JP7251884B2 - Molded stationary induction device - Google Patents

Molded stationary induction device Download PDF

Info

Publication number
JP7251884B2
JP7251884B2 JP2018146809A JP2018146809A JP7251884B2 JP 7251884 B2 JP7251884 B2 JP 7251884B2 JP 2018146809 A JP2018146809 A JP 2018146809A JP 2018146809 A JP2018146809 A JP 2018146809A JP 7251884 B2 JP7251884 B2 JP 7251884B2
Authority
JP
Japan
Prior art keywords
voltage side
container
winding
bushings
contents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018146809A
Other languages
Japanese (ja)
Other versions
JP2020021907A (en
Inventor
伸一 中山
新 井上
雅之 城条
裕介 ▲陦▼
哲夫 中前
洋輔 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Industrial Products and Systems Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Industrial Products and Systems Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Industrial Products and Systems Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Industrial Products and Systems Corp
Priority to JP2018146809A priority Critical patent/JP7251884B2/en
Publication of JP2020021907A publication Critical patent/JP2020021907A/en
Application granted granted Critical
Publication of JP7251884B2 publication Critical patent/JP7251884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Housings And Mounting Of Transformers (AREA)

Description

本発明の実施形態は、モールド形静止誘導機器に関する。 Embodiments of the present invention relate to molded stationary induction devices.

従来、巻線の表面を樹脂等の絶縁部材でモールドすることで絶縁性能を確保したモールド形静止誘導機器が知られている。このようなモールド形静止誘導機器は、モールドされた巻線を容器内に格納し、その容器内にドライエア等を充填することで、更に高電圧に適用させることが可能となる。 2. Description of the Related Art Conventionally, mold-type stationary induction devices are known in which insulation performance is ensured by molding the surface of windings with an insulating material such as resin. Such a mold-type stationary induction device can be applied to higher voltages by storing the molded windings in a container and filling the container with dry air or the like.

このようにモールドされた巻線を容器内に格納したモールド形静止誘導機器は、外線と容器内の巻線とを電気的に接続するため、各巻線に対応したブッシング及び接続導体を備えている。ブッシングは、容器の天井部分にその天井部分を貫いて設けられている。そして、外線は、容器の外部においてブッシングに電気的に接続されており、接続導体は、容器内において巻線とブッシングとを電気的に接続している。これにより、各相の巻線は、接続導体及びブッシングを介して、外線に電気的に接続されている。 A molded static induction device, in which the winding thus molded is housed in a container, is provided with bushings and connecting conductors corresponding to each winding in order to electrically connect the external wires and the windings in the container. . A bushing is provided in and through the ceiling portion of the container. The external wire is electrically connected to the bushing outside the container, and the connecting conductor electrically connects the winding and the bushing inside the container. Thereby, the windings of each phase are electrically connected to the external line via the connecting conductors and bushings.

このような構成のモールド形静止誘導機器は、接続導体についても絶縁性能を確保する必要があるため、接続導体の外側表面は絶縁部材で覆われている。しかしながら、例えばモールド形静止誘導機器を当該誘導機器の製造工場から設置場所まで搬送し設置する際などにおいては、モールド形静止誘導機器に振動が加わることが避けられない。そして、搬送及び設置の際にモールド形静止誘導機器に振動が加わると、その振動によって容器内部の接続導体が揺れて他の部品と接触したりし、その結果、接続導体の外部を覆う絶縁部材が破損するおそれがあった。 In such a molded static induction device, it is necessary to ensure the insulation performance of the connecting conductors, so the outer surface of the connecting conductors is covered with an insulating member. However, for example, when the mold type static induction device is transported from the manufacturing factory of the induction device to the installation site and installed, it is inevitable that the mold type static induction device is subjected to vibration. When vibration is applied to the mold-type stationary induction device during transportation and installation, the vibration causes the connection conductor inside the container to shake and come into contact with other parts, resulting in the insulating member covering the outside of the connection conductor. was likely to be damaged.

特開2015-225894号公報JP 2015-225894 A

そこで、搬送等によって接続導体に振動が加わった場合であっても接続導体の破損を抑制することができるモールド形静止誘導機器を提供する。 Therefore, a molded static induction device is provided that can suppress damage to the connection conductors even when the connection conductors are subjected to vibration due to transportation or the like.

実施形態のモールド形静止誘導機器は、高圧側巻線及び低圧側巻線を鉄心と前記巻線の中心部に通された鉄心とを有し前記巻線の表面が絶縁部材で覆われて相毎に設けられた複数の機器中身と、各前記機器中身を収容する容器と、表面が絶縁部材で覆われて各前記機器中身の前記巻線に接続された接続導体と、各前記機器中身の各前記接続導体に対応し前記容器の天井部に設けられ、前記容器の外部に設けられた外線及び前記接続導体に接続されることで、前記外線と前記接続導体とを電気的接続に接続する複数のブッシングと、を備える。各前記ブッシングのうち少なくとも前記高圧側巻線に対応した高圧側ブッシングは、それぞれ対応する各前記機器中身の上方でかつ平面視において対応する各前記機器中身と前記高圧側ブッシングの少なくとも一部とが重なる位置に設けられ、前記高圧側巻線と前記低圧側巻線との間に冷却用の気体を流すための空隙が形成され、前記接続導体のうち前記高圧側巻線に接続される高圧側接続導体は、前記空隙の上方を覆わない位置に設けられており、各前記高圧側ブッシングは、それぞれ対応する前記機器中身と前記高圧側接続導体との接続部分の直上に設けられており、各前記高圧側接続導体は、折り曲げ不可能の剛体で構成されており、垂直方向に延びている。 A molded static induction device according to an embodiment has a high-voltage side winding and a low-voltage side winding, each of which has an iron core and an iron core that passes through the center of the winding. a plurality of device contents provided for each; a container for accommodating each of the device contents; a connecting conductor whose surface is covered with an insulating member and connected to the winding of each of the device contents; An external wire provided on the ceiling of the container corresponding to each of the connection conductors and connected to the connection conductor and an external wire provided outside the container to electrically connect the external wire and the connection conductor. a plurality of bushings; Among the bushings, the high-voltage side bushings corresponding to at least the high-voltage side windings are arranged above the corresponding equipment contents and at least part of the corresponding equipment contents and the high-voltage side bushings in plan view. A high-voltage side winding provided at an overlapping position and having a gap for flowing cooling gas between the high-voltage side winding and the low-voltage side winding, and connected to the high-voltage side winding among the connection conductors. The connection conductor is provided at a position that does not cover the upper side of the air gap, and each of the high-voltage side bushings is provided directly above the corresponding connection portion between the inside of the device and the high-voltage side connection conductor. The high voltage side connection conductor is composed of a non-bendable rigid body and extends in the vertical direction.

