JP7247907B2 - Method for evaluating organic matter adhering to the surface of a semiconductor substrate - Google Patents

Method for evaluating organic matter adhering to the surface of a semiconductor substrate Download PDF

Info

Publication number
JP7247907B2
JP7247907B2 JP2020018961A JP2020018961A JP7247907B2 JP 7247907 B2 JP7247907 B2 JP 7247907B2 JP 2020018961 A JP2020018961 A JP 2020018961A JP 2020018961 A JP2020018961 A JP 2020018961A JP 7247907 B2 JP7247907 B2 JP 7247907B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
organic matter
kev
ions
evaluating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020018961A
Other languages
Japanese (ja)
Other versions
JP2021124430A (en
Inventor
剛 大槻
達夫 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2020018961A priority Critical patent/JP7247907B2/en
Publication of JP2021124430A publication Critical patent/JP2021124430A/en
Application granted granted Critical
Publication of JP7247907B2 publication Critical patent/JP7247907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は半導体基板の評価方法に関し、半導体基板表面の有機物の評価方法に関する。 The present invention relates to a method for evaluating a semiconductor substrate, and more particularly to a method for evaluating an organic substance on the surface of a semiconductor substrate.

半導体素子の製造工程において、有機物が、半導体基板上に形成される絶縁膜表面に付着すると、リーク電流の増大や絶縁耐圧の低下など、半導体素子の電気的特性に悪影響を及ぼすことが、例えば、特許文献1に述べられている。かかる品質の悪化は表面に付着する雰囲気由来の有機物と密接な相関があることが知られている。従って、表面に付着する有機汚染を評価する分析法があれば、この汚染の由来を推測することが可能になり、有機物汚染発生の抑制や、前述のような半導体素子の電気的特性の劣化を生じる限度に達する前に基板表面を洗浄して付着有機物を除去するなどの対策が可能になる。 In the manufacturing process of a semiconductor device, when organic matter adheres to the surface of an insulating film formed on a semiconductor substrate, it adversely affects the electrical characteristics of the semiconductor device, such as an increase in leakage current and a decrease in dielectric strength. It is described in US Pat. It is known that such deterioration in quality is closely correlated with atmospheric organic matter adhering to the surface. Therefore, if there is an analytical method for evaluating the organic contamination that adheres to the surface, it will be possible to estimate the origin of this contamination. It is possible to take countermeasures such as cleaning the substrate surface to remove attached organic matter before reaching the limit of occurrence.

従来、このような有機物汚染の評価方法としては、昇温脱離法によって試料ウエーハ表面より有機化合物分子を脱離させる。この脱離したガス状の有機化合物(脱離有機化合物)を所定の方法によりサンプリングし、サンプリングしたガス状の脱離有機化合物についての紫外線吸収スペクトルの測定や、ガスクロマトグラフ、または質量分析等の手法にて測定されていた(特許文献1および特許文献2)。昇温脱離法では、半導体基板を高温まで温度を上げて有機物を脱離させるが、有機物の分子量や構造、さらに半導体基板との結合状態によっては、脱離しなかったり、単分子に分解し捕捉が難しかったりする問題がある。 Conventionally, as a method for evaluating such organic matter contamination, organic compound molecules are desorbed from the sample wafer surface by a temperature programmed desorption method. This desorbed gaseous organic compound (desorbed organic compound) is sampled by a predetermined method, and the sampled gaseous desorbed organic compound is measured by ultraviolet absorption spectrum, gas chromatography, or mass spectrometry. (Patent Document 1 and Patent Document 2). In the temperature programmed desorption method, the temperature of the semiconductor substrate is raised to a high temperature to desorb organic substances. There is a problem that is difficult.

また、別の半導体基板の有機物表面汚染の評価方法として、X線光電子分光(XPS)法によって測定することも知られている。XPS法は、高真空中で測定サンプルに軟X線を照射してサンプル表面から脱出する光電子のエネルギーと数をスペクトロメータで計測することにより、サンプル表面に存在する元素を定性・定量分析する。XPS法による極微量の表面有機物汚染量の評価では、有機物汚染量は、表面から深さ数十オングストロームの分析領域内における全原子数に対する炭素原子数の割合もしくは、上記分析領域内に存在する既知の元素の原子数に対する炭素原子数の比で表される。XPS法は、スペクトル分離が必要であり、分離方法によって誤差を生じ、特に非常に強い(数の多い光電子)スペクトルに微小なスペクトルが隠れてしまい、半導体基板表面の有機物汚染の評価に必要なスペクトルを見落とす問題がある。 Another known method for evaluating the surface contamination of a semiconductor substrate with organic matter is to measure it by an X-ray photoelectron spectroscopy (XPS) method. The XPS method qualitatively and quantitatively analyzes the elements present on the sample surface by irradiating a measurement sample with soft X-rays in a high vacuum and measuring the energy and number of photoelectrons that escape from the sample surface with a spectrometer. In the evaluation of a very small amount of surface organic matter contamination by the XPS method, the amount of organic matter contamination is the ratio of the number of carbon atoms to the total number of atoms in the analysis area of several tens of angstroms in depth from the surface, or the known amount of carbon atoms present in the analysis area. It is expressed by the ratio of the number of carbon atoms to the number of atoms of the element. The XPS method requires spectral separation, and error occurs depending on the separation method. In particular, a minute spectrum is hidden in a very strong (large number of photoelectrons) spectrum. There is a problem of overlooking

