JP7247729B2 - Neutralization treatment method for poor liquid generated in hydrometallurgy of nickel oxide ore - Google Patents

Neutralization treatment method for poor liquid generated in hydrometallurgy of nickel oxide ore Download PDF

Info

Publication number
JP7247729B2
JP7247729B2 JP2019079174A JP2019079174A JP7247729B2 JP 7247729 B2 JP7247729 B2 JP 7247729B2 JP 2019079174 A JP2019079174 A JP 2019079174A JP 2019079174 A JP2019079174 A JP 2019079174A JP 7247729 B2 JP7247729 B2 JP 7247729B2
Authority
JP
Japan
Prior art keywords
neutralizing agent
neutralization
neutralization treatment
liquid
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019079174A
Other languages
Japanese (ja)
Other versions
JP2020175329A (en
Inventor
大地 村瀬
勝輝 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019079174A priority Critical patent/JP7247729B2/en
Publication of JP2020175329A publication Critical patent/JP2020175329A/en
Application granted granted Critical
Publication of JP7247729B2 publication Critical patent/JP7247729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、ニッケル酸化鉱石の湿式製錬において発生する貧液の中和処理方法に関し、より詳しくは、原料のニッケル酸化鉱石を浸出処理して得たニッケル等の有価金属を含む浸出液に対して、硫化処理を施すことで該有価金属を硫化物の形態で回収する際に排出される貧液中の残留金属イオンを中和により除去する中和処理方法に関する。 The present invention relates to a method for neutralizing poor liquid generated in the hydrometallurgical process of nickel oxide ore, and more particularly to a leachate containing valuable metals such as nickel obtained by leaching nickel oxide ore as a raw material. , a neutralization treatment method for removing residual metal ions by neutralization in a poor liquid discharged when recovering the valuable metal in the form of sulfide by applying a sulfurization treatment.

原料のニッケル酸化鉱石に対して、高温高圧下で硫酸を用いて浸出処理を行う高圧酸浸出法(HPAL:High Pressure Acid Leachingプロセス)を含んだ湿式製錬法が知られている。この湿式製錬法は、従来の一般的なニッケル酸化鉱石の製錬法である乾式製錬法とは異なり、還元工程や乾燥工程を経ることなく一貫した湿式工程により処理を行うので、エネルギー的及びコスト的に有利であるうえ、低品位のニッケル酸化鉱石からニッケル品位を50質量%程度まで高めたニッケルを含む硫化物(以下、ニッケル硫化物とも称する)を製造できるという利点を有している。 A hydrometallurgical method is known that includes a high pressure acid leaching process (HPAL: High Pressure Acid Leaching process) in which nickel oxide ore as a raw material is subjected to leaching treatment using sulfuric acid at high temperature and high pressure. This hydrometallurgical process differs from the conventional pyrometallurgical process for smelting nickel oxide ore, and does not require a reduction process or a drying process. And in addition to being advantageous in terms of cost, it has the advantage of being able to produce a sulfide containing nickel with a nickel grade of about 50% by mass (hereinafter also referred to as nickel sulfide) from a low-grade nickel oxide ore. .

上記の湿式製錬法では、原料のニッケル酸化鉱石を浸出処理することで得られるニッケル等の有価金属と不純物金属元素とを含む硫酸水溶液からなる浸出液を浄液した後、硫化処理を施すことによって沈殿物としてニッケル硫化物を生成している。この硫化処理としては、上記のニッケルを主として含有する硫酸水溶液からなる浸出液に対して、硫化剤として例えば硫化水素ガスを吹き込むことが行われており、これにより硫化反応を生じさせてニッケル等の有価金属を含む硫化物を生成させ、これを固液分離により回収することで、ニッケル濃度を低水準で安定させた貧液が該固液分離の液相側に排出される。 In the above hydrometallurgical method, after purifying a leachate consisting of an aqueous sulfuric acid solution containing valuable metals such as nickel and impurity metal elements obtained by leaching nickel oxide ore as a raw material, the leaching solution is subjected to a sulfidation treatment. Nickel sulfide is produced as a precipitate. In this sulfurization treatment, a sulfurizing agent such as hydrogen sulfide gas is blown into the leachate consisting of an aqueous sulfuric acid solution containing nickel as a main component. By generating sulfides containing metals and recovering them by solid-liquid separation, a poor liquid in which the nickel concentration is stabilized at a low level is discharged to the liquid phase side of the solid-liquid separation.

上記の固液分離による硫化物の回収時に排出されるpH値の低い酸性溶液からなる貧液には、上記硫化処理において硫化されずに残留する鉄、マグネシウム、マンガン等の残留金属イオンが不純物として含まれている。従って、この貧液を系外に放水できるようにするため、pH値を中性にすると共に、上記残留金属イオンを除去する中和処理を施すことが必要となる。 In the poor liquid consisting of an acidic solution with a low pH value discharged during the recovery of sulfides by the above-mentioned solid-liquid separation, residual metal ions such as iron, magnesium, manganese, etc. that remain without being sulfided in the above-mentioned sulfidation treatment are impurities. include. Therefore, in order to discharge this poor liquid out of the system, it is necessary to neutralize the pH value and to perform a neutralization treatment to remove the residual metal ions.

従来、この貧液の中和処理法として、1種類の中和剤を用いて中和処理することが主に行われていた。この方法では、目標とするpH値まで中和するため、強アルカリ性の中和剤を用いることが必要であった。このような強アルカリ性の中和剤としては、一般的には苛性ソーダや炭酸ナトリウム等を挙げることができるが、工業的にはこれらの中和剤よりもコスト面で有利な消石灰スラリーが用いられることが多い。 Conventionally, as a method for neutralizing the poor liquid, neutralization using one type of neutralizing agent has been mainly performed. In this method, it was necessary to use a strongly alkaline neutralizer to neutralize to the target pH value. As such a strong alkaline neutralizing agent, caustic soda, sodium carbonate and the like can generally be mentioned, but industrially, a slaked lime slurry is used which is more advantageous in terms of cost than these neutralizing agents. There are many.

近年、上記硫化処理によって生じる貧液の量が多くなる傾向にあり、その結果、中和剤を添加して中和処理を行う反応槽内での滞留時間が減少し、反応効率が低下することがあった。この反応効率の低下を補うため、多量の中和剤を添加することが行われており、コスト面で比較的有利な消石灰スラリーを用いても製品コストが高くなることが問題になることがあった。 In recent years, the amount of poor liquid produced by the sulfurization treatment tends to increase, and as a result, the retention time in the reaction tank where the neutralization treatment is performed by adding a neutralizing agent decreases, and the reaction efficiency decreases. was there. In order to compensate for this decrease in reaction efficiency, a large amount of neutralizing agent is added, and even if the slaked lime slurry, which is relatively advantageous in terms of cost, is used, the increase in product cost may become a problem. rice field.