一実施形態によるモールド形静止誘導機器の概略構成を示すもので、機器中身を部分的に破断して示す縦断面図FIG. 1 shows a schematic configuration of a mold-type stationary induction device according to one embodiment, and is a vertical cross-sectional view showing a partially broken interior of the device. 一実施形態によるモールド形静止誘導機器の概略構成を示すもので、容器を部分的に破断して示す平面図A plan view showing a schematic configuration of a mold-type stationary induction device according to one embodiment, with the container partially cut away. 比較例によるモールド形静止誘導機器の概略構成を示す図1相当図Equivalent view of FIG. 1 showing a schematic configuration of a mold-type stationary induction device according to a comparative example

以下、一実施形態について、図面を参照しながら説明する。
図1及び図2に示すモールド変圧器10は、モールド形静止誘導機器の適用例の一例であり、例えば電力系統や受変電設備に用いられるものである。本実施形態の場合、モールド変圧器10は、U相、V相、W相の巻線を有する三相の変圧器である。なお、モールド変圧器10は、三相変圧器に限られない。
An embodiment will be described below with reference to the drawings.
A molded transformer 10 shown in FIGS. 1 and 2 is an example of application of a molded stationary induction device, and is used, for example, in power systems and power receiving and transforming equipment. In this embodiment, the molded transformer 10 is a three-phase transformer having U-phase, V-phase, and W-phase windings. Note that the molded transformer 10 is not limited to a three-phase transformer.

モールド変圧器10は、機器中身20、容器30、熱交換器40、接続導体51、52、及びブッシング61、62を備えている。機器中身20は、モールド変圧器10の各相に対応して設けられている。例えば本実施形態において、モールド変圧器10は、U相、V相、及びW相を有する三相変圧器であるため、U相、V相、及びW相のそれぞれに対応した3つの機器中身20を備えている。 The molded transformer 10 includes a device content 20, a container 30, a heat exchanger 40, connection conductors 51, 52, and bushings 61, 62. The equipment contents 20 are provided corresponding to each phase of the molded transformer 10 . For example, in the present embodiment, the molded transformer 10 is a three-phase transformer having U phase, V phase, and W phase, so there are three equipment components 20 corresponding to each of the U phase, V phase, and W phase. It has

機器中身20はそれぞれ、鉄心21、高圧側巻線22、低圧側巻線23、及びスペーサ24を有している。高圧側巻線22は、モールド変圧器10を例えば電力系統に適用した際に高圧電力が入力される1次側の巻線として機能する。また、低圧側巻線23は、モールド変圧器10を例えば電力系統に適用した際に低圧電力を出力する2次側の巻線として機能する。 The equipment contents 20 each have an iron core 21 , a high voltage side winding 22 , a low voltage side winding 23 and a spacer 24 . The high-voltage side winding 22 functions as a primary side winding to which high-voltage power is input when the molded transformer 10 is applied to, for example, a power system. The low-voltage side winding 23 functions as a secondary side winding that outputs low-voltage power when the molded transformer 10 is applied to, for example, a power system.

高圧側巻線22及び低圧側巻線23及びは、それぞれ表面が樹脂等の絶縁部材によって覆われている。つまり、高圧側巻線22及び低圧側巻線23の表面は、電気絶縁性を有する樹脂等の絶縁部材によってモールドされている。高圧側巻線22及び低圧側巻線23は、それぞれ中心部に鉄心21が通されてコイルを構成している。この場合、高圧側巻線22は、低圧側巻線23の外周側に設けられている。 The surfaces of the high-voltage side winding 22 and the low-voltage side winding 23 are each covered with an insulating member such as resin. That is, the surfaces of the high-voltage side winding 22 and the low-voltage side winding 23 are molded with an insulating member such as resin having electrical insulation. The high-voltage side winding 22 and the low-voltage side winding 23 each constitute a coil in which the core 21 is passed through the center. In this case, the high voltage side winding 22 is provided on the outer peripheral side of the low voltage side winding 23 .

各相の鉄心21は、共通の上部ヨーク211及び下部ヨーク212を有しており、各鉄心21の上端部及び下端部がそれぞれ上部ヨーク211及び下部ヨーク212によって相互に連結されている。そして、下部ヨーク212は、容器30の底部に支持固定されている。そのため、容器30に振動が加わった場合でも、少なくとも鉄心21の下端部は、容器30に対して相対的に移動し難い。つまり、少なくとも機器中身20の下端部は、容器30に対して相対的に移動し難くなっている。 The iron cores 21 of each phase have a common upper yoke 211 and lower yoke 212, and the upper end and lower end of each iron core 21 are connected to each other by the upper yoke 211 and lower yoke 212, respectively. The lower yoke 212 is supported and fixed to the bottom of the container 30 . Therefore, even if the container 30 is vibrated, at least the lower end of the iron core 21 is less likely to move relative to the container 30 . That is, at least the lower end of the device content 20 is difficult to move relative to the container 30 .

スペーサ24は、高圧側巻線22と低圧側巻線23との間に設けられている。つまり、スペーサ24は、高圧側巻線22の内周側でかつ低圧側巻線23の外周側に設けられている。スペーサ24は、高圧側巻線22及び低圧側巻線23の全周に亘って波型に形成されている。このスペーサ24により、高圧側巻線22と低圧側巻線23との間に空隙25が形成されて、冷却用の気体を流す空間を確保するとともに、高圧側巻線22と低圧側巻線23との間における必要な絶縁強度を確保している。なお、スペーサ24は、高圧側巻線22と低圧側巻線23と間の絶縁強度及び冷却用の空間を確保できる形状であれば波型に限られない。 Spacer 24 is provided between high-voltage side winding 22 and low-voltage side winding 23 . That is, the spacer 24 is provided on the inner peripheral side of the high-voltage winding 22 and on the outer peripheral side of the low-voltage winding 23 . The spacer 24 is formed in a corrugated shape over the entire circumferences of the high-voltage side winding 22 and the low-voltage side winding 23 . This spacer 24 forms an air gap 25 between the high voltage side winding 22 and the low voltage side winding 23 to secure a space for flowing cooling gas, and also to separate the high voltage side winding 22 and the low voltage side winding 23 from each other. Ensures the necessary insulation strength between Note that the spacer 24 is not limited to a corrugated shape as long as the shape of the spacer 24 can ensure insulation strength and cooling space between the high-voltage side winding 22 and the low-voltage side winding 23 .