特開平9-171002号公報JP-A-9-171002 特開平6-347445号公報JP-A-6-347445 特開2005-121493号公報JP-A-2005-121493 特開平8-220030号公報JP-A-8-220030

宇佐美 昌「100例にみる半導体評価技術 第7版」p26-27(1996)工業調査会Masaru Usami, "Semiconductor Evaluation Technology Seen in 100 Examples, 7th Edition", p26-27 (1996) Industrial Research Institute

上記のように、半導体基板表面の有機物汚染の評価方法として、従来、昇温脱離法やXPS法が用いられてきた。しかし、昇温脱離法及びXPS法を用いた半導体基板表面の有機物汚染の評価方法には、それぞれ上述の問題があった。 As described above, conventionally, the thermal desorption method and the XPS method have been used as methods for evaluating organic matter contamination on the surface of a semiconductor substrate. However, the methods for evaluating organic contamination on the surface of semiconductor substrates using the thermal desorption method and the XPS method each have the above-described problems.

本発明は、上記問題を解決するためになされたものであり、半導体基板表面に存在する有機物を高感度で評価する方法を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a highly sensitive method for evaluating organic substances existing on the surface of a semiconductor substrate.

本発明は、上記目的を達成するためになされたものであり、半導体基板表面に付着した有機物の評価方法であって、イオンの加速電圧を200keV以上600keV以下で、該イオンを前記半導体基板表面へ入射し、ラザフォード後方散乱を測定することを特徴とする半導体基板表面に付着した有機物の評価方法を提供する。 The present invention has been made to achieve the above objects, and is a method for evaluating an organic matter attached to a surface of a semiconductor substrate, wherein the ions are accelerated to the surface of the semiconductor substrate at an acceleration voltage of 200 keV or more and 600 keV or less. Provided is a method for evaluating organic matter adhering to the surface of a semiconductor substrate, characterized by measuring Rutherford backscattering after incident light.

このような半導体基板表面に付着した有機物の評価方法であれば、イオンによる半導体基板表面に付着した有機物の破壊を抑えつつ、母材である半導体基板の影響を低減し、高感度で表面付近を評価することが可能になる。 With such a method for evaluating organic matter adhering to the surface of a semiconductor substrate, it is possible to suppress the destruction of the organic matter adhering to the surface of the semiconductor substrate by ions, reduce the influence of the semiconductor substrate, which is the base material, and detect the vicinity of the surface with high sensitivity. evaluation becomes possible.

このとき、前記ラザフォード後方散乱の測定において、前記イオンの前記半導体基板の表面への入射角を、伏角5°以上15°以内とし、前記半導体基板表面から0.2nmまでの深さの最表面を測定することが好ましい。 At this time, in the measurement of the Rutherford backscattering, the incident angle of the ions to the surface of the semiconductor substrate is set to be 5° or more and 15° or less, and the outermost surface at a depth of 0.2 nm from the semiconductor substrate surface is Measurement is preferred.

このようにすれば、イオンによる半導体基板表面に付着した有機物の破壊をより抑え、また母材である半導体基板の影響をさらに低減しつつ、より高感度で、より一層表面付近を評価することが可能になる。 By doing so, it is possible to further suppress the destruction of the organic substances adhering to the surface of the semiconductor substrate by the ions, and to further reduce the influence of the semiconductor substrate, which is the base material, and to evaluate the vicinity of the surface with higher sensitivity. be possible.

