミド結合を有するポリマーであればよい。
また、ポリエーテルイミドは、例えば、芳香族テトラカルボン酸二無水物と分子内にエーテル結合を有する芳香族ジアミン類を極性溶媒中で反応させて得られるポリアミド酸溶液を用い、被覆する際の焼き付け時の加熱処理によってイミド化させることによって得られるものを用いることもできる。
商業的に入手可能なポリエーテルイミド(PEI)としては、例えば、ULTEM(商品名、SABIC社製)等が挙げられる。
The type of polyetherimide (PEI) is not particularly limited as long as it is a polymer having an ether bond and an imide bond in the molecule.
In addition, polyetherimide, for example, uses a polyamic acid solution obtained by reacting an aromatic tetracarboxylic dianhydride and an aromatic diamine having an ether bond in the molecule in a polar solvent, and baking during coating It is also possible to use those obtained by imidization by heat treatment.
Examples of commercially available polyetherimide (PEI) include ULTEM (trade name, manufactured by SABIC).

(押出層)
また、絶縁皮膜が押出層を有することも好ましい。押出層は、熱可塑性樹脂を押出被覆してなる絶縁層である。押出層に用いる熱可塑性樹脂は特に限定されず、結晶性であってもよく、非晶性であってもよい。例えば、ポリアミド(PA)(ナイロン)、ポリエーテルイミド(PEI)、ポリアセタール(POM)、ポリカーボネート(PC)、ポリフェニレンエーテル(変性ポリフェニレンエーテルを含む)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、超高分子量ポリエチレン等の汎用エンジニアリングプラスチックの他、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド(PPS)、ポリアリレート(Uポリマー)、ポリアミドイミド、ポリエーテルケトン(PEK)、ポリアリールエーテルケトン(PAEK)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリエーテルエーテルケトン(PEEK)(変性ポリエーテルエーテルケトン(変性PEEK)を含む)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)、熱可塑性ポリイミド樹脂(TPI)、液晶ポリエステル等のスーパーエンジニアリングプラスチックが挙げられ、これらの1種又は2種以上を用いることができる。押出層はポリフェニレンスルフィド及び/又はポリエーテルエーテルケトンを含む熱可塑性樹脂層であることが好ましい。
商業的に入手可能なポリフェニレンスルフィド(PPS)としては、例えばFZ-2100(商品名、DIC社製)等が挙げられる。また、商業的に入手可能なポリエーテルエーテルケトン(PEEK)としては、例えばキータスパイアKT-820(商品名、ソルベイスペシャルティポリマーズ社製)等が挙げられる。
(extrusion layer)
It is also preferred that the insulating coating has an extruded layer. The extruded layer is an insulating layer formed by extruding and coating a thermoplastic resin. The thermoplastic resin used for the extruded layer is not particularly limited, and may be crystalline or amorphous. For example, polyamide (PA) (nylon), polyetherimide (PEI), polyacetal (POM), polycarbonate (PC), polyphenylene ether (including modified polyphenylene ether), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), In addition to general-purpose engineering plastics such as polyethylene naphthalate (PEN) and ultra-high molecular weight polyethylene, polysulfone (PSF), polyethersulfone (PES), polyphenylene sulfide (PPS), polyarylate (U polymer), polyamideimide, polyetherketone (PEK), polyaryletherketone (PAEK), tetrafluoroethylene/ethylene copolymer (ETFE), polyetheretherketone (PEEK) (including modified polyetheretherketone (modified PEEK)), tetrafluoroethylene per Super engineering plastics such as fluoroalkyl vinyl ether copolymers (PFA), polytetrafluoroethylene (PTFE), thermoplastic polyimide resins (TPI), and liquid crystal polyesters can be mentioned, and one or more of these can be used. . The extruded layer is preferably a thermoplastic layer comprising polyphenylene sulfide and/or polyetheretherketone.
Examples of commercially available polyphenylene sulfide (PPS) include FZ-2100 (trade name, manufactured by DIC). Examples of commercially available polyetheretherketone (PEEK) include KetaSpire KT-820 (trade name, manufactured by Solvay Specialty Polymers).

なお、絶縁皮膜は上述した樹脂の他に、必要に応じて、気泡化核剤、酸化防止剤、帯電防止剤、紫外線防止剤、光安定剤、蛍光増白剤、顔料、染料、相溶化剤、滑剤、強化剤、難燃剤、架橋剤、架橋助剤、可塑剤、増粘剤、減粘剤およびエラストマーなどの各種添加剤を含有してもよい。 In addition to the resins described above, the insulating film may optionally contain a foaming nucleating agent, an antioxidant, an antistatic agent, an ultraviolet inhibitor, a light stabilizer, a fluorescent whitening agent, a pigment, a dye, and a compatibilizer. , lubricants, reinforcing agents, flame retardants, cross-linking agents, cross-linking aids, plasticizers, thickeners, thinning agents and elastomers.

[絶縁電線の製造方法]
本発明の絶縁電線は、平角導体の外周面に、絶縁皮膜を形成する工程を経て製造される。絶縁皮膜の形成は、基本的には、絶縁電線の絶縁皮膜の形成において通常用いられる方法を適宜に適用することができる。例えば、熱硬化性樹脂や熱可塑性樹脂を含有するワニスを塗布・焼付けしてエナメル層を形成することができる。また、熱可塑性樹脂を押出被覆して押出層を形成することもできる。その際に、後述のように、所望の面の絶縁皮膜が上記(a)~(c)を満たすように制御することにより、目的の絶縁電線を得ることができる。
[Manufacturing method of insulated wire]
The insulated wire of the present invention is manufactured through a step of forming an insulating film on the outer peripheral surface of a rectangular conductor. For the formation of the insulation film, basically, any method commonly used in the formation of the insulation film of the insulated wire can be appropriately applied. For example, the enamel layer can be formed by applying and baking a varnish containing a thermosetting resin or a thermoplastic resin. The extruded layer can also be formed by extrusion coating a thermoplastic resin. At that time, as will be described later, the desired insulated wire can be obtained by controlling the insulation film on the desired surface so as to satisfy the above (a) to (c).