容器30は、モールド変圧器10の外郭を構成するものであり、例えば鋼板等の金属製の筐体を主体として構成されている。容器30は、気密性を有した箱状に構成されている。機器中身20は、容器30の内部に収納されている。本実施形態の場合、三相各相に対応した3つの機器中身20は、容器30内において等間隔で一列の直線状に配置されている。このため、容器30は、全体として一方向に長い形状、例えば平面視において長方形となる箱状に形成されている。 The container 30 constitutes the outer shell of the molded transformer 10, and is mainly composed of a metal housing such as a steel plate. The container 30 is configured in the shape of an airtight box. The equipment content 20 is housed inside the container 30 . In the case of this embodiment, the three equipment contents 20 corresponding to each of the three phases are arranged in a straight line at equal intervals in the container 30 . For this reason, the container 30 is formed in a shape elongated in one direction as a whole, for example, in a rectangular box shape in plan view.

この場合、隣接する機器中身20同士、及び機器中身20と容器30の内壁面とは、それぞれ離間している。これにより、隣接する機器中身20の間、及び機器中身20と容器30の内壁面との間には、それぞれ隙間301、302が確保されている。この隙間301、302によって、冷却用の気体を流す空間を確保するとともに、各機器中身20間、及び機器中身20と容器30の内壁との間における必要な絶縁強度を確保している。 In this case, the adjacent device contents 20 and the device contents 20 and the inner wall surface of the container 30 are separated from each other. As a result, gaps 301 and 302 are secured between the adjacent device contents 20 and between the device contents 20 and the inner wall surface of the container 30, respectively. These gaps 301 and 302 ensure space for flowing cooling gas, and also ensure necessary insulation strength between the device contents 20 and between the device contents 20 and the inner wall of the container 30 .

また、容器30は、上部接続ダクト31、下部接続ダクト32、開口部33、及び扉34を有している。上部接続ダクト31及び下部接続ダクト32は、容器30内と熱交換器40とを接続している。すなわち、容器30内と熱交換器40とは、接続ダクト31、32を通して相互に連通している。この場合、上部接続ダクト31は、容器30の上部、具体的には巻線22、23の上端よりも上側に設けられている。また、下部接続ダクト32は、上部接続ダクト31の下方でかつ容器30の下部、具体的には巻線22、23の下端よりも下側に設けられている。 The container 30 also has an upper connection duct 31 , a lower connection duct 32 , an opening 33 and a door 34 . The upper connection duct 31 and the lower connection duct 32 connect the inside of the container 30 and the heat exchanger 40 . That is, the inside of the container 30 and the heat exchanger 40 communicate with each other through the connection ducts 31 and 32 . In this case, the upper connection duct 31 is provided above the container 30 , specifically above the upper ends of the windings 22 , 23 . The lower connection duct 32 is provided below the upper connection duct 31 and below the container 30 , specifically below the lower ends of the windings 22 and 23 .

開口部33は、図2に示すように、容器30の周囲の壁部の一部を貫いて形成されており、容器30の内部と外部とを連通している。本実施形態の場合、開口部33は、容器30の周囲を構成する垂直方向に延びる4つの壁面のうち一の壁面に設けられている。具体的には、開口部33は、一列に配置された各機器中身20の全てに対向する位置に設けられている。換言すると、開口部33は、作業者が容器30の外部から開口部33を通して容器30内を見た場合に、各機器中身20を外部から同時に見ることができる位置及び大きさに設けられている。この開口部33は、作業者が容器30内の状況を点検する際の点検窓として機能する。なお、開口部33に換えて、透明のガラスや強化プラスティック等で構成した窓を設けて、外部から容器30の内部を視認できるようにしても良い。 As shown in FIG. 2, the opening 33 is formed through a part of the surrounding wall of the container 30 to allow communication between the inside and the outside of the container 30 . In the case of the present embodiment, the opening 33 is provided in one wall surface of the four wall surfaces that form the periphery of the container 30 and extend in the vertical direction. Specifically, the opening 33 is provided at a position facing all the device contents 20 arranged in a line. In other words, the opening 33 is provided at a position and size that allows the operator to see the inside of the container 30 from the outside of the container 30 through the opening 33 at the same time. . This opening 33 functions as an inspection window when an operator inspects the condition inside the container 30 . Instead of the opening 33, a window made of transparent glass, reinforced plastic, or the like may be provided so that the inside of the container 30 can be visually recognized from the outside.

扉34は、例えばヒンジ開閉式の扉であって、開口部33を開閉可能に設けられている。作業者は、扉34を開いて開口部33を開放することで、容器30内の機器中身20に対して点検等の必要な作業を行うことができる。また、扉34は、閉鎖状態で開口部33を密閉することができる。そのため扉34が閉じた状態では、容器30内は気密性が維持された密閉空間となる。この場合、容器30内には大気圧よりも高い圧力のドライエア等が充填される。空気の絶縁耐力はその絶対圧力にほぼ比例する。このため、容器30内に大気圧よりも高い圧力のドライエアを充填することで、モールド変圧器10は、機器中身20を大気圧中に設置した場合に比べてより高い絶縁耐圧を得ることができる。 The door 34 is, for example, a hinged door, and is provided so as to be able to open and close the opening 33 . By opening the door 34 to open the opening 33 , the operator can perform necessary work such as inspection of the device contents 20 in the container 30 . Further, the door 34 can seal the opening 33 in a closed state. Therefore, when the door 34 is closed, the inside of the container 30 becomes an airtight space. In this case, the container 30 is filled with dry air or the like having a pressure higher than the atmospheric pressure. The dielectric strength of air is approximately proportional to its absolute pressure. Therefore, by filling the container 30 with dry air having a pressure higher than the atmospheric pressure, the molded transformer 10 can obtain a higher dielectric strength voltage than when the device contents 20 are installed in the atmospheric pressure. .

熱交換器40は、容器30の長手方向の両外側にそれぞれ設けられており、上部接続ダクト31及び下部接続ダクト32を介して容器30内に連通している。熱交換器40は、機器中身20の動作によって発生した熱を大気中に放熱する機能を有する。容器30内の気体は、機器中身20で発生した熱によって熱せられると、図1の白抜き矢印で示したように、機器中身20の外部に形成された隙間301、302、及び機器中身20の内部に形成された空隙25を通って容器30内を上昇する。 The heat exchangers 40 are provided on both sides of the container 30 in the longitudinal direction, and communicate with the inside of the container 30 via the upper connection duct 31 and the lower connection duct 32 . The heat exchanger 40 has a function of dissipating heat generated by the operation of the equipment contents 20 to the atmosphere. When the gas in the container 30 is heated by the heat generated in the device content 20, as indicated by the white arrows in FIG. It rises inside the container 30 through the space 25 formed inside.

