JP7257105B2 - Absolute distance measuring device and method - Google Patents

Absolute distance measuring device and method Download PDF

Info

Publication number
JP7257105B2
JP7257105B2 JP2018037194A JP2018037194A JP7257105B2 JP 7257105 B2 JP7257105 B2 JP 7257105B2 JP 2018037194 A JP2018037194 A JP 2018037194A JP 2018037194 A JP2018037194 A JP 2018037194A JP 7257105 B2 JP7257105 B2 JP 7257105B2
Authority
JP
Japan
Prior art keywords
pulse
measurement
period
measured
absolute distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018037194A
Other languages
Japanese (ja)
Other versions
JP2019152507A (en
Inventor
祥希 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2018037194A priority Critical patent/JP7257105B2/en
Publication of JP2019152507A publication Critical patent/JP2019152507A/en
Priority to JP2022071005A priority patent/JP7271762B2/en
Application granted granted Critical
Publication of JP7257105B2 publication Critical patent/JP7257105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、機械工業、電気工業などの精密機器・精密加工部材の生産分野における距離測定装置及び距離測定方法に係り、特に、所要の対象物までの絶対距離をレーザ光により測定する絶対距離測定装置及びその方法に関する。 The present invention relates to a distance measuring device and a distance measuring method in the field of production of precision equipment and precision machined parts such as the machinery industry and the electrical industry, and more particularly to absolute distance measurement for measuring the absolute distance to a desired object using a laser beam. Apparatus and method.

従来、被測定物へ非接触で測長・測距をする方法としては、光学的手段が適している。光を用いた絶対距離計の原理は、大きく分けて光の強度に変調をかけ基準光との干渉により位相差を検出する強度変調方式、光をパルス状に被測定物へ投射し、その往復時間に基づいて距離を測定する方法である飛行時間法(Time of flight: TOF)が知られている。 Conventionally, an optical means is suitable as a method for non-contact length measurement and distance measurement to an object to be measured. The principle of an absolute distance meter using light can be broadly divided into the intensity modulation method, in which the intensity of light is modulated and the phase difference detected by interference with a reference light, and the method in which a pulse of light is projected onto the object to be measured, and the reciprocating motion is performed. Time of flight (TOF), which is a method of measuring distance based on time, is known.

強度変調方式は、光の強度が外乱に弱いことや比較的大掛かりな装置が必要となること、被測定物までの絶対距離を測定するために多くの時間を要すること等の理由により、実際の機械工業・電気工場の現場での適用は限られている。 The intensity modulation method is not practical due to the fact that the intensity of light is vulnerable to disturbance, that it requires a relatively large-scale device, and that it takes a long time to measure the absolute distance to the object to be measured. Field applications in mechanical and electrical factories are limited.

飛行時間法は、原理が単純であるため比較的簡便に距離測定が可能であるが、光の伝播速度が速いため光検出器・回路の周波数応答性の制限を受ける。そのため、高い測定精度が求められる精密機器や精密加工部材の形状や位置測定には不十分であるため、現場での適用は限定的である。 The time-of-flight method has a simple principle and can measure distance relatively easily. Therefore, it is not sufficient for measuring the shape and position of precision equipment and precision-machined members that require high measurement accuracy, so its application in the field is limited.

また、反射鏡と部分反射鏡を用いて重畳された周波数の異なる連続発振(CW)レーザ光を対象物へ投射し、反射または散乱したレーザ光のビート信号の位相差によって対象物までの距離を測定することが知られ、特許文献1に記載されている。 In addition, continuous wave (CW) laser beams with different frequencies superimposed using a reflector and a partial reflector are projected onto an object, and the distance to the object is determined by the phase difference between the beat signals of the reflected or scattered laser beams. It is known to measure and is described in US Pat.

さらに、測定レンジを大きくし、かつ分解能を向上させるため、光源と対象物で反射または散乱された複数の連続発振(CW)レーザ光によるビート信号を電気的に混合して、光源と対象物で反射または散乱された複数の連続発振(CW)によるビート信号を生成する。そして、光源と対象物で反射または散乱された複数の連続発振(CW)間のビート信号の位相と、光源と対象物へ照射する前の複数の連続発振(CW)ビート信号の位相を比較することによって対象物までの距離を測定する、ことが特許文献2に記載されている。 Furthermore, in order to increase the measurement range and improve the resolution, the beat signals from multiple continuous wave (CW) laser beams reflected or scattered by the light source and the object are electrically mixed, A beat signal is generated by a plurality of reflected or scattered continuous waves (CW). Then, the phase of the beat signal between multiple continuous wave (CW) beat signals reflected or scattered by the light source and object is compared with the phase of the multiple continuous wave (CW) beat signals before irradiating the light source and object. Patent Document 2 describes that the distance to the object is measured by

特開昭61-138191号公報JP-A-61-138191 特開2011-203188号公報Japanese Unexamined Patent Application Publication No. 2011-203188

上記従来技術である特許文献1に記載のものでは、ビート信号を検出する際に、光量が不足し、必要な信号雑音比が得られず、位相差を抽出することが困難である。また、被測定物の反射率が低い表面、表面が散乱面である場合には、遠方まで高精度に測定するには大規模な高価なシステムとならざるを得ない。 In the prior art disclosed in Patent Document 1, when detecting the beat signal, the amount of light is insufficient, the required signal-to-noise ratio cannot be obtained, and it is difficult to extract the phase difference. Moreover, when the surface of the object to be measured has a low reflectance or is a scattering surface, a large-scale and expensive system is required to measure a long distance with high accuracy.

特許文献2に記載のものも同様であり、複数の連続発振(CW)レーザ光を必要とする。そのため、連続発振(CW)レーザ光として、可干渉である多数の周波数成分の光が櫛の歯のように等間隔に並んでいるレーザ光コムを必要とする。光コム発生器は、それ自体が高価であると共に、絶対距離を測定するには大規模なシステムとなる。 The method described in Patent Document 2 is similar, and requires a plurality of continuous wave (CW) laser beams. Therefore, as a continuous wave (CW) laser beam, a laser beam comb in which a large number of coherent frequency components are arranged at regular intervals like teeth of a comb is required. An optical comb generator is itself expensive and a large system for absolute distance measurement.