(エナメル層の形成)
絶縁皮膜の一部又は全部をエナメル層とする場合、当該エナメル層は、目的の樹脂のワニス(絶縁ワニス)を調製し、当該ワニスを塗布し、焼付けて形成することができる。その際、平角導体の断面形状と非相似形をしたワニス塗布用ダイスを用いる方法が挙げられる。非相似形とすることにより、目的の面の樹脂流れ等を相殺するように、上記(b)及び(c)を満たす面を作り出すことができる。
ワニス塗布後の焼付けは、常法により行うことができ、例えば焼付け炉で焼付けすることができる。具体的な焼付け条件は、その使用される炉の形状等に左右され一義的に決定できないが、およそ8mの自然対流式の竪型炉であれば、例えば、炉内温度400~650℃にて通過時間を10~90秒とする条件が挙げられる。また、ワニス塗布後のワニスの流れ(ワニスが流動して不均一に分布すること)を抑制することでエナメル層の膜厚差をより確実に抑える観点から、製造スピード(線速)を高く設定することも好ましい。
(Formation of enamel layer)
When part or all of the insulating coating is an enamel layer, the enamel layer can be formed by preparing a varnish (insulating varnish) of a desired resin, applying the varnish, and baking the varnish. At that time, there is a method of using a varnish coating die having a cross-sectional shape not similar to that of the rectangular conductor. By forming a non-similar shape, it is possible to create a surface that satisfies the above (b) and (c) so as to offset the resin flow and the like on the target surface.
Baking after application of the varnish can be performed by a conventional method, for example, baking can be performed in a baking furnace. The specific baking conditions depend on the shape of the furnace used, etc., and cannot be determined unambiguously. A condition in which the passing time is 10 to 90 seconds can be mentioned. In addition, the production speed (line speed) is set high from the viewpoint of more reliably suppressing the difference in the thickness of the enamel layer by suppressing the flow of the varnish after the varnish is applied (the varnish flowing and unevenly distributed). It is also preferable to

また、絶縁皮膜を形成するための塗布、焼付けの繰り返し数は、35回以下であることが好ましく、16回以上35回以下であることがより好ましく、15回以上30回以下であることがさらに好ましく、18回以上27回以下であることがさらに好ましい。塗布、焼付けの繰り返し数を上記の範囲内とすることにより、適度な焼付状態を達成でき、また各絶縁層の機械特性を向上できるため、絶縁電線の可とう性が向上すると考えられる。 The number of repetitions of coating and baking for forming the insulating film is preferably 35 times or less, more preferably 16 times or more and 35 times or less, and further preferably 15 times or more and 30 times or less. It is preferable that the number is 18 times or more and 27 times or less. By setting the number of repetitions of coating and baking within the above range, an appropriate baking state can be achieved and the mechanical properties of each insulating layer can be improved, which is thought to improve the flexibility of the insulated wire.

(樹脂ワニス)
前記樹脂ワニスは、高粘度の樹脂ワニスであることが好ましい。このような高粘度の樹脂ワニスを用いることで、塗布後のワニスの流れを抑制することができ、各面内において、より膜厚差の小さいエナメル層とすることができる。
また前記樹脂ワニスは、樹脂をワニス化させるために有機溶媒(有機溶剤)等を含有する。有機溶媒として、例えば、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)等のアミド系溶媒、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素等の尿素系溶媒、γ-ブチロラクトン、γ-カプロラクトン等のラクトン系溶媒、プロピレンカーボネート等のカーボネート系溶媒、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート、エチルセロソルブアセテート、エチルカルビトールアセテート等のエステル系溶媒、ジグライム、トリグライム、テトラグライム等のグライム系溶媒、トルエン、キシレン、シクロヘキサン等の炭化水素系溶媒、クレゾール、フェノール、ハロゲン化フェノールなどのフェノール系溶媒、スルホラン等のスルホン系溶媒、ジメチルスルホキシド(DMSO)などが挙げられる。
(resin varnish)
The resin varnish is preferably a high-viscosity resin varnish. By using such a high-viscosity resin varnish, it is possible to suppress the flow of the varnish after application, and it is possible to form an enamel layer with a smaller thickness difference in each plane.
Further, the resin varnish contains an organic solvent (organic solvent) or the like to turn the resin into a varnish. Examples of organic solvents include amide solvents such as N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), N,N-dimethylformamide (DMF), N,N-dimethylethylene urea, Urea solvents such as N,N-dimethylpropylene urea and tetramethylurea, lactone solvents such as γ-butyrolactone and γ-caprolactone, carbonate solvents such as propylene carbonate, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone. , Ester solvents such as ethyl acetate, n-butyl acetate, butyl cellosolve acetate, butyl carbitol acetate, ethyl cellosolve acetate, ethyl carbitol acetate; glyme solvents such as diglyme, triglyme and tetraglyme; Examples include hydrocarbon solvents, phenolic solvents such as cresol, phenol, and halogenated phenols, sulfone solvents such as sulfolane, and dimethylsulfoxide (DMSO).

これらのうち、焼付け時の蒸発を促進させてワニスを素早く硬化させる観点から、前記樹脂ワニスには低沸点の有機溶媒(有機溶剤)が混合されていることが好ましい。
またこれらのうち、加熱による架橋反応の阻害を防ぐ観点から、DMAc、NMP、DMF、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素、及びDMSOなどの非プロトン性溶媒が好ましい。
上記有機溶媒等は、1種のみを単独で使用してもよく、2種以上を併用してもよい。
Among these, it is preferable that the resin varnish is mixed with an organic solvent having a low boiling point (organic solvent) from the viewpoint of promoting evaporation during baking and curing the varnish quickly.
Among these, from the viewpoint of preventing inhibition of the cross-linking reaction by heating, an aprotic solvent such as DMAc, NMP, DMF, N,N-dimethylethylene urea, N,N-dimethylpropylene urea, tetramethylurea, and DMSO is preferred.
One of the above organic solvents and the like may be used alone, or two or more thereof may be used in combination.

前記樹脂ワニスは、必要により、密着助剤、気泡形成用発泡剤、酸化防止剤、帯電防止剤、紫外線防止剤、光安定剤、蛍光増白剤、顔料、染料、相溶化剤、滑剤、強化剤、難燃剤、架橋剤、架橋助剤、可塑剤、増粘剤、減粘剤およびエラストマーなどの各種添加剤を含有してもよい。 If necessary, the resin varnish may contain an adhesion aid, a foaming agent for foam formation, an antioxidant, an antistatic agent, an ultraviolet inhibitor, a light stabilizer, a fluorescent whitening agent, a pigment, a dye, a compatibilizer, a lubricant, and a reinforcing agent. It may contain various additives such as agents, flame retardants, cross-linking agents, co-agents, plasticizers, thickeners, thinning agents and elastomers.