そして、容器30内を上昇した気体は、上部接続ダクト31を通って熱交換器40内に流入し、気体の熱が熱交換器40の作用によって大気中に放熱される。その後、放熱して温度が下がった気体は、下部接続ダクト32から容器30内に流入し、隙間301、302及び空隙25を通って再び上昇する。このようにして容器30内を自然循環する気体の流れが発生し、その気体の流れによって各機器中身20が自然冷却される。なお、例えば接続ダクト31、32内等に送風機を設けて、容器30内の気体を強制循環させる構成としても良い。これによれば、モールド変圧器10内の冷却効率を更に向上させることができる。 Then, the gas rising inside the container 30 flows through the upper connection duct 31 into the heat exchanger 40 , and the heat of the gas is radiated to the atmosphere by the action of the heat exchanger 40 . After that, the gas whose temperature has been lowered by releasing heat flows into the container 30 from the lower connection duct 32 and rises again through the gaps 301 and 302 and the gap 25 . In this manner, a gas flow that naturally circulates within the container 30 is generated, and the device contents 20 are naturally cooled by the gas flow. In addition, for example, a blower may be provided in the connection ducts 31 and 32 or the like to forcefully circulate the gas in the container 30 . According to this, the cooling efficiency in the molded transformer 10 can be further improved.

モールド変圧器10は、図2に示すように、各機器中身20に対してそれぞれ高圧側接続導体51及び低圧側接続導体52を備えている。高圧側接続導体51は、図1に示すように、導電性を有する部材で構成された導体部511と、この導体部511の外側表面を覆う樹脂等の絶縁部材512と、を有して構成されている。つまり、高圧側接続導体51は、導体部511の外側表面が樹脂等の絶縁部材でモールドされている。導体部511は、例えば複数の導線を撚って構成しても良いし、導電性を有する金属棒等で構成しても良い。また、詳細は図示しないが、低圧側接続導体52も、高圧側接続導体51と同様に、導電性を有する導体部と、この導体の外側表面を覆う樹脂等の絶縁部材と、を有して構成されている。つまり、低圧側接続導体52も、導体部の外側表面が樹脂等の絶縁部材でモールドされている。 As shown in FIG. 2, the molded transformer 10 has high-voltage side connection conductors 51 and low-voltage side connection conductors 52 for each device component 20 . As shown in FIG. 1, the high-voltage side connection conductor 51 includes a conductor portion 511 made of a conductive member and an insulating member 512 such as a resin covering the outer surface of the conductor portion 511. It is That is, the high-voltage side connection conductor 51 has the outer surface of the conductor portion 511 molded with an insulating material such as resin. The conductor portion 511 may be configured by, for example, twisting a plurality of conducting wires, or may be configured by a conductive metal rod or the like. Although not shown in detail, the low-voltage side connection conductor 52 also has a conductive portion and an insulating member such as resin covering the outer surface of the conductor, like the high-voltage side connection conductor 51. It is configured. That is, the low-voltage side connection conductor 52 is also molded with an insulating member such as resin on the outer surface of the conductor portion.

この場合、高圧側接続導体51には、低圧側接続導体52よりも大電流が流れる。そのため、高圧側接続導体51の導体部511の直径は、低圧側接続導体52の導体部の直径よりも太く、また、高圧側接続導体51の絶縁部材512は、低圧側接続導体52の絶縁部材よりも厚い。このため、高圧側接続導体51は、低圧側接続導体52よりも剛性が高い。本実施形態の場合、高圧側接続導体51は、柔軟性を有しておらず、折り曲げ不可能な剛体とみなすことができる。つまり、本実施形態の場合、高圧側接続導体51は、作業者の力では容易には折り曲げることが出来ず、仮に強引に折り曲げた場合には絶縁部材512が破損してしまう程度の剛性を有している。 In this case, a larger current flows through the high voltage side connection conductor 51 than the low voltage side connection conductor 52 . Therefore, the diameter of the conductor portion 511 of the high-voltage side connecting conductor 51 is larger than the diameter of the conductor portion of the low-voltage side connecting conductor 52, and the insulating member 512 of the high-voltage side connecting conductor 51 is larger than the insulating member of the low-voltage side connecting conductor 52. thicker than Therefore, the high voltage side connection conductor 51 has higher rigidity than the low voltage side connection conductor 52 . In the case of this embodiment, the high voltage side connection conductor 51 does not have flexibility and can be regarded as a rigid body that cannot be bent. In other words, in the case of this embodiment, the high-voltage side connection conductor 51 cannot be easily bent by the force of an operator, and has such rigidity that the insulating member 512 would be damaged if it were to be forcibly bent. are doing.

一方、低圧側接続導体52は、高圧側接続導体51ほど大きな電流は流れない。そのため、低圧側接続導体52の導体部の直径は、高圧側接続導体51の導体部511の直径よりも細くすることができ、また、低圧側接続導体52の絶縁部材は、高圧側接続導体51の絶縁部材よりも薄くすることができる。そのため、低圧側接続導体52は、高圧側接続導体51よりも比較的柔軟性を有したものとすることができる。 On the other hand, the low-voltage side connection conductor 52 does not carry as much current as the high-voltage side connection conductor 51 . Therefore, the diameter of the conductor portion of the low-voltage side connecting conductor 52 can be made smaller than the diameter of the conductor portion 511 of the high-voltage side connecting conductor 51. can be made thinner than the insulating member of the Therefore, the low-voltage side connection conductor 52 can be made relatively more flexible than the high-voltage side connection conductor 51 .

また、モールド変圧器10は、図2に示すように、各機器中身20に対応してそれぞれ高圧側ブッシング61及び低圧側ブッシング62を備えている。ブッシング61、62は、巻線22、23の接続導体51、52と電力系統や受変電設備等の外線91、92とを、容器30に対して絶縁を確保した状態で電気的に接続する機能を有する。各相のブッシング61、62は、それぞれ各相の機器中身20に対応しており、容器30の天井部35を貫いて設けられている。各ブッシング61、62は、一方の端部が容器30の外部に露出しており、他方の端部が容器30内に挿入されている。この場合、高圧側ブッシング61は、各機器中身20の高圧側巻線22に対応している。また、低圧側ブッシング62は、各機器中身20の低圧側巻線23に対応している。 2, the molded transformer 10 is provided with a high-voltage side bushing 61 and a low-voltage side bushing 62 corresponding to each equipment contents 20. As shown in FIG. The bushings 61 and 62 have the function of electrically connecting the connection conductors 51 and 52 of the windings 22 and 23 and the external wires 91 and 92 of the electric power system, power receiving and transforming equipment, etc., while ensuring insulation with respect to the container 30. have The bushings 61 and 62 of each phase respectively correspond to the equipment contents 20 of each phase, and are provided through the ceiling portion 35 of the container 30 . One end of each bushing 61 , 62 is exposed to the outside of the container 30 and the other end is inserted into the container 30 . In this case, the high voltage side bushing 61 corresponds to the high voltage side winding 22 of each equipment content 20 . Also, the low-voltage side bushing 62 corresponds to the low-voltage side winding 23 of each device component 20 .