そこで、例えば特許文献1には、上記したようなニッケル酸化鉱石の湿式処理において排出される金属イオンの不純物を含んだ貧液の中和処理において、中和剤として使用する炭酸ナトリウム溶液等の一部を安価な炭酸カルシウムスラリーに代替する技術が開示されている。具体的には、上記貧液に対して先ず第1の中和剤として炭酸カルシウムスラリーを用いて所定のpHまで中和処理した後、第2の中和剤として炭酸ナトリウム溶液を用いて中和処理している。このように、2種類の中和剤を用いて段階的に中和処理を行うことによって、中和剤の消費コストが低減できると記載されている。 Therefore, for example, in Patent Document 1, a sodium carbonate solution or the like used as a neutralizing agent in the neutralization treatment of poor liquid containing impurities of metal ions discharged in the wet treatment of nickel oxide ore as described above. A technique is disclosed to replace the part with an inexpensive calcium carbonate slurry. Specifically, the poor liquid is first neutralized to a predetermined pH using a calcium carbonate slurry as a first neutralizing agent, and then neutralized using a sodium carbonate solution as a second neutralizing agent. are processing. It is described that the consumption cost of the neutralizing agent can be reduced by performing the neutralizing treatment in stages using two types of neutralizing agents.

特開2015-105396号公報JP 2015-105396 A

上記の特許文献1に記載されているように、2種類の中和剤を用いることである程度中和剤の消費コストを抑えることが可能になるものの、さらに大きなコスト削減が求められる場合に対応できないことがあった。本発明は、上記した従来の中和処理方法が抱える問題点に鑑みてなされたものであり、ニッケル酸化鉱石の湿式製錬において発生する貧液の量が多くなっても中和剤の消費量を抑えつつ該貧液を効率よく中和処理する方法を提供することを目的としている。 As described in Patent Document 1 above, although it is possible to reduce the consumption cost of the neutralizing agent to some extent by using two types of neutralizing agents, it is not possible to cope with the case where a further large cost reduction is required. something happened. The present invention has been made in view of the problems of the conventional neutralization treatment method described above, and even if the amount of poor liquid generated in the hydrometallurgy of nickel oxide ore increases, the consumption of the neutralizer It is an object of the present invention to provide a method for efficiently neutralizing the poor liquid while suppressing the

上記目的を達成するため、本発明に係る中和処理方法は、鉄、マグネシウム、及びマンガンのうちのいずれか1つ以上の不純物金属イオンを含有する硫酸水溶液に対して弱アルカリ性の第1の中和剤を添加してpH5.0以上6.0以下の範囲内を終点として中和処理を施す第1の中和処理工程と、該第1の中和処理工程で得た溶液を撹拌機及び邪魔板を有する縦型円筒形状の反応槽に装入し、該第1の中和剤よりも塩基性度の高い第2の中和剤を添加して中和処理を施す第2の中和処理工程とを有する中和処理方法であって、該反応槽における該第2の中和剤の添加位置、該反応槽の周方向に関して該邪魔板よりも2~6度撹拌方向の上流側であって且つ該反応槽の半径方向において該反応槽の内壁面から該邪魔板の幅の距離で離間するように該反応槽の上方から下方に向けて該第2の中和剤を導入することを特徴とする。 In order to achieve the above object, the neutralization treatment method according to the present invention provides a weakly alkaline first neutralization treatment method for an aqueous sulfuric acid solution containing impurity metal ions of one or more of iron, magnesium, and manganese. a first neutralization treatment step of adding a solubilizing agent and neutralizing the pH within the range of 5.0 or more and 6.0 or less as an end point; A second neutralization in which the mixture is charged into a vertical cylindrical reaction vessel having a baffle plate and neutralized by adding a second neutralizing agent having a higher basicity than the first neutralizing agent. wherein the addition position of the second neutralizing agent in the reaction vessel is 2 to 6 degrees upstream of the baffle in the direction of stirring relative to the circumferential direction of the reaction vessel. and introducing the second neutralizing agent downward into the reaction vessel so as to be separated from the inner wall surface of the reaction vessel in the radial direction of the reaction vessel by the distance of the width of the baffle plate. It is characterized by

本発明によれば、中和剤の消費量を抑えつつ貧液を効率よく中和処理することが可能になる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to neutralize a poor liquid efficiently, suppressing the consumption of a neutralizing agent.

本発明の実施形態の中和処理方法が好適に適用されるニッケル酸化鉱石の高温加圧酸浸出法による湿式製錬方法の工程フロー図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process flow diagram of a hydrometallurgical method for nickel oxide ore by high-temperature pressure acid leaching, to which the neutralization treatment method of the embodiment of the present invention is suitably applied. 本発明の実施形態に係る中和処理方法の工程フロー図である。It is a process flow figure of the neutralization treatment method concerning the embodiment of the present invention. 本発明の実施形態に係る中和処理方法で使用する反応槽の模式的な平面図である。It is a schematic plan view of a reaction vessel used in the neutralization treatment method according to the embodiment of the present invention. 本発明の実施例及び比較例で用いた反応槽のフロー図である。FIG. 2 is a flow diagram of a reaction tank used in Examples and Comparative Examples of the present invention; 本発明の実施例及び比較例の中和処理方法で得た中和終液のpHと中和剤の反応効率との関係をプロットしたグラフである。It is a graph plotting the relationship between the pH of the neutralization final solution obtained by the neutralization treatment methods of the examples and comparative examples of the present invention and the reaction efficiency of the neutralizing agent.

先ず、本発明の実施形態に係る貧液の中和処理方法が好適に適用される、HPALプロセスによるニッケル酸化鉱石の湿式製錬方法について図1を参照しながら説明する。この図1に示す湿式製錬方法は、所定の粒度を有するニッケル酸化鉱石を含んだ鉱石スラリーに硫酸を添加して高温高圧下で浸出処理を施す浸出工程S1と、該浸出工程S1で得た浸出液及び浸出残渣からなる浸出スラリーを好適には直列に接続された複数基のシックナーで固液分離することで、ニッケル及びコバルトのほか不純物イオンとして鉄、マグネシウム、マンガン等を含む浸出液を浸出残渣から分離する固液分離工程S2と、該浸出液にpH調整剤を添加することで鉄を含む殿物を生成し、これを殿物スラリーの形態で分離除去してニッケル回収用の母液を得る脱鉄工程S3と、該母液に硫化剤を添加することでニッケル及びコバルトを含む混合硫化物を生成した後、固液分離により該混合硫化物を回収する硫化工程S4と、該混合硫化物の固液分離時に液相側に排出される貧液を中和処理する中和処理工程S5とを有している。以下、これら工程の各々について説明する。 First, the method for hydrometallurgical refining of nickel oxide ore by the HPAL process, to which the poor liquid neutralization method according to the embodiment of the present invention is suitably applied, will be described with reference to FIG. The hydrometallurgy method shown in FIG. 1 includes a leaching step S1 in which sulfuric acid is added to an ore slurry containing nickel oxide ore having a predetermined particle size and leaching is performed under high temperature and high pressure, and the leaching step S1 obtains The leaching slurry comprising the leaching solution and the leaching residue is preferably solid-liquid separated by a plurality of thickeners connected in series to remove the leaching solution containing iron, magnesium, manganese, etc. as impurity ions in addition to nickel and cobalt from the leaching residue. A solid-liquid separation step S2 for separation, and deironization to obtain a mother liquor for recovering nickel by adding a pH adjuster to the leachate to generate sediment containing iron, which is separated and removed in the form of sediment slurry. Step S3, a sulfurization step S4 in which a mixed sulfide containing nickel and cobalt is produced by adding a sulfiding agent to the mother liquor, and then the mixed sulfide is recovered by solid-liquid separation, and a solid-liquid of the mixed sulfide and a neutralization treatment step S5 for neutralizing the poor liquid discharged to the liquid phase side at the time of separation. Each of these steps will be described below.