(押出層の形成)
平角導体、又は平角導体とその周囲を覆うエナメル層からなる絶縁電線を心線とし、これらと相似形の押出ダイ及び押出機のスクリューを用いて熱可塑性樹脂を押出被覆することにより、押出層を形成することができる。押出被覆の温度は、例えば、200~450℃とすることができる。平角導体とその周囲を覆うエナメル層からなる絶縁電線を心線とする場合は、当該エナメル層においてエナメル層の最大値と最小値の差が所望の小さな差に抑えられていることが好ましい。
また押出被覆に用いるダイスの内部の形状は、ウエルドラインやドッグボーンの形成を抑制すべく、押出被覆される際の樹脂流れを考慮して決定することができる。
(Formation of extruded layer)
A rectangular conductor or an insulated wire consisting of a rectangular conductor and an enamel layer covering its periphery is used as a core wire, and a thermoplastic resin is extrusion-coated using an extrusion die and an extruder screw similar to these to form an extruded layer. can be formed. The extrusion coating temperature can be, for example, 200-450°C. When an insulated wire composed of a rectangular conductor and an enamel layer covering the periphery thereof is used as the core wire, it is preferable that the difference between the maximum value and the minimum value of the enamel layer is suppressed to a desired small difference in the enamel layer.
The shape of the inside of the die used for extrusion coating can be determined in consideration of resin flow during extrusion coating in order to suppress the formation of weld lines and dog bones.

[絶縁電線の特性]
本発明の絶縁電線は、乾燥条件下でも部分放電を生じにくく、乾燥条件下における部分放電開始電圧が十分に高い。本発明の絶縁電線において、乾燥条件下における部分放電開始電圧は、1000~3000Vpが好ましく、1200~3000Vpがより好ましく、1250~3000Vpがさらに好ましく、1300~3000Vpが特に好ましい。なお、部分放電開始電圧は、例えば実施例に記載の方法によって測定することができ、また乾燥条件も実施例に記載の条件を用いることができる。
[Characteristics of insulated wire]
The insulated wire of the present invention is resistant to partial discharge even under dry conditions, and has a sufficiently high partial discharge inception voltage under dry conditions. In the insulated wire of the present invention, the partial discharge inception voltage under dry conditions is preferably 1,000 to 3,000 Vp, more preferably 1,200 to 3,000 Vp, still more preferably 1,250 to 3,000 Vp, and particularly preferably 1,300 to 3,000 Vp. The partial discharge inception voltage can be measured, for example, by the method described in Examples, and the drying conditions described in Examples can be used.

[コイル、回転電機および電気・電子機器]
本発明の絶縁電線は、コイルとして、回転電機、各種電気・電子機器など、電気特性(耐電圧性)と耐熱性を必要とする分野に利用可能である。例えば、本発明の絶縁電線はモーターやトランス等に用いられ、高性能の回転電機、電気・電子機器を構成できる。特にハイブリッド自動車(HV)や電気自動車(EV)などの駆動モーター用の巻線として好適に用いられる。
[Coils, Rotating Electric Machines, and Electric/Electronic Devices]
INDUSTRIAL APPLICABILITY The insulated wire of the present invention can be used as a coil in fields that require electrical properties (withstanding voltage) and heat resistance, such as rotary electric machines and various electric/electronic devices. For example, the insulated wire of the present invention can be used in motors, transformers, and the like, and can constitute high-performance rotary electric machines and electric/electronic devices. In particular, it is suitably used as windings for driving motors such as hybrid vehicles (HV) and electric vehicles (EV).

本発明のコイルは、本発明の絶縁電線をコイル加工して形成したもの、本発明の絶縁電線を曲げ加工した後に所定の部分を電気的に接続してなるもの等が挙げられる。
本発明の絶縁電線をコイル加工して形成したコイルとしては、特に限定されず、長尺の絶縁電線を螺旋状に巻き回したものが挙げられる。このようなコイルにおいて、絶縁電線の巻線数等は特に限定されない。通常、絶縁電線を巻き回す際には鉄芯等が用いられる。
本発明のコイルにおいて、本発明の絶縁電線が前記(a)~(c)を満たす面同士を重ね合わせて配されることが好ましい。当該面同士は、長辺に対応する面同士、又は短辺に対応する面同士であることが好ましい。
Examples of the coil of the present invention include those formed by coiling the insulated wire of the present invention, and those formed by electrically connecting predetermined portions after bending the insulated wire of the present invention.
The coil formed by coiling the insulated wire of the present invention is not particularly limited, and examples thereof include those obtained by spirally winding a long insulated wire. In such a coil, the number of turns of the insulated wire is not particularly limited. Normally, an iron core or the like is used when winding an insulated wire.
In the coil of the present invention, it is preferable that the insulated wires of the present invention are arranged so that the surfaces satisfying the above (a) to (c) are overlapped with each other. The faces are preferably faces corresponding to long sides or faces corresponding to short sides.

本発明の絶縁電線を曲げ加工した後に所定の部分を電気的に接続してなるものとして、回転電機等のステータに用いられるコイルが挙げられる。このようなコイルは、例えば、図4に示されるように、本発明の絶縁電線を所定の長さに切断してU字形状等に曲げ加工して複数の電線セグメント34を作製し、各電線セグメント34のU字形状等の2つの開放端部(末端)34aを互い違いに接続して、作製されたコイル33(図4、図5参照)が挙げられる。 A coil used for a stator of a rotary electric machine or the like is exemplified as a product obtained by electrically connecting predetermined portions after bending the insulated wire of the present invention. Such a coil, for example, as shown in FIG. A coil 33 (see FIGS. 4 and 5) is made by alternately connecting two open ends (terminals) 34a such as U-shaped segments 34 .