各高圧側ブッシング61及び各低圧側ブッシング62は、図2に示すように、それぞれ容器30の長手方向に沿って、等間隔で一列の直線状に配置されている。換言すれば、各高圧側ブッシング61及び各低圧側ブッシング62は、それぞれ各相の機器中身20の配置に沿って等間隔で一列に配置されている。この場合、各高圧側ブッシング61及び各低圧側ブッシング62の配置の間隔は、各機器中身20の配置間隔に等しい。 As shown in FIG. 2, the high-pressure side bushings 61 and the low-pressure side bushings 62 are arranged in a straight line at regular intervals along the longitudinal direction of the container 30, respectively. In other words, the high pressure side bushings 61 and the low pressure side bushings 62 are arranged in a line at equal intervals along the arrangement of the equipment contents 20 of each phase. In this case, the intervals between the high-pressure side bushings 61 and the low-pressure side bushings 62 are equal to the intervals between the device contents 20 .

また、この場合、各高圧側ブッシング61は、容器30の天井部35において、容器30の幅方向の中心でかつ各機器中身20の中心に対して開口部33側寄りに設けられている。また、各低圧側ブッシング62は、容器30の天井部35において、容器30の幅方向の中心でかつ各機器中身20の中心に対して開口部33とは反対側寄りに設けられている。 Also, in this case, each high-pressure side bushing 61 is provided in the ceiling portion 35 of the container 30 at the center in the width direction of the container 30 and closer to the opening 33 side than the center of each device content 20 . Each low pressure side bushing 62 is provided in the ceiling portion 35 of the container 30 at the center of the container 30 in the width direction and on the side opposite to the opening 33 with respect to the center of each device content 20 .

各ブッシング61、62のうち少なくとも高圧側ブッシング61は、図2に示すように、平面視において、それぞれ対応する機器中身20以外の他の機器と完全に重ならない位置に設けられている。そして、本実施形態の場合、各ブッシング61、62のうち少なくとも高圧側ブッシング61は、平面視において、つまり上方から容器30を透かして見た場合に、それぞれ対応する各機器中身20と高圧側ブッシング61の少なくとも一部とが重なる位置に設けられている。つまり、少なくとも各高圧側ブッシング61は、それぞれ自己が接続される高圧側巻線22を有する機器中身20の上方に設けられている。この場合、各高圧側ブッシング61は、対応する機器中身20と高圧側接続導体51との接続部分、つまり高圧側巻線22と高圧側接続導体51との接続部分53の直上に設けられている。そして、各高圧側接続導体51は、垂直方向に延びている。 At least the high-pressure side bushing 61 of the bushings 61 and 62 is, as shown in FIG. In the case of the present embodiment, at least the high-pressure side bushing 61 of the bushings 61 and 62 corresponds to each of the equipment contents 20 and the high-pressure side bushing when viewed from above, that is, when the container 30 is seen through from above. 61 is provided at a position where it overlaps with at least part of it. That is, at least each of the high voltage side bushings 61 is provided above the equipment contents 20 having the high voltage side windings 22 to which they are connected. In this case, each high-voltage side bushing 61 is provided directly above the connection portion between the corresponding equipment content 20 and the high-voltage side connection conductor 51, that is, the connection portion 53 between the high-voltage side winding 22 and the high-voltage side connection conductor 51. . Each high voltage side connection conductor 51 extends in the vertical direction.

また、本実施形態の場合、低圧側ブッシング62も、平面視において、それぞれ対応する機器中身20以外の他の機器と完全に重ならない位置で、かつ、それぞれ対応する各機器中身20と少なくとも一部が重なる位置に設けられている。つまり、各低圧側ブッシング62は、それぞれ自己が接続される低圧側巻線23を有する機器中身20の上方に設けられている。そして、この場合、低圧側ブッシング62は、平面視において、それぞれ対応する各機器中身20と完全に重なる位置に設けられている。 In addition, in the case of this embodiment, the low pressure side bushing 62 is also positioned so as not to completely overlap other devices other than the corresponding device contents 20 in a plan view, and is at least partially overlapped with the corresponding device contents 20 . are placed at overlapping positions. That is, each low-voltage side bushing 62 is provided above the equipment component 20 having the low-voltage side winding 23 to which it is connected. In this case, the low pressure side bushing 62 is provided at a position where it completely overlaps with each corresponding device contents 20 in plan view.

各高圧側ブッシング61は、図1及び図2に示すように、容器30の外部において電力系統や受変電設備の高圧側の外線91に接続されており、容器30の内部において高圧側接続導体51に接続されている。また、各低圧側ブッシング62も、高圧側ブッシング61と同様に、容器30の外部において電力系統や受変電設備の低圧側の外線92に接続されており、容器30の内部において低圧側接続導体52に接続されている。これにより、容器30内の各機器中身20は、容器30から絶縁を確保した状態で外線91、92に電気的に接続される。 As shown in FIGS. 1 and 2, each high-voltage side bushing 61 is connected to a high-voltage side external line 91 of a power system or power receiving and transforming equipment outside the container 30, and inside the container 30, a high-voltage side connection conductor 51 It is connected to the. Further, each low-voltage side bushing 62 is also connected to the low-voltage side external line 92 of the electric power system or power receiving and transforming equipment outside the container 30, similarly to the high-voltage side bushing 61, and the low-voltage side connection conductor 52 is connected inside the container 30. It is connected to the. As a result, each equipment content 20 in the container 30 is electrically connected to the external wires 91 and 92 while ensuring insulation from the container 30 .