以上のように、本発明の半導体基板表面に付着した有機物の評価方法によれば、半導体基板表面の微量な有機物汚染を、非破壊で、高感度で測定、評価することが可能となる。本発明の半導体基板表面に付着した有機物の評価方法は、クリーンルームやウエーハを搬送・保管するボックスの評価等に非常に有効であり、半導体基板を用いて作製される半導体装置の歩留まり向上などに寄与することが可能になる。 As described above, according to the method for evaluating organic matter attached to the surface of a semiconductor substrate according to the present invention, it is possible to measure and evaluate minute amounts of organic matter contamination on the surface of a semiconductor substrate nondestructively and with high sensitivity. The method of the present invention for evaluating organic matter adhering to the surface of a semiconductor substrate is very effective for evaluating clean rooms and boxes for transporting and storing wafers, and contributes to improving the yield of semiconductor devices manufactured using semiconductor substrates. it becomes possible to

本発明の半導体基板表面に付着した有機物の評価方法における、ラザフォード後方散乱法の実施形態の一例を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows an example of embodiment of the Rutherford backscattering method in the evaluation method of the organic substance adhering to the semiconductor substrate surface of this invention. ラザフォード後方散乱分光法おいて、イオンの入射角を低伏角(θ)と高伏角(θ)とした場合を示す模式図。FIG. 3 is a schematic diagram showing a case where the incident angles of ions are set to a low inclination angle (θ 1 ) and a high inclination angle (θ 2 ) in Rutherford backscattering spectroscopy. 実施例1と比較例1の有機物測定結果を示す図である(加速電圧依存性)。FIG. 4 is a diagram showing organic substance measurement results of Example 1 and Comparative Example 1 (acceleration voltage dependence). 実施例2における検出された有機物量の入射角依存性を示す図である。FIG. 10 is a diagram showing the incident angle dependence of the amount of organic matter detected in Example 2. FIG. 実施例2におけるラザフォード後方散乱分光法の実施形態を示す図である。FIG. 11 shows an embodiment of Rutherford backscattering spectroscopy in Example 2; 実施例3と比較例2における検出された有機物量を示す図である。FIG. 10 is a diagram showing the amounts of organic substances detected in Example 3 and Comparative Example 2; 一般的なラザフォード後方散乱分光法の実施形態を示す図である。FIG. 3 shows an embodiment of general Rutherford backscattering spectroscopy.

以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described in detail below, but the present invention is not limited to these.

上述のように、半導体基板表面に存在する有機物を高感度で評価する方法が求められていた。 As described above, there has been a demand for a highly sensitive method for evaluating organic substances existing on the surface of a semiconductor substrate.

本発明者らは、上記課題について鋭意検討を重ねた結果、イオンの加速電圧を、例えば、200keVから500keVと低加速にして、また例えば、半導体基板に対して加速器を水平から5~10°以内に設置し、イオンを半導体基板の表面に入射し、後方散乱したイオンのエネルギーと個数を測定することで、元素分析するラザフォード後方散乱分光法によって、半導体基板表面に付着した有機化合物を評価することにより、半導体基板表面の微量な有機物汚染を、非破壊で、高感度で測定、評価できることを見出し、本発明を完成した。 As a result of intensive studies on the above problems, the present inventors have found that the acceleration voltage of the ions is reduced, for example, from 200 keV to 500 keV, and, for example, the accelerator is placed within 5 to 10 degrees from the horizontal with respect to the semiconductor substrate. Evaluate organic compounds adhering to the surface of a semiconductor substrate by means of Rutherford backscattering spectroscopy, which conducts elemental analysis by irradiating ions onto the surface of the semiconductor substrate and measuring the energy and number of backscattered ions. The present inventors have found that it is possible to measure and evaluate trace amounts of organic matter contamination on the surface of a semiconductor substrate non-destructively and with high sensitivity, thereby completing the present invention.

以下、図面を参照して説明する。 Description will be made below with reference to the drawings.

まず、ラザフォード後方散乱分光(RBS)法について説明する。RBS法は、Rutherford Backscattering Spectorometoryとよばれ、例えば、高エネルギーに加速されたプローブイオン(例えばヘリウムイオン(He)や水素イオン(H)などの軽イオン)を半導体表面に打ち込み、半導体基板を構成する原子の原子核によってラザフォード散乱されて、進行方向が曲げられ逆方向(後方、即ち入射方向)に放出されたときのエネルギー分光とイオンの数から散乱を生じさせた半導体材料内の原子核の質量と密度および原子核の存在する場所(例えば、表面からの深さ)を決定する方法である。非特許文献1によれば、表面からの検出深さは、半導体表面から数μmの深さまでほぼ100オングストローム程度の精度で測定できる。 First, the Rutherford Backscattering Spectroscopy (RBS) method will be described. The RBS method is called Rutherford Backscattering Spectrometry. For example, high-energy accelerated probe ions (for example, light ions such as helium ions (He + ) and hydrogen ions (H + )) are implanted into the surface of a semiconductor to form a semiconductor substrate. The mass of the nuclei in the semiconductor material that caused the scattering from the energy spectrum and the number of ions when Rutherford scattered by the nuclei of the constituent atoms, bending the direction of travel and ejecting in the opposite direction (backward, i.e., incident direction) and the density and the location of nuclei (eg depth from the surface). According to Non-Patent Document 1, the detection depth from the surface can be measured with an accuracy of approximately 100 angstroms to a depth of several μm from the semiconductor surface.