本発明の目的は、上記従来技術の課題を解決し、より簡単で安価な構成で対象物までの絶対距離を正確に測定できる光を用いた絶対距離測定装置及びその方法を得ることにある。 SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems of the prior art, and to obtain an absolute distance measuring apparatus and method using light that can accurately measure the absolute distance to an object with a simpler and less expensive configuration.

上記目的を達成するため、本発明は、光を被測定物へ投射し反射して戻ってくる、その往復時間に基づいて距離を測定する絶対距離測定装置において、基準となるクロック信号を生成するクロック生成部と、前記クロック信号に基づいて周期的な測定パルスを生成する測定パルス生成部と、前記測定パルスとは異なる周期の検出パルスを生成する検出パルス生成部と、前記測定パルスに従った測定光を前記被測定物へ投射する光パルス送信部と、前記被測定物の表面で反射した前記測定光を検出して受信信号として出力する受光部と、前記検出パルスと前記受信信号とを論理演算して合成する論理積回路と、前記論理積回路で合成された信号により、前記測定光が前記光パルス送信部から前記被測定物へ投射されてから前記被測定物の表面で反射して前記受光部で検出されるまでの伝播時間を求め、前記被測定物までの絶対距離を演算する信号処理部と、を備えたものである。 To achieve the above object, the present invention generates a reference clock signal in an absolute distance measuring device that measures distance based on the round-trip time of light projected onto an object to be measured, reflected, and returned. a clock generation unit, a measurement pulse generation unit that generates a periodic measurement pulse based on the clock signal, a detection pulse generation unit that generates a detection pulse with a period different from that of the measurement pulse, and a an optical pulse transmitter for projecting the measuring light onto the object to be measured; a light receiving part for detecting the measuring light reflected by the surface of the object to be measured and outputting it as a received signal; and the detection pulse and the received signal. The measurement light is reflected from the surface of the object to be measured after being projected from the optical pulse transmitting section to the object to be measured by a logical product circuit that performs logic operation and synthesizing, and the signal synthesized by the logical product circuit. a signal processing unit for obtaining a propagation time until detection by the light-receiving unit, and calculating an absolute distance to the object to be measured.

周期的な測定パルスと、測定パルスとは異なる周期の検出パルスと、を生成し、測定パルスに従った測定光を被測定物へ投射して反射した受信信号を検出する。また、検出パルスと受信信号とを論理演算して測定光の伝播時間を求め、被測定物までの絶対距離を演算する。 A periodic measurement pulse and a detection pulse with a period different from that of the measurement pulse are generated, the measurement light according to the measurement pulse is projected onto the object to be measured, and the reflected received signal is detected. Further, the propagation time of the measurement light is obtained by logically operating the detected pulse and the received signal, and the absolute distance to the object to be measured is calculated.

したがって、測定パルスと検出パルスの論理積の周期は両者の周波数差に等しい周期となり、正弦波のうなり現象と等価となる。これにより、伝播時間のような僅かな遅延であっても、うなり波形の位相は大きく変化するので、光を用いて、より簡単で安価な構成で対象物までの絶対距離を高い測定精度に測定できる。 Therefore, the period of the AND of the measurement pulse and the detection pulse is equal to the frequency difference between the two, which is equivalent to the sine wave beat phenomenon. As a result, the phase of the beat waveform changes greatly even with a slight delay such as the propagation time, so the absolute distance to the target can be measured with high accuracy using light with a simpler and cheaper configuration. can.

また、上記のものにおいて、前記検出パルス生成部は、前記クロック信号に基づいて前記検出パルスを生成することが望ましい。 Further, in the above, it is preferable that the detection pulse generator generates the detection pulse based on the clock signal.

さらに、上記のものにおいて、前記光パルス送信部は、半導体の再結合発光を利用したレーザーダイオードにより測定光を前記被測定物へ投射することが望ましい。 Furthermore, in the above apparatus, it is preferable that the optical pulse transmitting section projects measurement light onto the object to be measured by a laser diode that utilizes recombination light emitted from a semiconductor.

さらに、上記のものにおいて、前記測定パルスの周期と前記検出パルスの周期との差は、前記測定パルスの周期に対して0.3~3%とすることが望ましい。 Furthermore, in the above, it is desirable that the difference between the period of the measurement pulse and the period of the detection pulse is 0.3 to 3% of the period of the measurement pulse.

さらに、上記のものにおいて、前記測定パルスの周期T=100としたとき、前記検出パルスの周期Tを99とする比率であることが望ましい。 Furthermore, in the above, it is preferable that the ratio is such that the period T1 of the detection pulse is 99 when the period T2 of the measurement pulse is 100.

さらに、本発明は、被測定物の両面に配置された絶対距離測定装置を備え、予め測定された前記絶対距離測定装置間の距離から前記被測定物の厚さを演算するものである。 Furthermore, the present invention comprises absolute distance measuring devices arranged on both sides of the object to be measured, and calculates the thickness of the object to be measured from the distance between the absolute distance measuring devices measured in advance.

さらに、本発明の絶対距離測定方法は、光を被測定物へ投射し反射して戻ってくる、その往復時間に基づいて距離を測定する絶対距離測定方法であって、基準となるクロック信号に基づいて周期的な測定パルスと、前記測定パルスとは異なる周期の検出パルスと、を生成し、前記測定パルスに従って測定光を前記被測定物へ投射して前記被測定物の表面で反射した前記測定光を受信信号として検出し、前記検出パルスと前記受信信号とを論理演算して前記測定光の伝播時間を求め、前記被測定物までの絶対距離を演算することを特徴とする。 Furthermore, the absolute distance measuring method of the present invention is a method for measuring distance based on the round-trip time of light projected onto an object to be measured, reflected, and returned. A periodic measurement pulse and a detection pulse having a period different from that of the measurement pulse are generated based on the measurement pulse, and the measurement light is projected onto the object to be measured in accordance with the measurement pulse, and reflected from the surface of the object to be measured. The measuring light is detected as a received signal, the detected pulse and the received signal are logically operated to obtain the propagation time of the measuring light, and the absolute distance to the object to be measured is calculated.