以上説明した実施形態によれば、モールド変圧器10は、複数の機器中身20と、容器30と、接続導体51、52と、ブッシング61、62と、を備えている。機器中身20は、高圧側巻線22及び低圧側巻線23と、高圧側巻線22及び低圧側巻線23の中心部に通された鉄心21と、を有し、巻線22、23の表面が樹脂等の絶縁部材で覆われている。モールド変圧器10は、相毎、本実施形態の場合、三相各相に対応して3つの機器中身20を備えている。 According to the embodiment described above, the molded transformer 10 includes a plurality of device contents 20, a container 30, connection conductors 51 and 52, and bushings 61 and 62. The equipment body 20 has a high-voltage side winding 22 and a low-voltage side winding 23, and an iron core 21 passed through the center of the high-voltage side winding 22 and the low-voltage side winding 23. The surface is covered with an insulating member such as resin. The molded transformer 10 has three components 20 corresponding to each phase, in the case of this embodiment, for each of the three phases.

容器30は、内部に機器中身20を収容している。高圧側接続導体51は、表面が樹脂等の絶縁部材512で覆われており、各機器中身20の高圧側巻線22に電気的に接続されている。低圧側接続導体52は、表面が樹脂等の図示しない絶縁部材で覆われており、各機器中身20の低圧側巻線23に電気的に接続されている。 The container 30 accommodates the device content 20 therein. The high-voltage side connection conductor 51 has a surface covered with an insulating member 512 such as resin, and is electrically connected to the high-voltage side winding 22 of each equipment 20 . The low-voltage side connection conductor 52 has a surface covered with an insulating material (not shown) such as resin, and is electrically connected to the low-voltage side winding 23 of each component 20 .

高圧側ブッシング61は、各機器中身20の各高圧側接続導体51に対応しており、容器30の天井部35に設けられている。高圧側ブッシング61は、容器30の外部に設けられた高圧側の外線91及び高圧側接続導体51に接続されることで、外線91と高圧側接続導体51とを電気的に接続する。低圧側ブッシング62は、各機器中身20の各低圧側接続導体52に対応しており、容器30の天井部35に設けられている。低圧側ブッシング62は、容器30の外部に設けられた低圧側の外線92及び低圧側接続導体52に接続されることで、外線92と低圧側接続導体52とを電気的に接続する。 The high-voltage side bushings 61 correspond to the high-voltage side connection conductors 51 of the equipment contents 20 and are provided on the ceiling portion 35 of the container 30 . The high-voltage side bushing 61 is connected to the high-voltage side external wire 91 and the high-voltage side connection conductor 51 provided outside the container 30 , thereby electrically connecting the external wire 91 and the high-voltage side connection conductor 51 . The low-voltage side bushings 62 correspond to the low-voltage side connection conductors 52 of the equipment contents 20 and are provided on the ceiling portion 35 of the container 30 . The low-voltage side bushing 62 is connected to the low-voltage side external wire 92 and the low-voltage side connection conductor 52 provided outside the container 30 to electrically connect the external wire 92 and the low-voltage side connection conductor 52 .

そして、各ブッシング61、62のうち少なくとも高圧側巻線22に対応した高圧側ブッシング61は、それぞれ対応する各機器中身20の上方でかつ対応する各機器中身20と少なくとも一部が重なる位置に設けられている。この場合、各高圧側ブッシング61は、それぞれ対応する各機器中身20以外の他の機器中身20と重ならない位置に設けられている。 Among the bushings 61 and 62, at least the high-voltage side bushing 61 corresponding to the high-voltage side winding 22 is provided above each corresponding device content 20 and at a position at least partially overlapping with each corresponding device content 20. It is In this case, each high pressure side bushing 61 is provided at a position that does not overlap with other device contents 20 other than the corresponding device contents 20 .

この構成によれば、各高圧側巻線22は、それぞれ自己が接続された機器中身20の上方に位置しており、自己が接続された機器中身20以外の機器中身20の上方には位置していない。これによれば、例えば図3の比較例に示すように、各高圧側ブッシング61を各機器中身20のうち中心に位置する機器中身20の上方に集中させて配置した場合に比べて、高圧側巻線22と対応する高圧側ブッシング61との間の距離を極力短いものにすることができる。つまり、本実施形態によれば、高圧側接続導体51の長さを極力短いものとし、また高圧側接続導体51の弛みを極力小さい又は弛みが無いものとすることができる。 According to this configuration, each high voltage side winding 22 is positioned above the equipment contents 20 to which it is connected, and is positioned above the equipment contents 20 other than the equipment contents 20 to which it is connected. not According to this, as shown in the comparative example of FIG. The distance between the winding 22 and the corresponding high voltage side bushing 61 can be made as short as possible. That is, according to the present embodiment, the length of the high-voltage side connection conductor 51 can be made as short as possible, and the slack of the high-voltage side connection conductor 51 can be made as small as possible or without slack.

そのため、例えば搬送時や設置作業の際にモールド変圧器10に振動が加わった場合であっても、各高圧側巻線22は揺れ難く、また、仮に揺れた場合であってもその揺れ幅を極力小さくすることができる。その結果、各高圧側接続導体51が揺れて機器中身20に接触したり各高圧側接続導体51同士が接触したりして各高圧側接続導体51の絶縁部材512が破損することを、抑制することができる。 Therefore, even if the molded transformer 10 is subjected to vibration during transportation or installation work, the high-voltage side windings 22 are unlikely to sway, and even if they sway, the amplitude of the sway can be minimized. can be made as small as possible. As a result, damage to the insulating member 512 of each high-voltage side connection conductor 51 due to each high-voltage side connection conductor 51 swinging and coming into contact with the device contents 20, or the high-voltage side connection conductors 51 coming into contact with each other, is suppressed. be able to.

ここで、空隙25や隙間301、302の上方は、冷却用の気体が流れる経路となる。この場合、図3に示す比較例に示すように、高圧側接続導体51によって空隙25や隙間301、302の上方が覆われてしまうと、冷却用の気体の流れを阻害してしまい、冷却効率が低下してしまう。 Here, the space above the gap 25 and the gaps 301 and 302 serves as a path through which cooling gas flows. In this case, as shown in the comparative example shown in FIG. 3, if the upper side of the air gap 25 and the gaps 301 and 302 are covered with the high voltage side connection conductor 51, the flow of the cooling gas is hindered, and the cooling efficiency is reduced. decreases.

これに対し、本実施形態によれば、図1に示すように、各高圧側接続導体51は、空隙25や隙間301、302の上方を覆っていない。これによれば、高圧側接続導体51が、冷却用の気体の流れを阻害することを抑制することができ、冷却用の気体の流れを円滑にすることができる。その結果、冷却効率の向上を図ることができる。 In contrast, according to the present embodiment, as shown in FIG. 1, each high-voltage side connection conductor 51 does not cover the space 25 and the gaps 301 and 302 above. According to this, it is possible to prevent the high-pressure-side connection conductor 51 from obstructing the flow of the cooling gas, and it is possible to facilitate the flow of the cooling gas. As a result, it is possible to improve the cooling efficiency.