また、RBS法は不純物を含む標準サンプルを準備しなくても定量分析が可能であり、またほとんど非破壊で分析が可能であること、さらに深さ方向分布も測定できることから優れた評価手法である(非特許文献1)。 In addition, the RBS method is an excellent evaluation method because quantitative analysis is possible without preparing a standard sample containing impurities, analysis is possible almost non-destructively, and depth direction distribution can also be measured. (Non-Patent Document 1).

図7に示すような従来のRBS法では、半導体基板1、加速器2、質量分析装置3、位置検出器4を用いて行う。従来のRBS法は、重い母材中に存在する炭素、酸素等の軽元素に対し、これらの軽元素からの散乱粒子の信号は、母材からの強い信号中に隠されてしまい、これらの軽元素からの散乱粒子を母材からのそれと区別することができない。特に表面から数十マイクロメーターの深さの分析を行う場合にこの困難性は顕著となるとされてきていた(例えば、特許文献3)。 The conventional RBS method as shown in FIG. 7 uses a semiconductor substrate 1, an accelerator 2, a mass spectrometer 3, and a position detector 4. In the conventional RBS method, for light elements such as carbon and oxygen present in a heavy base material, signals of scattering particles from these light elements are hidden in strong signals from the base material. Scattered particles from light elements cannot be distinguished from those from the matrix. In particular, it has been said that this difficulty is significant when performing analysis at a depth of several tens of micrometers from the surface (for example, Patent Document 3).

本発明に係る半導体基板表面に付着した有機物の評価方法の概略図の一例を図1に示す。本発明の半導体基板表面に付着した有機物の評価方法は、RBS測定時のイオンの加速電圧を200keV以上600keV以下で、イオンを半導体基板表面へ入射し、ラザフォード後方散乱を測定し、半導体基板表面に付着した有機物の評価する方法である。 FIG. 1 shows an example of a schematic diagram of the evaluation method for organic matter adhering to the surface of a semiconductor substrate according to the present invention. In the evaluation method of the organic substance adhering to the semiconductor substrate surface of the present invention, the acceleration voltage of ions during RBS measurement is 200 keV or more and 600 keV or less, ions are incident on the semiconductor substrate surface, and Rutherford backscattering is measured. This is a method for evaluating adhering organic matter.

加速電圧が200keV未満であると、イオンが十分に加速されず測定感度が得られなくなり、また加速電圧が600keVを超えると、加速エネルギーが大きすぎて、表面付近の有機物をイオンで除去してしまう。RBS測定時のイオンの加速電圧を200keV以上600keV以下とすれば、母材である半導体基板の影響を低減しつつ、高感度で表面付近を評価することが可能になる。 If the acceleration voltage is less than 200 keV, the ions will not be sufficiently accelerated and the measurement sensitivity will not be obtained. . If the acceleration voltage of ions during RBS measurement is 200 keV or more and 600 keV or less, it becomes possible to evaluate the vicinity of the surface with high sensitivity while reducing the influence of the semiconductor substrate which is the base material.

このとき、加速電圧を200keV以上600keV以下の範囲であれば、有機物の分子量、測定装置、被評価物などの条件に応じて、加速電圧を最適値に設定してよい。最適値としては、例えば、200keV~500keV、より好ましくは400keV~450keVが挙げられる。 At this time, if the acceleration voltage is in the range of 200 keV or more and 600 keV or less, the acceleration voltage may be set to an optimum value according to conditions such as the molecular weight of the organic matter, the measuring device, and the object to be evaluated. Optimal values include, for example, 200 keV to 500 keV, more preferably 400 keV to 450 keV.

このとき、ラザフォード後方散乱の測定において、イオンの半導体基板の表面への入射角を、伏角5°以上15°以内とし、半導体基板表面から0.2nmまでの深さの最表面を測定することが好ましい。伏角とは、半導体基板表面の水平面から半導体基板表面の中心軸に向けた角度である(半導体基板表面から入射イオン線までの角度)。具体的には、後に詳細に説明する図2のθやθである。 At this time, in the measurement of Rutherford backscattering, the incident angle of the ions to the surface of the semiconductor substrate is set to an inclination of 5° or more and 15° or less, and the outermost surface at a depth of 0.2 nm from the semiconductor substrate surface can be measured. preferable. The inclination angle is the angle from the horizontal plane of the semiconductor substrate surface to the central axis of the semiconductor substrate surface (the angle from the semiconductor substrate surface to the incident ion beam). Specifically, they are θ 1 and θ 2 in FIG. 2, which will be described later in detail.