このコイルを用いてなる電気・電子機器としては、特に限定されない。このような電気・電子機器の好ましい一態様として、トランスが挙げられる。また、例えば、図4、図5に示されるステータ30を備えた回転電機(特にHV及びEVの駆動モーター)が挙げられる。この回転電機は、ステータ30を備えていること以外は、従来の回転電機と同様の構成とすることができる。
ステータ30は、電線セグメント34が本発明の絶縁電線で形成されていること以外は従来のステータと同様の構成とすることができる。すなわち、ステータ30は、ステータコア31と、例えば図4に示されるように本発明の絶縁電線からなる電線セグメント34がステータコア31のスロット32に組み込まれ、開放端部34aが電気的に接続されてなるコイル33とを有している。このコイル33は、隣接する融着層同士、あるいは融着層とスロット32とが固着されて固定化された状態となっている。ここで、電線セグメント34は、スロット32に1本で組み込まれてもよいが、好ましくは図4に示されるように2本1組として組み込まれる。このステータ30は、上記のように曲げ加工した電線セグメント34を、その2つの末端である開放端部34aを互い違いに接続してなるコイル33が、ステータコア31のスロット32に収納されている。このとき、電線セグメント34の開放端部34aを接続してからスロット32に収納してもよく、また、絶縁セグメント34をスロット32に収納した後に、電線セグメント34の開放端部34aを折り曲げ加工して接続してもよい。
Electric/electronic equipment using this coil is not particularly limited. A preferred embodiment of such an electric/electronic device is a transformer. Further, for example, a rotating electrical machine (particularly, a drive motor for HV and EV) having a stator 30 shown in FIGS. 4 and 5 can be used. This rotating electrical machine can have the same configuration as a conventional rotating electrical machine, except that the stator 30 is provided.
The stator 30 may be constructed similarly to conventional stators, except that the wire segments 34 are formed from the insulated wire of the present invention. That is, the stator 30 includes a stator core 31 and a wire segment 34 made of an insulated wire of the present invention as shown in FIG. A coil 33 is provided. The coil 33 is in a fixed state in which the adjacent fusion layers or the fusion layer and the slot 32 are fixed together. Here, the wire segments 34 may be installed singly in the slots 32, but are preferably installed in pairs as shown in FIG. In this stator 30 , coils 33 formed by alternately connecting open ends 34 a of wire segments 34 bent as described above are housed in slots 32 of a stator core 31 . At this time, the open ends 34a of the wire segments 34 may be connected before being housed in the slots 32, or after the insulating segments 34 are housed in the slots 32, the open ends 34a of the wire segments 34 may be bent. may be connected.

以下に、本発明を実施例に基づいて、さらに詳細に説明するが、本発明はこれらの形態に限定されるものではない。 EXAMPLES The present invention will be described in more detail below based on examples, but the present invention is not limited to these embodiments.

下記の方法により、導体と絶縁皮膜からなる各絶縁電線を作製した。なお、下記に記載する絶縁皮膜の「平均厚さ」は、重ね合わせた面における絶縁皮膜の厚さの最大値と最小値に基づき、[厚さの最大値+厚さの最小値]/2で算出される値とした。 Each insulated wire composed of a conductor and an insulating film was produced by the following method. The "average thickness" of the insulation coating described below is based on the maximum and minimum thicknesses of the insulation coatings on the overlapping surfaces [maximum thickness + minimum thickness]/2 The value calculated by

[実施例1]
導体として、断面平角(長辺3.5mm×短辺2.0mmで、四隅の面取りの曲率半径r=0.3mm)の平角導体(酸素含有量15ppmの銅)を用いた。
ポリアミドイミド(PAI)ワニス(型番:HI-406、日立化成社製)を、断面形状が導体と非相似形のダイスを使用して導体の表面に塗布し、炉内温度600℃に設定した炉長8mの自然対流式焼付炉内を、通過時間25秒となる速度で通過させ、これを複数回繰り返すことで、平均厚さ80μmの熱硬化性樹脂層(第1の層)を形成した。こうして、エナメル層からなる絶縁皮膜を有する絶縁電線を得た。この絶縁電線は、4面のうち断面の長辺に対応する1面が、下表に示す絶縁皮膜の状態(上記(a)~(c)を満たす状態)にあった。
[Example 1]
As the conductor, a rectangular conductor (copper with an oxygen content of 15 ppm) having a rectangular cross section (long side 3.5 mm×short side 2.0 mm, radius of curvature of chamfered corners r=0.3 mm) was used.
Polyamideimide (PAI) varnish (model number: HI-406, manufactured by Hitachi Chemical Co., Ltd.) is applied to the surface of the conductor using a die with a cross-sectional shape that is not similar to the conductor, and the furnace temperature is set to 600 ° C. A thermosetting resin layer (first layer) with an average thickness of 80 μm was formed by passing through an 8 m long natural convection baking furnace at a speed that gave a passing time of 25 seconds, and repeating this several times. Thus, an insulated wire having an insulating coating made of an enamel layer was obtained. Of the four faces of this insulated wire, one face corresponding to the long side of the cross section was in the state of the insulation film shown in the table below (state satisfying (a) to (c) above).

[実施例2]
樹脂ワニスをポリイミド(PI)ワニス(型番:Uイミド、ユニチカ社製)として、得られる熱硬化性樹脂層の平均厚さを100μmとした以外は、実施例1と同様にしてエナメル層からなる絶縁皮膜を有する絶縁電線を作製した。この絶縁電線は、4面のうち断面の長辺に対応する1面が、下表に示す絶縁皮膜の状態(上記(a)~(c)を満たす状態)にあった。
[Example 2]
Insulation consisting of an enamel layer in the same manner as in Example 1 except that the resin varnish was polyimide (PI) varnish (model number: U-imide, manufactured by Unitika) and the average thickness of the resulting thermosetting resin layer was 100 μm. An insulated wire with a coating was produced. Of the four faces of this insulated wire, one face corresponding to the long side of the cross section was in the state of the insulation film shown in the table below (state satisfying (a) to (c) above).

[実施例3]
実施例2と同様にしてポリイミド(PI)ワニスの塗布、焼付けを複数回繰り返し、導体の外周上に平均厚さ130μmの熱硬化性樹脂層(第1の層)を形成した。
次いで、第1の層の外周上に、ポリアミドイミド(PAI)ワニス(型番:HI-406、日立化成社製)を、断面形状が導体と非相似形のダイスを使用して塗布し、炉内温度600℃に設定した炉長8mの自然対流式焼付炉内を、通過時間25秒となる速度で通過させ、これを複数回繰り返すことで、平均厚さ20μmの熱硬化性樹脂層(第2の層)を形成した。このようにして、平均厚さが150μmのエナメル層からなる絶縁皮膜を有する絶縁電線を得た。この絶縁電線は、4面のうち断面の長辺に対応する1面が、下表に示す絶縁皮膜の状態(上記(a)~(c)を満たす状態)にあった。
[Example 3]
The polyimide (PI) varnish coating and baking were repeated multiple times in the same manner as in Example 2 to form a thermosetting resin layer (first layer) with an average thickness of 130 μm on the outer periphery of the conductor.
Next, on the outer periphery of the first layer, polyamideimide (PAI) varnish (model number: HI-406, manufactured by Hitachi Chemical Co., Ltd.) is applied using a die whose cross-sectional shape is not similar to the conductor, and in the furnace A thermosetting resin layer with an average thickness of 20 μm (second layer) was formed. Thus, an insulated wire having an enamel layer with an average thickness of 150 μm was obtained. Of the four faces of this insulated wire, one face corresponding to the long side of the cross section was in the state of the insulation film shown in the table below (state satisfying (a) to (c) above).