また、実施形態において、各高圧側ブッシング61は、それぞれ対応する機器中身20と高圧側接続導体51との接続部分53の直上に設けられている。そして、各高圧側接続導体51は、垂直方向つまり上下方向に延びている。これによれば、接続部分53と高圧側ブッシング61との間の距離、つまり高圧側接続導体51の長さを最短にすることができる。そのため、各高圧側巻線22を更に揺れ難くすることができ、また、仮に揺れた場合であってもその揺れ幅を更に小さくすることができる。その結果、各高圧側接続導体51が揺れて機器中身20に接触したり各高圧側接続導体51同士が接触したりして各高圧側接続導体51の絶縁部材512が破損することを、より確実に抑制することができる。 In addition, in the embodiment, each high voltage side bushing 61 is provided directly above the connection portion 53 between the corresponding equipment contents 20 and the high voltage side connection conductor 51 . Each high-voltage side connection conductor 51 extends vertically, that is, vertically. According to this, the distance between the connection portion 53 and the high voltage side bushing 61, that is, the length of the high voltage side connection conductor 51 can be minimized. Therefore, each high-voltage winding 22 can be made more difficult to swing, and even if it swings, the amplitude of the swing can be further reduced. As a result, the high-voltage side connection conductors 51 shake to contact the equipment contents 20 or the high-voltage side connection conductors 51 come into contact with each other, so that the insulating members 512 of the high-voltage side connection conductors 51 are more reliably prevented from being damaged. can be suppressed to

また、本実施形態では、低圧側ブッシング62においても、高圧側ブッシング61と同様に、それぞれ対応する各機器中身20の上方でかつ対応する各機器中身20と少なくとも一部が重なる位置に設けられている。具体的には、各低圧側ブッシング62も、高圧側ブッシング61と同様に、それぞれ対応する機器中身20と低圧側接続導体52との接続部分の直上に設けられており、垂直方向つまり上下方向に延びている。したがって、低圧側接続導体52についても、高圧側接続導体51と同様に、モールド変圧器10に振動が加わった際の低圧側接続導体52の揺れを抑制でき、その揺れによる低圧側接続導体52の破損を抑制することができる。 In the present embodiment, the low pressure side bushings 62 are also provided at positions above the corresponding device contents 20 and at least partially overlapping the corresponding device contents 20 in the same manner as the high pressure side bushings 61 . there is Specifically, each of the low-voltage side bushings 62 is also provided directly above the connection portion between the corresponding device contents 20 and the low-voltage side connection conductor 52, similarly to the high-voltage side bushing 61, and is vertically oriented, that is, in the vertical direction. extended. Therefore, similarly to the high-voltage side connection conductor 51, the low-voltage side connection conductor 52 can be suppressed from shaking when vibration is applied to the molded transformer 10. Damage can be suppressed.

ここで、高圧側ブッシング61は、低圧側ブッシング62よりも大きな電流を通している。このため、高圧側ブッシング61に対する点検は、低圧側ブッシング62に対する点検に比べて、その重要度が高くまた頻度も多いと考えられる。そこで、本実施形態において、容器30は、開口部33を有している。開口部33は、容器30の周囲を構成する壁部のうち一の壁部に設けられており、外部から容器30の内部を確認可能に構成されている。そして、各高圧側ブッシング61は、容器30の天井部35において開口部33側に寄せて配置されている。 Here, the high voltage side bushing 61 conducts a larger current than the low voltage side bushing 62 . Therefore, inspection of the high pressure side bushing 61 is considered to be more important and more frequent than inspection of the low pressure side bushing 62 . Therefore, in this embodiment, the container 30 has an opening 33 . The opening 33 is provided in one of the walls forming the periphery of the container 30, and is configured so that the inside of the container 30 can be checked from the outside. Each of the high-pressure side bushings 61 is arranged closer to the opening 33 in the ceiling 35 of the container 30 .

これによれば、作業者は、点検の際に、開口部33から各高圧側ブッシング61を容易に視認することができる。そのため、点検の重要度が高くまた頻度も多い各高圧側ブッシング61の点検を容易で確実なものとすることができる。 According to this, the operator can easily visually recognize each high pressure side bushing 61 through the opening 33 during inspection. Therefore, inspection of each high pressure side bushing 61, which is highly important and frequent, can be inspected easily and reliably.

なお、上記実施形態では、モールド形静止誘導機器の一例としてモールド変圧器について説明したが、これに限られず、モールド形リアクトルでも良い。 In the above embodiment, the molded transformer is explained as an example of the molded static induction device, but the invention is not limited to this, and a molded reactor may be used.

以上、本発明の一実施形態を説明したが、この実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれる内容と同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although one embodiment of the present invention has been described above, this embodiment is presented as an example and is not intended to limit the scope of the invention. This embodiment can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope of the invention described in the claims and equivalents thereof, as well as the contents included in the scope and gist of the invention.

図面中、10はモールド変圧器(モールド形静止誘導機器)、20は機器中身、21は鉄心、22は高圧側巻線(巻線)、23は低圧側巻線(巻線)、30は容器、33は開口部、35は天井部、51は高圧側接続導体(接続導体)、512は絶縁部材、52は低圧側接続導体(接続導体)、53は接続部分、61は高圧側ブッシング(ブッシング)、62は低圧側ブッシング(ブッシング)、91は高圧側の外線(外線)、92は低圧側の外線(外線)、を示す。 In the drawing, 10 is a molded transformer (molded stationary induction device), 20 is the inside of the device, 21 is an iron core, 22 is a high voltage side winding (winding), 23 is a low voltage side winding (winding), and 30 is a container. , 33 is an opening, 35 is a ceiling, 51 is a high-voltage side connection conductor (connection conductor), 512 is an insulating member, 52 is a low-voltage side connection conductor (connection conductor), 53 is a connection portion, 61 is a high-voltage side bushing (bushing ), 62 is a low-voltage side bushing (bushing), 91 is a high-voltage side external line (external line), and 92 is a low-voltage side external line (external line).