また、上記において、前記検出パルスは、前記クロック信号に基づいて生成されることが望ましい。 Moreover, in the above, it is preferable that the detection pulse is generated based on the clock signal.

本発明によれば、周期的な測定パルスと、測定パルスとは異なる周期の検出パルスと、を生成し、測定パルスに従った測定光を被測定物へ投射して反射した受信信号を検出する。また、検出パルスと受信信号とを論理演算して測定光の伝播時間を求め、被測定物までの絶対距離を演算する。 According to the present invention, a periodic measurement pulse and a detection pulse with a period different from that of the measurement pulse are generated, the measurement light according to the measurement pulse is projected onto the object under test, and the reflected received signal is detected. . Further, the propagation time of the measurement light is obtained by logically operating the detected pulse and the received signal, and the absolute distance to the object to be measured is calculated.

したがって、測定パルスと検出パルスの論理積の周期は両者の周波数差に等しい周期となり、正弦波のうなり現象と等価となる。これにより、伝播時間のような僅かな遅延であっても、うなり波形の位相は大きく変化するので、光を用いて、より簡単で安価な構成で対象物までの絶対距離を高い測定精度に測定できる。 Therefore, the period of the AND of the measurement pulse and the detection pulse is equal to the frequency difference between the two, which is equivalent to the sine wave beat phenomenon. As a result, the phase of the beat waveform changes greatly even with a slight delay such as the propagation time, so the absolute distance to the target can be measured with high accuracy using light with a simpler and cheaper configuration. can.

本発明の一実施形態に係る絶対距離測定装置のブロック図1 is a block diagram of an absolute distance measuring device according to one embodiment of the present invention; FIG. 一実施形態における測定パルスの時間対振幅を示すグラフGraph showing amplitude versus time of a measured pulse in one embodiment 一実施形態における検出パルスの時間対振幅を示すグラフ4 is a graph showing amplitude versus time of detected pulses in one embodiment. 一実施形態における測定パルスと検出パルスの論理積信号の時間対振幅を示すグラフ4 is a graph showing the amplitude versus time of the AND signal of the measurement pulse and the detection pulse in one embodiment; 一実施形態における受信信号と検出パルスの時間対振幅を示すグラフGraph showing amplitude versus time of received signal and detected pulse in one embodiment 図1の絶対距離測定装置を厚さ測定器へ応用した例を示す全体図General view showing an example of applying the absolute distance measuring device of FIG. 1 to a thickness measuring device

以下、本発明の実施形態について図面を参照して詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

非接触で二点間の距離を測る計測機器としては、超音波式、光学式があり、用途によって使い分けられている。超音波式は、対象に向けて超音波を照射し反射して返って来るまでの時間を測るもので光学式に比べてより簡単で安価な構成となる。そして、超音波式は、耐環境性能が高く、対象物の材質を問わないが、測定距離は数メートル程度であり、ターゲット(対象物の大きさ)は大きい(数10mm)ことが必要、という欠点がある。 Measuring instruments that measure the distance between two points without contact include the ultrasonic type and the optical type, which are used according to the application. The ultrasonic type measures the time it takes for an ultrasonic wave to be emitted toward an object, reflected, and returned, and is simpler and cheaper than the optical type. The ultrasonic method has high environmental resistance and does not care about the material of the object, but the measurement distance is about several meters, and the target (object size) must be large (several tens of millimeters). There are drawbacks.

これに対して、光学式は、耐環境性能は低いが、測定距離は10m~数100m程度、ターゲットが数mmと小さい、測定個所が視認可能という特徴がある。また、より精度の高い絶対距離を測定するには、高価な光コム発生器が必要とされ、大規模なシステムとなる。そこで、光をパルス状に発信し、その往復時間に基づいて距離を測定することで、安価な絶対距離計を実現する。 On the other hand, the optical type has low environmental resistance, but has the characteristics that the measurement distance is about 10 m to several hundred meters, the target is as small as several mm, and the measurement point is visible. In addition, an expensive optical comb generator is required to measure the absolute distance with higher accuracy, resulting in a large-scale system. Therefore, an inexpensive absolute rangefinder is realized by transmitting light in the form of pulses and measuring the distance based on the round trip time.

図1は、本発明の一実施形態に係る絶対距離測定装置のブロック図、図2は測定パルスの時間対振幅を示すグラフ、図3は検出パルスの時間対振幅を示すグラフである。1は、クロック生成部であり、測定のための信号を生成する際に基準となるクロック信号を生成する。2は、クロック生成部1によるクロック信号に基づいて、図2に示す周期的な測定パルスを生成する測定パルス生成部である。 FIG. 1 is a block diagram of an absolute distance measuring device according to an embodiment of the present invention, FIG. 2 is a graph showing time versus amplitude of a measurement pulse, and FIG. 3 is a graph showing time versus amplitude of a detection pulse. Reference numeral 1 denotes a clock generation unit that generates a clock signal that serves as a reference when generating a signal for measurement. Reference numeral 2 denotes a measurement pulse generator that generates periodic measurement pulses shown in FIG. 2 based on the clock signal from the clock generator 1 .

3は、検出パルスを生成する検出パルス生成部である。検出パルス生成部3は、測定パルス生成部2と同様にクロック生成部1からのクロック信号に基づいて測定パルスとは僅かに異なる周期の検出パルスを図3のように生成する。同じクロック信号に基づいて測定パルスと検出パルスとを生成するので、周期差が僅かであっても正確な信号を生成することができ、測定精度を向上できる。ここで、検出パルス生成部は、クロック信号に基づくことなく、独自に検出パルスを生成してもよいが、上述したように、クロック信号に基づいて生成した方が正確な信号を生成することができるので望ましい。 3 is a detection pulse generator that generates a detection pulse. Similar to the measurement pulse generator 2, the detection pulse generator 3 generates detection pulses having a period slightly different from that of the measurement pulse based on the clock signal from the clock generator 1, as shown in FIG. Since the measurement pulse and the detection pulse are generated based on the same clock signal, an accurate signal can be generated even if the period difference is slight, and the measurement accuracy can be improved. Here, the detection pulse generator may generate the detection pulse independently without being based on the clock signal. It is desirable because it can be done.