(1)浸出工程S1
浸出工程S1では、先ず原料のニッケル酸化鉱石を粉砕機及びスクリーンに装入して粉粒体にした後、水を加えて湿式で分級することで所定の粒度を有するニッケル酸化鉱石を含んだ鉱石スラリーを篩下側に回収する。この鉱石スラリーをオートクレーブと称する圧力容器に硫酸と共に装入し、圧力3~4.5MPaG程度、温度220~280℃程度の高温高圧条件下で撹拌しながら浸出処理を施す。これにより、浸出反応及び高温熱加水分解反応が生じ、ニッケル、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われ、浸出液と浸出残渣とからなる浸出スラリーが生成される。
(1) Leaching step S1
In the leaching step S1, first, nickel oxide ore as a raw material is charged into a crusher and a screen to be powdered, and then water is added to wet classify the ore containing nickel oxide ore having a predetermined particle size. Collect the slurry on the underside of the sieve. This ore slurry is put into a pressure vessel called an autoclave together with sulfuric acid, and subjected to leaching treatment under high temperature and high pressure conditions of about 3 to 4.5 MPaG and about 220 to 280° C. while stirring. As a result, a leaching reaction and a high-temperature thermal hydrolysis reaction occur, and nickel, cobalt, etc. are leached as sulfate salts, and the leached iron sulfate is fixed as hematite, resulting in a leaching slurry consisting of a leaching solution and a leaching residue. is generated.

上記の原料に用いるニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱である。ラテライト鉱のニッケル含有量は一般に0.8~2.5質量%であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含まれている。このニッケル酸化鉱石は、鉄の含有量が10~50質量%であり、これは主として3価の水酸化物(ゲーサイト)の形態を有しており、一部2価の鉄がケイ苦土鉱物に含まれている。浸出工程S1の原料には、上記のラテライト鉱のほか、ニッケル、コバルト、マンガン、銅等の有価金属を含有する例えば深海底に賦存するマンガン瘤等の酸化鉱石が用いられることがある。 The nickel oxide ore used as the raw material is mainly so-called laterite ore such as limonite ore and saprolite ore. Laterite ores generally have a nickel content of 0.8 to 2.5% by weight and are contained as hydroxide or magnesium silicate (magnesium silicate) minerals. This nickel oxide ore has an iron content of 10 to 50% by mass, which is mainly in the form of trivalent hydroxide (goethite), and partly divalent iron is contained in minerals. In addition to the laterite ore described above, oxide ores such as manganese nodules present in the deep sea floor containing valuable metals such as nickel, cobalt, manganese, and copper may be used as raw materials for the leaching step S1.

上記オートクレーブに装入する硫酸の添加量には特に限定はないが、上記ニッケル酸化鉱石中の鉄が良好に浸出されるように過剰に添加するのが好ましい。なお、浸出工程S1では、生成したヘマタイトを含む浸出残渣によって後工程の固液分離工程S2における分離性が低下することがないように、浸出液のpHを0.1~1.0に調整することが好ましい。また、この浸出工程S1で得た浸出スラリーは、該固液分離工程S2で固液分離する前に、予備中和処理を行ってフリー硫酸(浸出反応に関与しなかった余剰の硫酸であり、遊離硫酸とも称する)を中和処理してもよい。 The amount of sulfuric acid to be charged into the autoclave is not particularly limited, but it is preferable to add an excess amount so that the iron in the nickel oxide ore is leached well. In the leaching step S1, the pH of the leaching solution should be adjusted to 0.1 to 1.0 so that the produced leaching residue containing hematite does not deteriorate the separation performance in the subsequent solid-liquid separation step S2. is preferred. In addition, the leaching slurry obtained in the leaching step S1 is pre-neutralized before solid-liquid separation in the solid-liquid separation step S2 to obtain free sulfuric acid (surplus sulfuric acid that did not participate in the leaching reaction, Also called free sulfuric acid) may be neutralized.

(2)固液分離工程S2
上記浸出工程S1で得た浸出スラリーは、次に固液分離工程S2においてCCD法(Counter Current Decantation)とも称する向流洗浄法により浸出残渣が除去され、ニッケル及びコバルトのほか不純物イオンとして鉄、マグネシウム、マンガン等を含む浸出液が得られる。具体的には、この向流洗浄法では、直列に連結した複数基のシックナーに、上記浸出スラリーと洗浄液とが互いに向流になるように連続的に導入される。これにより、最上流のシックナーに凝集剤と共に導入された浸出スラリーは、最下流のシックナーに向けて順次シックナーを移送されることで多段洗浄されながら重力沈降による固液分離が行われ、浸出残渣が分離除去された浸出液が得られる。
(2) Solid-liquid separation step S2
The leaching slurry obtained in the leaching step S1 is then subjected to a solid-liquid separation step S2 in which the leaching residue is removed by a countercurrent cleaning method also called a CCD method (Counter Current Decantation), and in addition to nickel and cobalt, iron and magnesium are removed as impurity ions. , manganese and the like is obtained. Specifically, in this countercurrent washing method, the leached slurry and the washing liquid are continuously introduced into a plurality of serially connected thickeners so as to flow countercurrently to each other. As a result, the leaching slurry introduced together with the coagulant into the most upstream thickener is transported to the most downstream thickener in sequence, where it is washed in multiple stages and solid-liquid separated by gravity sedimentation, and the leaching residue is removed. A separated exudate is obtained.

このように、CCD法で固液分離することにより、より少ない量の洗浄液で効率よく浸出液を回収することが可能になる。なお、上記洗浄液にはpH1.0~3.0程度の水溶液を用いることが好ましく、後述する中和処理工程S5から排出される中和終液はこの条件を満たすので、該中和終液を上記洗浄液として用いるのが好ましい。 By performing solid-liquid separation by the CCD method in this manner, it is possible to efficiently recover the leachate with a smaller amount of cleaning liquid. It is preferable to use an aqueous solution having a pH of about 1.0 to 3.0 as the cleaning liquid, and the final neutralization liquid discharged from the neutralization treatment step S5 described later satisfies this condition. It is preferably used as the washing liquid.

(3)脱鉄工程S3
上記固液分離工程S2で得た浸出液は、次に脱鉄工程S3において炭酸カルシウム等のpH調整剤が添加されてpH調整が行われ、これにより浸出液に含まれる不純物イオンのうち主に鉄から含鉄殿物が生成される。この脱鉄工程S3では、処理液のpHが2.0以上4.0以下、好ましくは3.0~3.5、より好ましくは3.1~3.2になるように上記pH調整を行うのが好ましく、これにより浸出液に含まれる主に3価の鉄イオンやアルミニウムイオンから効率よく含鉄殿物を生成することができる。
(3) Deironization step S3
The leachate obtained in the solid-liquid separation step S2 is then added with a pH adjuster such as calcium carbonate in the iron removal step S3 to adjust the pH. A ferruginous precipitate is produced. In this iron removal step S3, the above pH adjustment is performed so that the pH of the treatment liquid is 2.0 or more and 4.0 or less, preferably 3.0 to 3.5, more preferably 3.1 to 3.2. is preferable, whereby ferrous precipitates can be efficiently produced mainly from trivalent iron ions and aluminum ions contained in the leachate.