[実施例4]
導体として、断面平角(長辺3.5mm×短辺2.0mmで、四隅の面取りの曲率半径r=0.3mm)の平角導体(酸素含有量15ppmの銅)を用いた。
該平角導体を芯線とし、30mmフルフライトスクリュー(スクリューL/D=25、スクリュー圧縮比=3)を備えた押出機を用いて、押出ダイの温度を400℃として、芯線の外側に、平均厚さ200μmの熱可塑性樹脂層(第1の層)を形成した。熱可塑性樹脂としてはポリエーテルエーテルケトン(商品名:キータスパイアKT-820、ソルベイスペシャルティポリマーズ社製)を使用した。こうして、押出層からなる絶縁皮膜を有する絶縁電線を得た。この絶縁電線は、4面のうち断面の長辺に対応する1面が、下表に示す絶縁皮膜の状態(上記(a)~(c)を満たす状態)にあった。
[Example 4]
As the conductor, a rectangular conductor (copper with an oxygen content of 15 ppm) having a rectangular cross section (long side 3.5 mm×short side 2.0 mm, radius of curvature of chamfered corners r=0.3 mm) was used.
Using the rectangular conductor as a core wire, using an extruder equipped with a 30 mm full-flight screw (screw L/D = 25, screw compression ratio = 3), the temperature of the extrusion die was set to 400 ° C., and the average thickness was applied to the outside of the core wire. A thermoplastic resin layer (first layer) having a thickness of 200 μm was formed. Polyetheretherketone (trade name: KetaSpire KT-820, manufactured by Solvay Specialty Polymers) was used as the thermoplastic resin. In this way, an insulated wire having an insulating coating made of an extruded layer was obtained. Of the four faces of this insulated wire, one face corresponding to the long side of the cross section was in the state of the insulation film shown in the table below (state satisfying (a) to (c) above).

[実施例5]
実施例1と同様にしてポリアミドイミド(PAI)ワニスの塗布、焼付けを複数回繰り返し、導体の外周上に平均厚さ50μmの熱硬化性樹脂層(第1の層)を形成した。
次いで、第1の層の外周上に、実施例4における押出層の形成と同様にして、ポリフェニレンスルフィド(商品名:FZ-2100、DIC社製)を押出被覆し、平均厚さ150μmの熱可塑性樹脂層(第2の層)を形成した。こうして、平均厚さが200μmの絶縁皮膜(熱硬化性樹脂層及び熱可塑性樹脂層)を有する絶縁電線を得た。この絶縁電線は、4面のうち断面の長辺に対応する1面が、下表に示す絶縁皮膜の状態(上記(a)~(c)を満たす状態)にあった。
[Example 5]
The application and baking of polyamide-imide (PAI) varnish were repeated multiple times in the same manner as in Example 1 to form a thermosetting resin layer (first layer) having an average thickness of 50 μm on the outer periphery of the conductor.
Next, on the outer periphery of the first layer, polyphenylene sulfide (trade name: FZ-2100, manufactured by DIC) was extrusion-coated in the same manner as the extrusion layer formation in Example 4, and a thermoplastic resin having an average thickness of 150 μm was formed. A resin layer (second layer) was formed. Thus, an insulated wire having an insulating coating (thermosetting resin layer and thermoplastic resin layer) with an average thickness of 200 μm was obtained. Of the four faces of this insulated wire, one face corresponding to the long side of the cross section was in the state of the insulation film shown in the table below (state satisfying (a) to (c) above).

[実施例6]
樹脂ワニスをポリエーテルイミド(PEI)ワニス(型番:ULTEM、SABIC社製)として、得られる熱可塑性樹脂層(エナメル層)の平均厚さを5μmとした以外は、実施例1と同様にしてエナメル層(第1の層)を形成した。
次いで、第1の層の外周上に、実施例4における押出層の形成と同様にして、ポリエーテルエーテルケトン(商品名:キータスパイアKT-820、ソルベイスペシャルティポリマーズ社製)を押出被覆し、平均厚さ295μmの熱可塑性樹脂層(第2の層)を形成した。こうして、平均厚さが300μmの絶縁皮膜(熱可塑性樹脂層及び熱可塑性樹脂層)を有する絶縁電線を得た。この絶縁電線は、4面のうち断面の長辺に対応する1面が、下表に示す絶縁皮膜の状態(上記(a)~(c)を満たす状態)にあった。
[Example 6]
Enamel was performed in the same manner as in Example 1 except that polyetherimide (PEI) varnish (model number: ULTEM, manufactured by SABIC) was used as the resin varnish and the average thickness of the resulting thermoplastic resin layer (enamel layer) was 5 μm. A layer (first layer) was formed.
Then, on the outer periphery of the first layer, polyether ether ketone (trade name: KetaSpire KT-820, manufactured by Solvay Specialty Polymers) was extrusion-coated in the same manner as the formation of the extrusion layer in Example 4, and the average A thermoplastic resin layer (second layer) having a thickness of 295 μm was formed. Thus, an insulated wire having an insulating film (a thermoplastic resin layer and a thermoplastic resin layer) with an average thickness of 300 μm was obtained. Of the four faces of this insulated wire, one face corresponding to the long side of the cross section was in the state of the insulation film shown in the table below (state satisfying (a) to (c) above).

[実施例7]
樹脂ワニスをポリイミド(PI)ワニス(型番:Uイミド、ユニチカ社製)として、得られる熱硬化性樹脂層(エナメル層)の平均厚さを50μmとした以外は、実施例6と同様にしてエナメル層(第1の層)を形成した。
次いで、第1の層の外周上に、実施例4における押出層の形成と同様にして、ポリエーテルエーテルケトン(商品名:キータスパイアKT-820、ソルベイスペシャルティポリマーズ社製)を押出被覆し、平均厚さ250μmの熱可塑性樹脂層(第2の層)を形成した。こうして、平均厚さが300μmの絶縁皮膜(熱硬化性樹脂層及び熱可塑性樹脂層)を有する絶縁電線を得た。この絶縁電線は、4面のうち断面の長辺に対応する1面が、下表に示す絶縁皮膜の状態(上記(a)~(c)を満たす状態)にあった。
[Example 7]
Enamel was prepared in the same manner as in Example 6, except that polyimide (PI) varnish (model number: U-imide, manufactured by Unitika) was used as the resin varnish, and the resulting thermosetting resin layer (enamel layer) had an average thickness of 50 µm. A layer (first layer) was formed.
Then, on the outer periphery of the first layer, polyether ether ketone (trade name: KetaSpire KT-820, manufactured by Solvay Specialty Polymers) was extrusion-coated in the same manner as the formation of the extrusion layer in Example 4, and the average A thermoplastic resin layer (second layer) having a thickness of 250 μm was formed. Thus, an insulated wire having an insulating coating (thermosetting resin layer and thermoplastic resin layer) with an average thickness of 300 μm was obtained. Of the four faces of this insulated wire, one face corresponding to the long side of the cross section was in the state of the insulation film shown in the table below (state satisfying (a) to (c) above).