なお、図2に示す測定パルスの周期は100μsであり、100μs毎にONとなる電気信号である。図3に示す検出パルスの周期は99μsであり、99μs毎にONとなる
電気信号である。したがって、図3で分かるように時間の経過と共に測定パルスと検出パルスの発生タイミングがずれている。ただし、この例は説明を簡単とするために、測定パルスの周期を100μs、検出パルスの周期を99μsとしたもので、例えばクロック信号の周期を1μsとしてそれぞれ生成したとしている。
The period of the measurement pulse shown in FIG. 2 is 100 μs, and the electrical signal is turned ON every 100 μs. The period of the detection pulse shown in FIG. 3 is 99 μs, and the electrical signal is turned ON every 99 μs. Therefore, as can be seen from FIG. 3, the generation timings of the measurement pulse and the detection pulse deviate with the lapse of time. However, in this example, to simplify the explanation, the period of the measurement pulse is 100 μs, the period of the detection pulse is 99 μs, and the period of the clock signal is 1 μs.

クロック信号の周期を0.8μsとすれば測定パルスの周期を80μs、検出パルスの周期を79.2μsと言うように相対的に定めれば良い。また、本例では測定パルスの周期は100μsに対して検出パルスの周期を99μsとしているが、この比率は任意に設定すれば良い。以下、周期に単位を付けないで説明する。 Assuming that the period of the clock signal is 0.8 μs, the period of the measurement pulse is set to 80 μs, and the period of the detection pulse is set to 79.2 μs. In this example, the period of the measurement pulse is 100 μs and the period of the detection pulse is 99 μs, but this ratio may be set arbitrarily. Hereinafter, the period will be described without a unit.

4は光パルス送信部であり、図2で示したデジタル信号である測定パルスに従い、測定光がパルスレーザとして被測定物5へ投射される。デジタル信号に基づいて測定光を発生させるので、光パルス送信部4は、連続波レーザ光を位相変調したり、同期レーザを使う光コムを使用したりする必要がない。 Reference numeral 4 denotes an optical pulse transmitter, which projects measurement light as a pulse laser onto the object 5 to be measured according to the measurement pulse, which is a digital signal shown in FIG. Since the measurement light is generated based on the digital signal, the optical pulse transmitter 4 does not need to phase-modulate the continuous wave laser light or use an optical comb using a synchronous laser.

なお、パルスレーザとは、細かい時間間隔で点滅をくり返すレーザのことであり、パルスレーザの1回のレーザ照射時間がパルス幅である。LD(レーザーダイオード)等の励起源をパルス的に点灯し、励起源点灯時間幅と励起源への電流値を電気的に制御することにより、レーザ出力が制御される。また、連続発振(CW)レーザ光は、励起源を連続的に点灯させることを意味している。 A pulsed laser is a laser that repeatedly blinks at short time intervals, and one laser irradiation time of the pulsed laser is the pulse width. Laser output is controlled by pulsatingly lighting an excitation source such as an LD (laser diode) and electrically controlling the excitation source lighting time width and the current value to the excitation source. Continuous wave (CW) laser light means that the excitation source is lit continuously.

パルスレーザによる測定光は被測定物5の表面で反射し、受光部6で検出される。受光部6で得られる受信信号7は測定パルスが伝播時間(往復時間)Δtだけ遅れた信号として検出される。伝播時間は、光パルス送信部4から測定光が発せられた時刻と被測定物5で反射した測定光を受光部6で検出した時刻の差である。 The measurement light from the pulse laser is reflected by the surface of the object 5 to be measured and detected by the light receiving section 6 . The received signal 7 obtained by the light receiving section 6 is detected as a signal delayed by the propagation time (round trip time) Δt of the measurement pulse. The propagation time is the difference between the time when the measurement light is emitted from the optical pulse transmitter 4 and the time when the light receiver 6 detects the measurement light reflected by the object 5 to be measured.

一方、クロック生成部1から測定パルスとは僅かに異なる周期で生成された検出パルスと、被測定物5の表面で反射して得られたΔtだけ遅れた受信信号と、論理積回路8にて論理演算(AND演算)されて合成される。合成された信号は信号処理部9へ入り、伝播時間Δtを高精度に求め、光パルス送信部4から被測定物5までの絶対距離を演算する。 On the other hand, the detection pulse generated from the clock generation unit 1 with a period slightly different from that of the measurement pulse and the received signal delayed by Δt obtained by reflection from the surface of the object under test 5 are received by the AND circuit 8. They are synthesized by a logical operation (AND operation). The combined signal enters the signal processing section 9 to obtain the propagation time .DELTA.t with high precision and to calculate the absolute distance from the optical pulse transmitting section 4 to the device under test 5. FIG.

測定パルスと検出パルスは僅かに周波数が異なる検出パルスを周波数f測定パルスを周波数fの正弦波として置き換えると、測定パルスと検出パルスとの論理積の周期は、周波数fと周波数fとの正弦波におけるうなり波形(エンベロープ)の周期となる。したがって、うなり波形における初期位相の位相一致点は、検出パルスの周期と測定パルスの周期の公倍数時刻において両パルスは一致することに相当する。 The measurement and detection pulses have slightly different frequencies. If the detection pulse is replaced by a sine wave of frequency f 1 and the measurement pulse is replaced by a sine wave of frequency f 2 , then the period of the AND of the measurement pulse and the detection pulse is the beat waveform (envelope) of the sine wave of frequency f 1 and frequency f 2 becomes a cycle of Therefore, the phase coincidence point of the initial phase in the beat waveform corresponds to the coincidence of both pulses at the time of the common multiple of the period of the detection pulse and the period of the measurement pulse.