イオンの半導体基板の表面への入射角を、伏角5°以上15°以内とすれば、イオンによる半導体基板表面に付着した有機物の破壊をより抑えつつ、母材である半導体基板の影響をさらに低減し、より高感度で評価することが可能になる。すなわち、プローブイオンの加速器を被評価基板の表面すれすれに(伏角5°以上15°以内)設置することが好ましい。伏角が大きすぎると表面の有機物をイオンで除去してしまい、また伏角が小さすぎると十分プローブイオンが半導体基板表面に当たらなくなってしまう。また、半導体基板表面から0.2nmまでの深さの最表面を測定することで、より一層表面付近を評価することが可能になる。被評価基板の表面すれすれにイオンを入射して測定する分析方法として、特許文献4には表面分析方法が記載されている。この表面分析方法は、水素等の軽元素を分析する手法であり、具体的には、被評価基板最表面の原子を叩き出して分析する手法であり、スパッタリング効果を伴うため、必ずしも最表面を非破壊で分析することが出来ない。 If the angle of incidence of the ions on the surface of the semiconductor substrate is set to an inclination angle of 5° or more and 15° or less, the damage of the organic matter adhering to the surface of the semiconductor substrate due to the ions is suppressed, and the influence of the semiconductor substrate, which is the base material, is further reduced. This makes it possible to evaluate with higher sensitivity. That is, it is preferable to install the probe ion accelerator just above the surface of the substrate to be evaluated (with an inclination angle of 5° or more and 15° or less). If the angle of inclination is too large, organic substances on the surface will be removed by ions, and if the angle of inclination is too small, the probe ions will not sufficiently strike the semiconductor substrate surface. Further, by measuring the outermost surface at a depth of 0.2 nm from the surface of the semiconductor substrate, it becomes possible to evaluate the vicinity of the surface more. Patent document 4 describes a surface analysis method as an analysis method in which ions are incident on the surface of the substrate to be evaluated and measurements are made. This surface analysis method is a method for analyzing light elements such as hydrogen. Specifically, it is a method for analyzing by knocking out atoms on the outermost surface of the substrate to be evaluated. It cannot be analyzed non-destructively.

ここで、図2を用いて、イオンの半導体基板の表面への入射角についてさらに詳細に説明する。図2は、半導体基板1上の有機物5の表面にイオンを入射する際、イオンの入射角θと入射角θの2通りを示している図である。なお、θとθでは、伏角はθの方が大きい。 Here, the angle of incidence of ions on the surface of the semiconductor substrate will be described in more detail with reference to FIG. FIG. 2 is a diagram showing two incident angles θ 1 and θ 2 of ions when ions are incident on the surface of organic matter 5 on semiconductor substrate 1 . Between θ 1 and θ 2 , θ 2 has a larger dip.

入射角が図2のθのように高伏角だと、イオンが半導体基板1の内部へ押し込まれ、母材の影響が大きくなるが、θのように低伏角でイオンを入射すると、イオンの半導体基板1の内部へ押し込みが抑えられるため、母材の影響を受けにくくなる。また、入射角が低伏角すぎると、イオンが半導体基板1や有機物5に当たらなくなる可能性がある。従って、イオンの半導体基板の表面への入射角を、伏角5°以上15°以内とすることが好ましい。 When the incident angle is a high angle of inclination such as θ 2 in FIG. is suppressed from being pushed into the semiconductor substrate 1, the effect of the base material is reduced. Also, if the incident angle is too low, the ions may not hit the semiconductor substrate 1 or the organic substance 5 . Therefore, it is preferable to set the incident angle of ions to the surface of the semiconductor substrate to the dip angle of 5° or more and 15° or less.

測定深さは、一般に、加速電圧と角度の両方に依存するため、加速電圧を200keV以上600keV以下の範囲であれば、イオンの半導体基板の表面への入射角を、有機物の分子量、測定装置、被評価物などの条件に応じて調整してもよい。 Since the measurement depth generally depends on both the acceleration voltage and the angle, if the acceleration voltage is in the range of 200 keV or more and 600 keV or less, the incident angle of ions on the surface of the semiconductor substrate can be measured by measuring the molecular weight of the organic substance, the measuring device, You may adjust according to conditions, such as a to-be-evaluated object.

本発明の半導体基板表面に付着した有機物の評価方法は、上記のような構成によって、RBS法を、有機物を構成する炭素のような軽元素でかつ、半導体基板の表面に存在しても測定可能になる。半導体基板表面に存在する有機物の分析においては、半導体基板から有機物を脱離させる必要性がなく分析が可能であり、非破壊で、高感度な分析が可能になる。 According to the method for evaluating organic matter adhering to the surface of a semiconductor substrate of the present invention, the RBS method can be used to measure light elements such as carbon that constitute organic matter and exist on the surface of the semiconductor substrate. become. In the analysis of organic matter present on the surface of a semiconductor substrate, the analysis can be performed without the need to desorb the organic matter from the semiconductor substrate, and non-destructive and highly sensitive analysis is possible.