[比較例1]
断面形状が導体と相似形のダイスを使用し、エナメル層の厚さの最大値、最小値、平均厚さを表1に示す通りとしたこと以外は、実施例1と同様にして、エナメル層からなる絶縁皮膜を有する絶縁電線を得た。この絶縁電線は、長辺に対応する2面が下表に示す絶縁皮膜の状態にあった。
[Comparative Example 1]
An enamel layer was formed in the same manner as in Example 1, except that a die with a cross-sectional shape similar to that of the conductor was used, and the maximum, minimum, and average thicknesses of the enamel layer were as shown in Table 1. An insulated wire having an insulating film consisting of was obtained. This insulated wire was in the state of the insulating film shown in the table below on the two sides corresponding to the long sides.

[比較例2]
エナメル層の厚さの最大値、最小値、平均厚さを表1に示す通りとしたこと以外は、実施例1と同様にして、エナメル層からなる絶縁皮膜を有する絶縁電線を得た。この絶縁電線は、長辺に対応する2面のすべてが下表に示す絶縁皮膜の状態にあった。
[Comparative Example 2]
An insulated wire having an insulating coating made of an enamel layer was obtained in the same manner as in Example 1 except that the maximum value, minimum value and average thickness of the enamel layer were set as shown in Table 1. This insulated wire was in the state of the insulating film shown in the table below on all of the two sides corresponding to the long sides.

上記で作製した各絶縁電線に対して、下記のようにして、部分放電開始電圧(PDIV)の評価、及び空隙の測定を行った。得られた結果を、下記表1にまとめて示す。
なお、上記で作製した実施例1~7の絶縁電線において、絶縁皮膜全体の厚さの最大値を最小値で除した値は、いずれも1.2以下であった。
Evaluation of partial discharge inception voltage (PDIV) and measurement of voids were performed as follows for each of the insulated wires produced above. The obtained results are summarized in Table 1 below.
In the insulated wires of Examples 1 to 7 produced above, the values obtained by dividing the maximum value of the thickness of the entire insulating coating by the minimum value were all 1.2 or less.

<空隙の大きさの測定>
上記各実施例1~7、並びに比較例1及び2の絶縁電線を各2本用意し(1本の絶縁電線を切断して2本とし)、1%伸長した状態で長手方向に、断面形状における長辺に対応する面(各実施例では上記(a)~(c)を満たす面)同士を平行に重ね合わせ、2つのクリップ(商品名:ダブルクリップ、品番:クリ-34、コクヨ社製)を用いて、クリップ間の距離が25mmとなる位置で把持し、重ね合わせた絶縁電線を固定した。上記クリップ間をエポキシ樹脂に包埋し、回転研磨機(ラボポール-30(研磨機)、ラボフォース-100(試料回転装置)、いずれもストルアス社製)を用いて絶縁電線の断面形状の短辺に対応する面側を、当該面に平行に研磨して、上記クリップ間に位置する2本の絶縁電線の断面を露出させた。この断面をマイクロスコープ(品名:DVM5000HD、Leica社製)を用い、倍率400倍で観察して絶縁電線間の距離を測定した。研磨と絶縁電線間の距離の測定を繰り返し、絶縁電線間の距離が最大となったときの当該距離を、空隙の大きさとした。
なお、上記測定に用いたクリップの把持力はおよそ2kgであった。
<Measurement of void size>
Two insulated wires each of Examples 1 to 7 and Comparative Examples 1 and 2 were prepared (one insulated wire was cut into two wires), and when stretched by 1%, the cross-sectional shape was measured in the longitudinal direction. The surfaces corresponding to the long sides of (in each example, the surfaces that satisfy the above (a) to (c)) are superimposed in parallel, and two clips (product name: double clip, product number: Cree-34, manufactured by Kokuyo Co., Ltd. ) were used to hold the insulated wires at a position where the distance between the clips was 25 mm, and the superimposed insulated wires were fixed. The space between the clips is embedded in epoxy resin, and the short side of the cross-sectional shape of the insulated wire is rotated using a rotating polishing machine (LaboPol-30 (polishing machine), LaboForce-100 (sample rotating device), both manufactured by Struers). The corresponding face side was ground parallel to that face to expose a cross-section of the two insulated wires located between the clips. Using a microscope (product name: DVM5000HD, manufactured by Leica), this cross section was observed at a magnification of 400 to measure the distance between the insulated wires. Polishing and measurement of the distance between the insulated wires were repeated, and the distance when the distance between the insulated wires reached its maximum was taken as the size of the gap.
The gripping force of the clip used for the above measurement was approximately 2 kg.

<部分放電開始電圧(PDIV)の評価>
製造した各絶縁電線の部分放電開始電圧の測定には、部分放電測定器「DAC-PD-3」(総研電気株式会社製、商品名)を用いた。上記各実施例1~7、並びに比較例1及び2の絶縁電線を各2本用意し(1本の絶縁電線を切断して2本とし)、長手方向に、断面形状における長辺に対応する面(各実施例では上記(a)~(c)を満たす面)同士を長さ150mmに亘って重ね合わせた試料を作製した。この2本の導体間に電極を繋ぎ、1kHz正弦波の交流電圧を印加することで測定した。10V/秒で昇圧し、100pC以上の部分放電が1秒当たり1000回以上発生した時点の電圧波高値(ピーク電圧、Vp)を部分放電開始電圧として記録した。
測定環境の温度と湿度は、乾燥条件(25℃、20%RH(相対湿度))とした。ここで、部分放電開始電圧は絶縁皮膜の膜厚と皮膜材料の誘電率にも依存することから、湿潤条件(25℃、65%RH)における部分放電開始電圧も同様に測定し、乾燥条件での部分放電開始電圧を湿潤条件での部分放電開始電圧で除することにより、乾燥環境による部分放電開始電圧の上昇率を算出した。得られた部分放電開始電圧の上昇率を、下記評価基準に基づき評価した。下記評価基準において、「X」とは25℃、20%RHの条件下(乾燥条件下)で測定した部分放電開始電圧を、「Y」とは25℃、65%RHの条件下(湿潤条件下)で測定した部分放電開始電圧を、「X/Y」は乾燥環境による部分放電開始電圧の上昇率をそれぞれ示す。上記のいずれも測定条件においても、測定に用いた各絶縁電線は、測定直前に絶縁電線を110℃に保持した恒温槽内で60分間静置させて絶縁皮膜を乾燥させ(絶縁皮膜中の水分を除去し)、絶縁電線が常温程度に冷えてから速やかに部分放電開始電圧を測定した。
なお、実施例1~7の乾燥条件下における部分放電開始電圧は、いずれも十分に高い値であった。