測定パルスがΔtだけ遅れた信号である受信信号は、うなり波形の初期位相を大きく変化させる。僅かな伝播時間の遅延であっても、うなり波形の位相は大きく変化し、受信信号と検出パルスの論理積として論理積回路8にて出力され、信号処理部9へ入力される。信号処理部9にて受信信号と検出パルスの論理積による信号のタイミングを解祈することで、より高精度に伝播時間を求めることで、対象物までの絶対距離を測定することが可能となる。初期位相の変化は、次に示すように、測定パルスと検出パルスの周波数差に対する測定パルスの周波数の比だけ拡大される。 The received signal, which is a signal in which the measurement pulse is delayed by Δt, greatly changes the initial phase of the beat waveform. Even a slight propagation time delay causes a large change in the phase of the beat waveform. By solving the timing of the signal based on the AND of the received signal and the detected pulse in the signal processing unit 9, it is possible to obtain the propagation time with higher accuracy, thereby making it possible to measure the absolute distance to the object. . The change in initial phase is magnified by the ratio of the frequency of the measurement pulse to the frequency difference between the measurement and detection pulses, as follows.

うなり波形の詳細と位相の変化について説明する。検出パルスをF、測定パルスをFの正弦波として置き換えて、うなり波形の詳細と位相の変化について説明する。検出パルスを周波数f測定パルスを周波数fとし、それぞれの角周波数ω、ω、それぞれの初期位相をφ、φとすると、ω =2πf 、ω =2πf であるから、 =sin(ω t+φ )、F =sin(ω t+φ となる。F、Fの重ね合わせで発生するうなり波形Fは、

Figure 0007257105000001
として表現できる。このときcosの項はうなり波形のエンベロープを示し、sinの項はエンベロープ内部の波形を示している。 Details of the beat waveform and changes in phase will be described. Details of the beat waveform and changes in phase will be described by replacing the detection pulse with a sine wave of F 1 and the measurement pulse with a sine wave of F 2 . Assuming that the detection pulse has a frequency f 1 , the measurement pulse has a frequency f 2 , the respective angular frequencies ω 1 and ω 2 , and the respective initial phases φ 1 and φ 2 , then ω 1 =2πf 1 and ω 2 =2πf 2 . Therefore, F 1 =sin(ω 1 t+φ 1 ) and F 2 =sin(ω 2 t+φ 2 ) . The beat waveform F generated by superimposing F 1 and F 2 is
Figure 0007257105000001
can be expressed as At this time, the cos term indicates the envelope of the beat waveform, and the sin term indicates the waveform inside the envelope.

ここでFの伝播時間が僅かに遅れ、遅れ時間をΔtとする。ただし、この遅れ時間ΔtはFの周期(1/f)以内とすれば、Fは時間tを用いて式2のように表すことができる。

Figure 0007257105000002
Here, the propagation time of F2 is slightly delayed, and the delay time is Δt. However, if this delay time Δt is set within the period (1/f 2 ) of F 2 , F 2 can be expressed by Equation 2 using time t.
Figure 0007257105000002

そして、生成されるうなり波形Fは式3となる。

Figure 0007257105000003
式3において、cosの項はうなり波形のエンベロープを示し、sinの項はエンベロープ内部の波形を示している。したがって、Fの遅れがうなり波形Fのエンベロープの位相に影響を与えていることが分かる。 Then, the generated beat waveform F is represented by Equation (3).
Figure 0007257105000003
In Equation 3, the cos term indicates the envelope of the beat waveform, and the sin term indicates the waveform inside the envelope. Therefore, it can be seen that the delay of F2 affects the phase of the envelope of the beat waveform F.

周波数f、fの影響度を明確にするため、式3を変形すると、式4となる。

Figure 0007257105000004
In order to clarify the degree of influence of the frequencies f 1 and f 2 , Equation 3 is transformed into Equation 4.
Figure 0007257105000004

式4においても、cosの項はうなり波形のエンベロープを示しているので、Fの伝播時間がΔt遅れると、うなり波形Fのエンベロープは、ω /(ω -ω Δtだけ位相がずれた形状となる。また、ω /(ω -ω Δt= /(f -f Δtであり、f=1/T、f=1/Tであるから、ω /(ω -ω Δt=T/(T-T)Δtとなる。 In Equation 4, the cos term also indicates the envelope of the beat waveform, so if the propagation time of F2 is delayed by Δt, the envelope of the beat waveform F will have a phase shift of ω 2 /(ω 1 −ω 2 ) Δt. It has a distorted shape. Also, ω 2 /(ω 1 −ω 2 ) Δt= f 2 /(f 1 −f 2 ) Δt, and since f 2 =1/T 2 and f 1 =1/T 1 , ω 2 / (ω 1 −ω 2 ) Δt=T 1 /(T 2 −T 1 ) Δt.

仮に、T=99、T=100とした場合、うなり波形の位相の変化は、 /(T -T Δt=99Δtとなり、測定パルスFの伝播時間がΔt遅れると99倍に拡大されて検出ができることが分かる。 Assuming that T 1 =99 and T 2 =100, the phase change of the beat waveform is T 1 /(T 2 −T 1 ) Δt=99Δt, and if the propagation time of the measurement pulse F 2 is delayed by Δt, 99 It can be seen that detection can be performed at double magnification.

図4は測定パルスと検出パルスの論理積信号の時間対振幅を示すグラフ、図5は受信信号と検出パルスの論理積信号の時間対振幅を示すグラフである。上記では、検出パルスをF、測定パルスをFの正弦波として置き換えて説明したが、図2から図5に基づいてデジタル信号として説明する。図2では、測定パルスの周期Tは100とし、図3の検出パルスの周期Tは99として表している。 FIG. 4 is a graph showing the time vs. amplitude of the AND signal of the measurement pulse and the detection pulse, and FIG. 5 is a graph showing the time vs. amplitude of the AND signal of the received signal and the detection pulse. In the above description, the detection pulse is F 1 and the measurement pulse is a sine wave of F 2 . However, digital signals will be described with reference to FIGS. 2 to 5 . In FIG. 2, the period T2 of the measurement pulse is 100, and the period T1 of the detection pulse in FIG.