上記の含鉄殿物を含むスラリーは、好適にはシックナーで固液分離することでシックナー底部から該含鉄殿物が濃縮スラリーの形態で除去され、一方、シックナーの上端部からはオーバーフローにより有価金属としてのニッケル及びコバルトを含むニッケル回収用の母液が排出される。上記のシックナー底部から抜き出される含鉄殿物スラリーは、必要に応じて一部が抜き取られて固液分離工程S2に繰り返され、残りは無害化処理等を経て系外に排出される。 The slurry containing the ferrous precipitates is preferably solid-liquid separated in a thickener so that the ferrous precipitates are removed from the bottom of the thickener in the form of a concentrated slurry, while the top end of the thickener overflows to form valuable metals. of nickel and cobalt is discharged. Part of the iron-containing sediment slurry extracted from the bottom of the thickener is extracted as necessary, and the solid-liquid separation step S2 is repeated.

(4)硫化工程S4
上記脱鉄工程S3で得たニッケル回収用の母液は、次に硫化工程S4において加圧下の硫化反応槽に装入され、ここに硫化水素ガス等の硫化剤を添加することにより、硫化反応を生じさせてニッケル及びコバルトを含む混合硫化物を生成させる。この混合硫化物はフィルタープレスなどの固液分離装置により回収され、その際、液相側に貧液が排出される。
(4) Sulfurization step S4
In the sulfurization step S4, the mother liquor for recovering nickel obtained in the iron removal step S3 is then charged into a sulfurization reaction tank under pressure, and a sulfurization reaction is initiated by adding a sulfurization agent such as hydrogen sulfide gas. to form a mixed sulfide containing nickel and cobalt. This mixed sulfide is recovered by a solid-liquid separator such as a filter press, and at that time, a poor liquid is discharged to the liquid phase side.

なお、上記のニッケル回収用の母液には、不純物としてFe、Mg、Mn等の金属イオンが各々数g/L程度含まれる場合があるが、これら金属イオンはニッケル及びコバルトに比べて硫化物としての安定性が低く、よって上記混合硫化物側にはほとんど分配されない。また、上記の母液に亜鉛が含まれている場合は、上記加圧された硫化反応槽に装入する前に微加圧された脱亜鉛反応槽に導入し、その気相中に硫化水素ガスを吹き込むことでニッケル及びコバルトに対して亜鉛を選択的に硫化し、これにより生成される亜鉛硫化物を分離除去するのが好ましい。 The mother liquor for nickel recovery may contain several g/L of metal ions such as Fe, Mg, and Mn as impurities. has a low stability and thus hardly partitions to the mixed sulfide side. Further, when zinc is contained in the above mother liquor, it is introduced into a slightly pressurized dezincification reactor before being charged into the pressurized sulfurization reactor, and hydrogen sulfide gas is introduced into the gas phase. is preferably blown in to selectively sulfide zinc relative to nickel and cobalt and separate and remove the zinc sulfide produced thereby.

(5)中和処理工程S5
上記硫化処理S4で得た硫酸水溶液からなる貧液は、次に中和処理工程S5において2段階で中和処理され、これにより該貧液中に不純物金属イオンとして含まれる鉄、マグネシウム、及びマンガンのうちのいずれか1つ以上からなる残留金属イオンから中和殿物が生成され、この中和殿物を固液分離で除去することにより無害化された中和終液が得られる。
(5) Neutralization treatment step S5
The poor liquid consisting of the sulfuric acid aqueous solution obtained in the sulfurization treatment S4 is then neutralized in two steps in the neutralization treatment step S5, whereby the iron, magnesium, and manganese contained as impurity metal ions in the poor liquid are neutralized. A neutralized precipitate is produced from residual metal ions composed of any one or more of them, and the neutralized final solution is obtained by removing the neutralized precipitate by solid-liquid separation.

具体的には、図2の工程フロー図に示すように、先ず第1の中和処理工程S51として、第1反応槽に装入した上記貧液に対して、比較的塩基性度の低い炭酸カルシウムスラリーなどの弱アルカリ性の第1の中和剤を添加し、pH5.0以上6.0以下の範囲内を終点として中和処理を行う。次に第2の中和処理工程S52として、上記第1の中和処理工程S51で処理された溶液を上記第1反応槽から第2反応槽に移送し、この第2反応槽内の溶液に対して、上記第1の中和剤よりも塩基性度の高い例えば消石灰などの第2の中和剤を添加して中和処理を施す。これにより、上記貧液中に含まれる残留金属イオンから中和殿物を生成させる。この中和殿物をフィルタープレスなどの固液分離装置で除去することで、上記の残留金属イオンがほぼ除去された中和終液が得られる。 Specifically, as shown in the process flow diagram of FIG. 2, first, as a first neutralization treatment step S51, the poor liquid charged into the first reaction tank is treated with carbonic acid having a relatively low basicity. A weakly alkaline first neutralizing agent such as calcium slurry is added, and the neutralization treatment is performed with the end point within the pH range of 5.0 or more and 6.0 or less. Next, as a second neutralization treatment step S52, the solution treated in the first neutralization treatment step S51 is transferred from the first reaction tank to the second reaction tank, and the solution in the second reaction tank is On the other hand, a second neutralizing agent such as slaked lime having higher basicity than the first neutralizing agent is added for neutralization. As a result, neutralized precipitates are generated from the residual metal ions contained in the poor solution. By removing this neutralization sediment with a solid-liquid separation device such as a filter press, a final neutralization solution from which the residual metal ions have been substantially removed is obtained.

このように、2段階の中和処理工程のうち第1の中和処理工程S51で添加する中和剤に、第2の中和処理工程S52で添加する強アルカリ性の中和剤よりも塩基性度の低い炭酸カルシウムスラリーなどの中和剤を用いることで、強アルカリ性の中和剤の使用量を削減することができる。よって、硫化工程S4から排出される貧液の量が増加しても、高アルカリ性の中和剤の消費コストを抑えながら効率的に中和処理を行うことができる。 Thus, the neutralizing agent added in the first neutralizing step S51 of the two-stage neutralizing step is more basic than the strong alkaline neutralizing agent added in the second neutralizing step S52. By using a neutralizing agent such as a calcium carbonate slurry with a low degree, the amount of the strongly alkaline neutralizing agent used can be reduced. Therefore, even if the amount of the poor liquid discharged from the sulfurization step S4 increases, the neutralization treatment can be efficiently performed while suppressing the consumption cost of the highly alkaline neutralizing agent.