-評価基準-
A+:X/Yの値が1.1以上
A :X/Yの値が1.06以上、1.1未満
B :X/Yの値が1.03以上、1.06未満
C :X/Yの値が1.03未満
<Evaluation of partial discharge inception voltage (PDIV)>
A partial discharge measuring device "DAC-PD-3" (manufactured by Soken Denki Co., Ltd., trade name) was used to measure the partial discharge inception voltage of each of the manufactured insulated wires. Prepare two insulated wires each of Examples 1 to 7 and Comparative Examples 1 and 2 (one insulated wire is cut into two wires), and correspond to the long side of the cross-sectional shape in the longitudinal direction. A sample was prepared by overlapping surfaces (surfaces satisfying the above (a) to (c) in each example) over a length of 150 mm. An electrode was connected between the two conductors, and a 1 kHz sinusoidal AC voltage was applied for measurement. The voltage peak value (peak voltage, Vp) at the time when partial discharges of 100 pC or more occurred 1000 times or more per second was recorded as the partial discharge inception voltage.
The temperature and humidity of the measurement environment were dry conditions (25° C., 20% RH (relative humidity)). Here, since the partial discharge inception voltage also depends on the thickness of the insulating film and the dielectric constant of the film material, the partial discharge inception voltage under wet conditions (25 ° C., 65% RH) was also measured in the same manner, and under dry conditions, was divided by the partial discharge inception voltage under wet conditions, the rate of increase in the partial discharge inception voltage due to the dry environment was calculated. The increase rate of the obtained partial discharge inception voltage was evaluated based on the following evaluation criteria. In the following evaluation criteria, "X" is the partial discharge inception voltage measured under the conditions of 25 ° C. and 20% RH (dry conditions), and "Y" is the condition of 25 ° C. and 65% RH (wet conditions). bottom), and "X/Y" indicates the increase rate of the partial discharge inception voltage due to the dry environment. Under any of the above measurement conditions, each insulated wire used for measurement was allowed to stand for 60 minutes in a constant temperature bath held at 110 ° C immediately before measurement to dry the insulating film (moisture in the insulating film removed), and the partial discharge inception voltage was measured immediately after the insulated wire cooled to about room temperature.
The partial discharge inception voltages of Examples 1 to 7 under dry conditions were all sufficiently high values.

-Evaluation criteria-
A+: The value of X/Y is 1.1 or more A: The value of X/Y is 1.06 or more and less than 1.1 B: The value of X/Y is 1.03 or more and less than 1.06 C: X/ Y value less than 1.03

Figure 0007257558000001
Figure 0007257558000001

上記表1に示されるように、本発明の規定を全て満たす絶縁電線(実施例1~7)は、湿潤条件に比べて乾燥条件において、より高い部分放電開始電圧を示すことがわかった。 As shown in Table 1 above, it was found that the insulated wires (Examples 1-7) satisfying all the requirements of the present invention exhibited a higher partial discharge inception voltage under dry conditions than under wet conditions.

1,2 絶縁電線
11,21 平角導体
12,22 熱硬化性樹脂層(エナメル層)
23 熱可塑性樹脂層(押出層)
14 膜厚の最大値
15 膜厚の最小値
16 空隙の大きさ(ギャップ距離)
30 ステータ
31 ステータコア
32 スロット
33 コイル
34 電線セグメント
34a 開放端部
1, 2 Insulated wires 11, 21 Rectangular conductors 12, 22 Thermosetting resin layer (enamel layer)
23 Thermoplastic resin layer (extrusion layer)
14 Maximum value of film thickness 15 Minimum value of film thickness 16 Size of gap (gap distance)
30 stator 31 stator core 32 slot 33 coil 34 wire segment 34a open end

Claims (11)