図4は、測定パルスと検出パルスの論理積信号であり、その周期は、正弦波として置き換えた場合のうなり波形(エンベロープ)の周期となり、その位相一致点は、検出パルスの周期と測定パルスの周期の公倍数時刻において両パルスは一致することに相当する。したがって、図4に示すように測定パルスと検出パルスの論理積信号の周期は9900である。 FIG. 4 shows the AND signal of the measurement pulse and the detection pulse, the period of which is the period of the beat waveform (envelope) when replaced with a sine wave, and the phase coincidence point is the period of the detection pulse and the measurement pulse. This corresponds to the coincidence of both pulses at the time of the common multiple of the period. Therefore, the period of the AND signal of the measurement pulse and the detection pulse is 9900 as shown in FIG.

図5は、周期T=100の測定パルスがΔt=1(周期Tの1%)だけ遅れた信号である受信信号と、周期T=99の検出パルスと、の論理積信号を示す。上記した式4の説明、うなり波形の位相の変化は、[T/(T-T)]Δt=99Δtとなることより、図5を図4と比較すると時刻9900の信号が99だけずれて時刻9801に移動することになる。 FIG. 5 shows the logical AND signal of the received signal, which is the measurement pulse with period T 2 =100 delayed by Δt=1 (1% of period T 2 ), and the detection pulse with period T 1 =99. . According to the above equation 4, the change in the phase of the beat waveform is [T 1 /(T 2 −T 1 )]Δt=99Δt. It shifts to time 9801 .

つまり、遅れた時間Δt=1に対して99倍に拡大される。この99倍という比率は周期T=100の測定パルスと周期T=99の検出パルスとの差の比率に等しい。測定パルス、検出パルスの周期は任意に変更できるため拡大比率は任意に設定ができる。しかし、測定パルスの周期Tと検出パルスの周期Tとの差であるずれ量は、周期Tに対して0.3~3%とすることが論理積信号を正確にする点と検出感度の点から望ましく、特に、測定パルスの周期T=100に対して検出パルスの周期Tを99という比率とすることが実用的で良い。 That is, the delay time Δt=1 is enlarged by 99 times. This ratio of 99 times is equal to the ratio of the difference between the measured pulses of period T 2 =100 and the detected pulses of period T 1 =99. Since the period of the measurement pulse and the detection pulse can be changed arbitrarily, the enlargement ratio can be arbitrarily set. However, the shift amount, which is the difference between the period T2 of the measurement pulse and the period T1 of the detection pulse, should be 0.3 to 3% with respect to the period T2 in order to make the AND signal more accurate. It is desirable from the viewpoint of sensitivity, and in particular, it is practical and good to set the ratio of the period T1 of the detection pulse to 99 with respect to the period T2 of the measurement pulse=100.

よって、例えば、測定パルス周期T=100μs、受信信号の遅れΔt=1μs、検出パルス周期T=99μsのとき、光速を300000km/sとすると、信号処理部9は、光速×Δt=300mにより被測定物に対する光の往復の距離を求めることができる。よって、光の片道距離、即ち被測定物との距離は半分の150mとなる。 Therefore, for example, when the measurement pulse period T 2 =100 μs, the received signal delay Δt=1 μs, and the detection pulse period T 1 =99 μs, and the speed of light is 300000 km/s, the signal processing unit 9 calculates It is possible to obtain the round trip distance of the light with respect to the object to be measured. Therefore, the one-way distance of light, that is, the distance to the object to be measured is halved to 150 m.

この時、信号処理部9は、受信信号の遅れΔtを99倍に拡大した信号を、受光部によって受光された信号と検出パルスの論理積とから得ることができ、それに基づいて受信信号の遅れΔtを算出することができる。信号処理部9は、このような計算を行う事により測定対象物との距離を算出することができる。 At this time, the signal processing unit 9 can obtain a signal obtained by expanding the delay Δt of the received signal by 99 times from the logical product of the signal received by the light receiving unit and the detection pulse, and based on this, the delay of the received signal can be obtained. Δt can be calculated. The signal processing unit 9 can calculate the distance to the measurement object by performing such calculations.

また、干渉を利用しないため、光源の質を問わず安価な構成が可能になる。さらに、デジタル信号にて合成を行っているため光自身の可干渉性を問わず、可干渉であるレーザ光コムを用いる必要がない。したがって、安価に入手可能な半導体の再結合発光を利用したレーザーダイオードなどが利用可能になる。 In addition, since interference is not used, an inexpensive configuration is possible regardless of the quality of the light source. Furthermore, since the synthesis is performed using digital signals, there is no need to use a coherent laser comb regardless of the coherence of the light itself. Therefore, it becomes possible to use a laser diode or the like that utilizes recombination light emission of an inexpensively available semiconductor.

図6は、上記で説明した絶対距離測定装置を厚さ測定器へ応用した例を示す全体図である。25は被測定物であり、例えば、直径300mmで厚さ0.775mm、厚み公差が±0.025mm程度のシリコンウェハーである。被測定物25は、ステージ28の上に載置されている。上距離計20は被測定物25の上方、下距離計21は、被測定物25の下方に設けられ、それぞれ、上アーム26、下アーム27を介してステージ28に固定されている。 FIG. 6 is an overall view showing an example of applying the above-described absolute distance measuring device to a thickness measuring device. Reference numeral 25 denotes an object to be measured, for example, a silicon wafer having a diameter of 300 mm, a thickness of 0.775 mm, and a thickness tolerance of about ±0.025 mm. An object 25 to be measured is placed on a stage 28 . The upper rangefinder 20 is provided above the object 25 to be measured, and the lower rangefinder 21 is provided below the object 25 to be measured.

被測定物25の厚さの測定に際して、上距離計20と下距離計21との距離は、予め正確に距離計間距離として測定しておく。上距離計20、下距離計21は、それぞれ、図1で示したように光パルス送信部4、受光部6等で構成される。被測定物25の上面には、上距離計20の光パルス送信部4からの測定光が投射され、被測定物25の上面で反射して受光部6で検出される。 When measuring the thickness of the object 25 to be measured, the distance between the upper rangefinder 20 and the lower rangefinder 21 is accurately measured in advance as the distance between the rangefinders. The upper rangefinder 20 and the lower rangefinder 21 are each composed of the optical pulse transmitter 4, the light receiver 6, etc., as shown in FIG. The measurement light from the optical pulse transmitter 4 of the upper rangefinder 20 is projected onto the upper surface of the object 25 to be measured, reflected by the upper surface of the object 25 to be detected by the light receiving unit 6 .