以下、実施例を挙げて本発明について詳細に説明するが、これは本発明を限定するものではない。 EXAMPLES The present invention will be described in detail below with reference to examples, but these are not intended to limit the present invention.

(実施例1)
直径300mmボロンドープの通常抵抗シリコンウエーハを準備し、シリコンウエーハ表面を初期化のために0.5%HFで洗浄後通常のSC1洗浄を70℃で行った。この後、7枚のシリコンウエーハをウエーハケースに入れて1週間放置した。この際、測定に使用するウエーハ7枚の前後に5枚ずつのダミーウエーハを入れることで、ケースに直接ウエーハ表面が面しないようにした。1週間放置後に、半導体基板表面に付着した有機物の評価を、加速電圧を200keV、400keV、450keV、500keV、600keVと振って表面の有機物を評価した。なお、このときの入射角は伏角10°とした。その結果、加速電圧が450keVのときが一番高感度に有機物を測定することが可能であった。この結果を図3に示す。
(Example 1)
A boron-doped normal resistance silicon wafer with a diameter of 300 mm was prepared, and the surface of the silicon wafer was cleaned with 0.5% HF for initialization and then subjected to normal SC1 cleaning at 70°C. After that, seven silicon wafers were placed in a wafer case and left for one week. At this time, 5 dummy wafers were placed before and after the 7 wafers used for measurement so that the wafer surfaces did not directly face the case. After left for one week, the evaluation of the organic matter adhering to the surface of the semiconductor substrate was carried out by changing the acceleration voltage to 200 keV, 400 keV, 450 keV, 500 keV, and 600 keV to evaluate the organic matter on the surface. The incident angle at this time was set to an inclination angle of 10°. As a result, it was possible to measure organic matter with the highest sensitivity when the acceleration voltage was 450 keV. The results are shown in FIG.

(比較例1)
実施例1に記載の評価を、加速電圧を100keV、1000keVに変更して行った。しかし、加速電圧を100keV、1000keVでは、半導体基板表面に付着した有機物は検出出来なかった。この結果を図3に併せて示す。
(Comparative example 1)
The evaluation described in Example 1 was performed by changing the acceleration voltage to 100 keV and 1000 keV. However, at acceleration voltages of 100 keV and 1000 keV, the organic matter adhering to the surface of the semiconductor substrate could not be detected. The results are also shown in FIG.

(実施例2)
直径300mmボロンドープの通常抵抗シリコンウエーハを準備し、シリコンウエーハ表面を初期化のために0.5%HFで洗浄後通常のSC1洗浄を70℃で行った。この後、9枚のシリコンウエーハをウエーハケースに入れて1週間放置した。この際、測定に使用するウエーハ9枚の前後に5枚ずつのダミーウエーハを入れることで、ケースに直接ウエーハ表面が面しないようにした。1週間放置後に、半導体基板表面に付着した有機物の評価を、イオンの入射角(図5のθ)を伏角2°、4°、6°、8°、10°、12°、16°と振って表面の有機物を評価した。なお、このときの加速電圧は450keVとした。その結果、入射角が伏角10°のときが一番高感度に有機物を測定することが可能であった。この結果を図4に示す。
(Example 2)
A boron-doped normal resistance silicon wafer with a diameter of 300 mm was prepared, and the surface of the silicon wafer was cleaned with 0.5% HF for initialization and then subjected to normal SC1 cleaning at 70°C. After that, 9 silicon wafers were placed in a wafer case and left for one week. At this time, 5 dummy wafers were placed before and after the 9 wafers used for the measurement so that the surfaces of the wafers did not directly face the case. After left for one week, the evaluation of the organic matter adhering to the surface of the semiconductor substrate was performed with the incident angle of ions (θ 3 in FIG. 5) set to the dip angles of 2°, 4°, 6°, 8°, 10°, 12°, and 16°. Shake to assess surface organics. The acceleration voltage at this time was set to 450 keV. As a result, it was possible to measure the organic substance with the highest sensitivity when the incident angle was 10 degrees of the dip. The results are shown in FIG.