なお、上記した第1の中和処理工程S51における終点のpHが5.0未満では、この第1の中和処理工程S51における中和処理が不十分となって後述する第2の中和処理工程S52における中和処理の負荷が増大し、結果として第2の中和剤の使用量が増加することになる。逆に、第1の中和処理工程S51における終点のpHが6.0を超えると、この第1の中和処理工程S51における中和処理の負荷が増大し、第1の中和剤の使用量が増加することになる。また、このように終点pHが6.0を超えるように調整して第1の中和処理工程S51における中和処理の負荷を増大させた場合でも、第2の中和処理工程S52における中和剤の使用量は殆ど変わらないため、中和処理工程S5全体としての中和剤の使用量が増加して不経済になる。 If the pH at the end point in the first neutralization treatment step S51 is less than 5.0, the neutralization treatment in the first neutralization treatment step S51 is insufficient, and the second neutralization treatment described later is performed. The load of the neutralization process in step S52 increases, and as a result, the usage amount of the second neutralizing agent increases. Conversely, when the pH at the end point in the first neutralization treatment step S51 exceeds 6.0, the load of the neutralization treatment in this first neutralization treatment step S51 increases, and the use of the first neutralizing agent quantity will increase. Further, even when the load of the neutralization treatment in the first neutralization treatment step S51 is increased by adjusting the end point pH to exceed 6.0, the neutralization in the second neutralization treatment step S52 Since the amount of the agent used is almost the same, the amount of the neutralizer used in the neutralization treatment step S5 as a whole increases, which is uneconomical.

また、上記の第2の中和処理工程S52における中和処理では、その終点のpHを8.5以上9.0以下の範囲内に調整することが好ましい。この終点のpHが8.5未満では、貧液中に含まれる鉄、マグネシウム、マンガンその他の不純物からなる残留金属イオンの中和殿物の生成が不十分になり、これら残留金属イオンが中和終液中に残留してしまう可能性がある。逆に、終点のpHが9.0を超えると、第2の中和剤の添加量が増加してもこれに比例して該残留金属イオンの生成が促進されることはない。よって、該第2の中和剤の消費量が増加して不経済になる。 Further, in the neutralization treatment in the second neutralization treatment step S52, it is preferable to adjust the pH at the end point within the range of 8.5 or more and 9.0 or less. If the pH at the end point is less than 8.5, the neutralization of residual metal ions composed of impurities such as iron, magnesium, manganese, etc. contained in the poor solution will not be sufficiently neutralized, and these residual metal ions will be neutralized. It may remain in the final solution. Conversely, if the endpoint pH exceeds 9.0, even if the amount of the second neutralizing agent added is increased, the formation of the residual metal ions is not promoted proportionally. Therefore, the consumption of the second neutralizing agent increases, which is uneconomical.

前述したように、第2の中和処理工程S52に使用する中和剤は消石灰が好ましい。消石灰は炭酸ナトリウムに比べ塩基性度が高いため、より効果的に中和処理を行うことができるからである。この第2の中和処理工程S52において使用する消石灰は、固形分濃度が15質量%以上25質量%以下のスラリーの形態を有していることが望ましい。この固形分濃度が15質量%未満では、中和処理に必要な消石灰スラリーの体積が多くなりすぎ、所定の有効容積の上記第2反応槽における滞留時間が低下して中和処理が不十分になるおそれがある。逆に、固形分濃度が25質量%を超えると、該第2反応槽内での消石灰スラリーの拡散性が低下し、上記の目標とするpHまで中和するために過剰の中和剤が必要になって処理コストが増加するおそれがある。 As described above, the neutralizing agent used in the second neutralizing step S52 is preferably slaked lime. This is because slaked lime has a higher basicity than sodium carbonate, and can be neutralized more effectively. It is desirable that the slaked lime used in the second neutralization step S52 be in the form of slurry having a solid content concentration of 15% by mass or more and 25% by mass or less. If the solid content concentration is less than 15% by mass, the volume of the slaked lime slurry required for the neutralization treatment becomes too large, and the residence time in the second reaction vessel having a predetermined effective volume decreases, resulting in insufficient neutralization treatment. may become Conversely, when the solid content concentration exceeds 25% by mass, the diffusibility of the slaked lime slurry in the second reaction tank decreases, and an excess neutralizing agent is required to neutralize to the above target pH. This may result in an increase in processing costs.

本発明の実施形態の中和処理方法においては、この第2の中和処理工程S52で中和処理を行う第2反応槽に撹拌機付きの縦型円柱形状の容器を使用する。更に、該撹拌機の撹拌翼による第2反応槽内での周方向の流れを阻害して撹拌効果を向上させるため、該第2反応槽内にはその円筒胴部から中心軸に向かって突出する少なくとも1枚の邪魔板を、該円筒胴部の上端部から下端部まで鉛直方向に延在するように設置する。 In the neutralization method of the embodiment of the present invention, a vertical columnar container with a stirrer is used as the second reaction vessel for neutralization in the second neutralization step S52. Furthermore, in order to improve the stirring effect by inhibiting the flow in the circumferential direction in the second reaction tank by the stirring blades of the stirrer, a protruding part protrudes from the cylindrical body toward the central axis in the second reaction tank. At least one baffle plate is installed so as to extend vertically from the upper end to the lower end of the cylindrical body.

そして、図3に示すように、第2反応槽1の撹拌機2の回転方向が白矢印に示すように時計回りのとき、この第2反応槽1内の溶液に添加する第2の中和剤がより効率よく該溶液に混合されるように、この第2の中和剤の添加位置4Aを第2反応槽1内の流れ方向に関して、邪魔板3の手前側に隣接して設置する。具体的には、第2の中和剤の添加位置4Aを、該第2反応槽1の周方向に関して邪魔板3よりも2~6度撹拌方向の上流側に、好ましくは3度撹拌方向の上流側に設ける。この第2の中和剤の添加位置4Aの該第2反応槽1における半径方向の位置は、第2反応槽1の円筒胴部の内壁面から該邪魔板3の幅W以下の距離で離間するのであれば特に限定はないが、該邪魔板3における第2反応槽1の中心軸側端部3aに近ければ近いほど好ましい。 Then, as shown in FIG. 3, when the rotation direction of the stirrer 2 in the second reaction vessel 1 is clockwise as indicated by the white arrow, the second neutralization added to the solution in the second reaction vessel 1 The second neutralizing agent addition position 4A is placed adjacent to the front side of the baffle plate 3 with respect to the flow direction in the second reaction vessel 1 so that the agent is more efficiently mixed with the solution. Specifically, the second neutralizing agent addition position 4A is positioned upstream of the baffle plate 3 in the circumferential direction of the second reaction vessel 1 by 2 to 6 degrees in the stirring direction, preferably 3 degrees in the stirring direction. Installed on the upstream side. The radial position of the second neutralizing agent addition position 4A in the second reaction vessel 1 is separated from the inner wall surface of the cylindrical body of the second reaction vessel 1 by a distance equal to or less than the width W of the baffle plate 3. Although there is no particular limitation as long as it does, the closer the baffle plate 3 is to the central axis side end 3a of the second reaction tank 1, the better.