Claims (2)

高圧側巻線及び低圧側巻線と前記巻線の中心部に通された鉄心とを有し前記巻線の表面が絶縁部材で覆われて相毎に設けられた複数の機器中身と、
各前記機器中身を収容する容器と、
表面が絶縁部材で覆われて各前記機器中身の前記巻線に接続された接続導体と、
各前記機器中身の各前記接続導体に対応し前記容器の天井部に設けられ、前記容器の外部に設けられた外線及び前記接続導体に接続されることで、前記外線と前記接続導体とを電気的接続に接続する複数のブッシングと、
を備え、
各前記ブッシングのうち少なくとも前記高圧側巻線に対応した高圧側ブッシングは、それぞれ対応する各前記機器中身の上方でかつ平面視において対応する各前記機器中身と前記高圧側ブッシングの少なくとも一部とが重なる位置に設けられ、
前記高圧側巻線と前記低圧側巻線との間に冷却用の気体を流すための空隙が形成され、
前記接続導体のうち前記高圧側巻線に接続される高圧側接続導体は、前記空隙の上方を覆わない位置に設けられており、
各前記高圧側ブッシングは、それぞれ対応する前記機器中身と前記高圧側接続導体との接続部分の直上に設けられており、
各前記高圧側接続導体は、折り曲げ不可能の剛体で構成されており、垂直方向に延びている、
モールド形静止誘導機器。
a plurality of device contents provided for each phase, each of which has a high-voltage side winding, a low-voltage side winding, and an iron core passed through the center of the winding, and the surface of the winding is covered with an insulating member;
a container containing the contents of each of said devices;
a connection conductor whose surface is covered with an insulating member and is connected to the windings in each of the devices;
By connecting to the external wire and the connecting conductor provided on the ceiling portion of the container corresponding to each of the connecting conductors in each of the equipment contents and provided outside the container, the external wire and the connecting conductor are electrically connected. a plurality of bushings connecting to the physical connection;
with
Among the bushings, the high-voltage side bushings corresponding to at least the high-voltage side windings are arranged above the corresponding equipment contents and at least part of the corresponding equipment contents and the high-voltage side bushings in plan view. provided in an overlapping position,
A gap is formed between the high-voltage side winding and the low-voltage side winding for flowing a cooling gas,
Among the connection conductors, a high-voltage side connection conductor connected to the high-voltage side winding is provided at a position not covering the upper side of the gap,
Each of the high-voltage side bushings is provided directly above a connection portion between the corresponding equipment content and the high-voltage side connection conductor,
Each of the high-voltage side connection conductors is composed of a rigid body that cannot be bent and extends in a vertical direction,
Molded stationary induction device.
前記容器は、当該容器の周囲を構成する壁部のうち一の壁部に外部から内部を確認可能な開口部を有し、
各前記ブッシングのうち少なくとも前記高圧側巻線に対応したブッシングは、前記開口部側に寄せて配置されている、
請求項1に記載のモールド形静止誘導機器。
The container has an opening through which the inside can be checked from the outside in one of the walls constituting the periphery of the container,
Among the bushings, at least the bushing corresponding to the high-voltage winding is arranged closer to the opening,
The molded stationary induction device according to claim 1 .
JP2018146809A 2018-08-03 2018-08-03 Molded stationary induction device Active JP7251884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018146809A JP7251884B2 (en) 2018-08-03 2018-08-03 Molded stationary induction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018146809A JP7251884B2 (en) 2018-08-03 2018-08-03 Molded stationary induction device

Publications (2)

Publication Number Publication Date
JP2020021907A JP2020021907A (en) 2020-02-06
JP7251884B2 true JP7251884B2 (en) 2023-04-04

Family

ID=69588777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018146809A Active JP7251884B2 (en) 2018-08-03 2018-08-03 Molded stationary induction device

Country Status (1)

Country Link
JP (1) JP7251884B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940727B1 (en) * 2020-07-13 2024-09-04 Hitachi Energy Ltd A static electric induction arrangement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359124A (en) 2001-06-01 2002-12-13 Matsushita Electric Ind Co Ltd Dry transformer
WO2014174915A1 (en) 2013-04-26 2014-10-30 株式会社日立製作所 Stationary induction electrical apparatus
CN106205965A (en) 2016-06-27 2016-12-07 杨林娣 A kind of three-phase transformer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921532Y1 (en) * 1969-12-25 1974-06-10
JPS512250Y1 (en) * 1970-09-18 1976-01-23
JPS535407B2 (en) * 1974-01-07 1978-02-27
JPS52113213U (en) * 1976-02-25 1977-08-27
JPS55102333U (en) * 1979-01-09 1980-07-17
JPS55117816U (en) * 1979-02-15 1980-08-20
JPS58131615U (en) * 1982-03-01 1983-09-05 日新電機株式会社 High voltage side lead wire connection structure for electrical equipment
JPS61179720U (en) * 1985-04-26 1986-11-10
JPH0512990Y2 (en) * 1986-03-10 1993-04-06
JPH02213106A (en) * 1989-02-14 1990-08-24 Takaoka Electric Mfg Co Ltd Three-phase stationary electric apparatus
JPH0629116U (en) * 1992-09-11 1994-04-15 株式会社高岳製作所 Transformer coil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359124A (en) 2001-06-01 2002-12-13 Matsushita Electric Ind Co Ltd Dry transformer
WO2014174915A1 (en) 2013-04-26 2014-10-30 株式会社日立製作所 Stationary induction electrical apparatus
CN106205965A (en) 2016-06-27 2016-12-07 杨林娣 A kind of three-phase transformer

Also Published As

Publication number Publication date
JP2020021907A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP2013115832A (en) Motor
JP7251884B2 (en) Molded stationary induction device
US20180268992A1 (en) Three-phase reactor having insulating structure
JP7166832B2 (en) Molded stationary induction device
TWI405224B (en) A three-phase current transformer and an electricity station equipped with such a current transformer
WO2016157411A1 (en) Reactor mechanism
JP7158963B2 (en) Molded stationary induction device
JP2016119398A (en) Reactor structure
JP7485461B2 (en) Molded static induction device
JP7123705B2 (en) dry transformer
JP7292839B2 (en) Molded stationary induction device
JP7405569B2 (en) reactor
JP2019057630A (en) Connection structure for gas insulation electric apparatus and gas insulation electric apparatus
EP2850624B1 (en) Transformer with bushing compartment
JP2019057631A (en) Liquid cooling-type electric apparatus
WO2020075454A1 (en) Electromagnetic relay
JPWO2010098029A1 (en) Transformer and assembly method of transformer
JP7525267B2 (en) Reactor
EP3335230B1 (en) Single-pole voltage transformer
JP4838753B2 (en) Oil-filled stationary induction device
JP6719327B2 (en) Reactor
US20240038438A1 (en) Reactor
JP6974580B2 (en) Coil parts
CN112514187A (en) Gas insulated switchgear
JP7328883B2 (en) Static induction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R150 Certificate of patent or registration of utility model

Ref document number: 7251884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150