(実施例3)
直径300mmボロンドープの通常抵抗シリコンウエーハを準備し、シリコンウエーハ表面を初期化のために0.5%HFで洗浄後通常のSC1洗浄を70℃で行った。この後、シリコンウエーハをウエーハケースに入れて1週間放置後に、本発明に係る方法で表面の有機物を評価した。この際、測定に使用するウエーハ2枚の前後に5枚ずつのダミーウエーハを入れることで、ケースに直接ウエーハ表面が対面しないようにした。半導体基板表面に付着した有機物の評価は、加速電圧は450keV、入射角は伏角10°とし行った。その結果、表面密度で0.89g/cm有機物が観測された。このときの表面からの深さは0.1nmである。この結果を図6に示す。
(Example 3)
A boron-doped normal resistance silicon wafer with a diameter of 300 mm was prepared, and the surface of the silicon wafer was cleaned with 0.5% HF for initialization and then subjected to normal SC1 cleaning at 70°C. After that, the silicon wafer was placed in a wafer case and allowed to stand for one week, after which the surface organic matter was evaluated by the method according to the present invention. At this time, 5 dummy wafers were placed before and after the 2 wafers used for the measurement, so that the surfaces of the wafers did not directly face the case. The evaluation of the organic matter adhering to the surface of the semiconductor substrate was carried out at an acceleration voltage of 450 keV and an incident angle of 10 degrees of dip. As a result, a surface density of 0.89 g/cm 3 of organic matter was observed. The depth from the surface at this time is 0.1 nm. The results are shown in FIG.

(比較例2)
実施例3のウエーハケースから別のシリコンウエーハを取り出し、従来の評価方法である昇温脱離法(TDS法)で有機物分析を行ったが、有機物は検出出来なかった。なお、昇温は室温から500℃までとし、GC-MSを用いて分析した。この結果を図6に併せて示す。
(Comparative example 2)
Another silicon wafer was taken out from the wafer case of Example 3 and analyzed for organic matter by the conventional evaluation method, the temperature programmed desorption method (TDS method), but no organic matter could be detected. The temperature was raised from room temperature to 500° C., and GC-MS was used for analysis. The results are also shown in FIG.

比較例1のように、イオンの加速電圧が100keV、1000keVの場合、半導体基板表面に付着した有機物は、検出出来なかった。また、比較例2のように、昇温脱離法による半導体基板表面に付着した有機物の評価方法では、半導体基板表面に付着した有機物を検出できなかった。 As in Comparative Example 1, when the ion acceleration voltage was 100 keV and 1000 keV, the organic substance attached to the surface of the semiconductor substrate could not be detected. In addition, as in Comparative Example 2, in the method for evaluating organic matter adhering to the surface of the semiconductor substrate by the thermal desorption method, the organic matter adhering to the surface of the semiconductor substrate could not be detected.

一方、本発明の半導体基板表面に付着した有機物の評価方法であれば、実施例1で示したように、イオンの加速電圧を200keV以上600keV以下であれば、高感度で有機物を測定することが可能であった。また、実施例2で示したように、イオンの入射角を2°、4°、6°、8°、10°、12°、16°とした場合、高感度に有機物を測定することが可能であった。また、実施例3で示したように昇温脱離法では検出できなかった半導体基板表面に付着した有機物を検出し、評価できた。 On the other hand, according to the method for evaluating organic matter adhering to the surface of a semiconductor substrate of the present invention, as shown in Example 1, organic matter can be measured with high sensitivity when the ion acceleration voltage is 200 keV or more and 600 keV or less. It was possible. Also, as shown in Example 2, when the incident angles of ions are 2°, 4°, 6°, 8°, 10°, 12°, and 16°, it is possible to measure organic matter with high sensitivity. Met. In addition, as shown in Example 3, the organic matter adhering to the surface of the semiconductor substrate, which could not be detected by the thermal desorption method, could be detected and evaluated.

以上のように、本発明の半導体基板表面に付着した有機物の評価方法であれば、半導体基板表面の微量な有機物汚染を、非破壊で、高感度で測定、評価することが可能である。 As described above, according to the method for evaluating organic matter adhering to the surface of a semiconductor substrate according to the present invention, it is possible to measure and evaluate minute amounts of organic matter contamination on the surface of a semiconductor substrate non-destructively and with high sensitivity.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 It should be noted that the present invention is not limited to the above embodiments. The above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

1…半導体基板、 2…加速器、 3…質量分析装置、 4…位置検出器、
5…有機物。
DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Accelerator, 3... Mass spectrometer, 4... Position detector,
5... Organic substances.

Claims (1)

半導体基板表面に付着した有機物の評価方法であって、
イオンの加速電圧を200keV以上600keV以下で、該イオンを前記半導体基板表面へ入射し、ラザフォード後方散乱を測定し、
前記ラザフォード後方散乱の測定において、前記イオンの前記半導体基板の表面への入射角を、伏角5°以上15°以内とし、前記半導体基板表面から0.2nmまでの深さの最表面を測定することを特徴とする半導体基板表面に付着した有機物の評価方法。
A method for evaluating organic matter adhering to the surface of a semiconductor substrate,
The ions are incident on the semiconductor substrate surface at an acceleration voltage of 200 keV or more and 600 keV or less, and Rutherford backscattering is measured ;
In the measurement of the Rutherford backscattering, the incident angle of the ions to the surface of the semiconductor substrate is set to an inclination angle of 5° or more and 15° or less, and the outermost surface is measured at a depth of 0.2 nm from the semiconductor substrate surface. A method for evaluating organic matter adhering to the surface of a semiconductor substrate, characterized by:
JP2020018961A 2020-02-06 2020-02-06 Method for evaluating organic matter adhering to the surface of a semiconductor substrate Active JP7247907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020018961A JP7247907B2 (en) 2020-02-06 2020-02-06 Method for evaluating organic matter adhering to the surface of a semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020018961A JP7247907B2 (en) 2020-02-06 2020-02-06 Method for evaluating organic matter adhering to the surface of a semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2021124430A JP2021124430A (en) 2021-08-30
JP7247907B2 true JP7247907B2 (en) 2023-03-29