なお、上記の第2の中和剤の添加位置4Aが、該第2反応槽1の周方向に関して邪魔板3よりも撹拌方向の上流側に2度未満の角度範囲内に位置する場合は、該第2の中和剤の添加位置4Aと邪魔板3とが近すぎるので、第2の中和剤と第2反応槽1内の溶液とが効率よく混合されなくなる。逆に、上記の第2の中和剤の添加位置4Aが、該第2反応槽1の周方向に関して邪魔板3よりも撹拌方向の上流側に6度を超える角度範囲内に位置する場合は、添加位置4Aから導入される第2の中和剤が、該邪魔板3を回避して第2反応槽1内を回転する溶液に混入する割合が高くなるので、この場合も第2の中和剤と第2反応槽1内の溶液とが効率よく混合されなくなる。 When the second neutralizing agent addition position 4A is positioned upstream of the baffle plate 3 in the stirring direction with respect to the circumferential direction of the second reaction tank 1 and within an angular range of less than 2 degrees, Since the addition position 4A of the second neutralizing agent is too close to the baffle plate 3, the second neutralizing agent and the solution in the second reaction tank 1 are not efficiently mixed. Conversely, when the second neutralizing agent addition position 4A is positioned upstream of the baffle plate 3 in the stirring direction with respect to the circumferential direction of the second reaction tank 1 within an angle range exceeding 6 degrees , the ratio of the second neutralizing agent introduced from the addition position 4A to avoid the baffle plate 3 and mix with the solution rotating in the second reaction tank 1 increases. The admixture and the solution in the second reaction tank 1 are no longer efficiently mixed.

なお、図3に示す第2反応槽1には、3枚の邪魔板3が第2反応槽1の周方向に均等な間隔をあけて、すなわち120度ごとに、各々第2反応槽1の中心軸に向かって突出するように該第2反応槽1の筒状胴体部1aに設けられているが、邪魔板3の形状や枚数はこれに限定されるものではなく、例えば邪魔板3の枚数は1~2枚でもよいし、4枚以上でもよい。次に、本発明についての実施例を説明するが、本発明は下記の実施例に限定されるものではない。 In addition, in the second reaction tank 1 shown in FIG. 3, three baffle plates 3 are arranged at equal intervals in the circumferential direction of the second reaction tank 1, that is, at intervals of 120 degrees. The baffle plate 3 is provided on the cylindrical body portion 1a of the second reaction vessel 1 so as to protrude toward the central axis, but the shape and number of baffle plates 3 are not limited to this. The number of sheets may be 1 or 2, or may be 4 or more. EXAMPLES Next, examples of the present invention will be described, but the present invention is not limited to the following examples.

[実施例]
図1に示す湿式製錬方法の工程フロー図に沿って、原料としてのニッケル酸化鉱石から混合硫化物を生成する際に排出される貧液に対して、図2に示す貧液中和処理方法の工程フロー図に沿って中和処理を行った。具体的には、浸出工程S1において所定の粒度を有するニッケル酸化鉱石を含んだ鉱石スラリーに硫酸を添加して高温高圧下で浸出処理を施し、得られた浸出スラリーを固液分離工程S2において直列に接続された複数基のシックナーに装入して浸出残渣を沈降分離し、得られた浸出液に対して脱鉄工程S3においてpH調整剤を添加して殿物を生成し、これを殿物スラリーの形態で分離除去して、有価金属のニッケル及びコバルトのほか、不純物金属イオンとして鉄、マグネシウム、及びマンガンを含む硫酸水溶液からなるニッケル回収用の母液(貴液)を得た。
[Example]
Along the process flow diagram of the hydrometallurgical method shown in FIG. 1, the poor liquid neutralization treatment method shown in FIG. Neutralization treatment was carried out according to the process flow diagram. Specifically, in the leaching step S1, sulfuric acid is added to an ore slurry containing nickel oxide ore having a predetermined particle size, and leaching treatment is performed under high temperature and high pressure. The leaching residue is sedimented and separated, and a pH adjuster is added to the obtained leaching solution in the iron removal step S3 to produce sediment, which is used as a sediment slurry to obtain a mother liquor (precious liquor) for recovering nickel consisting of an aqueous sulfuric acid solution containing nickel and cobalt as valuable metals and iron, magnesium and manganese as impurity metal ions.

上記の母液に対して、硫化工程S4として硫化水素ガスを吹き込んでニッケル及びコバルトを含む硫化物を生成させた。この硫化物をフィルタープレスで固液分離することで回収し、その際、液相側として排出された貧液に対して、第1の中和処理工程S51及び第2の中和処理工程S52からなる2段階の中和処理を施すことで該貧液中に含まれる上記不純物金属イオンを中和除去して中和終液を得た。 Hydrogen sulfide gas was blown into the above mother liquor in the sulfurization step S4 to generate sulfides containing nickel and cobalt. This sulfide is recovered by solid-liquid separation with a filter press, and at that time, the poor liquid discharged as the liquid phase side is subjected to the first neutralization treatment step S51 and the second neutralization treatment step S52. The above-described impurity metal ions contained in the poor liquid were neutralized and removed by performing a two-step neutralization treatment to obtain a final neutralization liquid.

これら第1の中和処理工程S51及び第2の中和処理工程S52には、図4に示すように、各々直列に接続する2基の反応槽からなる合計4基の反応槽を用いて連続的に処理を行った。各反応槽内で処理された処理液はオーバーフローにより排出されるようにし、隣接する後流側の反応槽にはロンダー(樋)を介して処理液を移送させた。そして、各々、後段の反応槽の処理液が流れるロンダー(樋)内にpH計を設け、このpH計で測定したpH値に基づいて前段の反応槽に供給する中和剤の供給配管に設けた流量調整弁の開度を調整した。 In these first neutralization treatment step S51 and second neutralization treatment step S52, as shown in FIG. 4, a total of four reaction tanks each consisting of two reaction tanks connected in series are continuously used. processed accordingly. The treated liquid treated in each reaction tank was discharged by overflow, and the treated liquid was transferred to the adjacent downstream reaction tank through a launder. Then, a pH meter is provided in each launder (trough) through which the treatment liquid flows in the latter reaction tank, and a neutralizing agent supply pipe is provided to the reaction tank in the previous stage based on the pH value measured by this pH meter. The opening of the flow control valve was adjusted.

すなわち、第1の中和処理工程S51では、第1前段反応槽11に供給する第1の中和剤の供給量を、第1後段反応槽12からオーバーフローする処理液のpH値に基づいて調整し、第2の中和処理工程S52では、第2前段反応槽21に供給する第2の中和剤の供給量を、第2後段反応槽22からオーバーフローする処理液のpH値に基づいて調整した。なお、第2後段反応槽22からオーバーフローにより抜き出された処理液はポンプを介して後段の固液分離装置に供給した。 That is, in the first neutralization treatment step S51, the supply amount of the first neutralizing agent to be supplied to the first pre-reaction tank 11 is adjusted based on the pH value of the treatment liquid overflowing from the first post-reaction tank 12. Then, in the second neutralization treatment step S52, the supply amount of the second neutralizing agent to be supplied to the second pre-reaction tank 21 is adjusted based on the pH value of the treatment liquid overflowing from the second post-reaction tank 22. bottom. The treated liquid extracted from the second rear-stage reaction tank 22 due to overflow was supplied to the rear-stage solid-liquid separation device via a pump.