被測定物25の下面も同様であり、上距離計20で上面までの絶対距離、下距離計21で下面までの絶対距離が測定される。被測定物25の厚さは、予め測定されている距離計間距離から上距離計20で測定された上面までの絶対距離と、下距離計21で測定された下面までの絶対距離と、の和を減じて求める。 The same is true for the lower surface of the object 25 to be measured. The upper rangefinder 20 measures the absolute distance to the upper surface, and the lower rangefinder 21 measures the absolute distance to the lower surface. The thickness of the object to be measured 25 is the absolute distance from the distance between the rangefinders measured in advance to the upper surface measured by the upper rangefinder 20, and the absolute distance to the lower surface measured by the lower rangefinder 21. Subtract the sum.

上記のように、円盤状の被測定物の両面に絶対距離測定装置を配置し、絶対距離測定装置間の距離を予め測定しておけば、ごく薄い被測定物であっても厚さ測定が正確にできる。そして、このような厚さ測定器であれば、より簡単で安価な構成で耐環境性能が高く、精度の高い、測定個所が視認可能な非接触の厚さ測定が可能となる。 As described above, if absolute distance measuring devices are placed on both sides of a disk-shaped object and the distance between the absolute distance measuring devices is measured in advance, the thickness of even an extremely thin object can be measured. can be done accurately. With such a thickness measuring instrument, it is possible to perform non-contact thickness measurement with a simpler and less expensive configuration, high environmental resistance, high accuracy, and a visible measurement point.

1 クロック生成部
2 測定パルス生成部
3 検出パルス生成部
4 光パルス送信部
5、25 被測定物
6 受光部
7 受信信号
8 論理積回路
9 信号処理部
20 上距離計
21 下距離計
26 上アーム
27 下アーム
28 ステージ
REFERENCE SIGNS LIST 1 clock generator 2 measurement pulse generator 3 detection pulse generator 4 optical pulse transmitter 5, 25 device under test 6 light receiver 7 received signal 8 AND circuit 9 signal processor 20 upper rangefinder 21 lower rangefinder 26 upper arm 27 lower arm 28 stage

Claims (6)

測定光を被測定物へ投射し反射して戻ってくる、その往復時間に基づいて距離を測定する絶対距離測定装置において、
基準となるクロック信号を生成するクロック生成部と、
前記クロック信号に基づいて周期的な測定パルスを生成する測定パルス生成部と、
前記測定パルスとは異なり、周期の差が前記測定パルスの周期に対して0.3~3%となる周期である検出パルスを生成する検出パルス生成部と、
前記測定パルスに従った前記測定光を前記被測定物へ投射する光パルス送信部と、
前記被測定物の表面で反射した前記測定光を検出して受信信号パルスとして出力する受光部と、
前記検出パルスの周期と前記受信信号パルスの周期との公倍数時刻の周期となる論理積信号を出力する論理積回路と、
前記測定パルスと前記検出パルスの論理積信号に対する、前記受信信号パルスと前記検出パルスの論理積信号の時刻のずれに基づいて前記測定光が前記光パルス送信部から前記被測定物へ投射されてから前記被測定物の表面で反射して前記受光部で検出されるまでの伝播時間を求め、前記被測定物までの絶対距離を演算する信号処理部と、
を備えたことを特徴とする絶対距離測定装置。
An absolute distance measuring device that measures distance based on the round-trip time of projecting measurement light onto an object to be measured, reflecting it, and returning it,
a clock generator that generates a reference clock signal;
a measurement pulse generator that generates periodic measurement pulses based on the clock signal;
a detection pulse generating unit that generates a detection pulse having a period different from the measurement pulse and having a period difference of 0.3 to 3% with respect to the period of the measurement pulse;
an optical pulse transmitter that projects the measurement light onto the object under test according to the measurement pulse;
a light receiving unit that detects the measurement light reflected by the surface of the object to be measured and outputs it as a received signal pulse;
a logical product circuit that outputs a logical product signal whose period is a common multiple of the period of the detected pulse and the period of the received signal pulse ;
The measurement light is projected from the optical pulse transmitter onto the device under test based on the time lag of the logical product signal of the received signal pulse and the detection pulse with respect to the logical product signal of the measurement pulse and the detection pulse. a signal processing unit that obtains a propagation time from the surface of the object to be measured until it is detected by the light receiving unit, and calculates the absolute distance to the object to be measured;
An absolute distance measuring device comprising:
前記検出パルス生成部は、前記クロック信号に基づいて前記検出パルスを生成することを特徴とする請求項1に記載の絶対距離測定装置。 2. The absolute distance measuring device according to claim 1, wherein the detection pulse generator generates the detection pulse based on the clock signal. 前記測定パルスの周期T=100としたとき、前記検出パルスの周期Tを99とする比率であることを特徴とする請求項1に記載の絶対距離測定装置。 2. The absolute distance measuring device according to claim 1, wherein the ratio is such that the period T1 of the detection pulse is 99 when the period T2 of the measurement pulse is 100. 被測定物の両面に配置された請求項1からのいずれか1項に記載の絶対距離測定装置を備え、予め測定された前記絶対距離測定装置間の距離から前記被測定物の厚さを演算することを特徴とする厚さ測定器。 4. The absolute distance measuring device according to any one of claims 1 to 3 arranged on both sides of an object to be measured, wherein the thickness of the object to be measured is determined from the distance between the absolute distance measuring devices measured in advance. A thickness measuring instrument characterized by computing. 測定光を被測定物へ投射し反射して戻ってくる、その往復時間に基づいて距離を測定する絶対距離測定方法であって、
基準となるクロック信号に基づいた周期的な測定パルスと、
前記測定パルスとは異なり、周期の差が前記測定パルスの周期に対して0.3~3%となる周期である検出パルス、を生成し、
前記測定パルスに従って前記測定光を前記被測定物へ投射して前記被測定物の表面で反射した前記測定光を受信信号パルスとして検出し、
前記測定パルスと前記検出パルスとの公倍数時刻の周期となる論理積信号に対する、前記受信信号パルスと前記検出パルスとの公倍数時刻の周期となる論理積信号の時刻のずれに基づいて前記測定光の伝播時間を求め、前記被測定物までの絶対距離を演算することを特徴とする絶対距離測定方法。
An absolute distance measurement method for measuring a distance based on the round-trip time of projecting a measurement light onto an object to be measured, reflecting it, and returning it,
periodic measurement pulses based on a reference clock signal;
generating a detection pulse having a period different from the measurement pulse and having a period difference of 0.3 to 3% with respect to the period of the measurement pulse ;
projecting the measurement light onto the object to be measured according to the measurement pulse and detecting the measurement light reflected from the surface of the object to be measured as a received signal pulse;
Based on a time shift of a logical product signal having a period of a common multiple time of the received signal pulse and the detection pulse with respect to a logical product signal having a period of a common multiple time of the measurement pulse and the detection pulse An absolute distance measuring method comprising obtaining a propagation time and calculating an absolute distance to the object to be measured.
前記検出パルスは、前記クロック信号に基づいて生成されることを特徴とする請求項に記載の絶対距離測定方法。 6. The absolute distance measuring method according to claim 5 , wherein said detection pulse is generated based on said clock signal.
JP2018037194A 2018-03-02 2018-03-02 Absolute distance measuring device and method Active JP7257105B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018037194A JP7257105B2 (en) 2018-03-02 2018-03-02 Absolute distance measuring device and method
JP2022071005A JP7271762B2 (en) 2018-03-02 2022-04-22 Absolute distance measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018037194A JP7257105B2 (en) 2018-03-02 2018-03-02 Absolute distance measuring device and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022071005A Division JP7271762B2 (en) 2018-03-02 2022-04-22 Absolute distance measuring device and method