Family

ID=77458602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020018961A Active JP7247907B2 (en) 2020-02-06 2020-02-06 Method for evaluating organic matter adhering to the surface of a semiconductor substrate

Country Status (1)

Country Link
JP (1) JP7247907B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153751A (en) 2004-11-30 2006-06-15 Kyoto Univ Ion beam analyzer
JP2008543027A (en) 2005-06-07 2008-11-27 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド Ion beam angle processing control technology
JP2010010126A (en) 2008-05-28 2010-01-14 Fujitsu Ltd Magnetic field deflecting energy analyzer, and ion scattering spectroscope
JP2015118077A (en) 2013-11-14 2015-06-25 凸版印刷株式会社 Thin film evaluation structure and thin film evaluation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281601A (en) * 1993-03-26 1994-10-07 Ulvac Japan Ltd Ion beam surface analysis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153751A (en) 2004-11-30 2006-06-15 Kyoto Univ Ion beam analyzer
JP2008543027A (en) 2005-06-07 2008-11-27 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド Ion beam angle processing control technology
JP2010010126A (en) 2008-05-28 2010-01-14 Fujitsu Ltd Magnetic field deflecting energy analyzer, and ion scattering spectroscope
JP2015118077A (en) 2013-11-14 2015-06-25 凸版印刷株式会社 Thin film evaluation structure and thin film evaluation method

Also Published As

Publication number Publication date
JP2021124430A (en) 2021-08-30

Similar Documents

Publication Publication Date Title
Greczynski et al. X-ray photoelectron spectroscopy of thin films
US9201030B2 (en) Method and system for non-destructive distribution profiling of an element in a film
JP2007051934A (en) Mass axis calibration method in time-of-flight secondary ion mass analysis method
JP7335389B2 (en) Systems and methods for semiconductor measurement and surface analysis using secondary ion mass spectrometry
JP2002257765A (en) Contamination evaluating method on substrate surface, contamination evaluating device, and manufacturing method for semiconductor device
TWI223060B (en) System and method for depth profiling and characterization of thin films
Wong et al. Experimental characterization of hydrogen adsorption sites for H/W (111) using low energy ion scattering
JP7247907B2 (en) Method for evaluating organic matter adhering to the surface of a semiconductor substrate
Diebold et al. Evaluation of surface analysis methods for characterization of trace metal surface contaminants found in silicon integrated circuit manufacturing
WO2012153462A1 (en) Method for determining film thickness of soi layer of soi wafer
Childs et al. Comparison of submicron particle analysis by Auger electron spectroscopy, time‐of‐flight secondary ion mass spectrometry, and secondary electron microscopy with energy dispersive x‐ray spectroscopy
Schmeling et al. Steps toward accurate large-area analyses of Genesis solar wind samples: evaluation of surface cleaning methods using total reflection X-ray fluorescence spectrometry
JP3467189B2 (en) Elemental analysis method
van Riessen et al. Auger photoelectron coincidence spectroscopy: simplifying complexity
JP3525674B2 (en) Apparatus and method for measuring work function or ionization potential
JP5045310B2 (en) High-precision depth direction analysis method and analyzer using secondary ion mass spectrometry technology
Gunawardane et al. Auger electron spectroscopy
US20030146379A1 (en) Auger-based thin film metrology
RU2535228C1 (en) Method of determining duration of plasma-chemical etching of surface of semiconductor plates for submicron technology
JP2008215989A (en) Concentration analyzing method of element in depth direction
Chia et al. On-Wafer Measurement of Molecular Contaminants
RU2509299C1 (en) Method of determining charge state of atoms in subnanolayer films on surface of metals and semiconductors
Calaway et al. Characterization of ni on si wafers: Comparison of surface analysis techniques
US7527976B2 (en) Processes for testing a region for an analyte and a process for forming an electronic device
JP5874409B2 (en) Secondary ion mass spectrometry method and secondary ion mass spectrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R150 Certificate of patent or registration of utility model

Ref document number: 7247907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150