各反応槽には、直径がφ8680mm、高さが13300mmの縦型円筒形の容器を用い、その中心軸部分で回転軸が回転するように撹拌機を備えた。この撹拌機の回転軸の先端部には、直径がφ3251mm、パドル幅が1422mmの4枚プロペラからなる撹拌翼を設けた。また、各反応槽の円筒内壁面には、3枚の幅Wが1000mmの邪魔板3を該反応槽の周方向に沿って120度ごとに設けた。更に、第2前段反応槽21においては、第2の中和剤の添加位置4Aを、図3に示すように、該第2前段反応槽21の周方向に関して邪魔板3の先端部3aよりも3度撹拌方向の上流側に設けた。なお、第1前段反応槽11の第1の中和剤の添加位置は図3の4Bの位置にした。 A vertical cylindrical vessel with a diameter of φ8680 mm and a height of 13300 mm was used for each reaction vessel, and a stirrer was provided so that a rotating shaft was rotated at the central axis portion of the vessel. A stirring blade consisting of four propellers having a diameter of φ3251 mm and a paddle width of 1422 mm was provided at the tip of the rotary shaft of the stirrer. Three baffle plates 3 each having a width W of 1000 mm were provided on the inner wall surface of the cylinder of each reaction vessel at intervals of 120 degrees along the circumferential direction of the reaction vessel. Further, in the second pre-reaction tank 21, the second neutralizing agent addition position 4A is set further than the tip 3a of the baffle plate 3 in the circumferential direction of the second pre-reaction tank 21, as shown in FIG. It was provided on the upstream side in the 3-degree stirring direction. The addition position of the first neutralizing agent in the first pre-stage reaction tank 11 was the position 4B in FIG.

そして、pH1.7の貧液を第1前段反応槽11に供給して順次後段の反応槽に移送させた。その際、各反応槽において底面から液面までの高さが10100mmとなるようにオーバーフローの液位を調整すると共に、撹拌翼の回転数を1800rpmの設定条件下で中和処理を行った。更に、第1後段反応槽12における終点pHが5.1~5.4となるように、第1前段反応槽11には第1の中和剤として3mol/Lの炭酸カルシウムスラリーを添加して第1の中和処理を行った。また、第2後段反応槽22における終点pHが8.5~9.0となるように、第2前段反応槽21には、第2の中和剤として固形分濃度15~25質量%の消石灰スラリーを添加して第2の中和処理を行った。その際、各反応槽における滞留時間は19~22分の範囲内となった。 Then, the poor liquid having a pH of 1.7 was supplied to the first front-stage reaction tank 11 and transferred to the rear-stage reaction tanks sequentially. At that time, the overflow liquid level was adjusted so that the height from the bottom surface to the liquid surface in each reaction tank was 10100 mm, and the neutralization treatment was performed under the setting conditions of the rotational speed of the stirring blade of 1800 rpm. Furthermore, 3 mol/L of calcium carbonate slurry is added as a first neutralizing agent to the first pre-reaction tank 11 so that the end point pH in the first post-reaction tank 12 is 5.1 to 5.4. A first neutralization treatment was performed. In addition, slaked lime with a solid content concentration of 15 to 25% by mass is added to the second front reaction tank 21 as a second neutralizing agent so that the end point pH in the second rear reaction tank 22 is 8.5 to 9.0. A second neutralization treatment was performed by adding the slurry. At that time, the residence time in each reactor was in the range of 19 to 22 minutes.

上記の第2の中和処理において、下記式1で定義される消石灰の反応効率を算出した。ここで、理論消石灰使用量とは、第1後段反応槽12から排出される第1の中和処理後の処理液中に残留する不純物を中和するのに要する化学量論量から計算した不純物中和当量である。従って、第2前段反応槽21で実際に添加した第2中和剤の添加量(実消石灰使用量)で該理論消石灰使用量を除することで得られる下記式1の反応効率の値が大きいほど、反応効率が良好な望ましい状態であることになる。
[式1]
反応効率(%)=理論消石灰使用量(mol)/実消石灰使用量(mol)×100
In the above second neutralization treatment, the reaction efficiency of slaked lime defined by the following formula 1 was calculated. Here, the theoretical amount of slaked lime used is the impurity calculated from the stoichiometric amount required to neutralize the impurities remaining in the treated liquid after the first neutralization treatment discharged from the first post-reaction tank 12. Neutralization equivalent. Therefore, the value of the reaction efficiency of the following formula 1 obtained by dividing the theoretical amount of slaked lime used by the amount of the second neutralizing agent actually added in the second front-stage reaction tank 21 (actual amount of slaked lime used) is large. The more, the better the reaction efficiency is.
[Formula 1]
Reaction efficiency (%) = theoretical amount of slaked lime used (mol) / actual amount of slaked lime used (mol) x 100

[比較例]
第2前段反応槽21における第2の中和剤の添加位置4Aを、図3に示すように、該第2前段反応槽21の周方向に関して邪魔板3の先端部3aよりも3度撹拌方向の下流側に設けた以外は上記実施例と同様にして中和処理を行った。
[Comparative example]
The addition position 4A of the second neutralizing agent in the second pre-reaction tank 21 is, as shown in FIG. Neutralization treatment was carried out in the same manner as in the above example except that it was provided on the downstream side of the .

上記の実施例及び比較例における最終pH値に対する上記式1の中和剤の反応効率の関係をプロットしたグラフを図4に示す。この図4の結果から、実施例では比較例に比べて消石灰の反応効率が約10%向上した。このように、貧液に対して、第1の中和剤として炭酸カルシウムスラリーを添加してpH5.0~6.0の範囲を終点として一次中和処理を施した後、得られた処理液に、第2の中和剤として消石灰スラリーを添加して二次中和処理を施す際、該消石灰スラリーの添加位置を反応槽の周方向に関して邪魔板の先端部よりも3度撹拌方向の下流側に設けることで、消石灰の反応効率が向上することが分かる。 FIG. 4 shows a graph plotting the reaction efficiency of the neutralizing agent of Formula 1 above against the final pH value in the above Examples and Comparative Examples. From the results of FIG. 4, the reaction efficiency of slaked lime was improved by about 10% in the example compared to the comparative example. In this way, a calcium carbonate slurry is added as a first neutralizing agent to the poor solution, and the primary neutralization treatment is performed with the pH range of 5.0 to 6.0 as the end point. In addition, when performing secondary neutralization by adding slaked lime slurry as a second neutralizing agent, the adding position of the slaked lime slurry is 3 degrees downstream in the stirring direction from the tip of the baffle plate with respect to the circumferential direction of the reaction tank. It can be seen that the reaction efficiency of slaked lime is improved by providing it on the side.

S1 浸出工程
S2 固液分離工程
S3 脱鉄工程
S4 硫化工程
S5 中和処理工程
1 反応槽
2 撹拌機回転軸
3 邪魔板
4A 中和剤添加装置(実施例)
4B 中和剤添加装置(比較例)
S1 Leaching step S2 Solid-liquid separation step S3 Deironization step S4 Sulfurization step S5 Neutralization treatment step 1 Reaction tank 2 Stirrer rotating shaft 3 Baffle plate 4A Neutralizer addition device (Example)
4B Neutralizing agent addition device (comparative example)

Claims (4)