Publications (2)

Publication Number Publication Date
JP2019152507A JP2019152507A (en) 2019-09-12
JP7257105B2 true JP7257105B2 (en) 2023-04-13

Family

ID=67948817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018037194A Active JP7257105B2 (en) 2018-03-02 2018-03-02 Absolute distance measuring device and method

Country Status (1)

Country Link
JP (1) JP7257105B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7271762B2 (en) * 2018-03-02 2023-05-11 株式会社東京精密 Absolute distance measuring device and method
KR102571110B1 (en) * 2021-03-05 2023-08-25 부산대학교 산학협력단 System and Method for Measuring Optical Interferometric Distance using Multiple Optical Frequency Stepped Scanning Laser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521536A (en) 2002-11-26 2006-09-21 ジェームス エフ. マンロ High-precision distance measuring apparatus and method
JP2010122222A (en) 2008-11-21 2010-06-03 Sick Ag Optoelectronic sensor and method for measuring distance in accordance with light transit time principle
JP2014174010A (en) 2013-03-08 2014-09-22 Toshiba Corp Thickness measurement device
JP6186337B2 (en) 2014-11-13 2017-08-23 双葉電子工業株式会社 Display device and display driving method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0713585D0 (en) * 2006-07-16 2007-08-22 Fluke Corp Equivalent
WO2008024831A2 (en) * 2006-08-22 2008-02-28 Munro James F Systems for three-dimensional imaging and methods thereof
JP6765039B2 (en) * 2016-04-28 2020-10-07 株式会社ユピテル Exit device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521536A (en) 2002-11-26 2006-09-21 ジェームス エフ. マンロ High-precision distance measuring apparatus and method
JP2010122222A (en) 2008-11-21 2010-06-03 Sick Ag Optoelectronic sensor and method for measuring distance in accordance with light transit time principle
JP2014174010A (en) 2013-03-08 2014-09-22 Toshiba Corp Thickness measurement device
JP6186337B2 (en) 2014-11-13 2017-08-23 双葉電子工業株式会社 Display device and display driving method

Also Published As

Publication number Publication date
JP2019152507A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
JP7169642B2 (en) Optical measuring device and measuring method
US9025141B1 (en) Position determination using synthetic wave laser ranging
US7777865B2 (en) Time difference measuring device, measuring method, distance measuring device, and distance measuring method
JP7291385B2 (en) Optical measuring device and measuring method
JP2010014549A (en) Range finder, range finding method, and optical three-dimensional shape measuring machine
JP2019512692A (en) Optical fazogram for LADAR vibration measurement
JP2002357656A (en) Distance measuring device, distance measuring facility and distance measuring method
JP7257105B2 (en) Absolute distance measuring device and method
EP2871492A1 (en) Synthetic wave laser ranging sensors and methods
CN108226902A (en) A kind of face battle array lidar measurement system
US9798004B2 (en) Laser ranging sensors and methods that use a ladder of synthetic waves having increasing wavelengths to calculate a distance measurement
JP2016169985A (en) Light wave range finder
JP2022113159A (en) Method and system for optimizing scanning of coherent LIDAR
US3649125A (en) Direction sensing method and apparatus for laser doppler velocity measurements
GB2306825A (en) Laser ranging using time correlated single photon counting
JP7271762B2 (en) Absolute distance measuring device and method
CN112654894B (en) Radar detection method and related device
US20100265491A1 (en) Range-finding method and apparatus
Liu et al. Multicycle synchronous digital phase measurement used to further improve phase-shift laser range finding
JP7385919B2 (en) Distance measurement method, optical comb rangefinder, and optical three-dimensional shape measuring device
CN115290175A (en) Sea water sound velocity measuring device and method and ocean distance measuring system
US11513229B2 (en) Multi-beam processing of lidar vibration signals
EP3715903B1 (en) Laser distance meter and method of measuring a distance
Gupta Depth from Time-of-Flight Imaging
JPH0921871A (en) Semiconductor laser distance measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220510

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20220510

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220510

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220517

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220603

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220607

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220830

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221011

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20221206

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20230126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230130

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230221

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230322

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230403

R150 Certificate of patent or registration of utility model

Ref document number: 7257105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150