平角導体と、当該平角導体の外周を被覆する絶縁皮膜とを有する絶縁電線であって、
前記平角導体の断面の4隅の曲率半径が0.2~0.4mmであり、
前記絶縁皮膜が押出層を含み、
前記絶縁電線の少なくとも1面において、前記絶縁皮膜が次の(a)~(c)を満たし:
(a)厚さの最小値が299μm以上350μm以下、
(b)厚さの最大値と最小値の差が10μm以下、
(c)厚さの最小値を最大値で除した値が0.900越え1.000以下、
前記(a)~(c)を満たす面同士を重ね合わせたときに生じる空隙の大きさが20μm以下である、絶縁電線。
An insulated wire having a rectangular conductor and an insulating coating covering the outer periphery of the rectangular conductor,
A radius of curvature of four corners of a cross section of the rectangular conductor is 0.2 to 0.4 mm,
the insulating coating comprises an extruded layer;
On at least one surface of the insulated wire, the insulating coating satisfies the following (a) to (c):
(a) the minimum thickness is 299 μm or more and 350 μm or less;
(b) the difference between the maximum and minimum thickness is 10 μm or less;
(c) the value obtained by dividing the minimum thickness by the maximum thickness is greater than 0.900 and less than or equal to 1.000;
An insulated wire, wherein a gap of 20 μm or less is generated when the surfaces satisfying the above (a) to (c) are overlapped with each other.
平角導体と、当該平角導体の外周を被覆する絶縁皮膜とを有する絶縁電線であって、 An insulated wire having a rectangular conductor and an insulating coating covering the outer periphery of the rectangular conductor,
前記平角導体が銅線の場合に該銅線は無酸素銅で構成され、前記平角導体の断面の4隅の曲率半径が0.2~0.4mmであり、 When the flat conductor is a copper wire, the copper wire is made of oxygen-free copper, and the radius of curvature of the four corners of the cross section of the flat conductor is 0.2 to 0.4 mm,
前記絶縁電線の少なくとも1面において、前記絶縁皮膜が次の(a)~(c)を満たし: On at least one surface of the insulated wire, the insulating coating satisfies the following (a) to (c):
(a)厚さの最小値が299μm以上350μm以下、 (a) the minimum thickness is 299 μm or more and 350 μm or less;
(b)厚さの最大値と最小値の差が10μm以下、 (b) the difference between the maximum and minimum thickness is 10 μm or less;
(c)厚さの最小値を最大値で除した値が0.900越え1.000以下、 (c) the value obtained by dividing the minimum thickness by the maximum thickness is greater than 0.900 and less than or equal to 1.000;
前記(a)~(c)を満たす面同士を重ね合わせたときに生じる空隙の大きさが20μm以下である、絶縁電線。 An insulated wire, wherein a gap of 20 μm or less is generated when the surfaces satisfying the above (a) to (c) are overlapped with each other.
前記絶縁皮膜が押出層を含む、請求項2に記載の絶縁電線。 3. The insulated wire of claim 2, wherein said insulation coating comprises an extruded layer. 前記押出層がポリフェニレンスルフィド及び/又はポリエーテルエーテルケトンを含む熱可塑性樹脂層である、請求項1又は3に記載の絶縁電線。 The insulated wire according to claim 1 or 3, wherein the extruded layer is a thermoplastic resin layer containing polyphenylene sulfide and/or polyetheretherketone. 前記絶縁皮膜がエナメル層を含む、請求項1~4のいずれか1項に記載の絶縁電線。 The insulated wire according to any one of claims 1 to 4 , wherein said insulating coating includes an enamel layer. 前記エナメル層がポリアミドイミド及び/又はポリイミドを含む熱硬化性樹脂層である、請求項に記載の絶縁電線。 The insulated wire according to claim 5 , wherein the enamel layer is a thermosetting resin layer containing polyamideimide and/or polyimide. 前記絶縁皮膜が、前記導体を被覆するエナメル層と、当該エナメル層を被覆する押出層とを有する、請求項1又は2に記載の絶縁電線。 The insulated wire according to claim 1 or 2 , wherein the insulating coating has an enamel layer covering the conductor and an extruded layer covering the enamel layer. 前記エナメル層がポリアミドイミド及び/又はポリイミドを含む熱硬化性樹脂層であり、前記押出層がポリフェニレンスルフィド及び/又はポリエーテルエーテルケトンを含む熱可塑性樹脂層である、請求項に記載の絶縁電線 The insulated wire according to claim 7 , wherein the enamel layer is a thermosetting resin layer containing polyamideimide and/or polyimide, and the extruded layer is a thermoplastic resin layer containing polyphenylene sulfide and/or polyetheretherketone. 請求項1~のいずれか1項に記載の絶縁電線を用いたコイル。 A coil using the insulated wire according to any one of claims 1 to 8 . 前記絶縁電線が、前記(a)~(c)を満たす面同士を重ね合わせて配される、請求項に記載のコイル。 10. The coil according to claim 9 , wherein the insulated wires are arranged so that the surfaces satisfying the conditions (a) to (c) are overlapped. 請求項又は10に記載のコイルを有する回転電機、電気・電子機器。
A rotary electric machine, electric/electronic equipment, comprising the coil according to claim 9 or 10 .
JP2022002597A 2022-01-11 2022-01-11 Insulated wires, coils, rotating electrical machines, and electric/electronic equipment Active JP7257558B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022002597A JP7257558B1 (en) 2022-01-11 2022-01-11 Insulated wires, coils, rotating electrical machines, and electric/electronic equipment
PCT/JP2022/032384 WO2023135852A1 (en) 2022-01-11 2022-08-29 Insulated wire, coil, rotating electric machine, and electric/electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022002597A JP7257558B1 (en) 2022-01-11 2022-01-11 Insulated wires, coils, rotating electrical machines, and electric/electronic equipment

Publications (2)

Publication Number Publication Date
JP7257558B1 true JP7257558B1 (en) 2023-04-13
JP2023102177A JP2023102177A (en) 2023-07-24

Family

ID=85979245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022002597A Active JP7257558B1 (en) 2022-01-11 2022-01-11 Insulated wires, coils, rotating electrical machines, and electric/electronic equipment

Country Status (2)

Country Link
JP (1) JP7257558B1 (en)
WO (1) WO2023135852A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100039A (en) 2004-09-28 2006-04-13 Honda Motor Co Ltd Flat cable and manufacturing method of the same
JP2008288106A (en) 2007-05-18 2008-11-27 Furukawa Electric Co Ltd:The Insulated electric wire
JP2018143072A (en) 2017-02-28 2018-09-13 株式会社小松製作所 Flat wire for wave-winding coil
WO2019159922A1 (en) 2018-02-16 2019-08-22 古河電気工業株式会社 Insulated wire, coil, and electric/electronic instrument

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6729218B2 (en) * 2016-09-08 2020-07-22 日立金属株式会社 Method for manufacturing rectangular insulated wire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100039A (en) 2004-09-28 2006-04-13 Honda Motor Co Ltd Flat cable and manufacturing method of the same
JP2008288106A (en) 2007-05-18 2008-11-27 Furukawa Electric Co Ltd:The Insulated electric wire
JP2018143072A (en) 2017-02-28 2018-09-13 株式会社小松製作所 Flat wire for wave-winding coil
WO2019159922A1 (en) 2018-02-16 2019-08-22 古河電気工業株式会社 Insulated wire, coil, and electric/electronic instrument

Also Published As

Publication number Publication date
JP2023102177A (en) 2023-07-24
WO2023135852A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
CN109074909B (en) Insulated wire, coil, and electric/electronic device
KR102000380B1 (en) Insulated electrical wire having excellent resistance to bending process, coil and electronic/electric equipment using same
JP7423509B2 (en) Insulated wire, coils and electrical/electronic equipment
JP6839695B2 (en) Insulated wires, motor coils and electrical / electronic equipment
CN107004465B (en) Insulated wire, coil, electric/electronic device, and method for manufacturing insulated wire
CN109716451B (en) Insulated wire, coil, and electric/electronic device
WO2015098637A1 (en) Insulating wire, motor coil, electric/electronic device, and method for manufacturing insulating wire
US9892819B2 (en) Insulated wire, coil, and electronic/electrical equipment
WO2017150625A1 (en) Insulated wire, coil and electrical/electronic device
JP6932642B2 (en) Insulated wire, manufacturing method of insulated wire, coil, rotary electric machine and electrical / electronic equipment
US20190156970A1 (en) Insulated wire, coil, and electric or electronic equipment
JP2017117681A (en) Self-fusing insulation wire, coil and electric and electronic device
JP7257558B1 (en) Insulated wires, coils, rotating electrical machines, and electric/electronic equipment
JP2023047971A (en) Insulated wire, coil, rotary electric machine and electric/electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220830

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230403

R150 Certificate of patent or registration of utility model

Ref document number: 7257558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150