鉄、マグネシウム、及びマンガンのうちのいずれか1つ以上の不純物金属イオンを含有する硫酸水溶液に対して弱アルカリ性の第1の中和剤を添加してpH5.0以上6.0以下の範囲内を終点として中和処理を施す第1の中和処理工程と、該第1の中和処理工程で得た溶液を撹拌機及び邪魔板を有する縦型円筒形状の反応槽に装入し、該第1の中和剤よりも塩基性度の高い第2の中和剤を添加して中和処理を施す第2の中和処理工程とを有する中和処理方法であって、該反応槽における該第2の中和剤の添加位置、該反応槽の周方向に関して該邪魔板よりも2~6度撹拌方向の上流側であって且つ該反応槽の半径方向において該反応槽の内壁面から該邪魔板の幅の距離で離間するように該反応槽の上方から下方に向けて該第2の中和剤を導入することを特徴とする中和処理方法。 pH within the range of 5.0 or more and 6.0 or less by adding a weakly alkaline first neutralizing agent to an aqueous sulfuric acid solution containing impurity metal ions of at least one of iron, magnesium, and manganese and the solution obtained in the first neutralization step is charged into a vertical cylindrical reaction vessel equipped with a stirrer and baffles, and the and a second neutralization step of adding a second neutralizing agent having a higher basicity than the first neutralizing agent to perform neutralization, wherein The addition position of the second neutralizing agent is 2 to 6 degrees upstream of the baffle in the stirring direction with respect to the circumferential direction of the reaction vessel , and the inner wall surface of the reaction vessel in the radial direction of the reaction vessel. and introducing the second neutralizing agent from the top to the bottom of the reaction tank so as to be spaced apart by the width of the baffle plate. 前記硫酸水溶液が、ニッケル酸化鉱石に硫酸を添加して高温高圧で浸出処理することで得たニッケル及びコバルトを含有する浸出液に対して、硫化水素ガスを吹き込んで該ニッケル及びコバルトから硫化物を生成し、該硫化物を固液分離により回収する際に液相側に排出される貧液であることを特徴とする、請求項1に記載の中和処理方法。 The aqueous sulfuric acid solution is obtained by adding sulfuric acid to a nickel oxide ore and subjecting it to high-temperature and high-pressure leaching, and then blowing hydrogen sulfide gas into the leachate containing nickel and cobalt to generate sulfide from the nickel and cobalt. 2. The method of neutralization treatment according to claim 1, wherein the sulfide is a poor liquid discharged to the liquid phase side when the sulfide is recovered by solid-liquid separation. 前記第2の中和処理工程は、pH8.5以上9.0以下の範囲内を終点として中和処理を行うことを特徴とする、請求項1又は2に記載の中和処理方法。 3. The neutralization method according to claim 1 or 2, wherein said second neutralization step performs neutralization with a pH range of 8.5 to 9.0 as an end point. 前記第2の中和剤が、固形分濃度15質量%以上25質量%以下の消石灰スラリーであることを特徴とする、請求項1~3のいずれか1項に記載の中和処理方法。 The neutralization treatment method according to any one of claims 1 to 3, wherein the second neutralizing agent is a slaked lime slurry having a solid content concentration of 15% by mass or more and 25% by mass or less.
JP2019079174A 2019-04-18 2019-04-18 Neutralization treatment method for poor liquid generated in hydrometallurgy of nickel oxide ore Active JP7247729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019079174A JP7247729B2 (en) 2019-04-18 2019-04-18 Neutralization treatment method for poor liquid generated in hydrometallurgy of nickel oxide ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019079174A JP7247729B2 (en) 2019-04-18 2019-04-18 Neutralization treatment method for poor liquid generated in hydrometallurgy of nickel oxide ore

Publications (2)

Publication Number Publication Date
JP2020175329A JP2020175329A (en) 2020-10-29
JP7247729B2 true JP7247729B2 (en) 2023-03-29

Family

ID=72936083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019079174A Active JP7247729B2 (en) 2019-04-18 2019-04-18 Neutralization treatment method for poor liquid generated in hydrometallurgy of nickel oxide ore

Country Status (1)

Country Link
JP (1) JP7247729B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075909A (en) 2008-08-28 2010-04-08 Kinki Sogo Giken Kk Apparatus for agitating and mixing two kinds of liquid
JP2013256691A (en) 2012-06-12 2013-12-26 Sumitomo Metal Mining Co Ltd Neutralization method
JP2014113566A (en) 2012-12-11 2014-06-26 Sumitomo Metal Mining Co Ltd Method and apparatus for removing heavy metal
JP2015105396A (en) 2013-11-29 2015-06-08 住友金属鉱山株式会社 Neutralization treatment method
JP2015134967A (en) 2015-03-16 2015-07-27 住友金属鉱山株式会社 Heavy metal removing method and heavy metal removing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075909A (en) 2008-08-28 2010-04-08 Kinki Sogo Giken Kk Apparatus for agitating and mixing two kinds of liquid
JP2013256691A (en) 2012-06-12 2013-12-26 Sumitomo Metal Mining Co Ltd Neutralization method
JP2014113566A (en) 2012-12-11 2014-06-26 Sumitomo Metal Mining Co Ltd Method and apparatus for removing heavy metal
JP2015105396A (en) 2013-11-29 2015-06-08 住友金属鉱山株式会社 Neutralization treatment method
JP2015134967A (en) 2015-03-16 2015-07-27 住友金属鉱山株式会社 Heavy metal removing method and heavy metal removing apparatus

Also Published As

Publication number Publication date
JP2020175329A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JP5644878B2 (en) Solid-liquid separation treatment method and nickel oxide ore hydrometallurgy method
JP5692458B1 (en) Solid-liquid separation treatment method and nickel oxide ore hydrometallurgy method
JP6589950B2 (en) Leaching treatment method, nickel oxide ore hydrometallurgy method
JP6953988B2 (en) How to remove sulfide
JP7247729B2 (en) Neutralization treatment method for poor liquid generated in hydrometallurgy of nickel oxide ore
WO2020149122A1 (en) Method for manufacturing nickel/cobalt mixed sulfide from nickel oxide ore by wet smelting method
JP6036875B2 (en) Method for hydrometallizing nickel oxide ore
JP2020076129A (en) Wet smelting method for nickel oxide ore suppressing precipitation of gypsum scale
JP7279546B2 (en) Nickel oxide ore leaching method and hydrometallurgical method including the same
JP7200698B2 (en) Hydrometallurgical method for nickel oxide ore
JP7298126B2 (en) Nickel Oxide Ore Autoclave Equipment
JP7183503B2 (en) METHOD FOR MANUFACTURING HIGH CONCENTRATION ORE SLURRY
JP7293873B2 (en) Method for producing nickel sulfide, hydrometallurgical method for nickel oxide ore
JP7196630B2 (en) Method and equipment for recovering valuable metals from aqueous sulfuric acid solution
JP7115170B2 (en) Nickel oxide ore treatment method and nickel-cobalt mixed sulfide production method including the treatment method
JP7238686B2 (en) Neutralization method
EA022190B1 (en) Method for enhancing solid-liquid separation in conjunction with laterite leaching
JP7147362B2 (en) Method for reducing odor in hydrometallurgy of nickel oxide ore
WO2019163284A1 (en) Method for recovering scandium
JP2020028858A (en) Final neutralization method in wet refining process for nickel oxide ore
JP7279578B2 (en) Solid-liquid separation method using thickener and nickel oxide ore hydrometallurgical method including the same
JP2019214778A (en) Pretreatment method of nickel oxide ore raw material
JP7273269B1 (en) Hydrometallurgical method for nickel oxide ore
WO2017130693A1 (en) Method for removing residual hydrogen sulfide
JP7285427B2 (en) Nickel oxide ore leaching method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R150 Certificate of patent or registration of utility model

Ref document number: 7247729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150